Audience assumptions

This guide is for an experienced service technician. HP assumes you are qualified in the servicing of computer equipment and trained in recognizing hazards in products with hazardous energy levels and are familiar with weight and stability precautions for rack installations.
Contents

<table>
<thead>
<tr>
<th>Illustrated parts catalog</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer self repair</td>
<td>7</td>
</tr>
<tr>
<td>Mechanical components</td>
<td>8</td>
</tr>
<tr>
<td>System components</td>
<td>9</td>
</tr>
</tbody>
</table>

Removal and replacement procedures

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required tools</td>
<td>14</td>
</tr>
<tr>
<td>Safety considerations</td>
<td>14</td>
</tr>
<tr>
<td>Preventing electrostatic discharge</td>
<td>14</td>
</tr>
<tr>
<td>Server warnings and cautions</td>
<td>15</td>
</tr>
<tr>
<td>Preparation procedures</td>
<td>15</td>
</tr>
<tr>
<td>Extending the server from the rack</td>
<td>16</td>
</tr>
<tr>
<td>Powering down the server</td>
<td>18</td>
</tr>
<tr>
<td>Removing the server from the rack</td>
<td>19</td>
</tr>
<tr>
<td>Removing the access panel</td>
<td>19</td>
</tr>
<tr>
<td>Removing the system cage</td>
<td>20</td>
</tr>
<tr>
<td>Removing the front bezel</td>
<td>21</td>
</tr>
<tr>
<td>Removing a media drive blank</td>
<td>23</td>
</tr>
<tr>
<td>Removing a media drive</td>
<td>23</td>
</tr>
<tr>
<td>Removing the processor module</td>
<td>24</td>
</tr>
<tr>
<td>Removing a processor</td>
<td>26</td>
</tr>
<tr>
<td>Removing a PPM</td>
<td>29</td>
</tr>
<tr>
<td>Removing a PCI latch</td>
<td>30</td>
</tr>
<tr>
<td>Removing a PCI retaining clip</td>
<td>31</td>
</tr>
<tr>
<td>Removing the PCI-X Hot Plug basket</td>
<td>32</td>
</tr>
<tr>
<td>Removing a non-hot-plug expansion board</td>
<td>33</td>
</tr>
<tr>
<td>Removing the PCI-X Hot Plug mezzanine option</td>
<td>34</td>
</tr>
<tr>
<td>Removing the PCI Express mezzanine option</td>
<td>35</td>
</tr>
<tr>
<td>Recovering data from the BBWC</td>
<td>36</td>
</tr>
<tr>
<td>Removing the BBWC battery pack</td>
<td>37</td>
</tr>
<tr>
<td>Removing the BBWC cache module</td>
<td>38</td>
</tr>
<tr>
<td>Removing the system board</td>
<td>39</td>
</tr>
<tr>
<td>Re-entering the server serial number and product ID</td>
<td>41</td>
</tr>
<tr>
<td>Removing the system battery</td>
<td>42</td>
</tr>
<tr>
<td>Removing the media board</td>
<td>44</td>
</tr>
<tr>
<td>Removing the SCSI backplane</td>
<td>45</td>
</tr>
<tr>
<td>Removing the power backplane</td>
<td>47</td>
</tr>
</tbody>
</table>
Contents

Processor module LEDs ... 97
Rear panel components .. 98
Rear panel LEDs and buttons ... 99
Power supply LEDs .. 100
System board components ... 102
 - System maintenance switch .. 103
 - Boot device selector switch .. 104
 - QuickFind diagnostic display LEDs 105
 - Setting the switch to view port 85 codes 107
DIMM slot locations .. 108
SCSI IDs .. 108
Hot-plug SCSI hard drive LEDs .. 110
Hot-plug SCSI hard drive LED combinations 111
SATA or SAS IDs ... 112
SATA or SAS hard drive LEDs ... 113
SAS and SATA hard drive LED combinations 113
Fan locations ... 114
Hot-plug fan LEDs ... 116
BBWC LEDs ... 117

Server cabling

- Storage device cabling guidelines ... 119
- PCI-X Hot Plug mezzanine cabling .. 119
- BBWC cabling ... 120
- RILOE II cabling ... 121
- Hot-plug SCSI drive cabling ... 121
 - SCSI simplex mode ... 122
 - SCSI duplex mode .. 122
- Hot-plug SAS hard drive cabling ... 123
- USB cable assembly .. 123
- Power switch cable assembly .. 124

Specifications

- Server specifications ... 127
- Environmental specifications .. 128
- Hot-plug power supply calculations .. 128

Acronyms and abbreviations

- Index .. 135
Illustrated parts catalog

In this section
Customer self repair... 7
Mechanical components ... 8
System components .. 9

Customer self repair

What is customer self repair?

HP's customer self-repair program offers you the fastest service under either warranty or contract. It enables HP to ship replacement parts directly to you so that you can replace them. Using this program, you can replace parts at your own convenience.

A convenient, easy-to-use program:

- An HP support specialist will diagnose and assess whether a replacement part is required to address a system problem. The specialist will also determine whether you can replace the part.
- Replacement parts are express-shipped. Most in-stock parts are shipped the very same day you contact HP. You may be required to send the defective part back to HP, unless otherwise instructed.
- Available for most HP products currently under warranty or contract. For information on the warranty service, refer to the HP website (http://h18004.www1.hp.com/products/servers/platforms/warranty/index.htm).

For more information about HP's customer self-repair program, contact your local service provider. For the North American program, refer to the HP website (http://www.hp.com/go/selfrepair).

Customer replaceable parts are identified in the following tables.
Mechanical components

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Assembly part number</th>
<th>Spare part number</th>
<th>Customer self repair</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hardware kit, ProLiant DL580 G3 Server *</td>
<td>—</td>
<td>385642-001</td>
<td>Yes</td>
</tr>
<tr>
<td>1</td>
<td>a) Blank, power supply</td>
<td>366450-002</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>b) Blank, CD/DVD/diskette</td>
<td>377569-001</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>c) Blank, memory board</td>
<td>374278-001</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Bezel, ProLiant DL580 G3 Server</td>
<td>367600-001</td>
<td>376481-001</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Cover, top, ProLiant DL580 G3 Server</td>
<td>367572-001</td>
<td>376480-001</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Blank, hard drive</td>
<td>302531-002</td>
<td>122759-001</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>Processor module assembly</td>
<td>012095-001</td>
<td>376469-001</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Plastics kit, ProLiant DL580 G3 Server *</td>
<td>—</td>
<td>376479-001</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>a) Guide, PCA, short (2) *</td>
<td>367597-001</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>b) Guide, PCA, tall (2) *</td>
<td>367939-001</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>c) Latch, PCI, carbon (2) *</td>
<td>228194-001</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>Assembly part number</td>
<td>Spare part number</td>
<td>Customer self repair</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>11</td>
<td>d) Latch, PCI, blue (2) *</td>
<td>228194-002</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>e) Retainer, card guide, carbon (2) *</td>
<td>379046-001</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>f) Retainer, card guide, blue (2) *</td>
<td>379046-002</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>Return kit, ProLiant DL580 G3 Server *</td>
<td>—</td>
<td>378336-001</td>
<td>Yes</td>
</tr>
<tr>
<td>15</td>
<td>Tool, Torx, T-15 *</td>
<td>107473-001</td>
<td>199630-001</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*Not shown

System components
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Assembly part number</th>
<th>Spare part number</th>
<th>Customer self repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power supply, 910–1300 W</td>
<td>337867-001</td>
<td>364360-001</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>System cage</td>
<td>—</td>
<td>—</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Fan, 120 mm, hot-plug</td>
<td>364517-001</td>
<td>374552-001</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>PCI-X Hot Plug switch</td>
<td>011077-001</td>
<td>230981-001</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Memory backplane, ProLiant DL580 G3 Server</td>
<td>012101-001</td>
<td>376471-001</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>System board, ProLiant DL580 G3 Server</td>
<td>012092-001</td>
<td>376468-001</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>SCSI backplane, ProLiant DL580 G3 Server</td>
<td>012104-001</td>
<td>376474-001</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>Media board (CD/DVD/diskette)</td>
<td>012207-001</td>
<td>376477-001</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>Power backplane, ProLiant DL580 G3 Server *</td>
<td>012110-001</td>
<td>376476-001</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>Processor module assembly, ProLiant DL580 G3 Server</td>
<td>012095-001</td>
<td>376469-001</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>Processor Power Module</td>
<td>367240-001</td>
<td>370718-001</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>Memory board, ProLiant DL580 G3 Server</td>
<td>012098-001</td>
<td>376470-001</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>Diskette drive, 3.5 in.</td>
<td>279983-001</td>
<td>289550-001</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>DVD drive, 8x</td>
<td>168003-9D1</td>
<td>268795-001</td>
<td>Yes</td>
</tr>
<tr>
<td>15</td>
<td>DVD/CD-RW drive *</td>
<td>294766-9D1/935</td>
<td>337273-001</td>
<td>Yes</td>
</tr>
<tr>
<td>16</td>
<td>SCSI Ultra320 universal hot-plug hard drive</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>a) 36.4 GB, 15,000 rpm *</td>
<td>271837-012</td>
<td>289241-001</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>b) 72.8 GB, 10,000 rpm *</td>
<td>271837-004</td>
<td>289242-001</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>c) 72.8 GB, 15,000 rpm *</td>
<td>271837-014</td>
<td>289042-001</td>
<td>Yes</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>Assembly part number</td>
<td>Spare part number</td>
<td>Customer self repair</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>d) 146.8 GB, 10,000 rpm *</td>
<td>271837-006</td>
<td>289044-001</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>e) 300 GB, 10,000 rpm *</td>
<td>271837-029</td>
<td>351126-001</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Memory

17 DIMM, PC3200, DDR2

- a) 512 MB * 345112-051 359241-001 Yes
- b) 1 GB * 345113-051 359242-001 Yes
- c) 2 GB (single-rank) * 345114-061 359243-001 Yes
- d) 2 GB (dual-rank) * 345114-051 378021-001 Yes

Processor assemblies

18 Processor assemblies

- a) Intel® 3.33-GHz Xeon™ 8-MB * 376660-001 379982-001 Yes
- b) Intel® 3.00-GHz Xeon™ 8-MB * 376660-002 379981-001 Yes
- c) Intel® 2.83-GHz Xeon™ 4-MB * 376661-001 379980-001 Yes
- d) Intel® 3.67-GHz Xeon™ 1-MB * 376659-002 389027-001 Yes
- e) Intel® 3.16-GHz Xeon™ 1-MB * 376659-001 377840-001 Yes

Cables

19 Cable kit, data, ProLiant DL580 G3 Server *

- a) Cable assembly, USB 346187-001 — Yes
- b) Cable assembly, power switch 367602-001 — Yes
- c) Cable assembly, PCI-X Hot Plug switch board 224999-003 — Yes

20 SAS hard drive cable kit *

- a) SAS cable assembly 361316-002 — Yes
- b) SAS power cable 379196-001 — Yes

Options
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Assembly part number</th>
<th>Spare part number</th>
<th>Customer self repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Battery-Backed Write Cache battery housing *</td>
<td>338173-001</td>
<td>349989-001</td>
<td>Yes</td>
</tr>
<tr>
<td>22</td>
<td>Battery-Backed Write Cache battery *</td>
<td>274779-001</td>
<td>307132-001</td>
<td>Yes</td>
</tr>
<tr>
<td>23</td>
<td>Cache board, 128-MB *</td>
<td>012304-001</td>
<td>351518-001</td>
<td>Yes</td>
</tr>
<tr>
<td>24</td>
<td>PCI Express x4 mezzanine board *</td>
<td>012450-001</td>
<td>376473-001</td>
<td>Yes</td>
</tr>
<tr>
<td>25</td>
<td>PCI Express x8 mezzanine board *</td>
<td>012743-001</td>
<td>390347-001</td>
<td>Yes</td>
</tr>
<tr>
<td>26</td>
<td>PCI-X Hot Plug mezzanine board *</td>
<td>012447-001</td>
<td>376472-001</td>
<td>Yes</td>
</tr>
<tr>
<td>27</td>
<td>PCI-X Hot Plug basket assembly *</td>
<td>375192-001</td>
<td>393784-001</td>
<td>Yes</td>
</tr>
<tr>
<td>28</td>
<td>SAS backplane, ProLiant DL580 G3 Server *</td>
<td>—</td>
<td>376475-001</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>a) SAS backplane board *</td>
<td>012564-001</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>b) SAS power backplane board *</td>
<td>012662-001</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>29</td>
<td>SAS array controller board *</td>
<td>012335-001</td>
<td>370855-001</td>
<td>Yes</td>
</tr>
<tr>
<td>30</td>
<td>SAS array cache board (with battery) *</td>
<td>011773-002</td>
<td>309522-001</td>
<td>Yes</td>
</tr>
<tr>
<td>31</td>
<td>Hot-plug SAS hard drive, 72 GB, 10,000 rpm *</td>
<td>375863-002</td>
<td>376597-001</td>
<td>Yes</td>
</tr>
<tr>
<td>32</td>
<td>Hot-plug SAS hard drive, 36 GB, 10,000 rpm *</td>
<td>375863-001</td>
<td>376596-001</td>
<td>Yes</td>
</tr>
<tr>
<td>33</td>
<td>Hot-plug SATA hard drive, 60 GB, 5,400 rpm *</td>
<td>390158-001</td>
<td>382264-001</td>
<td>Yes</td>
</tr>
<tr>
<td>34</td>
<td>SAS/SATA hard drive blank *</td>
<td>376383-001</td>
<td>392613-001</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Assembly part number</th>
<th>Spare part number</th>
<th>Customer self repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Battery, 3V, Lithium *</td>
<td>166899-001</td>
<td>153099-001</td>
<td>Yes</td>
</tr>
<tr>
<td>36</td>
<td>Power cord, AC line, C14–C19 *</td>
<td>287485-003</td>
<td>311582-001</td>
<td>Yes</td>
</tr>
<tr>
<td>37</td>
<td>Power cord, AC line, 5–15P *</td>
<td>178968-001</td>
<td>237457-001</td>
<td>Yes</td>
</tr>
<tr>
<td>38</td>
<td>Rack mount kit, universal *</td>
<td>274503-001</td>
<td>377039-001</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*Not shown
Removal and replacement procedures

In this section

Required tools... 14
Safety considerations.. 14
Preparation procedures ... 15
Removing the front bezel ... 21
Removing a media drive blank... 23
Removing a media drive.. 23
Removing the processor module ... 24
Removing a processor .. 26
Removing a PPM... 29
Removing a PCI latch... 30
Removing a PCI retaining clip ... 31
Removing the PCI-X Hot Plug basket... 32
Removing a non-hot-plug expansion board.. 33
Removing the PCI-X Hot Plug mezzanine option... 34
Removing the PCI Express mezzanine option.. 35
Recovering data from the BBWC.. 36
Removing the BBWC battery pack.. 37
Removing the BBWC cache module... 38
Removing the system board... 39
Removing the system battery... 42
Removing the media board... 44
Removing the SCSI backplane.. 45
Removing the power backplane.. 47
Removing the memory backplane.. 48
Removing a hard drive blank.. 49
Removing a hot-plug SCSI hard drive... 50
Removing a hot-plug SAS hard drive... 51
Removing the SAS-SATA hard drive cage .. 52
Removing the SAS-SATA backplane .. 56
Removing a PCI-X Hot Plug expansion board... 57
Removing a power supply blank.. 58
Removing a redundant hot-plug power supply... 59
Replacing hot-plug fans... 60
Memory overview... 62
Required tools

You need the following items for some procedures:

- Torx T-15 screwdriver (provided with the server ("Rear panel components" on page 98))
- Phillips screwdriver
- Flat-head screwdriver
- Diagnostics Utility

Safety considerations

Before performing service procedures, review all the safety information.

Preventing electrostatic discharge

To prevent damaging the system, be aware of the precautions you need to follow when setting up the system or handling parts. A discharge of static electricity from a finger or other conductor may damage system boards or other static-sensitive devices. This type of damage may reduce the life expectancy of the device.

To prevent electrostatic damage:

- Avoid hand contact by transporting and storing products in static-safe containers.
- Keep electrostatic-sensitive parts in their containers until they arrive at static-free workstations.
- Place parts on a grounded surface before removing them from their containers.
- Avoid touching pins, leads, or circuitry.
• Always be properly grounded when touching a static-sensitive component or assembly.

Server warnings and cautions

Before installing a server, be sure that you understand the following warnings and cautions.

⚠️ WARNING: To reduce the risk of electric shock or damage to the equipment:
 • Do not disable the power cord grounding plug. The grounding plug is an important safety feature.
 • Plug the power cord into a grounded (earthed) electrical outlet that is easily accessible at all times.
 • Unplug the power cord from the power supply to disconnect power to the equipment.
 • Do not route the power cord where it can be walked on or pinched by items placed against it. Pay particular attention to the plug, electrical outlet, and the point where the cord extends from the server.

⚠️ WARNING: To reduce the risk of personal injury from hot surfaces, allow the drives and the internal system components to cool before touching them.

⚠️ CAUTION: Do not operate the server for long periods with the access panel open or removed. Operating the server in this manner results in improper airflow and improper cooling that can lead to thermal damage.

Preparation procedures

To access some components and perform certain service procedures, perform one or more of the following procedures:

• Extend the server from the rack.

 If you are performing service procedures in an HP, Compaq branded, telco, or third-party rack cabinet, you can use the locking feature of the rack rails to support the server and gain access to internal components.
For more information about telco rack solutions, refer to the RackSolutions.com website (http://www.racksolutions.com/hp).

- Power down the server ("Powering down the server" on page 18).
 If you must remove a server from a rack or a non-hot-plug component from a server, power down the server.

- Remove the server from the rack ("Removing the server from the rack" on page 19).
 If the rack environment, cabling configuration, or the server location in the rack makes it difficult to service the unit, remove the server from the rack.

- Remove the access panel ("Removing the access panel" on page 19).
 If you are servicing internal components, remove the access panel.

- Remove the system cage ("Removing the system cage" on page 20).
 If you must remove the system board, power backplane, or the BBWC, remove the system cage.

Extending the server from the rack

The design of the server enables you to access several components through the front of the server. Installing or accessing the following components will not require extending the server from the rack:

- Processors
- PPMs
- Memory boards
- DIMMs
- Media drive
- Diskette drive
- Hard drives

To extend the server from the rack:

1. Release the two levers on the lower outside corners of the rack.
NOTE: If the server is in a rack and in the shipping configuration, remove the two shipping screws directly behind the levers and the two shipping screws on the rails in the rear of the server.

IMPORTANT: If the server is installed in a telco rack, remove the server from the rack to access internal components.

2. Extend the server on the rack rails until the server rail-release latches engage.

WARNING: To reduce the risk of personal injury or equipment damage, be sure that the rack is adequately stabilized before extending a component from the rack.

WARNING: To reduce the risk of personal injury, be careful when pressing the server rail-release latches and sliding the server into the rack. The sliding rails could pinch your fingers.

3. After performing the installation or maintenance procedure, slide the server back into the rack by pressing the server rail-release latches.
NOTE: The release latches will lock into place when the rails are fully extended.

Powering down the server

WARNING: To reduce the risk of personal injury, electric shock, or damage to the equipment, remove the power cord to remove power from the server. The front panel Power On/Standby button does not completely shut off system power. Portions of the power supply and some internal circuitry remain active until AC power is removed.

IMPORTANT: If installing a hot-plug device, it is not necessary to power down the server.

1. Shut down the OS as directed by the OS documentation.
2. Press the Power On/Standby button to place the server in standby mode. When the server enters standby power mode, the system power LED changes to amber.
3. Disconnect the power cords.

The system is now without power.
Removing the server from the rack

To remove the server from an HP, Compaq branded, telco, or third-party rack:

1. Power down the server ("Powering down the server" on page 18).
2. Extend the server from the rack.
3. Disconnect the cabling and remove the server from the rack. For more information, refer to the documentation that ships with the rack mounting option.
4. Place the server on a sturdy, level surface.

Removing the access panel

⚠️ WARNING: To reduce the risk of personal injury from hot surfaces, allow the drives and the internal system components to cool before touching them.

⚠️ CAUTION: Do not operate the server for long periods with the access panel open or removed. Operating the server in this manner results in improper airflow and improper cooling that can lead to thermal damage.

ℹ️ IMPORTANT: When removing the access panel to view QuickFind diagnostic LEDs, leave the server powered on. The QuickFind diagnostic LEDs are cleared when the server is powered off.

1. Extend the server from the rack, if applicable.
2. If the locking latch is locked, use a Torx T-15 screwdriver to unlock the latch.

💡 NOTE: The T-15 Torx screwdriver is shipped with the server and can be located on the rear panel ("Rear panel components" on page 98).
3. Lift up on the hood latch, and remove the access panel.

4. After installing hardware options, replace the access panel. Be sure that the panel is securely locked into place before powering up the server.

Removing the system cage

Installing or accessing some options in the server may require removing the system cage. Refer to the instructions for each individual option to determine if removing the system cage is necessary.

To remove the system cage:

1. Power down the server, if applicable ("Powering down the server" on page 18).
2. Extend the server from the rack, if applicable.
3. Remove the access panel ("Removing the access panel" on page 19).
4. Remove all expansion boards and expansion slot covers.
5. Remove the PCI-X Hot Plug basket, if applicable.
6. Disconnect the hot-plug board cable from the PCI-X Hot Plug mezzanine board, if applicable.
7. Remove all system fans ("Replacing hot-plug fans" on page 60).
8. Remove all power supplies ("Removing a redundant hot-plug power supply" on page 59).

9. Loosen the thumbscrews, and lift the system cage from the server.

 NOTE: The T-15 Torx screwdriver can be used to loosen the thumbscrews. The T-15 Torx screwdriver is shipped with the server and can be located on the rear panel ("Rear panel components" on page 98).

Removing the front bezel

1. Power down the server ("Powering down the server" on page 18).
2. Extend the server from the rack.
3. Remove the access panel ("Removing the access panel" on page 19).
4. Using the T-15 Torx screwdriver, remove the three screws on each side of the front bezel.
NOTE: The T-15 Torx screwdriver is shipped with the server and can be located on the rear panel ("Rear panel components" on page 98).

5. Release the two levers on the lower outside corners of the rack.
6. Slide the bezel to the right, and detach the bezel from the server.

To replace the component, reverse the removal procedure.
Removing a media drive blank

1. Power down the server ("Powering down the server" on page 18).
2. Use the T-15 Torx screwdriver to eject the drive blank, and pull the drive blank out of the server.

 NOTE: The T-15 Torx screwdriver is shipped with the server and can be located on the rear panel ("Rear panel components" on page 98).

To replace the component, reverse the removal procedure.

Removing a media drive

To remove the DVD drive, optional diskette drive, or optional CD-RW drive:

1. Power down the server ("Powering down the server" on page 18).
2. Use the T-15 Torx screwdriver to eject the drive, and pull the drive out of the server.
NOTE: The T-15 Torx screwdriver is shipped with the server and can be located on the rear panel ("Rear panel components" on page 98).

To replace the component, reverse the removal procedure.

Removing the processor module

NOTE: Refer the section "Processor module LEDs (on page 97)" for information on the current processor and PPM status.

1. Power down the server ("Powering down the server" on page 18).
2. Remove the shipping bracket, if applicable.

NOTE: The shipping bracket is located near the processor module lever, and is marked with an orange tab for easy identification.
3. Release the latches to unlock the processor module.

4. Lower the processor module lever, and pull the module out of the server.
5. Release the latch, and open the cover to expose the processors.

NOTE: To install a new processor module, remove all processors and PPMs from the processor module. Reinstall the processors and PPMs into the replacement processor module.

To replace the component, reverse the removal procedure.

Removing a processor

⚠️ CAUTION: To prevent thermal instability and damage to the server, do not separate the processor from the heatsink. The processor, heatsink, and retaining clip make up a single assembly.

⚠️ CAUTION: To prevent possible server malfunction and damage to the equipment, do not mix processors of different types.

⚠️ IMPORTANT: If upgrading processor speed or adding additional processors, update the system ROM before installing the processor.

⚠️ IMPORTANT: Processor socket 1 and PPM slot 1 must be populated at all times or the server will not function properly.

⚠️ IMPORTANT: Always install a PPM when you install a processor. The system fails to boot if the PPM is missing.

1. Power down the server ("Powering down the server" on page 18).
2. Remove the processor module ("Removing the processor module" on page 24).

3. Unlock the processor retaining bracket.

4. Open the processor retaining bracket, and open the processor locking lever.

⚠️ CAUTION: Failure to completely open the processor locking lever prevents the processor from seating during installation, leading to hardware damage.

5. Remove the processor.
6. Install the replacement processor assembly, if applicable.

IMPORTANT: Determine the correct processor orientation by observing the guide pins on the base of the processor retaining bracket and the three corresponding guide slots on the processor assembly.

7. Insert the processor assembly into the processor socket, and close the locking lever.

CAUTION: To prevent possible server malfunction or damage to the equipment, be sure to completely close the processor locking lever.
8. Close and lock the processor retaining bracket.

9. Close the cover, and replace the processor module.

Removing a PPM

The server PPMs provide the proper power to each processor. Each PPM must be installed in the correct slot for the processor.

- **IMPORTANT:** Processor socket 1 and PPM slot 1 must be populated at all times or the server will not function properly.

- **IMPORTANT:** Always install a PPM when you install a processor. The system fails to boot if the PPM is missing.

To remove a PPM:

1. Power down the server ("Powering down the server" on page 18).
2. Remove the processor module ("Removing the processor module" on page 24).
3. Remove the PPM.

![Image of PPM removal](image)

- **IMPORTANT**: Always install a PPM when you install a processor. The system fails to boot if the corresponding PPM is missing.

To replace the component, reverse the removal procedure.

Removing a PCI latch

1. Power down the server ("Powering down the server" on page 18).
2. Extend or remove the server from the rack ("Removing the server from the rack" on page 19).
3. Remove the access panel ("Removing the access panel" on page 19).

- **CAUTION**: To prevent improper cooling and thermal damage, do not operate the server unless all expansion slots have either an expansion slot cover or an expansion board installed.
4. Open the latch.
5. Remove the expansion board from the slot, if installed.
6. Remove the expansion slot cover from the slot, if installed.
7. Remove the PCI latch by pushing up on the clear plastic piece of the PCI latch that extends below the chassis under the latch.

To replace the component, reverse the removal procedure.

Removing a PCI retaining clip

1. Power down the server ("Powering down the server" on page 18).
2. Extend or remove the server from the rack ("Removing the server from the rack" on page 19).
3. Remove the access panel ("Removing the access panel" on page 19).
 \[\text{CAUTION:}\] To prevent improper cooling and thermal damage, do not operate the server unless all expansion slots have either an expansion slot cover or an expansion board installed.
4. Open the PCI latch, and unlock the PCI retaining clip.
5. Remove the expansion board from the slot, if installed.
6. Remove the PCI retaining clip.

To replace the component, reverse the removal procedure.

Removing the PCI-X Hot Plug basket

1. Power down the server ("Powering down the server" on page 18).
2. Extend or remove the server from the rack ("Removing the server from the rack" on page 19).
3. Remove the access panel ("Removing the access panel" on page 19).

⚠️ CAUTION: To prevent improper cooling and thermal damage, do not operate the server unless all expansion slots have either an expansion slot cover or an expansion board installed.

4. Remove the expansion board from the slot, if installed.
5. Remove the PCI-X Hot Plug basket ("Removing the PCI-X Hot Plug basket" on page 32).

To replace the component, reverse the removal procedure.

Removing a non-hot-plug expansion board

1. Power down the server ("Powering down the server" on page 18).
2. Extend or remove the server from the rack ("Removing the server from the rack" on page 19).
3. Remove the access panel ("Removing the access panel" on page 19).
4. Disconnect any required internal or external cables from the expansion board.
5. Open the PCI latch.
6. Unlock the retaining clip.
7. Remove the expansion board.

To replace the component, reverse the removal procedure.

Removing the PCI-X Hot Plug mezzanine option

1. Power down the server ("Powering down the server" on page 18).
2. Extend or remove the server from the rack ("Removing the server from the rack" on page 19).
3. Remove the access panel ("Removing the access panel" on page 19).
4. Remove the expansion boards from slots 1 and 2.
5. Remove the expansion boards from slots 3 and 4, if installed, to gain access to the mezzanine board.
6. Remove the PCI-X Hot Plug basket ("Removing the PCI-X Hot Plug basket" on page 32).
7. Disconnect the cable from the PCI-X Hot Plug mezzanine board.
8. Loosen the thumbscrews, and lift the mezzanine board from the server.

⚠️ CAUTION: To prevent improper cooling and thermal damage, do not operate the server unless all expansion slots have either an expansion slot cover or an expansion board installed.

To replace the component, reverse the removal procedure.

Removing the PCI Express mezzanine option

1. Power down the server ("Powering down the server" on page 18).
2. Extend or remove the server from the rack ("Removing the server from the rack" on page 19).
3. Remove the access panel ("Removing the access panel" on page 19).
4. Remove the expansion boards from slots 1 and 2.
5. Remove the expansion boards from slots 3 and 4, if installed, to gain access to the mezzanine board.
6. Loosen the thumbscrews, and lift the mezzanine board from the server.

⚠️ CAUTION: To prevent improper cooling and thermal damage, do not operate the server unless all expansion slots have either an expansion slot cover or an expansion board installed.

To replace the component, reverse the removal procedure.

Recovering data from the BBWC

If the server fails, you can recover any data temporarily trapped in the BBWC by using the following procedure.

⚠️ CAUTION: Before starting this procedure, read the information about protecting against electrostatic discharge ("Preventing electrostatic discharge" on page 14).

1. Perform one of the following:
 - Set up a recovery server station using an identical server model. Do not install any internal drives or BBWC in this server. (This option is preferred.)
 - Find a server that has enough empty drive bays to accommodate all the drives from the failed server and that meets all the other requirements for drive and array migration.
2. Power down the failed server ("Powering down the server" on page 18). If any data is trapped in the cache module, the amber LED on the module ("BBWC LEDs" on page 117) blinks every 15 seconds.

⚠️ **CAUTION:** Do not detach the cable that connects the battery pack to the cache module. Detaching the cable causes any unsaved data in the cache module to be lost.

3. Transfer the hard drives from the failed server to the recovery server station.

4. Remove the BBWC cache module ("Removing the BBWC cache module" on page 38) and battery pack ("Removing the BBWC battery pack" on page 37) from the failed server.

5. Perform one of the following:
 - Install the BBWC into an empty BBWC DIMM socket on the system board of the recovery server.
 - Install the BBWC into an empty BBWC DIMM socket on any Smart Array 641 or 642 controller in the recovery server.

6. Power up the recovery server. A 1759 POST message appears, stating that valid data was flushed from the cache. This data is now stored on the drives in the recovery server. You can now transfer the drives (and controller, if one was used) to another server.

Removing the BBWC battery pack

1. Power down the server ("Powering down the server" on page 18).
2. Extend or remove the server from the rack ("Removing the server from the rack" on page 19).
3. Remove the access panel ("Removing the access panel" on page 19).
4. Remove the system cage ("Removing the system cage" on page 20).

⚠️ **CAUTION:** To prevent a server malfunction or damage to the equipment, do not add or remove the battery pack while an array capacity expansion, RAID level migration, or stripe size migration is in progress.
CAUTION: After the server is powered down, wait 15 seconds and then check the amber LED before unplugging the cable from the cache module. If the amber LED blinks after 15 seconds, do not remove the cable from the cache module. The cache module is backing up data, and data will be lost if the cable is detached.

5. Remove the BBWC battery pack.

To replace the component, reverse the removal procedure.

IMPORTANT: The battery pack may have a low charge when installed. In this case, a POST error message is displayed when the server is powered up, indicating that the battery pack is temporarily disabled. No action is necessary on your part. The internal circuitry automatically recharges the batteries and enables the battery pack. This process may take up to 4 hours. During this time, the cache module will function properly, but without the performance advantage of the battery pack.

NOTE: The data protection and the time limit also apply if a power outage occurs. When power is restored to the system, an initialization process writes the preserved data to the hard drives.

Removing the BBWC cache module

1. Power down the server ("Powering down the server" on page 18).
2. Extend or remove the server from the rack ("Removing the server from the rack" on page 19).

3. Remove the access panel ("Removing the access panel" on page 19).

4. Remove the system cage ("Removing the system cage" on page 20).

 △ **CAUTION:** To prevent a server malfunction or damage to the equipment, do not add or remove the battery pack while an array capacity expansion, RAID level migration, or stripe size migration is in progress.

 △ **CAUTION:** After the server is powered down, wait 15 seconds and then check the amber LED before unplugging the cable from the cache module. If the amber LED blinks after 15 seconds, do not remove the cable from the cache module. The cache module is backing up data, and data will be lost if the cable is detached.

5. Open the latches, and remove the BBWC cache module.

6. Disconnect the cable from the cache module.

 To replace the component, reverse the removal procedure.

Removing the system board

△ **CAUTION:** Only authorized technicians trained by HP should attempt to remove the system board. If you believe the system board requires replacement, contact HP Technical Support before proceeding.
IMPORTANT: HP recommends troubleshooting the system using port 85 codes before replacing the system board. Refer to “Troubleshooting the system using port 85 codes (on page 84)” for a list of codes and troubleshooting procedures.

1. Power down the server ("Powering down the server" on page 18).
2. Remove all media drives ("Removing a media drive" on page 23) and media drive blanks ("Removing a media drive blank" on page 23).
3. Remove all hard drives ("Removing a hot-plug SCSI hard drive" on page 50) and hard drive blanks ("Removing a hard drive blank" on page 49).
4. Remove all memory boards ("Removing a memory board" on page 75, "Removing a memory board (non-hot-plug)" on page 73) and memory board blanks.
5. Remove the processor module ("Removing the processor module" on page 24).
6. Extend or remove the server from the rack ("Removing the server from the rack" on page 19).
7. Remove the access panel ("Removing the access panel" on page 19).
8. Remove the media board ("Removing the media board" on page 44).
9. Remove the SCSI backplane ("Removing the SCSI backplane" on page 45).
10. Remove all system fans ("Replacing hot-plug fans" on page 60).
11. Remove all expansion boards ("Removing a non-hot-plug expansion board" on page 33, "Removing a PCI-X Hot Plug expansion board" on page 57).
12. Remove the PCI-X Hot Plug basket ("Removing the PCI-X Hot Plug basket" on page 32), if installed.
13. Disconnect the cable from the PCI-X Hot Plug mezzanine board, if installed.
14. Remove the system cage ("Removing the system cage" on page 20).
15. Unlock the latch and open the lever.
16. Using the lever, lift the system board slightly, and slide the system board out through the back of the server.

![Diagram of system board removal and replacement]

IMPORTANT: If replacing the system board or clearing NVRAM, you must re-enter the server serial number through RBSU ("Re-entering the server serial number and product ID" on page 41).

To replace the component, reverse the removal procedure.

Re-entering the server serial number and product ID

After you replace the system board, you must re-enter the server serial number and the product ID.

1. During the server startup sequence, press the **F9** key to access RBSU.
2. Select the **Advanced Options** menu.
3. Select **Serial Number**. The following warning is displayed:
Warning: The serial number should ONLY be modified by qualified service personnel. This value should always match the serial number located on the chassis.

4. Press the Enter key to clear the warning.

5. Enter the serial number.

6. Select Product ID. The following warning is displayed.
 Warning: The Product ID should ONLY be modified by qualified service personnel. This value should always match the Product ID located on the chassis.

7. Enter the product ID and press the Enter key.

8. Press the Escape key to close the menu.

9. Press the Escape key to exit RBSU.

10. Press the F10 key to confirm exiting RBSU. The server will automatically reboot.

Removing the system battery

If the server no longer automatically displays the correct date and time, you might need to replace the battery that provides power to the real-time clock. Under normal use, battery life is five to 10 years.

⚠️ WARNING: The computer contains an internal lithium manganese dioxide, a vanadium pentoxide, or an alkaline battery pack. A risk of fire and burns exists if the battery pack is not properly handled. To reduce the risk of personal injury:

- Do not attempt to recharge the battery.
- Do not expose the battery to temperatures higher than 60°C (140°F).
- Do not disassemble, crush, puncture, short external contacts, or dispose of in fire or water.
- Replace only with the spare designated for this product.

1. Power down the server ("Powering down the server" on page 18).

2. Extend or remove the server from the rack ("Removing the server from the rack" on page 19).
3. Remove the access panel ("Removing the access panel" on page 19).
4. Locate the battery.
5. Remove the battery.

To replace the component, reverse the removal procedure.

Run RBSU to configure the server after replacing the battery. Refer to the *HP ROM-Based Setup Utility User Guide* on the Documentation CD for more detailed information.

Removing the media board

1. Power down the server ("Powering down the server" on page 18).
2. Extend the server from the rack, if applicable.
3. Remove the access panel ("Removing the access panel" on page 19).
4. Remove all media drives ("Removing a media drive" on page 23) and media drive blanks ("Removing a media drive blank" on page 23).
5. Disconnect all cabling from the media board.
6. Loosen the thumbscrew, and slide the media board toward the front of the server to disconnect it from the SCSI backplane.
7. Remove the media board.

To replace the component, reverse the removal procedure.

Removing the SCSI backplane

1. Power down the server ("Powering down the server" on page 18).
2. Remove all media drives ("Removing a media drive" on page 23) and media drive blanks ("Removing a media drive blank" on page 23).
3. Remove all hard drives ("Removing a hot-plug SCSI hard drive" on page 50) and hard drive blanks ("Removing a hard drive blank" on page 49).
4. Extend the server from the rack, if applicable.
5. Remove the access panel ("Removing the access panel" on page 19).
6. Disconnect all cables from the SCSI backplane.
7. Remove the media board ("Removing the media board" on page 44).
8. Record the position of the SCSI simplex/duplex switch.
9. Lift the levers, and pull the SCSI backplane out of the server.

IMPORTANT: Be sure to set the SCSI simplex/duplex switch to the appropriate setting when replacing the SCSI backplane.

To replace the component, reverse the removal procedure.

Removing the power backplane

1. Power down the server ("Powering down the server" on page 18).

2. Remove all power supplies ("Removing a redundant hot-plug power supply" on page 59) and power supply blanks ("Removing a power supply blank" on page 58).

 NOTE: If you remove or replace the primary hot-plug power supply, use the T-15 Torx screwdriver provided with the server to remove the shipping screw. It is located just under the port-colored plastic handle of the power supply unit.

3. Extend or remove the server from the rack ("Removing the server from the rack" on page 19).

4. Remove the access panel ("Removing the access panel" on page 19).

5. Remove the system cage ("Removing the system cage" on page 20).
6. Loosen the thumbscrew, and remove the power backplane from the server.

To replace the component, reverse the removal procedure.

Removing the memory backplane

1. Power down the server ("Powering down the server" on page 18).
2. Remove all memory boards ("Removing a memory board" on page 75, "Removing a memory board (non-hot-plug)" on page 73).
3. Remove the processor module ("Removing the processor module" on page 24).
4. Extend or remove the server from the rack ("Removing the server from the rack" on page 19).
5. Remove the access panel ("Removing the access panel" on page 19).
6. Open the latch, and lift the memory backplane from the server.

To replace the component, reverse the removal procedure.

Removing a hard drive blank

⚠️ **CAUTION:** To prevent improper cooling and thermal damage, do not operate the server unless all bays are populated with either a component or a blank.
Remove the hard drive blank by squeezing the release buttons, and pulling the blank from the server.

To replace the component, reverse the removal procedure.

Removing a hot-plug SCSI hard drive

⚠️ **CAUTION:** Always power down the server if the boot partition resides on the drive you are replacing or if you are replacing the only drive in the server.

⚠️ **CAUTION:** To prevent improper cooling and thermal damage, do not operate the server unless all bays are populated with either a component or a blank.

1. Determine the status of the hard drive from the hot-plug hard drive LEDs ("Hot-plug SCSI hard drive LED combinations" on page 111, "Hot-plug SCSI hard drive LEDs" on page 110).

2. Back up all server data on the hard drive to be removed.
3. Remove the hard drive.

To replace the component, reverse the removal procedure.

Removing a hot-plug SAS hard drive

⚠️ **CAUTION:** Always power down the server if the boot partition resides on the drive you are replacing or if you are replacing the only drive in the server.

⚠️ **CAUTION:** To prevent improper cooling and thermal damage, do not operate the server unless all bays are populated with either a component or a blank.

1. Determine the status of the hard drive from the hot-plug hard drive LEDs ("SAS and SATA hard drive LED combinations" on page 113).
2. Back up all server data on the hard drive to be removed.
3. Remove the hard drive.

Removing the SAS-SATA hard drive cage

1. Power down the server ("Powering down the server" on page 18).
2. Remove the access panel ("Removing the access panel" on page 19).
3. Remove all hard drives ("Removing a hot-plug SAS hard drive" on page 51) and hard drive blanks ("Removing a hard drive blank" on page 49).
4. Remove the screws securing the SAS hard drive cage.
5. Slowly pull the SAS hard drive cage out of the server until there is enough room to reach behind the SAS hard drive cage.

6. Disconnect all cables from the back of the SAS hard drive cage.

7. Disconnect and remove the power and SAS cables, if applicable.

To replace the SAS-SATA hard drive cage, perform the following procedures:

NOTE: You must provide a SAS controller before proceeding with the SAS hard drive cage installation.

1. Power down the server ("Powering down the server" on page 18).

2. Remove all hard drives ("Removing a hot-plug SCSI hard drive" on page 50) and hard drive blanks ("Removing a hard drive blank" on page 49).

3. Extend the server from the rack.

4. Remove the access panel ("Removing the access panel" on page 19).

5. Install the SAS controller. Refer to the directions provided with the controller for installation instructions.

6. Route and connect the power cable to the power cable connector.
CAUTION: When routing cables, always be sure that the cables are not in a position where they can be pinched or crimped.

7. Route the SAS cables through the opening near the SCSI backplane and over the center wall.

8. Connect the cables to the connectors on the back of the SAS hard drive cage.
9. Install the SAS hard drive cage, pulling the slack in the SAS cables over the center wall.

10. Connect the SAS cables to the controller.

11. Secure the SAS hard drive cage with the screws provided in the option kit.

12. Install the hot-plug hard drives or hard drive blanks into the SAS hard drive cage.

⚠️ **CAUTION:** To prevent improper cooling and thermal damage, do not operate the server unless all bays are populated with either a component or a blank.
Removing the SAS-SATA backplane

1. Power down the server ("Powering down the server" on page 18).
2. Remove the access panel ("Removing the access panel" on page 19).
3. Remove all hard drives ("Removing a hot-plug SAS hard drive" on page 51) and hard drive blanks ("Removing a hard drive blank" on page 49).
4. Remove the screws securing the SAS hard drive cage.
5. Slowly pull the SAS hard drive cage out of the server until there is enough room to reach behind the SAS hard drive cage.
6. Disconnect all cables from the back of the SAS hard drive cage.

The installation is complete.
7. Remove the SAS backplane from the rear of the cage.

To replace the component, reverse the removal procedure.

Removing a PCI-X Hot Plug expansion board

1. Extend or remove the server from the rack ("Removing the server from the rack" on page 19).
2. Remove the access panel ("Removing the access panel" on page 19).
3. Press the PCI-X Hot Plug button to remove power from the slot. When the green power LED on the slot stops flashing, power has been removed from the slot.
4. Unlock the retaining clip (for full-length expansion boards).
5. Lift the latch, and remove the board from the server.

⚠️ **CAUTION:** To prevent improper cooling and thermal damage, do not operate the server unless all expansion slots have either an expansion slot cover or an expansion board installed.

To replace the component, reverse the removal procedure.

Removing a power supply blank

⚠️ **NOTE:** If you remove or replace the primary hot-plug power supply, use the T-15 Torx screwdriver provided with the server to remove the shipping screw. It is located just under the port-colored plastic handle of the power supply unit.
1. Remove the power supply blank.

To replace the component, reverse the removal procedure.

Removing a redundant hot-plug power supply

⚠️ **WARNING:** To reduce the risk of electric shock, do not disassemble the power supply or attempt to repair it. Replace it only with the specified spare part.

⚠️ **CAUTION:** If only one power supply is installed, do not remove the power supply unless the server has been powered down. Removing the only operational power supply will cause an immediate power loss.

📝 **NOTE:** If you remove or replace the primary hot-plug power supply, use the T-15 Torx screwdriver provided with the server to remove the shipping screw. It is located just under the port-colored plastic handle of the power supply unit.

📝 **NOTE:** Refer to the section "Power supply LEDs (on page 100)" for information on the current status of the hot-plug power supply.

1. Disconnect the power cord from the power supply.

2. Remove the shipping screw, if applicable.
NOTE: If you remove or replace the primary hot-plug power supply, use the T-15 Torx screwdriver provided with the server to remove the shipping screw. It is located just under the port-colored plastic handle of the power supply unit.

3. Remove the hot-plug power supply from the server.

CAUTION: To prevent improper cooling and thermal damage, do not operate the server unless all bays are populated with either a component or a blank.

To replace the component, reverse the removal procedure.

Replacing hot-plug fans

The server supports redundant hot-plug fans ("Fan locations" on page 114) to provide proper airflow to the server if a primary fan fails.

WARNING: To prevent personal injury from hazardous energy:
- Remove watches, rings, or other metal objects.
- Use tools with insulated handles.
- Do not place tools or metal parts on top of batteries.

IMPORTANT: Remove and replace one fan at a time. If the system detects two fan failures in the same zone, the server shuts down to avoid thermal damage.

1. Extend the server from the rack, if applicable.
2. Remove the access panel ("Removing the access panel" on page 19).
3. Remove the malfunctioning hot-plug fan from the server.
4. Install the replacement fan.
5. Repeat to replace additional fans as needed.
6. Observe the LED on each installed fan to be sure it is illuminated green ("Hot-plug fan LEDs" on page 116).
7. Observe the internal system health LED on the front panel to be sure it is illuminated green ("Front panel LEDs and buttons" on page 93).

NOTE: If the front panel internal system health LED is not green after you install hot-plug fans, reseat the hot-plug fan or refer to the troubleshooting section.
Memory overview

This server supports up to four memory boards. Each memory board contains four DIMM slots for a total of 16 DIMM slots in the server. Memory can be expanded by installing PC2-3200R Registered DDR2 DRAM DIMMs.

The server supports a host of AMP options to optimize server availability:

- Advanced ECC ("Advanced ECC memory" on page 64)
- Online spare memory (on page 66)
- Hot-plug mirrored memory (dual- and quad-board) ("Hot-plug mirrored memory" on page 67)
- Hot-plug RAID memory

Hot-plug operations can be hot-add or hot-replace. Hot-add makes additional memory resources available to the operating system. Hot-replace allows failed or degraded DIMMs to be replaced while the server is running.

The maximum supported total memory for this server is 64 GB using four memory boards. The maximum supported memory per memory board is 16 GB using four 4-GB DIMMs.

For an overview of single- and dual-rank DIMMs, refer to "Single- and Dual-Rank DIMMs."

For DIMM slot locations and bank assignments, refer to "DIMM Slot Locations (on page 108)."

General memory configuration requirements

The following configuration requirements apply regardless of the AMP mode.

- DIMMs must be installed in pairs.
- DIMM pairs in a memory bank must contain identical DIMMs.
- Always populate the DIMMs in sequential order per bank: Bank A and then Bank B.
• Always populate the memory boards in sequential order: Board 1, Board 2, Board 3, and Board 4. Any deviation from this requirement results in the server defaulting to Advanced ECC ("Advanced ECC memory" on page 64) on the next reboot.

• Dual-rank DIMMs must be populated before single-rank DIMMs (dual-rank DIMMs must be in the lower bank).

• The following table lists all valid combinations of single- and dual-rank DIMM configurations for a memory board. "Single" indicates a bank of single-rank DIMMs. "Dual" indicates a bank of dual-rank DIMMs.

 NOTE: A bank contains 2 DIMMs.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Bank A</th>
<th>Bank B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Single</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Single</td>
<td>Single</td>
</tr>
<tr>
<td>3</td>
<td>Dual</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Dual</td>
<td>Single</td>
</tr>
<tr>
<td>5</td>
<td>Dual</td>
<td>Dual</td>
</tr>
</tbody>
</table>

• The server can be configured for any AMP mode in RBSU. RBSU displays a warning message if the selected AMP mode is not supported by the current DIMM configuration. However, if the DIMM configuration does not match the AMP mode selected in RBSU, the server defaults to Advanced ECC ("Advanced ECC memory" on page 64) on the next reboot. When this occurs, a message displays during POST and the status LED for the configured AMP mode flashes amber.

• Unpopulated memory boards (those without any installed DIMMs) can be installed in the server for storing extra memory boards.

• If your server contains more than 4 GB of memory, consult your operating system documentation for additional requirements.
Single- and dual-rank DIMMs

PC2-3200 DIMMs can either be single- or dual-rank. While it is not normally important for you to differentiate between these two types of DIMMs, certain DIMM configuration requirements are based on these classifications.

Certain configuration requirements exist with single- and dual-rank DIMMs that allow the architecture to optimize performance. A dual-rank DIMM is similar to having two separate DIMMs on the same module. Although only a single DIMM module, a dual-rank DIMM acts as if it were two separate DIMMs. The primary reason for the existence of dual-rank DIMMs is to provide the largest capacity DIMM given the current DIMM technology. If the maximum DIMM technology allows for creating 2-GB single-rank DIMMs, a dual-rank DIMM using the same technology would be 4-GB.

Advanced ECC memory

Advanced ECC is the default memory protection mode for this server. In Advanced ECC, the server is protected against correctable memory errors. The server will provide notification if the level of correctable errors exceeds a predefined threshold rate. The server does not fail because of correctable memory errors.

Advanced ECC provides additional protection over Standard ECC in that it is possible to correct certain memory errors that would otherwise be uncorrectable and result in a server failure. Whereas Standard ECC can correct single-bit memory errors, Advanced ECC can correct single-bit memory errors and multibit memory errors if all failed bits are on the same DRAM device on the DIMM.

The following guidelines apply to Advanced ECC memory:

- All general memory requirements apply ("General memory configuration requirements" on page 62).
- Advanced ECC mode is supported with one to four memory boards.
Board insertions do not convert the AMP mode while the server is running. A server cannot be converted from Advanced ECC to another AMP mode by inserting a board while the server is running. Board insertions in Advanced ECC are solely for making additional memory resources available to the operating system.

Advanced ECC is the only mode in which hot-add operations are supported, and is the only mode in which the amount of memory available to the operating system can be increased without a reboot.

If a memory board (which contains DIMMs) is unlocked while in Advanced ECC mode, audio alarms and visual alerts occur. The following rules apply to hot-add operations. Hot-add is performed by adding a memory board while the server is running, and the additional memory is made available to the operating system without a reboot.

- Boards must be inserted sequentially.
- Multiple hot-add board insertions can be performed one at a time on the same server. For example, if a server has three empty memory board slots, three hot-add board insertions can be performed.
- If multiple hot-add operations are performed, allow one board insertion operation to complete (as indicated by the memory board LEDs ("Memory board components and LEDs" on page 94) and operating system logs) before inserting another memory board.

⚠️ CAUTION: When the memory board locking switch is unlocked in a mode that does not support hot-add or hot-replace capabilities, audio alarms and visual alerts occur. Removing the memory board at this point causes server failure.

To end the audio alarms and visual alerts, move the memory board locking switch back to the locked position. This action does not result in data corruption or server failure.

If removal of a single memory board is required and it is the only memory board, power down the server and make the necessary memory changes.
Online spare memory

Online spare memory provides a higher level of memory protection than Advanced ECC ("Advanced ECC memory" on page 64). With online spare memory, the probability of a server failing because of uncorrectable memory errors is reduced.

In this mode, degraded memory that is receiving a high rate of correctable memory errors is automatically disengaged and a replacement set of memory is used in its place. Because DIMMs that are receiving a high rate of correctable memory errors have an increased probability of receiving an uncorrectable memory error (which results in a server failure), the server experiences higher availability. The degraded memory can be replaced during scheduled downtime and poses no additional risk to the server.

Online spare memory is supported with one to four memory boards installed. On this server, each installed memory board is protected by its own spare memory. No operating system support is required.

The following guidelines apply to online spare memory:

- All general memory requirements apply ("General memory configuration requirements" on page 62).
- Online spare memory supports 1, 2, 3, or 4 memory boards.
- Each board must have a valid online spare configuration. No dependencies exist for the configuration between different memory boards.
- Each memory board includes its own online spare bank. All boards will operate in online spare memory mode independently. Each board can failover to its online spare bank independent of the other memory boards. Some boards can be in degraded online spare mode while others are still in operational online spare memory mode.
- The minimum valid online spare configuration for a memory board requires at least one bank of dual-rank DIMMs or two banks of single-rank DIMMs. If the server does not meet these requirements, an error message appears during POST and the server defaults to Advanced ECC ("Advanced ECC memory" on page 64).
- The server automatically configures the optimal online spare solution.
- Hot-plug operations are not supported.

HP recommends the following configurations. These configurations result in optimal use of memory. Other configurations are valid, but do not result in the maximum amount of installed memory being available to the operating system.

- If only single-rank DIMMs are used on a memory board, all DIMMs should be of the same size on that memory board.

- If only dual-rank DIMMs are used on a memory board, all DIMMs should be of the same size on that memory board.

- If a mixture of single- and dual-rank DIMMs are used on a memory board, the dual-rank DIMMs should be twice the size of any single-rank DIMM.

After installing DIMMs, use RBSU to configure the server ("Configuring the memory" on page 70) for online spare memory support.

Hot-plug mirrored memory

Hot-plug mirrored memory provides a higher level of memory protection than either Advanced ECC ("Advanced ECC memory" on page 64) or online spare memory (on page 66). With hot-plug mirrored memory, the server is protected against uncorrectable memory errors that would otherwise result in server failure. Hot-plug mirrored memory allows the server to keep two copies of all memory data on separate memory boards.

If an uncorrectable error is encountered, the proper data is retrieved from the memory board that did not fail. In addition, hot-plug mirrored memory allows failed or degraded DIMMs to be replaced while the server is running without requiring server downtime. The memory board with the failed DIMMs can be removed, failed DIMMs replaced, and the board re-inserted into the server without any interruption to the operating system.

Hot-plug mirrored memory is supported with either two or four memory boards installed. No operating system support is required.

Hot-plug mirrored memory has two configurations: dual-board and quad-board. Single-board mirrored memory is not supported. For either mode, choose "Mirrored Memory with Advanced ECC" in RBSU.
The following guidelines apply to hot-plug mirrored memory:

- All general memory requirements apply ("General memory configuration requirements" on page 62).
- Hot-plug mirrored memory is supported with two or four memory boards.
- Memory boards 1 and 2 are populated for dual-board hot-plug mirrored memory. Boards 1, 2, 3, and 4 are populated for quad-board hot-plug mirrored memory. Any deviation from these guidelines results in the server defaulting to Advanced ECC ("Advanced ECC memory" on page 64).
- Memory boards 1 and 2 form a mirrored pair for dual-board hot-plug mirrored memory. For quad-board hot-plug mirrored memory, memory boards 3 and 4 also form a mirrored pair.
- Memory boards within a mirrored pair must have the same amount of total memory. However, each board of the mirrored pair may have different DIMM configurations as long as they have equal total size. For example, memory boards 1 and 2 could each contain 2 GB of physical memory per board with board 1 containing two 1-GB DIMMs and board 2 containing four 512-MB DIMMs.
- The amount of memory between mirrored pairs can be different in quad-board Hot-Plug Mirrored Memory mode. For example, memory pair 1 (boards 1 and 2) can contain 2 GB each while memory pair 2 (boards 3 and 4) contain 4 GB each.
- In quad-board hot-plug mirrored memory, the two pairs of memory boards operate independently. One of the pairs of memory boards can be degraded while the other pair of memory boards can still be fully mirrored.
- Hot-add operations are not supported. Board removals and insertions in Hot-Plug Mirrored Memory mode are solely for the purpose of hot-replace operations.
- For hot-replace to function properly, the memory board must be re-inserted into the location from which it was removed. If the board is placed into the incorrect slot (for example, if board 2 is removed in dual-board mode and re-inserted into memory slots 3 or 4), a configuration error occurs. Attempting to insert a board into the improper position results in audio alarms and visual alerts.
• Replace only one board at a time. That is, if memory boards 2 and 4 both contain memory errors, remove board 2, correct the error, and replace board 2. Wait for the board status LED to stop flashing before proceeding to board 4.

• If a board is inserted into a valid memory slot but with an invalid DIMM configuration (including too much or too little memory), a DIMM configuration error occurs and a visual alert occurs (refer to Memory Board Components and LEDs (on page 94)).

• If you remove a board while the server is running and do not replace the board, the server defaults to Advanced ECC (“Advanced ECC memory” on page 64) on the next reboot.

Hot-plug RAID memory

Hot-plug RAID memory provides a similar level of memory protection as hot-plug mirrored memory (on page 67) but obtains this protection using less total memory. Hot-plug RAID memory protects the server against uncorrectable memory errors that would otherwise result in a server failure.

Although hot-plug mirrored memory keeps two copies of all memory data, hot-plug RAID memory keeps only one copy of all memory data and additional parity information. If an uncorrectable memory error is encountered, the server can create the proper data using the parity information and the information from the other memory boards that contain no failures. In a hot-plug RAID memory configuration, 25% of the installed memory is not available to the operating system. In a hot-plug mirrored memory configuration, however, 50% of the installed memory is not available to the operating system.

As with hot-plug mirrored memory, hot-plug RAID memory allows failed or degraded DIMMs to be replaced while the server is running without requiring server downtime. The memory board with the failed DIMMs can be removed, failed DIMMs replaced, and the board re-inserted into the server without any interruption to the operating system.

Hot-plug RAID memory is only supported if all four memory boards are installed. No operating system support is required.

The following guidelines apply to hot-plug RAID memory:
• All general memory requirements apply ("General memory configuration requirements" on page 62).
• Hot-plug RAID memory is only supported with four memory boards.
• All four memory boards must have the same amount of total memory. However, each board can have different DIMM configurations as long as they have equal total size. Any deviation from this rule results in the server defaulting to Advanced ECC ("Advanced ECC memory" on page 64).
• Hot-replace operations are supported.
• If you remove a board while the server is running and do not replace it, the server defaults to Advanced ECC on the next reboot.

Configuring the memory

Configuring the memory system of the server requires configuring both hardware and software.

To configure the memory:

1. Install the correct amount of memory for the desired AMP mode. For a list of AMP options, refer to "Memory Options." For more information, refer to "General Memory Configuration Requirements (on page 62)."

2. Test the DIMMs for all AMP modes, except Advanced ECC, before configuring the AMP mode in RBSU. The two testing methods are:
 – POST memory test (on page 70)
 – ROM-Based Diagnostics test ("ROM-based diagnostics" on page 71)

 NOTE: If the total amount of memory has changed, the POST Memory Test will run automatically. Additional memory testing is not necessary.

3. Select the AMP mode ("Selecting the AMP mode" on page 71).

POST memory test

1. Power on the server.
2. Press the F9 key, when prompted, to enter RBSU.
3. Select Advanced Options.
4. Change POST Speed Up to **Disable**.
5. Press any key to return to the RBSU main menu.
6. Press the **F10** key, when prompted, to exit RBSU. The server reboots and tests all memory in the system.
7. Once the memory has been tested, re-enable POST Speed Up for faster system boot, if desired.

ROM-based diagnostics

1. Power on the server.
2. Press the **F10** key, when prompted, to enter the System Maintenance menu.
3. Select **Diagnostics**.
4. Run the **Memory Diagnostics**.
5. Once the memory has been tested, exit the utility and reboot.
6. Select the AMP mode ("Selecting the AMP mode" on page 71).

Selecting the AMP mode

1. Upon reboot, press the **F9** key, when prompted, to enter RBSU.
2. Select **System Options**.
3. Select **Advanced Memory Protection**.
4. Select the desired memory mode.
 - Advanced ECC (hot-add enabled)
 - Advanced ECC (hot-add disabled)
 - Online Spare Memory with Advanced ECC
 - Hot-Plug Mirrored Memory with Advanced ECC
 - Hot-Plug RAID Memory with Advanced ECC
5. Press the **Escape** key twice to go back to the main RBSU menu.
6. Press the **F10** key, when prompted, to exit RBSU. The server reboots and tests all memory in the system.
IMPORTANT: To reconfigure the memory mode after initial setup, you must reboot the system, enter RBSU, and select the desired AMP mode.

Memory boards and DIMMs

Memory board and DIMM removal and replacement procedures can be either hot-replace or non-hot-plug, depending on how the server is configured. Hot-replace enables failed or degraded DIMMs to be replaced while the server is running, and has no operating system requirements.

When the server is configured for hot-plug mirrored memory or hot-plug RAID memory, you can perform a hot-replacement procedure without powering down the server or experiencing server downtime:

1. Remove a memory board ("Removing a memory board" on page 75, "Removing a memory board (non-hot-plug)" on page 73).
2. Replace failed or degraded DIMMs ("Removing DIMMs" on page 76).
3. Reinstall the memory board in the slot from which it was removed.

The replacement procedures in this section apply to both hot-replace and non-hot-plug memory procedures, except as noted.

IMPORTANT: Be sure to power down the server when performing board removal procedures in a server that is not configured for Advanced ECC, hot-plug mirrored memory, or hot-plug RAID memory.

Observe the following warnings when performing a hot-plug replacement procedure.

WARNING: Always comply with all electrostatic and thermal guidelines to prevent bodily injury and ensure a properly functioning system when performing hot-plug operations.

WARNING: To prevent personal injury from hazardous energy:

- Remove watches, rings, or other metal objects.
- Use tools with insulated handles.
- Do not place tools or metal parts on top of batteries.
Removing a memory board blank

To remove the memory board blank, squeeze the levers and pull the blank out of the server.

Removing a memory board (non-hot-plug)

1. Power down the server ("Powering down the server" on page 18).
2. Unlock the locking switch, and open the release latch.
3. Use the ejector lever to pull the memory board out of the server.
4. Open the memory board.

5. Replace the DIMM ("Removing DIMMs" on page 76).

 [IMPORTANT: Be sure to observe all DIMM installation requirements for the desired memory mode.]

6. Close the memory board.

 [IMPORTANT: Be sure that the locking switch is unlocked. The memory board will not seat in the server if the locking switch is locked.]

7. Install the memory board.
8. Close the ejector lever, and lock the locking switch.
9. Power up the server.
10. Reference the memory board LEDs ("Memory board components and LEDs" on page 94) to be sure that the memory board is functioning properly.

Removing a memory board

1. Power down the server if the server is not configured for hot-plug RAID memory or hot-plug mirrored memory.

⚠️ **CAUTION:** Only memory boards with a green Removable LED can be removed. Do not attempt to remove any memory board with the Removable LED off.

⚠️ **CAUTION:** To prevent system failure, do not remove the memory board from the server until the board status LED stops flashing.

2. Unlock the locking switch, and open the release latch.
3. Use the ejector lever to pull the memory board out of the server.

☆ **NOTE:** While the memory board with the failed or degraded DIMM is being replaced, the server continues to read and write from the operational memory board.
Removing DIMMs

1. Remove the memory board using the appropriate hot-replace or non-hot-plug procedure ("Removing a memory board (non-hot-plug)" on page 73).

2. Remove the DIMM.

To replace the component, reverse the removal procedure.
Diagnostic tools

In this section

SmartStart software ..77
SmartStart Scripting Toolkit...78
HP Instant Support Enterprise Edition ..79
Option ROM Configuration for Arrays ...79
HP ROM-Based Setup Utility ..80
ROMPaq utility ...80
System Online ROM flash component utility ..81
Integrated Management Log ...81
Integrated Lights-Out technology ..82
Automatic Server Recovery ..82
HP Systems Insight Manager ...83
HP Insight Diagnostics ...83
USB support ..84
Troubleshooting the system using port 85 codes ..84

SmartStart software

SmartStart is a collection of software that optimizes single-server setup, providing a simple and consistent way to deploy server configuration. SmartStart has been tested on many ProLiant server products, resulting in proven, reliable configurations.

SmartStart assists the deployment process by performing a wide range of configuration activities, including:

- Configuring hardware using embedded configuration utilities, such as RBSU and ORCA
- Preparing the system for installing "off-the-shelf" versions of leading operating system software
- Installing optimized server drivers, management agents, and utilities automatically with every assisted installation
• Testing server hardware using the Insight Diagnostics Utility ("HP Insight Diagnostics" on page 83)

• Installing software drivers directly from the CD. With systems that have internet connection, the SmartStart Autorun Menu provides access to a complete list of ProLiant system software.

• Enabling access to the Array Configuration Utility, Array Diagnostic Utility, and Erase Utility

SmartStart is included in the HP ProLiant Essentials Foundation Pack. For more information about SmartStart software, refer to the HP ProLiant Essentials Foundation Pack or the HP website (http://www.hp.com/servers/smartstart).

SmartStart Scripting Toolkit

The SmartStart Scripting Toolkit is a server deployment product that delivers an unattended automated installation for high-volume server deployments. The SmartStart Scripting Toolkit is designed to support ProLiant BL, ML, and DL servers. The toolkit includes a modular set of utilities and important documentation that describes how to apply these new tools to build an automated server deployment process.

Using SmartStart technology, the Scripting Toolkit provides a flexible way to create standard server configuration scripts. These scripts are used to automate many of the manual steps in the server configuration process. This automated server configuration process cuts time from each server deployed, making it possible to scale server deployments to high volumes in a rapid manner.

For more information, and to download the SmartStart Scripting Toolkit, refer to the HP website (http://www.hp.com/servers/sstoolkit).
HP Instant Support Enterprise Edition

ISEE is a proactive remote monitoring and diagnostic tool to help manage your systems and devices, a feature of HP support. ISEE provides continuous hardware event monitoring and automated notification to identify and prevent potential critical problems. Through remote diagnostic scripts and vital system configuration information collected about your systems, ISEE enables fast restoration of your systems. Install ISEE on your systems to help mitigate risk and prevent potential critical problems.

For more information on ISEE, refer to the HP website (http://www.hp.com/hps/hardware/hw_enterprise.html).

To download HP ISEE, visit the HP website (http://www.hp.com/hps/hardware/hw_downloads.html).

Option ROM Configuration for Arrays

Before installing an operating system, you can use the ORCA utility to create the first logical drive, assign RAID levels, and establish online spare configurations.

The utility also provides support for the following functions:

- Reconfiguring one or more logical drives
- Viewing the current logical drive configuration
- Deleting a logical drive configuration
- Setting the controller to be the boot controller

If you do not use the utility, ORCA will default to the standard configuration.

For more information regarding array controller configuration, refer to the controller user guide.
For more information regarding the default configurations that ORCA uses, refer to the *HP ROM-Based Setup Utility User Guide* on the Documentation CD.

HP ROM-Based Setup Utility

RBSU, an embedded configuration utility, performs a wide range of configuration activities that may include:

- Configuring system devices and installed options
- Displaying system information
- Selecting the primary boot controller
- Configuring memory options
- Language selection

For more information on RBSU, refer to the *HP ROM-Based Setup Utility User Guide* on the Documentation CD or the HP website (http://www.hp.com/servers/smartstart).

ROMPaq utility

Flash ROM enables you to upgrade the firmware (BIOS) with system or option ROMPaq utilities. To upgrade the BIOS, insert a ROMPaq diskette into the diskette drive and boot the system.

The ROMPaq utility checks the system and provides a choice (if more than one exists) of available ROM revisions. This procedure is the same for both system and option ROMPaq utilities.

For more information about the ROMPaq utility, refer to the HP website (http://www.hp.com/servers/manage).
System Online ROM flash component utility

The Online ROM Flash Component Utility enables system administrators to efficiently upgrade system or controller ROM images across a wide range of servers and array controllers. This tool has the following features:

- Works offline and online

IMPORTANT: This utility supports operating systems that may not be supported by the server. For operating systems supported by the server, refer to the HP website (http://www.hp.com/go/supportos).

- Integrates with other software maintenance, deployment, and operating system tools
- Automatically checks for hardware, firmware, and operating system dependencies, and installs only the correct ROM upgrades required by each target server

To download the tool and for more information, refer to the HP website (http://h18000.www1.hp.com/support/files/index.html).

Integrated Management Log

The IML records hundreds of events and stores them in an easy-to-view form. The IML timestamps each event with 1-minute granularity.

You can view recorded events in the IML in several ways, including the following:

- From within HP SIM ("HP Systems Insight Manager” on page 83)
- From within Survey Utility
- From within operating system-specific IML viewers
 - For NetWare: IML Viewer
 - For Windows®: IML Viewer
For Linux: IML Viewer Application

- From within HP Insight Diagnostics (on page 83)

For more information, refer to the Management CD in the HP ProLiant Essentials Foundation Pack.

Integrated Lights-Out technology

The iLO subsystem is a standard component of selected ProLiant servers that provides server health and remote server manageability. The iLO subsystem includes an intelligent microprocessor, secure memory, and a dedicated network interface. This design makes iLO independent of the host server and its operating system. The iLO subsystem provides remote access to any authorized network client, sends alerts, and provides other server management functions.

Using iLO, you can:

- Remotely power up, power down, or reboot the host server.
- Send alerts from iLO regardless of the state of the host server.
- Access advanced troubleshooting features through the iLO interface.
- Diagnose iLO using HP SIM through a web browser and SNMP alerting.

Automatic Server Recovery

ASR is a feature that causes the system to restart when a catastrophic operating system error occurs, such as a blue screen, ABEND, or panic. A system fail-safe timer, the ASR timer, starts when the System Management driver, also known as the Health Driver, is loaded. When the operating system is functioning properly, the system periodically resets the timer. However, when the operating system fails, the timer expires and restarts the server.
ASR increases server availability by restarting the server within a specified time after a system hang or shutdown. At the same time, the HP SIM console notifies you by sending a message to a designated pager number that ASR has restarted the system. You can disable ASR from the HP SIM console or through RBSU.

HP Systems Insight Manager

HP SIM is a web-based application that allows system administrators to accomplish normal administrative tasks from any remote location, using a web browser. HP SIM provides device management capabilities that consolidate and integrate management data from HP and third-party devices.

IMPORTANT: You must install and use HP SIM to benefit from the Pre-Failure Warranty for processors, hard drives, and memory modules.

For additional information, refer to the Management CD in the HP ProLiant Essentials Foundation Pack or the HP SIM website (http://www.hp.com/go/hpsim).

HP Insight Diagnostics

HP Insight Diagnostics is a proactive server management tool, available in both offline and online versions, that provides diagnostics and troubleshooting capabilities to assist IT administrators who verify server installations, troubleshoot problems, and perform repair validation.

HP Insight Diagnostics Offline Edition performs various in-depth system and component testing while the OS is not running. To run this utility, launch the SmartStart CD.

HP Insight Diagnostics Online Edition is a web-based application that captures system configuration and other related data needed for effective server management. Available in Microsoft® Windows® and Linux versions, the utility helps to ensure proper system operation.

For more information or to download the utility, refer to the HP website (http://www.hp.com/servers/diags).
USB support

HP provides both standard USB support and legacy USB support. Standard support is provided by the operating system through the appropriate USB device drivers. HP provides support for USB devices before the operating system loads through legacy USB support, which is enabled by default in the system ROM. HP hardware supports USB version 1.1 or 2.0, depending on the version of the hardware.

Legacy USB support provides USB functionality in environments where USB support is normally not available. Specifically, HP provides legacy USB functionality for:

- POST
- RBSU
- Diagnostics
- DOS
- Operating environments which do not provide native USB support

For more information on ProLiant USB support, refer to the HP website (http://h18004.www1.hp.com/products/servers/platforms/usb-support.html).

Troubleshooting the system using port 85 codes

1. Locate the port 85 code display on the media board.

 IMPORTANT: Be sure the port 84/85 switch is set to display port 85 codes on the media board ("Setting the switch to view port 85 codes" on page 107).

2. Locate the code in the following table.

3. Reference the designated section in this guide for the appropriate troubleshooting steps.

 For example, if the port 85 code displays "31h," refer to "Processor-related port 85 codes (on page 85)" for more information.
<table>
<thead>
<tr>
<th>Port 85 code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3xh</td>
<td>Port 85 codes in this format indicate processor-related errors. Refer to "Processor-related port 85 codes (on page 85)" for more information.</td>
</tr>
<tr>
<td>4xh</td>
<td>Port 85 codes in this format indicate memory-related errors. Refer to "Memory-related port 85 codes (on page 86)" for more information.</td>
</tr>
<tr>
<td>6xh</td>
<td>Port 85 codes in this format indicate expansion board-related errors. Refer to "Expansion board-related port 85 codes (on page 87)" for more information.</td>
</tr>
<tr>
<td>All other codes, including 00h, 01h, and 5xh</td>
<td>Port 85 codes in this range cover several areas. Refer to the section "Miscellaneous port 85 codes (on page 88)" for more information.</td>
</tr>
</tbody>
</table>

Processor-related port 85 codes

Processor-related port 85 codes display on the media board in the format 3xh.

IMPORTANT: Reboot the server after completing each numbered step. If the error condition continues, proceed with the next step.

To troubleshoot processor-related error codes:

1. Bring the server to base configuration by removing all components that are not required by the server to complete POST. This process can include removing all:
 - Expansion boards ("Removing a non-hot-plug expansion board" on page 33, "Removing a PCI-X Hot Plug expansion board" on page 57)
 - Processors ("Removing a processor" on page 26), except the processor installed in socket 1
 IMPORTANT: Processor socket 1 and PPM slot 1 must be populated at all times or the server will not function properly.
 - PPMs ("Removing a PPM" on page 29), except the PPM installed in slot 1
 - DIMMS ("Removing DIMMs" on page 76), except the first bank from one memory board
 - Hard drives ("Removing a hot-plug SCSI hard drive" on page 50)
 - Peripheral devices
2. Reseat the processor in socket 1.

3. Reseat the remaining processors, rebooting after each installation to identify any failed processors.

 IMPORTANT: Populate the processors in the following order: 1, 2, 4, 3.

 IMPORTANT: Always install a PPM when you install a processor. The system fails to boot if the PPM is missing.

4. Replace the processor in socket 1.

5. Replace the processor board, if applicable.

6. Replace the system board.

 IMPORTANT: If replacing the system board or clearing NVRAM, you must re-enter the server serial number through RBSU (“Re-entering the server serial number and product ID” on page 41).

Memory-related port 85 codes

Memory-related port 85 codes display on the media board in the format 4xh.

 IMPORTANT: Reboot the server after completing each numbered step. If the error condition continues, proceed with the next step.

To troubleshoot memory-related error codes:

1. Check the memory board LEDs (“Memory board components and LEDs” on page 94) for any identified errors or failed DIMMs, and take corrective action.

2. Bring the server to base configuration by removing all components that are not required by the server to complete POST. This process can include removing all:
 - Expansion boards (“Removing a non-hot-plug expansion board” on page 33, ”Removing a PCI-X Hot Plug expansion board” on page 57)
 - Processors (“Removing a processor” on page 26), except the processor installed in socket 1

 IMPORTANT: Processor socket 1 and PPM slot 1 must be populated at all times or the server will not function properly.
- PPMs ("Removing a PPM" on page 29), except the PPM installed in slot 1
- DIMMS ("Removing DIMMs" on page 76), except the first bank from one memory board
- Hard drives ("Removing a hot-plug SCSI hard drive" on page 50)
- Peripheral devices

3. Reseat the remaining memory boards, rebooting after each installation to isolate any failed memory boards.
4. Replace the DIMMs with a remaining bank of memory.
5. Replace the memory board.
6. Replace the system board.

![IMPORTANT: If replacing the system board or clearing NVRAM, you must re-enter the server serial number through RBSU ("Re-entering the server serial number and product ID" on page 41).

Expansion board-related port 85 codes

Expansion board-related port 85 codes display on the media board in the format 6xh.

![IMPORTANT: Reboot the server after completing each numbered step. If the error condition continues, proceed with the next step.

To troubleshoot expansion board-related error codes:

1. Reseat all expansion boards.
2. Bring the server to base configuration by removing all components that are not required by the server to complete POST. This process can include removing all:
 - Expansion boards ("Removing a non-hot-plug expansion board" on page 33, "Removing a PCI-X Hot Plug expansion board" on page 57)
 - Processors ("Removing a processor" on page 26), except the processor installed in socket 1
IMPORTANT: Processor socket 1 and PPM slot 1 must be populated at all times or the server will not function properly.

- PPMs ("Removing a PPM" on page 29), except the PPM installed in slot 1
- DIMMS ("Removing DIMMs" on page 76), except the first bank from one memory board
- Hard drives ("Removing a hot-plug SCSI hard drive" on page 50)
- Peripheral devices

3. Install the expansion boards one at a time, rebooting between each installation to isolate the failed expansion board.
4. Replace the failed expansion board, if applicable.
5. Replace the PCI riser board, if applicable.
6. Replace the system board.

IMPORTANT: If replacing the system board or clearing NVRAM, you must re-enter the server serial number through RBSU ("Re-entering the server serial number and product ID" on page 41).

Miscellaneous port 85 codes

To troubleshoot all other port 85 codes:

IMPORTANT: Reboot the server after completing each numbered step. If the error condition continues, proceed with the next step.

1. Bring the server to base configuration by removing all components that are not required by the server to complete POST. This process can include removing all:

 - Expansion boards ("Removing a non-hot-plug expansion board" on page 33, "Removing a PCI-X Hot Plug expansion board" on page 57)
 - Processors ("Removing a processor" on page 26), except the processor installed in socket 1

 IMPORTANT: Processor socket 1 and PPM slot 1 must be populated at all times or the server will not function properly.
- PPMs ("Removing a PPM" on page 29), except the PPM installed in slot 1
- DIMMS ("Removing DIMMs" on page 76), except the first bank from one memory board
- Hard drives ("Removing a hot-plug SCSI hard drive" on page 50)
- Peripheral devices

2. Install each remaining system component, rebooting between each installation to isolate any failed components.

3. Clear the system NVRAM ("System maintenance switch" on page 103).

4. Replace the system board.

IMPORTANT: If replacing the system board or clearing NVRAM, you must re-enter the server serial number through RBSU ("Re-entering the server serial number and product ID" on page 41).
Server component identification

In this section

- Front panel components ... 92
- Front panel LEDs and buttons ... 93
- Memory board components and LEDs ... 94
- Processor module LEDs ... 97
- Rear panel components ... 98
- Rear panel LEDs and buttons ... 99
- Power supply LEDs ... 100
- System board components .. 102
- DIMM slot locations ... 108
- SCSI IDs .. 108
- Hot-plug SCSI hard drive LEDs .. 110
- Hot-plug SCSI hard drive LED combinations 111
- SATA or SAS IDs .. 112
- SATA or SAS hard drive LEDs ... 113
- SAS and SATA hard drive LED combinations 113
- Fan locations .. 114
- Hot-plug fan LEDs .. 116
- BBWC LEDs .. 117
Front panel components

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Memory board or blank</td>
</tr>
<tr>
<td>2</td>
<td>USB port</td>
</tr>
<tr>
<td>3</td>
<td>Optional multibay drive or blank</td>
</tr>
<tr>
<td>4</td>
<td>DVD drive</td>
</tr>
<tr>
<td>5</td>
<td>Processor module</td>
</tr>
<tr>
<td>6</td>
<td>Hard drive bay</td>
</tr>
</tbody>
</table>
Front panel LEDs and buttons

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UID switch and LED</td>
<td>Blue = Activated
Flashing blue = Server being managed remotely
Off = Deactivated</td>
</tr>
<tr>
<td>2</td>
<td>Internal system health LED</td>
<td>Green = Normal (system on)
Flashing amber = System health is degraded
Flashing red = System health is critical
Off = Normal (system off)</td>
</tr>
<tr>
<td>3</td>
<td>External system health LED</td>
<td>Green = Normal (system on)
Flashing amber = System health is degraded
Flashing red = System health is critical
Off = Normal (system off)</td>
</tr>
<tr>
<td>4</td>
<td>NIC 1 link/activity LED</td>
<td>Green = Linked to network
Flashing green = Linked with activity on the network
Off = No network connection</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>Status</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| 5 | NIC 2 link/activity LED | Green = Linked to network
Flashing green = Linked with activity on the network
Off = No network connection |
| 6 | Power on/Standby button and LED | Amber = System has AC power and is in standby mode
Green = System has AC power and is turned on
Off = System has no AC power |

Memory board components and LEDs

Error indicators remain illuminated when the system is powered off so that the status of the LEDs can still be seen. This behavior matches the behavior of all the other error indicators in the server.

The indicators are only cleared in the following situations:

- If the locking switch is locked after the board is reinstalled
- If the server is rebooted
- If the board is removed from the server

⚠️ **CAUTION:** When the memory board locking switch is unlocked in a mode that does not support hot-add or hot-replace capabilities, audio alarms and visual alerts occur. Removing the memory board at this point causes server failure.

To end the audio alarms and visual alerts, move the memory board locking switch back to the locked position. This action does not result in data corruption or server failure.
If removal of a single memory board is required and it is the only memory board, power down the server and make the necessary memory changes.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Locking switch</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>Release latch</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>Ejector lever</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>Removable</td>
<td>Off = Do not remove memory board if server is powered on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green = Memory board can be safely removed</td>
</tr>
<tr>
<td>5</td>
<td>DIMM LEDs (1–4)</td>
<td>Off = Normal or DIMM not installed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber = Uncorrectable error detected or correctable error threshold reached</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing amber = DIMM configuration error</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>Status</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>Spare</td>
<td>Off = Board not online or board not configured for Online Spare Memory mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber = Correctable error threshold reached; server is in degraded Online Spare Memory mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing amber = Memory configuration error*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green = Online Spare Memory mode</td>
</tr>
<tr>
<td>7</td>
<td>Mirrored</td>
<td>Off = Board not online or board not configured for Hot-Plug Mirrored Memory mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber = Server is in degraded Hot-Plug Mirrored Memory mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing amber = Memory configuration error*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green = Hot-Plug Mirrored Memory mode</td>
</tr>
<tr>
<td>8</td>
<td>RAID</td>
<td>Off = Board not online or board not configured for Hot-Plug RAID Memory mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber = Server is in degraded Hot-Plug RAID Memory mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing amber = Memory configuration error*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green = Hot-Plug RAID Memory mode</td>
</tr>
<tr>
<td>9</td>
<td>Board</td>
<td>Off = Power off or locking switch unlocked</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber = Memory error detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing amber = Memory configuration error*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing green = Board is rebuilding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green = Normal</td>
</tr>
</tbody>
</table>

* AMP configuration errors occur when the current memory configuration is not valid for the configured AMP mode:
• If the mode selected is the desired mode, modify the DIMM or board configuration to support the desired mode. For more information, refer to "Memory Options."

• If the mode selected is not the desired mode, run RBSU and change the AMP mode. For more information, refer to the section "HP ROM-Based Setup Utility (on page 80)."

NOTE: If the Spare, Mirrored, and RAID LEDs are off, the server is in Advanced ECC mode. Refer to "HP ROM-Based Setup Utility (on page 80)" for more information.

Processor module LEDs

<table>
<thead>
<tr>
<th>PPM LED (1)</th>
<th>Processor LED (2)</th>
<th>External health LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>One of the following conditions exist:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• No AC power present</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Normal</td>
</tr>
<tr>
<td>Off</td>
<td>Amber</td>
<td>Flashing amber</td>
<td>Pre-failure error threshold exceeded; LEDs will clear after the next reboot</td>
</tr>
</tbody>
</table>
PPM LED (1) Processor LED (2) External health LED Description

<table>
<thead>
<tr>
<th>Off</th>
<th>Amber</th>
<th>Flashing red</th>
<th>One or more of the following conditions exist:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>• The processor was replaced and the LEDs will clear after the next reboot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Processor failed</td>
</tr>
<tr>
<td>Off</td>
<td>Flashing amber</td>
<td>Flashing red</td>
<td>Processor configuration error detected</td>
</tr>
<tr>
<td>Amber</td>
<td>Off</td>
<td>Flashing red</td>
<td>PPM failed</td>
</tr>
<tr>
<td>Flashing amber</td>
<td>Off</td>
<td>Flashing red</td>
<td>One or more of the following conditions exist:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PPM not installed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PPM configuration error detected</td>
</tr>
</tbody>
</table>

Rear panel components

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCI-X non-hot-plug slot 7, 64-bit/100-MHz</td>
<td>11</td>
<td>NIC port 2</td>
</tr>
<tr>
<td>2</td>
<td>PCI-X non-hot-plug slot 6, 64-bit/100-MHz</td>
<td>12</td>
<td>NIC port 1</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>Item</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>3</td>
<td>PCI-X non-hot-plug slot 5, 64-bit/133-MHz</td>
<td>13</td>
<td>Serial port</td>
</tr>
<tr>
<td>4</td>
<td>PCI-X non-hot-plug slot 4, 64-bit/133-MHz</td>
<td>14</td>
<td>USB ports</td>
</tr>
<tr>
<td>5</td>
<td>PCI-X non-hot-plug slot 3, 64-bit/133-MHz</td>
<td>15</td>
<td>Video port</td>
</tr>
<tr>
<td>6</td>
<td>Optional PCI-X Hot Plug or optional PCI Express non-hot-plug expansion slot 2</td>
<td>16</td>
<td>Keyboard port</td>
</tr>
<tr>
<td>7</td>
<td>Optional PCI-X Hot Plug or optional PCI Express non-hot-plug expansion slot 1</td>
<td>17</td>
<td>Mouse port</td>
</tr>
<tr>
<td>8</td>
<td>T-15 Torx screwdriver</td>
<td>18</td>
<td>iLO NIC</td>
</tr>
<tr>
<td>9</td>
<td>Optional power supply (redundant)</td>
<td>19</td>
<td>UID</td>
</tr>
<tr>
<td>10</td>
<td>Power supply (primary)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rear panel LEDs and buttons

![Rear panel LEDs and buttons diagram](image)
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>LED color</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NIC 1 Activity LED</td>
<td>Green</td>
<td>On or flashing = Network activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Off = No network activity</td>
</tr>
<tr>
<td>2</td>
<td>NIC 1 Link LED</td>
<td>Green</td>
<td>On = Linked to network</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Off = Not linked to network</td>
</tr>
<tr>
<td>3</td>
<td>NIC 2 Activity LED</td>
<td>Green</td>
<td>On or flashing = Network activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Off = No network activity</td>
</tr>
<tr>
<td>4</td>
<td>NIC 2 Link LED</td>
<td>Green</td>
<td>On = Linked to network</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Off = Not linked to network</td>
</tr>
<tr>
<td>5</td>
<td>iLO NIC Activity LED</td>
<td>Green</td>
<td>On or flashing = Network activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Off = No network activity</td>
</tr>
<tr>
<td>6</td>
<td>iLO NIC Link LED</td>
<td>Green</td>
<td>On = Linked to network</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Off = Not linked to network</td>
</tr>
<tr>
<td>7</td>
<td>UID LED</td>
<td>Blue</td>
<td>On = Activated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flashing = Server remotely managed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Off = Deactivated</td>
</tr>
</tbody>
</table>

Power supply LEDs

![Power supply LEDs diagram](image)
<table>
<thead>
<tr>
<th>Fail LED 1 (amber)</th>
<th>Power LED 2 (green)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>No AC power to any power supply</td>
</tr>
<tr>
<td>Flashing</td>
<td>Off</td>
<td>Power supply failure (over current)</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>No AC power to this power supply</td>
</tr>
<tr>
<td>Off</td>
<td>Flashing</td>
<td>• AC power present</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Standby mode</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Normal</td>
</tr>
</tbody>
</table>
System board components

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fan 1</td>
<td>12</td>
<td>PCI-X, non-hot-plug slot 7, 64-bit/100-MHz</td>
</tr>
<tr>
<td>2</td>
<td>Fan 2</td>
<td>13</td>
<td>BBWC battery pack</td>
</tr>
<tr>
<td>3</td>
<td>Fan 3</td>
<td>14</td>
<td>Remote management connector</td>
</tr>
<tr>
<td>4</td>
<td>Fan 4</td>
<td>15</td>
<td>BBWC cache module socket</td>
</tr>
</tbody>
</table>
System maintenance switch

The system maintenance switch (SW1) is an eight-position switch that is used for system configuration. The default position for all eight positions is Off.

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>iLO Security</td>
<td>Off = iLO security is enabled
On = iLO security is disabled</td>
</tr>
<tr>
<td>S2</td>
<td>Configuration lock</td>
<td>Off = System configuration can be changed
On = System configuration is locked</td>
</tr>
<tr>
<td>Position</td>
<td>Description</td>
<td>Function</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>S3</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>S4</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>S5</td>
<td>Password protection override</td>
<td>Off = No function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On = Clears power-on password and administrator password</td>
</tr>
<tr>
<td>S6</td>
<td>Invalidate configuration</td>
<td>Off = Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On = Clears NVRAM</td>
</tr>
<tr>
<td>S7</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>S8</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Boot device selector switch

The boot device selector switch setting determines the device access order of the multibay drives in the server. The default setting for the boot device selector switch is FLP TOP.

When the boot device selector switch is set to FLP TOP, the optical drive in the bottom bay is designated as the primary optical drive. The diskette drive in the top bay is bootable. The server cannot boot from a diskette drive in the bottom bay when the boot device selector switch is set to FLP TOP.

When the boot device selector switch is set to FLP BOT, the optical drive in the top bay is designated as the primary optical drive. The diskette drive in the bottom bay is bootable. The server cannot boot from a diskette drive in the top bay when the boot device selector switch is set to FLP BOT.

NOTE: If two optical drives are installed in the server, the server will first attempt to boot from the primary optical drive. The boot device selector switch setting determines which drive is the primary optical drive.
QuickFind diagnostic display LEDs

The front panel health LEDs indicate only the current hardware status. In some situations, HP SIM might report server status differently than the health LEDs because the software tracks more system attributes.

The amber QuickFind diagnostic display LEDs are located on the media board. In normal operations, all of the LEDs are off unless one of the components fails.

<table>
<thead>
<tr>
<th>Switch setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLP TOP (default)</td>
<td>Diskette drive in top bay is bootable</td>
</tr>
<tr>
<td></td>
<td>Primary optical drive in bottom bay is bootable</td>
</tr>
<tr>
<td>FLP BOT</td>
<td>Primary optical drive in top bay is bootable</td>
</tr>
<tr>
<td></td>
<td>Diskette drive in bottom bay is bootable</td>
</tr>
</tbody>
</table>
NOTE: The system management driver must be installed for the internal health LED to provide pre-failure and warranty conditions.

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan X</td>
<td>One or more of the following conditions exist:</td>
</tr>
<tr>
<td></td>
<td>• A fan is missing or not properly installed.</td>
</tr>
<tr>
<td></td>
<td>• A fan failed.</td>
</tr>
<tr>
<td>PCI X</td>
<td>One or more of the following conditions exist:</td>
</tr>
<tr>
<td></td>
<td>• A PCI address parity error was detected on the numbered PCI slot.</td>
</tr>
<tr>
<td></td>
<td>• A PCI data parity error was detected on the numbered PCI slot.</td>
</tr>
</tbody>
</table>
LED Description
SCSI BP The SCSI backplane is missing or not properly installed.
MEM A memory board is not properly installed.
MEM BP A memory backplane is missing or not properly installed.
FSB One or more of the following conditions exist:
 • A processor or PPM is missing or not properly installed.
 • An FSB configuration error was detected.
PROC A processor is missing or not properly installed.
OVER TEMP The internal temperature has exceeded operating levels.
NO BOOT A "no boot" condition was detected.
P84 Switch set to display port 84 codes.
P85 Switch set to display port 85 codes ("Troubleshooting the system using port 85 codes" on page 84).

Setting the switch to view port 85 codes

To change the display on the QuickFind diagnostic panel to view port 84 and 85 codes ("Troubleshooting the system using port 85 codes" on page 84):

1. Extend the server from the rack.
2. Remove the access panel ("Removing the access panel" on page 19).
3. Locate the switch on the media board.
4. Set the switch to the P85 position to view port 85 codes.
DIMM slot locations

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIMM slot 1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>DIMM slot 2</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>DIMM slot 3</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>DIMM slot 4</td>
<td>B</td>
</tr>
</tbody>
</table>

SCSI IDs

The server supports single- or dual-channel hard drive configurations. The single-channel configuration (simplex mode) supports up to four hard drives on one channel. The dual-channel configuration (duplex mode) supports two hard drives on each channel (SCSI IDs 0 and 1).

The SCSI IDs for both simplex mode and duplex mode are illustrated. Always populate hard drive bays starting with the lowest SCSI ID.

NOTE: These SCSI ID designations apply regardless of the controller or the configuration used.
Simplex mode

Duplex mode
Hot-plug SCSI hard drive LEDs

<table>
<thead>
<tr>
<th>Item</th>
<th>LED description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Activity status</td>
<td>On = Drive activity
Flashing = High activity on the drive or drive is being configured as part of an array.
Off = No drive activity</td>
</tr>
<tr>
<td>2</td>
<td>Online status</td>
<td>On = Drive is part of an array and is currently working.
Flashing = Drive is actively online.
Off = Drive is offline.</td>
</tr>
<tr>
<td>3</td>
<td>Fault status</td>
<td>On = Drive failure
Flashing = Fault-process activity
Off = No fault-process activity</td>
</tr>
</tbody>
</table>
Hot-plug SCSI hard drive LED combinations

<table>
<thead>
<tr>
<th>Activity LED (1)</th>
<th>Online LED (2)</th>
<th>Fault LED (3)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>On, off, or flashing</td>
<td>On or off</td>
<td>Flashing</td>
<td>A predictive failure alert has been received for this drive. Replace the drive as soon as possible.</td>
</tr>
<tr>
<td>On, off, or flashing</td>
<td>On</td>
<td>Off</td>
<td>The drive is online and is configured as part of an array. If the array is configured for fault tolerance and all other drives in the array are online, and a predictive failure alert is received or a drive capacity upgrade is in progress, you may replace the drive online.</td>
</tr>
<tr>
<td>On or flashing</td>
<td>Flashing</td>
<td>Off</td>
<td>Do not remove the drive. Removing a drive may terminate the current operation and cause data loss. The drive is rebuilding or undergoing capacity expansion.</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Do not remove the drive. The drive is being accessed, but (1) it is not configured as part of an array; (2) it is a replacement drive and rebuild has not yet started; or (3) it is spinning up during the POST sequence.</td>
</tr>
<tr>
<td>Flashing</td>
<td>Flashing</td>
<td>Flashing</td>
<td>Do not remove the drive. Removing a drive may cause data loss in non-fault-tolerant configurations. Either (1) the drive is part of an array being selected by an array configuration utility; (2) Drive Identification has been selected in HP SIM; or (3) drive firmware is being updated.</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>The drive has failed and has been placed offline. You may replace the drive.</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Either (1) the drive is not configured as part of an array; (2) the drive is configured as part of an array, but it is a replacement drive that is not being accessed or being rebuilt yet; or (3) the drive is configured as an online spare. If the drive is connected to an array controller, you may replace the drive online.</td>
</tr>
</tbody>
</table>
When adding SAS hard drives to the server, observe the following general guidelines:

- The server supports eight SAS or SATA hot-plug hard drives.
- The system automatically sets all drive numbers.
- If only one hard drive is used, install it in the bay with the lowest number.
- Hard drives must be SFF types.
- Drives must be the same capacity to provide the greatest storage space efficiency when drives are grouped together into the same drive array.

NOTE: ACU does not support mixing SAS and SATA drives in the same logical volume.
SATA or SAS hard drive LEDs

<table>
<thead>
<tr>
<th>Item</th>
<th>LED Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fault/UID status</td>
<td>Amber = Drive failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing amber = Fault-process activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blue = Unit identification is active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off = No fault-process activity</td>
</tr>
<tr>
<td>2</td>
<td>Online/Activity status</td>
<td>Green = Drive activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing green = High activity on the drive or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>drive is being configured as part of an array</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off = No drive activity</td>
</tr>
</tbody>
</table>

SAS and SATA hard drive LED combinations

<table>
<thead>
<tr>
<th>Online/Activity LED (green)</th>
<th>Fault/UID LED (amber/blue)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>On, off, or flashing</td>
<td>Alternating amber and blue</td>
<td>The drive has failed, or a predictive failure alert has been received for this</td>
</tr>
<tr>
<td></td>
<td></td>
<td>drive; it also has been selected by a management application.</td>
</tr>
<tr>
<td>Online/Activity LED (green)</td>
<td>Fault/UID LED (amber/blue)</td>
<td>Interpretation</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>On, off, or flashing</td>
<td>Steadily blue</td>
<td>The drive is operating normally, and it has been selected by a management application.</td>
</tr>
<tr>
<td>On</td>
<td>Amber, flashing regularly (1 Hz)</td>
<td>A predictive failure alert has been received for this drive. Replace the drive as soon as possible.</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>The drive is online, but it is not active currently.</td>
</tr>
<tr>
<td>Flashing regularly (1 Hz)</td>
<td>Amber, flashing regularly (1 Hz)</td>
<td>Do not remove the drive. Removing a drive may terminate the current operation and cause data loss. The drive is part of an array that is undergoing capacity expansion or stripe migration, but a predictive failure alert has been received for this drive. To minimize the risk of data loss, do not replace the drive until the expansion or migration is complete.</td>
</tr>
<tr>
<td>Flashing irregularly</td>
<td>Off</td>
<td>Do not remove the drive. Removing a drive may terminate the current operation and cause data loss. The drive is rebuilding, or it is part of an array that is undergoing capacity expansion or stripe migration.</td>
</tr>
<tr>
<td>Flashing irregularly</td>
<td>Amber, flashing regularly (1 Hz)</td>
<td>The drive is active, but a predictive failure alert has been received for this drive. Replace the drive as soon as possible.</td>
</tr>
<tr>
<td>Flashing irregularly</td>
<td>Off</td>
<td>The drive is active, and it is operating normally.</td>
</tr>
<tr>
<td>Off</td>
<td>Steadily amber</td>
<td>A critical fault condition has been identified for this drive, and the controller has placed it offline. Replace the drive as soon as possible.</td>
</tr>
<tr>
<td>Off</td>
<td>Amber, flashing regularly (1 Hz)</td>
<td>A predictive failure alert has been received for this drive. Replace the drive as soon as possible.</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>The drive is offline, a spare, or not configured as part of an array.</td>
</tr>
</tbody>
</table>

Fan locations

The server is shipped with six system fans. Each fan is hot-swappable and independently controlled. The fans are distributed into two zones to control thermal conditions within the server.
• Zone 1 contains four fans (three, plus one redundant) to control the temperature in the processor module area.

• Zone 2 contains two fans (one, plus one redundant) to control the temperature in the hard drive bay area.

This fan configuration allows the server to continue operating in non-redundant mode if a single fan fails in either zone. If the system detects two fan failures in the same zone, the server shuts down to avoid thermal damage.
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Fan 2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Fan 3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Fan 4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Fan 5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Fan 6</td>
<td>2</td>
</tr>
</tbody>
</table>

Hot-plug fan LEDs

- **Status**
 - Green = Operating normally
 - Amber = Failed
 - Off = No power
BBWC LEDs

<table>
<thead>
<tr>
<th>Server status</th>
<th>LED 1 (amber)</th>
<th>LED 2 (green)</th>
<th>Battery module status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server is on and has normal run time</td>
<td>Off</td>
<td>On</td>
<td>Fast charging</td>
</tr>
<tr>
<td>Flashing</td>
<td>Off</td>
<td>Flashing</td>
<td>The microcontroller is waiting for communication from the host controller.</td>
</tr>
<tr>
<td>Off off</td>
<td>Off</td>
<td>Off</td>
<td>The battery is fully charged</td>
</tr>
<tr>
<td>On off</td>
<td>On</td>
<td>Off</td>
<td>A short exists in the connection of one or more of the three button cells within the battery module.</td>
</tr>
<tr>
<td>Flashing off</td>
<td>Flashing</td>
<td>Off</td>
<td>An opening exists in the circuit between the positive and negative terminals of the battery module.</td>
</tr>
<tr>
<td>Off off</td>
<td>Off</td>
<td>Off</td>
<td>Normal</td>
</tr>
<tr>
<td>Server is off and is in data retention mode</td>
<td>Flashing every 15 seconds</td>
<td>Off</td>
<td>User data held in the write cache is being backed up.</td>
</tr>
</tbody>
</table>
Server cabling

In this section

Storage device cabling guidelines .. 119
PCI-X Hot Plug mezzanine cabling .. 119
BBWC cabling ... 120
RILOE II cabling .. 121
Hot-plug SCSI drive cabling .. 121
Hot-plug SAS hard drive cabling ... 123
USB cable assembly ... 123
Power switch cable assembly ... 124

Storage device cabling guidelines

⚠️ CAUTION: To prevent damage to the equipment, be sure that the server is powered down, all cables are disconnected from the back of the server, and the power cord is disconnected from the grounded (earthed) AC outlet before installing devices.

⚠️ CAUTION: To prevent damage to electrical components, properly ground the server before beginning any installation procedure. Improper grounding can cause electrostatic discharge.

PCI-X Hot Plug mezzanine cabling

The server supports an optional PCI-X Hot Plug mezzanine board that provides hot-plug capability for two expansion slots. A ribbon cable connects the PCI-X Hot Plug button to the PCI-X Hot Plug mezzanine board.
\[\textbf{CAUTION:}\] When routing cables, always be sure that the cables are not in a position where they can be pinched or crimped.

BBWC cabling

\[\textbf{CAUTION:}\] When routing cables, always be sure that the cables are not in a position where they can be pinched or crimped.

\[\textbf{IMPORTANT:}\] The BBWC cable is wound around the battery pack. Unwind the cable to the appropriate length before installing the battery pack assembly into the server.
RILOE II cabling

The 30-pin Remote Insight cable ships with the RILOE II cable kit.

⚠️ CAUTION: When routing cables, always be sure that the cables are not in a position where they can be pinched or crimped.

👉 IMPORTANT: Install the RILOE II board into slot 7 for ease of cabling.

Hot-plug SCSI drive cabling

⚠️ CAUTION: When routing cables, always be sure that the cables are not in a position where they can be pinched or crimped.

The following are the standard SCSI cabling configurations for this server:

- Single-channel (simplex mode) SCSI cabling to the SCSI ports
- Dual-channel (duplex mode) SCSI cabling to the SCSI ports
- Standard SCSI cabling to an expansion board

様々 NOTE: The server ships with the required cables.
SCSI simplex mode

In the PCI simplex cabling configuration, an optional PCI array controller controls up to four hard drives through one SCSI bus.

SCSI duplex mode

In the PCI duplex cabling configuration, an optional PCI array controller controls up to four hard drives through two SCSI buses. Each bus controls two hard drives.
Hot-plug SAS hard drive cabling

⚠️ CAUTION: When routing cables, always be sure that the cables are not in a position where they can be pinched or crimped.

For ease of cabling, route the cables in the server before connecting the cables to the SAS hard drive cage.

USB cable assembly

The USB cable connects the front panel USB connector to the SCSI backplane.

To remove the component:

1. Power down the server ("Powering down the server" on page 18).
2. Extend the server from the rack.
3. Remove the access panel ("Removing the access panel" on page 19).
4. Remove the front bezel ("Removing the front bezel" on page 21).
5. Disconnect all cables from the media board.

6. Remove the media board ("Removing the media board" on page 44).

7. Loosen the screw, and slide the USB cable connector up to remove the cable assembly from the server.

To replace the component, reverse the removal procedure.

Power switch cable assembly

1. Power down the server ("Powering down the server" on page 18).

2. Extend the server from the rack.

3. Remove the access panel ("Removing the access panel" on page 19).

4. Remove the front bezel ("Removing the front bezel" on page 21).

5. Disconnect all cables from the media board.

6. Remove the media board ("Removing the media board" on page 44).

7. Remove the USB cable assembly.

8. Insert a flat screwdriver into the power switch cable housing next to the middle two LEDs and pry the housing from the chassis.
9. Remove the power switch cable assembly.

To replace the component, reverse the removal procedure.
Specifications

In this section
Server specifications ... 127
Environmental specifications .. 128
Hot-plug power supply calculations .. 128

Server specifications

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>17.6 cm (6.94 in)</td>
</tr>
<tr>
<td>Depth</td>
<td>67.3 cm (26.5 in)</td>
</tr>
<tr>
<td>Width</td>
<td>46.3 cm (19.0 in)</td>
</tr>
<tr>
<td>Weight (maximum)</td>
<td>47.6 kg (105 lb)</td>
</tr>
<tr>
<td>Weight (no drives installed)</td>
<td>36.3 kg (80 lb)</td>
</tr>
</tbody>
</table>

Input requirement

<table>
<thead>
<tr>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated input voltage</td>
</tr>
<tr>
<td>@ 100 VAC–12A</td>
</tr>
<tr>
<td>@ 200 VAC–8A</td>
</tr>
<tr>
<td>Rated input frequency</td>
</tr>
<tr>
<td>Rated input current</td>
</tr>
<tr>
<td>@ 100 VAC–1161 W</td>
</tr>
<tr>
<td>@ 200 VAC–1598 W</td>
</tr>
<tr>
<td>BTUs per hour</td>
</tr>
<tr>
<td>@ 100 VAC–3960 BTU</td>
</tr>
<tr>
<td>@ 200 VAC–5450 BTU</td>
</tr>
</tbody>
</table>

Power supply output
Power supply output

- 910 W (low line)
- 1300 W (high line)

Environmental specifications

<table>
<thead>
<tr>
<th>Temperature range*</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating</td>
<td>10°C to 35°C (50°F to 95°F)</td>
</tr>
<tr>
<td>Shipping</td>
<td>-40°C to 70°C (-40°F to 158°F)</td>
</tr>
<tr>
<td>Maximum wet bulb temperature</td>
<td>28°C (82.4°F)</td>
</tr>
<tr>
<td>Relative humidity (noncondensing)**</td>
<td>Specification</td>
</tr>
<tr>
<td>Operating</td>
<td>10% to 90%</td>
</tr>
<tr>
<td>Non-operating</td>
<td>5% to 95%</td>
</tr>
</tbody>
</table>

* All temperature ratings shown are for sea level. An altitude derating of 1°C per 300 m (1.8°F per 1,000 ft) to 3048 m (10,000 ft) is applicable. No direct sunlight allowed.

** Storage maximum humidity of 95% is based on a maximum temperature of 45°C (113°F). Altitude maximum for storage corresponds to a pressure minimum of 70 KPa.

Hot-plug power supply calculations

For hot-plug power supply specifications and calculators to determine electrical and heat loading for the server, refer to the HP Enterprise Configurator website (http://h30099.www3.hp.com/configurator/).
Acronyms and abbreviations

ABEND
abnormal end

AMP
Advanced Memory Protection

ASR
Automatic Server Recovery

BBWC
battery-backed write cache

BP
backplane

CSA
Canadian Standards Association

DDR
double data rate

DIMM
dual inline memory module
ECC
error checking and correcting

IEC
International Electrotechnical Commission

iLO
Integrated Lights-Out

IML
Integrated Management Log

IPL
initial program load

IRQ
interrupt request

LED
light-emitting diode

MPS
multi-processor specification

NEMA
National Electrical Manufacturers Association

NFPA
National Fire Protection Association
NIC
network interface controller

NVRAM
non-volatile memory

ORCA
Option ROM Configuration for Arrays

PCI
peripheral component interface

PCI Express
peripheral component interconnect express

PCI-E
peripheral component interconnect express

PCI-X
peripheral component interconnect extended

PDU
power distribution unit

POST
Power-On Self Test

PPM
Processor Power Module
PSP
ProLiant Support Pack

PXE
preboot eXecution environment

RBSU
ROM-Based Setup Utility

RILOE II
Remote Insight Lights-Out Edition II

SAS
serial attached SCSI

SATA
serial ATA

SCSI
small computer system interface

SDRAM
synchronous dynamic RAM

SIM
Systems Insight Manager

SPM
system power module
SSD
support software diskette

TMRA
recommended ambient operating temperature

UID
unit identification

USB
universal serial bus

VCA
Version Control Agent

VHDCI
very high density cable interconnect
Index

A
ASR (Automatic Server Recovery) 84, 133
Automatic Server Recovery (ASR) 84, 133
Autorun menu 79

B
batteries, replacing 42
battery 42
battery pack, removing 37
Battery-Backed Write Cache Enabler 37
Battery-Backed Write Cache Enabler LEDs 119
BIOS upgrade 82
buttons 93, 95, 128

C
cabling 121
cabling, power switch 128
cabling, SCSI hard drive 124
CD-ROM drive 23
CD-RW drive 23
component identification 100
components 93
connectors 93
CSR (customer self repair) 7
customer self repair 7

D
diagnostic tools 79, 82, 84, 85
diagnostics utility 85
dimensions, server 131
DIMM slot LEDs 96, 112
DIMM slots 110
DIMMs 72, 76
diskette drive 23
drive LEDs 112, 113
DVD±RW drive 23
DVD-ROM drive 23

electric discharge 14
environmental requirements 132
environmental specifications 132
expansion board 33, 34, 35, 58
expansion board-related port 85 codes 89

F
fan LED 112
fan zones 113
fans 60, 115, 116
fans, replacing 60
features 93
flash ROM 82
front bezel 21
front panel buttons 95
front panel LEDs 95

H
hard drive blanks 49
hard drive LEDs 112, 113, 115
hard drive, replacing 50, 51
hard drives 50, 112, 113
hard drives, determining status of 112, 113, 115
hard drives, types supported 50
health driver 84, 112
health LEDs 112
hot-plug power supply 103
HP Insight Diagnostics 85
HP ProLiant Essentials Foundation Pack 85
HP Systems Insight Manager, overview 85

I
illustrated parts catalog 7
iLO (Integrated Lights-Out) 84
Insight Diagnostics 85
Instant Support Enterprise Edition 81
Integrated Lights-Out (iLO) 84

L
LED, power button 95
LEDs 93, 112, 113
LEDs, cache module 119
LEDs, hard drive 112, 113, 115
LEDs, memory cartridge 96

M
management tools 79
media board 44
media drive 23
media drive blank 23
memory backplane 48
memory boards 72, 73
memory overview 62
memory, Advanced ECC 64
memory, configuration requirements 62
memory, configuring 70, 71
memory, mirrored 67
memory, online spare 66
memory-related port 85 codes 88
miscellaneous port 85 codes 90

N
NIC (network interface controller) 134
NIC connectors 100

O
Online ROM Flash Component Utility 83
online spare memory 66
Option ROM Configuration for Arrays (ORCA) 81
overtemperature LED 113

P
PCI Express 100
PCI Express mezzanine 35, 100
PCI retaining clip 31
PCI slot release lever 30
PCI slots 100
PCI-X basket 32
PCI-X Hot Plug mezzanine 34, 100
PCI-X Hot Plug mezzanine cabling 121
port 85 code, expansion board-related 89
port 85 code, list 86
port 85 code, memory-related 88
port 85 code, miscellaneous codes 90
port 85 code, processor-related 87
port 85 code, troubleshooting 39, 86
port 85 code, viewing 86, 107, 109
power backplane 47
power button cabling 128
power button/LED board 128
power requirements 132
power supplies 59, 132
power supply blank 58
power supply LEDs 103
power supply output 132
powering down 18
PPM (Processor Power Module) 29
PPM failure LEDs 99, 113
preparation procedures 15
processor failure LEDs 99
processor module 24, 26, 29
processor zone fans 116
processor-related port 85 codes 87
processors 26

R
RBSU (ROM-Based Setup Utility) 70, 82
rear components 100
rear panel connectors 100
remote support and analysis tools 81
removal and replacement procedures 13
removing server from rack 19
RILOE II cabling 123
ROM, updating 83
ROMPaq utility 82
S
safety considerations 14
SAS backplane 56
SAS hard drive cabling 52
SAS hard drive LEDs 115
SAS-SATA hard drive cage 52
SATA backplane 56
SATA cabling 52
SATA drives 114
scripted installation 80
SCSI backplane 45
SCSI hard drive cabling 124
SCSI hard drive cabling, duplex mode 126
SCSI hard drive cabling, SCSI mode 125
SCSI IDs 110
serial number 41
server asset text 41
SmartStart autorun menu 79
SmartStart Scripting Toolkit 80
SmartStart, overview 79
specifications 131
specifications, environmental 132
static electricity 14
support packs 79
system battery 42
system cage 20
system maintenance switch 105
Systems Insight Manager 85
T
temperature requirements 132
temperature, overtemperature LED 113
tools 79, 100
U
USB connectors 100
USB support 86
utilities 79, 81, 82, 83, 84, 85
utilities, deployment 80, 82