HP StorageWorks
4000/6000/8000 Enterprise Virtual Array user guide
Contents

About this guide ... 13
 Overview ... 13
 Intended audience 13
 Related documentation 13
 Document conventions and symbols 14
 Rack stability ... 15
 HP technical support 15
 HP-authorized reseller 15
 Helpful web sites 15

1 Enterprise Virtual Array description 17
 Introduction to the Enterprise Virtual Array 17
 Features and enhancements 17
 Ease of management 18
 Data availability 18
 Performance ... 18
 Scalability .. 18
 Operating system support 19
 Fault management and diagnostics 19
 EVA remote support tools 19
 Storage system components 19
 HP Command View EVA 20
 Controller software 20
 XCS features and functionality 20
 Optional software licensing 20
 Hardware ... 21
 Physical layout of the storage system 21
 Fibre Channel drive enclosure 21
 Fibre Channel loop switches 22
 HSV210 and HSV200 controllers 22
 Racks .. 22

2 Enterprise Virtual Array startup 25
 EVA8000 storage system connections 25
 EVA6000 storage system connections 26
 EVA4000 storage system connections 27
 Direct connect ... 28
 Procedures for getting started 28
 Gathering information 28
 Host information 29
 Setting up a controller pair using the OCP 29
 Entering the WWN 29
 Entering the WWN checksum 30
 Entering the storage system password 31
 Installing HP Command View EVA 31
 Installing optional EVA software licenses 31

3 Enterprise Virtual Array operation 33
 Best practices ... 33
A Regulatory notices and specifications 107

Regulatory notices .. 107

Federal Communications Commission (FCC) notice 107

- FCC Class A certification ... 107
- Class A equipment ... 108
- Class B equipment ... 108
- Declaration of conformity for products marked with the FCC logo, United States only ... 108
- Modifications .. 108
- Cables .. 108
- Laser device ... 108
- Laser safety warnings .. 109
- Compliance with CDRH regulations 109
- Certification and classification information 109
- Canadien notice (avis Canadien) 109
- Class A equipment ... 109
- Class B equipment ... 109
- European union notice ... 110

Notice for France ... 110

WEEE Recycling Notices .. 110

- English notice .. 110
- Dutch notice ... 110
- Czechoslovakian notice .. 110
- Estonian notice ... 111
- Finnish notice ... 111
- French notice ... 111
- German notice .. 111
- Greek notice ... 112
- Hungarian notice .. 112
- Italian notice ... 112
- Latvian notice ... 113
- Lithuanian notice .. 113
- Polish notice ... 113
- Portuguese notice .. 113
- Slovakian notice .. 114
- Slovenian notice .. 114
- Spanish notice ... 114
- Swedish notice ... 114
- Germany noise declaration .. 115
- Japanese notice ... 115
 - Harmonics conformance (Japan) 115
- Taiwanese notice .. 115
- Japanese power cord notice ... 115
- Country-specific certifications ... 115

Fibre Channel drive enclosure specifications 116

- Physical specifications ... 116
- Environmental specifications .. 117
- Power specifications ... 117

Fibre Channel switch specifications 119

Controller specifications ... 120

- Physical specifications ... 120
- Power specifications ... 120
- Environmental specifications .. 121

Rack specifications ... 121
125 B EMU-generated condition reports

125 Condition report format

126 Correcting errors

125 Drive conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1.en.01</td>
<td>CRITICAL condition—Drive configuration or drive link rate</td>
</tr>
<tr>
<td>0.1.en.02</td>
<td>INFORMATION condition—Drive missing</td>
</tr>
<tr>
<td>0.1.en.03</td>
<td>INFORMATION condition—Drive software lock active</td>
</tr>
<tr>
<td>0.1.en.04</td>
<td>CRITICAL condition—Loop a drive link rate incorrect</td>
</tr>
<tr>
<td>0.1.en.05</td>
<td>CRITICAL condition—Loop b drive link rate incorrect</td>
</tr>
</tbody>
</table>

128 Power supply conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2.en.01</td>
<td>NONCRITICAL Condition—Power supply AC input missing</td>
</tr>
<tr>
<td>0.2.en.02</td>
<td>UNRECOVERABLE condition—Power supply missing</td>
</tr>
<tr>
<td>0.2.en.03</td>
<td>CRITICAL condition—Power supply load unbalanced</td>
</tr>
</tbody>
</table>

130 Blower conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3.en.01</td>
<td>NONCRITICAL condition—Blower speed</td>
</tr>
<tr>
<td>0.3.en.02</td>
<td>CRITICAL condition—Blower speed</td>
</tr>
<tr>
<td>0.3.en.03</td>
<td>UNRECOVERABLE condition—Blower failure</td>
</tr>
<tr>
<td>0.3.en.04</td>
<td>UNRECOVERABLE condition—Blower internal</td>
</tr>
<tr>
<td>0.3.en.05</td>
<td>NONCRITICAL condition—Blower missing</td>
</tr>
<tr>
<td>0.3.en.06</td>
<td>UNRECOVERABLE condition—No blowers installed</td>
</tr>
</tbody>
</table>

131 Temperature conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4.en.01</td>
<td>NONCRITICAL condition—High temperature</td>
</tr>
<tr>
<td>0.4.en.02</td>
<td>CRITICAL condition—High temperature</td>
</tr>
<tr>
<td>0.4.en.03</td>
<td>NONCRITICAL condition—Low temperature</td>
</tr>
<tr>
<td>0.4.en.04</td>
<td>CRITICAL condition—Low temperature</td>
</tr>
<tr>
<td>0.4.en.05</td>
<td>UNRECOVERABLE condition—High temperature</td>
</tr>
</tbody>
</table>

134 EMU conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.01.01</td>
<td>CRITICAL condition—EMU internal clock</td>
</tr>
<tr>
<td>07.01.02</td>
<td>UNRECOVERABLE condition—EMU interrupted</td>
</tr>
<tr>
<td>07.01.03</td>
<td>UNRECOVERABLE Condition—Power supply shutdown</td>
</tr>
<tr>
<td>07.01.04</td>
<td>INFORMATION condition—EMU internal data</td>
</tr>
<tr>
<td>07.01.05</td>
<td>UNRECOVERABLE condition—Backplane NVRAM</td>
</tr>
<tr>
<td>07.01.10</td>
<td>NONCRITICAL condition—NVRAM invalid read data</td>
</tr>
<tr>
<td>07.01.11</td>
<td>NONCRITICAL condition—EMU NVRAM write failure</td>
</tr>
<tr>
<td>07.01.12</td>
<td>NONCRITICAL condition—EMU cannot read NVRAM data</td>
</tr>
<tr>
<td>07.01.13</td>
<td>UNRECOVERABLE condition—EMU load failure</td>
</tr>
<tr>
<td>07.01.14</td>
<td>NONCRITICAL condition—EMU enclosure address</td>
</tr>
<tr>
<td>07.01.15</td>
<td>UNRECOVERABLE condition—EMU hardware failure</td>
</tr>
<tr>
<td>07.01.16</td>
<td>INFORMATION condition—EMU internal ESI data corrupted</td>
</tr>
<tr>
<td>07.01.17</td>
<td>UNRECOVERABLE condition—Power shutdown failure</td>
</tr>
<tr>
<td>07.01.18</td>
<td>UNRECOVERABLE condition—EMU hardware failure</td>
</tr>
<tr>
<td>07.01.19</td>
<td>UNRECOVERABLE condition—EMU ESI driver failure</td>
</tr>
</tbody>
</table>

138 Transceiver conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.F.en.01</td>
<td>CRITICAL condition—Transceiver incompatibility</td>
</tr>
<tr>
<td>0.F.en.02</td>
<td>CRITICAL condition—Transceiver data signal lost</td>
</tr>
<tr>
<td>0.F.en.03</td>
<td>CRITICAL condition—Transceiver fibre channel drive enclosure bus fault</td>
</tr>
<tr>
<td>0.F.en.04</td>
<td>CRITICAL condition—Transceiver removed</td>
</tr>
<tr>
<td>0.F.en.05</td>
<td>CRITICAL condition—Invalid fibre channel character</td>
</tr>
</tbody>
</table>

139 Voltage sensor and current sensor conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.en.01</td>
<td>NONCRITICAL condition—High voltage</td>
</tr>
<tr>
<td>1.2.en.02</td>
<td>CRITICAL condition—High voltage</td>
</tr>
<tr>
<td>1.2.en.03</td>
<td>NONCRITICAL condition—Low voltage</td>
</tr>
<tr>
<td>1.2.en.04</td>
<td>CRITICAL condition—Low voltage</td>
</tr>
<tr>
<td>1.3.en.01</td>
<td>NONCRITICAL condition—High current</td>
</tr>
<tr>
<td>1.3.en.02</td>
<td>CRITICAL condition—High current</td>
</tr>
</tbody>
</table>
Backplane conditions 141
 8.2.01.10 NONCRITICAL condition—Backplane NVRAM read 141
 8.2.01.11 NONCRITICAL condition—Backplane NVRAM write failure 141
 8.2.01.12 NONCRITICAL condition—Backplane NVRAM read failure 141
 8.2.01.13 NONCRITICAL condition—Backplane WWN is blank 141
I/O Module conditions 141
 8.7.en.01 CRITICAL condition—I/O module unsupported 142
 8.7.en.02 CRITICAL condition—I/O module communication 142
 8.7.en.10 NONCRITICAL condition—I/O module NVRAM read 142
 8.7.en.11 NONCRITICAL condition—I/O module NVRAM write 142
 8.7.en.12 NONCRITICAL condition—I/O Module NVRAM read failure 143
 8.7.en.13 NONCRITICAL condition—I/O module removed 143
Host conditions 143

C Controller fault management ... 145
 Using HP Command View EVA ... 145
 GUI termination event display ... 145
 GUI event display ... 145
 Fault management displays ... 146
 Displaying Last Fault Information 146
 Displaying Detailed Information 146
 Interpreting fault management information 147

Glossary ... 149

Index ... 165
Figures

1. Storage system hardware components .. 21
2. EVA8000 configuration ... 26
3. EVA6000 configuration .. 27
4. EVA4000 configuration .. 27
5. Location of the World Wide Name labels .. 30
6. Disk drive activity indicator .. 40
7. Sequential building of vertical disk groups 41
8. Removing the drive blank .. 41
9. Installing the disk drive ... 42
10. Disk drive status indicators ... 43
11. FC drive enclosure—front and rear views 46
12. I/O module .. 47
13. Input and output ports ... 47
14. Fibre Optic Fibre Channel cable .. 50
15. Copper Fibre Channel cable ... 50
16. Disk drive status indicators ... 51
17. Power supply and blower assembly components 52
18. EMU location .. 54
19. EMU controls and displays ... 54
20. Enclosure numbering with enclosure ID expansion cables 62
21. Enclosure address bus components with enclosure ID expansion cables 63
22. FC loop switch .. 67
23. HSV210 controller—rear view ... 69
24. HSV200 controller—rear view ... 70
25. HSV210/200 controller—front view .. 70
26. Controller OCP .. 71
27. Power supplies .. 78
28. Blower .. 79
29. Cache batteries .. 80
30. 60–Hz and 50–Hz wall receptacles ... 81
31. Dual PDU assembly .. 82
32. Rack PDM .. 83
33. Rack AC power distribution ... 84
34. Single rack configuration floor space requirements 85
35. Raising a leveler foot .. 86
36. Typical product label .. 88
37. Disk drive label .. 89
38. Battery status indicators .. 92
39. Removing a battery ... 92
40. Installing a battery .. 93
41. Blower status indicators ... 94
42. Removing a blower .. 95
43. Installing a blower .. 95
44. Power supply status indicator .. 97
45. Removing a power supply .. 97
46. Installing a power supply ... 98
47. Disk drive status indicators .. 99
48. Removing a disk drive ... 100
49. Installing a disk drive ... 100
50. Power supply/blower status indicator ... 102
51. Removing a blower .. 103
52. Installing a blower .. 103
53. Removing a power supply .. 104
54. Installing a power supply .. 104
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>Typical enclosure certification label</td>
<td>116</td>
</tr>
<tr>
<td>56</td>
<td>Power supply element numbering</td>
<td>129</td>
</tr>
<tr>
<td>57</td>
<td>Blower element numbering</td>
<td>130</td>
</tr>
<tr>
<td>58</td>
<td>Disconnecting AC power</td>
<td>137</td>
</tr>
<tr>
<td>59</td>
<td>Transceiver element numbering</td>
<td>138</td>
</tr>
<tr>
<td>60</td>
<td>I/O module element numbering</td>
<td>142</td>
</tr>
<tr>
<td>61</td>
<td>GUI termination event display</td>
<td>145</td>
</tr>
<tr>
<td>62</td>
<td>Typical HP Command View EVA Event display</td>
<td>146</td>
</tr>
</tbody>
</table>
Tables

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Document conventions</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>Push button functions</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>Failback preference settings</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>Failback Settings by Operating System</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>Impact on virtual disk presentation when changing failover/failback setting</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>Operational I/O module status indicators</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>Non-operational I/O module status indicators</td>
<td>49</td>
</tr>
<tr>
<td>8</td>
<td>Disk drive status indicator descriptions</td>
<td>51</td>
</tr>
<tr>
<td>9</td>
<td>Operational disk drive status indications</td>
<td>51</td>
</tr>
<tr>
<td>10</td>
<td>Non-operational disk drive status indications</td>
<td>52</td>
</tr>
<tr>
<td>11</td>
<td>Power supply/blower status indicators</td>
<td>53</td>
</tr>
<tr>
<td>12</td>
<td>EMU monitoring functions</td>
<td>56</td>
</tr>
<tr>
<td>13</td>
<td>EMU status displays</td>
<td>56</td>
</tr>
<tr>
<td>14</td>
<td>EMU status indications</td>
<td>57</td>
</tr>
<tr>
<td>15</td>
<td>EMU display groups</td>
<td>58</td>
</tr>
<tr>
<td>16</td>
<td>Audible alarm sound patterns</td>
<td>59</td>
</tr>
<tr>
<td>17</td>
<td>Error condition reporting characteristics</td>
<td>64</td>
</tr>
<tr>
<td>18</td>
<td>Fibre Channel switch system indicators</td>
<td>68</td>
</tr>
<tr>
<td>19</td>
<td>Fibre Channel switch port indicators</td>
<td>68</td>
</tr>
<tr>
<td>20</td>
<td>Fibre Channel switch basic troubleshooting</td>
<td>69</td>
</tr>
<tr>
<td>21</td>
<td>Controller status indicators</td>
<td>71</td>
</tr>
<tr>
<td>22</td>
<td>Controller port status indicators</td>
<td>72</td>
</tr>
<tr>
<td>23</td>
<td>Navigation button functions</td>
<td>72</td>
</tr>
<tr>
<td>24</td>
<td>Menu options within the OCP display</td>
<td>74</td>
</tr>
<tr>
<td>25</td>
<td>Shutdown methods</td>
<td>75</td>
</tr>
<tr>
<td>26</td>
<td>Power supply status indicators</td>
<td>78</td>
</tr>
<tr>
<td>27</td>
<td>Blower status indicators</td>
<td>79</td>
</tr>
<tr>
<td>28</td>
<td>Battery status indicators</td>
<td>80</td>
</tr>
<tr>
<td>29</td>
<td>Hardware component CSR support</td>
<td>89</td>
</tr>
<tr>
<td>30</td>
<td>Drive enclosure physical specifications</td>
<td>116</td>
</tr>
<tr>
<td>31</td>
<td>Environmental operating specifications</td>
<td>117</td>
</tr>
<tr>
<td>32</td>
<td>Environmental shipping or short-term storage specifications</td>
<td>117</td>
</tr>
<tr>
<td>33</td>
<td>Enterprise storage system AC input line voltages</td>
<td>118</td>
</tr>
<tr>
<td>34</td>
<td>AC input current and wattage</td>
<td>118</td>
</tr>
<tr>
<td>35</td>
<td>Output voltage and current specifications</td>
<td>119</td>
</tr>
<tr>
<td>36</td>
<td>Power specifications</td>
<td>119</td>
</tr>
<tr>
<td>37</td>
<td>Fibre Channel switch specifications</td>
<td>119</td>
</tr>
<tr>
<td>38</td>
<td>Controller enclosure physical specifications</td>
<td>120</td>
</tr>
<tr>
<td>39</td>
<td>Controller power supply AC power requirements</td>
<td>120</td>
</tr>
<tr>
<td>40</td>
<td>Controller power supply output specifications</td>
<td>120</td>
</tr>
<tr>
<td>41</td>
<td>AC input current and wattage</td>
<td>121</td>
</tr>
<tr>
<td>42</td>
<td>Enterprise 42U storage system rack physical dimensions</td>
<td>121</td>
</tr>
<tr>
<td>43</td>
<td>Enterprise 42U storage system rack shipping dimensions</td>
<td>122</td>
</tr>
<tr>
<td>44</td>
<td>Environmental operating specifications</td>
<td>122</td>
</tr>
<tr>
<td>45</td>
<td>Environmental shipping or short-term storage specifications</td>
<td>122</td>
</tr>
<tr>
<td>46</td>
<td>Enterprise storage system AC power specifications</td>
<td>123</td>
</tr>
<tr>
<td>47</td>
<td>Assigned element type codes</td>
<td>126</td>
</tr>
<tr>
<td>48</td>
<td>Temperature sensor element numbering</td>
<td>132</td>
</tr>
<tr>
<td>49</td>
<td>Voltage and current sensor locations</td>
<td>140</td>
</tr>
<tr>
<td>50</td>
<td>Controller event text description file</td>
<td>147</td>
</tr>
</tbody>
</table>
This user guide provides the following information:
• Description of the HP StorageWorks Enterprise Virtual Array family and its components.
• Starting your storage system.
• Operating your storage system.
• Regulations and specifications.
• EMU-generated error condition reports.
• HSV fault management concepts.
• Installing customer replaceable units.

This chapter contains the following sections:
• Overview
• Document conventions and symbols
• Rack stability
• HP technical support

Overview
This section contains the following sections:
• Intended audience
• Related documentation

Intended audience
This book is intended for use by Enterprise Virtual Array customers involved in the installation, operation, and management of EVA 4000/6000/8000 storage systems and who are experienced with the following:
• SANs and storage systems.
• Networking and virtual storage concepts.
• Enterprise Virtual Array products.

Related documentation
Additional documentation is available from the following HP web sites:
• http://www.hp.com/go/eva4000
• http://www.hp.com/go/eva6000
• http://www.hp.com/go/eva8000
Document conventions and symbols

<table>
<thead>
<tr>
<th>Table 1 Document conventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convention</td>
</tr>
<tr>
<td>Medium blue text: Related documentation</td>
</tr>
<tr>
<td>Medium blue, underlined text (http://www.hp.com)</td>
</tr>
<tr>
<td>Bold font</td>
</tr>
<tr>
<td>• Key names</td>
</tr>
<tr>
<td>• Text typed into a GUI element, such as into a box</td>
</tr>
<tr>
<td>• GUI elements that are clicked or selected, such as menu and list items, buttons, and check boxes</td>
</tr>
<tr>
<td>Italic font</td>
</tr>
<tr>
<td>Monospace font</td>
</tr>
<tr>
<td>• File and directory names</td>
</tr>
<tr>
<td>• System output</td>
</tr>
<tr>
<td>• Code</td>
</tr>
<tr>
<td>• Text typed at the command line</td>
</tr>
<tr>
<td>Monospace, italic font</td>
</tr>
<tr>
<td>• Code variables</td>
</tr>
<tr>
<td>• Command-line variables</td>
</tr>
<tr>
<td>Monospace, bold font</td>
</tr>
</tbody>
</table>

⚠️ **WARNING!**
Indicates that failure to follow directions could result in bodily harm or death.

⚠️ **CAUTION:**
Indicates that failure to follow directions could result in damage to equipment or data.

💡 **IMPORTANT:**
Provides clarifying information or specific instructions.

💡 **NOTE:**
Provides additional information.

💡 **TIP:**
Provides helpful hints and shortcuts.
Rack stability

⚠️ WARNING!
To reduce the risk of personal injury or damage to equipment:
• Extend leveling jacks to the floor.
• Ensure that the full weight of the rack rests on the leveling jacks.
• Install stabilizing feet on the rack.
• In multiple-rack installations, secure racks together.
• Extend only one rack component at a time. Racks may become unstable if more than one component is extended.

HP technical support
Telephone numbers for worldwide technical support are listed on the HP support web site: http://www.hp.com/support/.
Collect the following information before calling:
• Technical support registration number (if applicable)
• Product serial numbers
• Product model names and numbers
• Applicable error messages
• Operating system type and revision level
• Detailed, specific questions
For continuous quality improvement, calls may be recorded or monitored.
HP strongly recommends that customers sign up online using the Subscriber’s choice web site: http://www.hp.com/go/e-updates.
• Subscribing to this service provides you with e-mail updates on the latest product enhancements, newest versions of drivers, and firmware documentation updates as well as instant access to numerous other product resources.
• After signing up, you can quickly locate your products by selecting Business support and then Storage under Product Category.

HP-authorized reseller
For the name of your nearest HP-authorized reseller:
• In the United States, call 1-800-282-6672.
• Elsewhere, visit the HP web site: http://www.hp.com. Then click Contact HP to find locations and telephone numbers.

Helpful web sites
For other product information, see the following HP web sites:
• http://www.hp.com
• http://www.hp.com/go/storage
• http://www.hp.com/support/
• http://www.docs.hp.com
1 Enterprise Virtual Array description

This chapter provides an overview of Enterprise Virtual Array and its components. Topics to be covered include:

- Introduction to the Enterprise Virtual Array
- New features and enhancements
- Storage system components

Introduction to the Enterprise Virtual Array

The HP StorageWorks Enterprise Virtual Array family is a high performance, scaled capacity, on demand, "virtual" RAID storage system.

This storage system is designed for environments where improved storage use and scalability is critical. It meets application-specific demands for consistently high transaction I/O (input/output) and MB data rate performance, and provides seamless capacity expansion, instantaneous replication, and simplified storage administration.

The Enterprise Virtual Array (EVA) is available in multiple configurations—each optimized for general-purpose commercial environments and high-performance technical computing environments. The solutions include support for multivendor operating system platforms and stringent data center availability enhancements, such as multipathing and clustering.

This guide includes information for two Enterprise Virtual Array products: EVA8000, EVA6000, and EVA4000.

- EVA8000—available in multiple configurations ranging from the single-rack 2C2D configuration to the multi-rack 2C18D. The EVA8000 includes two HSV210 controllers and four FC loop switches.
- EVA6000—available in configurations ranging from the 2C4D configuration to the 2C8D configuration. The EVA6000 includes two HSV200 controllers and two FC loop switches.
- EVA4000—available in configurations ranging from the 2C1D configuration to the 2C4D configuration without loops switches. The EVA4000 includes two HSV200 controllers. Multiple EVA4000s can be installed in a single rack.

Refer to the HP StorageWorks 4000/6000/8000 Enterprise Virtual Array hardware configuration guide for more information about configurations. See “Related documentation” on page 13 for links to this document.

Features and enhancements

The Enterprise Virtual Array provides many features and enhancements which are detailed in the sections that follow.

- Ease of management
- Data availability
- Performance
- Scalability
- Operating system support
- Fault management and diagnostics
• EVA remote support tools

Ease of management

Easy-to-use storage management tools:
• Software tools that allow you to manage larger SAN configurations with more servers and more storage solutions
• HP-supplied disk drives conform to the enclosure-initiated Enclosure Services Interface (ESI)
• State-of-the-art controller software
• Completely integrated configurations with a single part number, plus disk drives and storage system software

Data availability

• Redundant hardware design and value—added software eliminate single points of failure from server to storage in clustered or single server configurations with multiple pathing.
• Full support for local and remote data replication using optional HP StorageWorks Business Copy EVA and HP StorageWorks Continuous Access EVA applications.
• Dual- and multi-node cluster support provided for host-level fault tolerance and high system availability.

Performance

Outstanding self-tuning performance includes:
• Virtualization technology—Vraid, enables data to be distributed from 8 to 240 disks to increase disk spindle count far beyond traditional RAID sets. This virtualization method also optimizes storage for the best performance of a specific configuration and application. Enterprise Virtual Array eliminates tedious management functions to provide the best performance possible.
• Both online high-performance disk drives and FATA (Fibre Attached Technology Adapted) disk drives.
• State-of-the-art controller software that improves performance, increases capacity, and allows for easy dynamic storage expansion.

Scalability

The EVA8000 provides:
• Up to 200 TB of addressable disk data. With 300-GB drives, a single 42U rack has 50.4 TB of capacity. Using an expansion rack, this can be increased to 72 TB of capacity.
• A maximum of 240 disk drives
• Support for 1024 virtual disks

The EVA6000 provides:
• Up to 70 TB of addressable disk data (33.6–TB rack capacity using 300–GB drives) in a 42U rack.
• A maximum of 112 disk drives
• Support for 1024 virtual disks

The EVA4000 provides:
• Up to 70 TB of addressable disk data (16.8–TB rack capacity using 300–GB drives) in a 42U rack.
• A maximum of 56 disk drives
• Support for 1024 virtual disks

All models support the following disk capacities:
• 300-GB FC disk drives
• 250-GB FATA disk drives
• 146-GB FC disk drives
• 72-GB FC disk drives

For the most current information on supported disk drives, refer to the HP StorageWorks 4000/6000/8000 Enterprise Virtual Array release notes. See "Related documentation" on page 13 for links to this document.

Operating system support

• HP-UX
• Microsoft Windows 2003
• Microsoft Windows 2000
• HP Open VMS
• Sun Solaris
• IBM-AIX
• Linux
• VMware

For the most current information on supported operating systems, refer to the appropriate connectivity documents. See "Related documentation" on page 13 for links to these documents.

Fault management and diagnostics

WEBES must be installed to ensure proper customer alerts for their EVA products.

WEBES can be used as part of the HP ISEE remote service offering. Or, for those customers who do not wish to have remote support, it can be configured to send a local notification (e-mail) to a customer-identified account only. The e-mail option is also available to the customer when ISEE is used.

WEBES is a powerful service tool that provides real-time diagnosis of hardware events ranging from single errors (or faults) to multiple event correlation and complex analysis. It is designed to send a notification only when an event or series of events has occurred that requires a service action.

A Service Tools CD is included with the HP Command View EVA package. However, it is always best to check the HP web site for the latest updates.

The latest WEBES kit can be downloaded from this URL: http://h18000.www1.hp.com/support/svctools

EVA remote support tools

As a no-charge option, HP will install ISEE remote service tool for any Enterprise Virtual Array under warranty or service support. This tool enables EVA self-monitoring and diagnosis. ISEE can significantly reduce the time required to isolate and correct problems. If desired, the tool can be configured to transmit status information directly to an HP service center for proactive problem resolution. Contact your local HP Services department for details.

Storage system components

The Enterprise Virtual Array comprises three main components:

• Hardware—the physical components, such as disk drives, enclosures, controllers, and Fibre Channel switches. These pieces are installed in a rack and connected to the SAN.
• HP StorageWorks Controller Software—manages operation of the storage system hardware and provides the communication link to HP Command View EVA.
• HP Command View EVA—management software that communicates with the controllers. Together, HP Command View EVA and the controllers control and monitor Enterprise Virtual Array storage systems.
These components work together to create an entire storage system solution. Management is accomplished by accessing HP Command View EVA through your browser.

HP Command View EVA

HP Command View EVA is the primary software application for managing the EVA. HP Command View EVA is used to perform the following administrative tasks.

- Creating virtual disk families, including selection of Vraid level, cache policy, and host presentation.
- Managing the presentation of Vraid drives to hosts.
- Managing and monitoring storage system hardware.
- Creating snapclones and snapshots of virtual disks.

An online help system is available within the interface, including page-level help.

Controller software

HP StorageWorks Virtual Controller Software (XCS) manages all aspects of storage system operation. XCS provides scalable capacity on-demand, improves performance, increases disk utilization efficiency, and allows for easy dynamic storage expansion. XCS is installed on the storage system and is also included in the XCS for HSV Controller software kit.

XCS features and functionality

- Support for up to 240 disk drives per controller pair
- Management of up to 1024 virtual disks, ranging in size from 1 GB to 2 TB per virtual disk, per disk pool
- Dynamic capacity expansion (if supported by your operating system)
- Virtual disk data load leveling
- Distributed sparing of disk capacity
- Virtually capacity-free snapshot (Vsnap)
- Virtually Instantaneous Snapclone (VIS)
- Dual redundant controller operation for increased fault tolerance
- Multi-path failover support
- Battery backup for cache memory
- Asynchronous disk swap (Hot Swap)
- Clustered server support
- Mirrored write-back cache support
- Read-ahead and adaptive read caching support
- Virtual RAID storage system (Vraid0, Vraid1, Vraid5)
- Non-disruptive software upgrade capability
- Supports connection of up to 256 hosts
- Multivendor platform support
- Controller password protection for configuration control
- Selective storage presentation
- SAN-based data zoning

Optional software licensing

HP Business Copy and HP StorageWorks Continuous Access require a separate license for each controller pair. Instructions for obtaining licenses are included with the software documentation.

Additional information about HP Business Copy and HP Continuous Access can be found online at http://h18006.www1.hp.com/storage/software.html.
Hardware

The Enterprise Virtual Array includes the following hardware components:

- Fibre Channel drive enclosure—Contains disk drives, power supplies, blowers, I/O modules, and an Environmental Monitoring Unit (EMU).
- Fibre Channel loop switch—Provides twelve-port central interconnect for Fibre Channel drive enclosure FC Arbitrated Loops. Fibre Channel loop switches are required only for EVA6000 and EVA8000 configurations with more than four disk enclosures.
- HSV controller—Manages all aspects of storage system operation, including communications between host systems and other devices. A pair of HSV controllers is included in Enterprise Virtual Array.
- Rack—A variety of free-standing racks are available.

Physical layout of the storage system

The basic physical components are shown in Figure 1. The disk drives are installed in the disk enclosures, which connect to Fibre Channel (FC) loop switches. The controller pair also connects to the FC loop switches.

![Figure 1 Storage system hardware components](CXO7941A)

1. Drive enclosures
2. FC switches
3. Controllers

The hardware components shown in Figure 1 are discussed in the following sections and in Storage System Hardware Components.

Fibre Channel drive enclosure

Each Fibre Channel drive enclosure includes the following features. For additional information, see Fibre Channel drive enclosures.

- 3U enclosure
- Dual-redundant, active-to-active, 2-Gbps FC loops
- Fourteen bays for 1-inch FC disks
• Environmental Monitoring Unit (EMU)
• Dual 2–Gbps FC I/O modules—A and B loops
• Dual redundant 500–W power supplies and blowers
• Dual redundant blowers

For ease of management, the disk drives are referred to by their physical location, the drive bay number.

Fibre Channel loop switches

The Fibre Channel loop switch acts as a central point of interconnection and establishes a fault-tolerant physical loop topology between the controllers and the disk enclosures. FC loop switches are required in any configuration with more than four disk enclosures. The EVA8000 uses four loop switches and the EVA6000 uses two switches to connect the drive enclosures to the controller pair.

The FC loop switches provide the following features. For detailed information on Fibre Channel loop switches, see Fibre Channel loop switches.

• 2.125–Gbps operating speed
• Twelve ports
• Half-width, 1U size
• System and port status indicators
• Universal power supply that operates between 100 to 250 VAC and 50 to 60 Hz

NOTE:
Each bezel covers two FC loop switches in a space of 1U.

HSV210 and HSV200 controllers

Two controllers are contained in each rack. Each controller is contained in a separate enclosure and provides the features listed below. For detailed information, see HSV controllers.

• High-performance microprocessor
• An Operator Control Panel (OCP)
• Four 2–Gbps Fibre Channel-Switched fabric host ports (two host ports in HSV200 controller)
• Four 2–Gbps Fibre Channel drive enclosure device ports (two device ports in HSV200 controller)
 • Arranged in redundant pairs
 • Data load/performance balanced across a pair
 • Support for up to 240 disks with HSV210 and 112 with HSV200
• 2–GB cache per controller, mirrored, with battery backup (1–GB cache in HSV200 controller)
• 2–GBps FC cache mirroring ports with device port backups
• Dual power supplies

In addition to managing the operation of the storage system, the HSV controllers serve as the interface between the storage system hardware and the SAN. All host I/Os and all HP Command View EVA management commands are processed by the controllers. Up to 18 drive enclosures are supported by one controller pair.

Racks

The rack provides the capability for mounting standard 483 mm (19 in) wide controller and drive enclosures. For additional information, see Racks.

The following racks are available:

• 22U Rack
• 25U Rack
• 33U Rack
• 36U Rack
• 41U Rack
• 42U Rack
• Universal Rack

NOTE:

Racks and rack-mountable components are typically described using “U” measurements. “U” measurements are used to designate panel or enclosure heights.

The racks provide the following:

• Unique frame and rail design—Allows fast assembly, easy mounting, and outstanding structural integrity.
• Thermal integrity—Front-to-back natural convection cooling is greatly enhanced by the innovative multi-angled design of the front door.
• Security provisions—The front and rear door are lockable, which prevents unauthorized entry.
• Flexibility—Provides easy access to hardware components for operation monitoring.
• Custom expandability—Several options allow for quick and easy expansion of the racks to create a custom solution.
This chapter describes the procedures necessary to complete the installation and configuration of the Enterprise Virtual Array. When these procedures are complete, you can begin using your storage system.

NOTE:
Installation of the Enterprise Virtual Array should be done only by an HP authorized service representative. The information in this chapter provides an overview of the steps involved in the installation and configuration of the storage system.

This chapter consists of:
- Storage system connections
- Procedures for getting started
 - Gathering information
 - Setting up the storage system hardware
 - Entering data using the Operator Control Panel (OCP)
 - Installing HP Command View EVA

EVA8000 storage system connections

Figure 2 shows how the storage system is connected to other components of the storage solution.
- The HSV210 controllers connect via four host ports (FP1, FP2, FP3, and FP4) to the Fibre Channel fabrics. The hosts that will access the storage system are connected to the same fabrics.
- The HP Command View EVA management host also connects to the fabric.
- The controllers connect through two loop pairs to the drive enclosures. Each loop pair consists of two independent loops, each capable of managing all the disks should one loop fail.
Figure 2 EVA8000 configuration

1. HSV210 controllers
2. FC loop switches
3. Loop pair 1
4. Drive enclosures
5. Loop pair 2

EVA6000 storage system connections

Figure 3 shows a typical Enterprise Virtual Array 6000 SAN topology:

- The HSV200 controllers connect via two host ports (FP1 and FP2) to the Fibre Channel fabrics. The hosts that will access the storage system are connected to the same fabrics.
- HP Command View EVA, which runs on the storage management server, also connects to both fabrics.
- The controllers connect through one loop pair to the drive enclosures. The loop pair consists of two independent loops, each capable of managing all the disks should one loop fail.
EVA4000 storage system connections

Figure 4 shows a typical Enterprise Virtual Array 4000 SAN topology:

- The HSV200 controllers connect via two host ports (FP1 and FP2) to the Fibre Channel fabrics. The hosts that will access the storage system are connected to the same fabrics.
- HP Command View EVA, which runs on the storage management server, also connects to both fabrics.
- The controllers connect through one loop pair to the drive enclosures. The loop pair consists of two independent loops, each capable of managing all the disks should one loop fail.
Direct connect

NOTE:

Direct connect is currently supported on Microsoft Windows only. Refer to the *HP StorageWorks Enterprise Virtual Array 4000/6000/8000 release notes* for more information on direct connect support.

Direct connect provides a lower cost solution for smaller configurations. When using direct connect, the storage system controllers are connected directly to the host(s), not to SAN Fibre Channel switches. Make sure the following requirements are met when configuring your environment for direct connect:

- A Windows host running HP Command View EVA must be connected to one port on each EVA controller. The management host must use dual HBAs for redundancy.
- To provide redundancy, it is recommended that dual HBAs be used for each additional host connected to the storage system. Using this configuration, up to four hosts (including the management host) can be connected to an EVA8000, and up to two hosts can be connected to an EVA6000 or EVA4000.
- The Host Port Configuration must be set to Direct Connect using the OCP.
- HP Continuous Access cannot be used with direct connect configurations.

Procedures for getting started

<table>
<thead>
<tr>
<th>Step</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Gather information and identify all related storage documentation.</td>
<td>Customer</td>
</tr>
<tr>
<td>2. Contact an authorized service representative for hardware configuration information.</td>
<td>Customer</td>
</tr>
<tr>
<td>3. Enter the World Wide Name (WWN) into the OCP.</td>
<td>HP Service Engineer</td>
</tr>
<tr>
<td>4. Configure HP Command View EVA.</td>
<td>HP Service Engineer</td>
</tr>
<tr>
<td>5. Prepare the hosts.</td>
<td>Customer</td>
</tr>
<tr>
<td>6. Configure the system through HP Command View EVA.</td>
<td>HP Service Engineer</td>
</tr>
<tr>
<td>7. Make virtual disks available to their hosts. Refer to the storage system software documentation for each host’s operating system.</td>
<td>HP Service Engineer</td>
</tr>
</tbody>
</table>

Gathering information

The following items should be available when installing and configuring an Enterprise Virtual Array. They provide information necessary to set up the storage system successfully.

- *HP StorageWorks 4000/6000/8000 Enterprise Virtual Array World Wide Name label*, which is shipped with the system.
- *HP StorageWorks 4000/6000/8000 Enterprise Virtual Array read me first.*
- *HP StorageWorks 4000/6000/8000 Enterprise Virtual Array release notes.*
- The latest *HP OpenView Storage Management Server Update*, which consists of the management server update CD and its associated documentation, or the latest Windows Server Update
 - You can determine the latest update version available by checking the release notes or contacting your authorized service representative to find out how to receive the latest information.
 - Additional documentation is available from the following HP web sites:
Host information

Make a list of information for each host computer that will be accessing the storage system. You will need the following information for each host:

- The LAN name of the host
- A list of World Wide Names of the FC adapters, also called host bus adapters, through which the host will connect to the fabric or fabrics that provide access to the storage system
- Operating system type
- Available LUN numbers

Setting up a controller pair using the OCP

NOTE:
This procedure should be performed by an HP authorized service representative.

Two pieces of data must be entered during initial setup using the controller OCP:

- World Wide Name (WWN)—Required to complete setup. This procedure should be performed by an HP authorized service representative.
- Storage system password—Optional. A password provides security allowing only specific instances of HP Command View EVA to access the storage system.

The OCP on either controller can be used to input the WWN and password data. For more information about the OCP, see “Operator Control Panel” on page 70.

Table 2 lists the push button functions when entering the WWN, WWN checksum, and password data.

Table 2 Push button functions

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>▲</td>
<td>Selects a character by scrolling up through the character list one character at a time.</td>
</tr>
<tr>
<td>▶</td>
<td>Moves forward one character. If you accept an incorrect character, you can move through all 16 characters, one character at a time, until you display the incorrect character. You can then change the character.</td>
</tr>
<tr>
<td>▼</td>
<td>Selects a character by scrolling down through the character list one character at a time.</td>
</tr>
<tr>
<td>◀</td>
<td>Moves backward one character.</td>
</tr>
<tr>
<td>ESC</td>
<td>Returns to the default display.</td>
</tr>
<tr>
<td>ENTER</td>
<td>Accepts all the characters entered.</td>
</tr>
</tbody>
</table>

Entering the WWN

Fibre Channel protocol requires that each controller pair have a unique WWN. This 16-character alphanumeric name identifies the controller pair on the storage system. Two WWN labels attached to the rack identify the storage system WWN and checksum. See Figure 5.
NOTE:

- The WWN is unique to a controller pair and cannot be used for any other controller pair or device anywhere on the network.
- This is the only WWN applicable to any controller installed in a specific physical location, even a replacement controller.
- Once a WWN is assigned to a controller, you cannot change the WWN while the controller is part of the same storage system.

![Figure 5 Location of the World Wide Name labels](image)

1. World Wide Name labels

Complete the following procedure to assign the WWN to each pair of controllers.

1. Turn the power switches on both controllers off.
2. Apply power to the rack.
3. Turn the power switch on both controllers on.

NOTE:

Notifications of the startup test steps that have been executed are displayed while the controller is booting. It may take up to two minutes for the steps to display. The default WWN entry display has a 0 in each of the 16 positions.

4. Press ▲ or ▼ until the first character of the WWN is displayed. Press ▶ to accept this character and select the next.
5. Repeat Step 4 to enter the remaining characters.
6. Press Enter to accept the WWN and select the checksum entry mode.

Entering the WWN checksum

The second part of the WWN entry procedure is to enter the two-character checksum, as follows.

1. Verify that the initial WWN checksum displays 0 in both positions.
2. Press ▲ or ▼ until the first checksum character is displayed. Press ▶ to accept this character and select the second character.
3. Press ▲ or ▼ until the second character is displayed. Press Enter to accept the checksum and exit.
4. Verify that the default display is automatically selected. This indicates that the checksum is valid.
NOTE:
If you enter an incorrect WWN or checksum, the system will reject the data and you must repeat the procedure.

Entering the storage system password

The eight-character storage system password feature enables you to restrict management access to the storage system.

Complete the following procedure to set the password:

1. Select a unique, eight-character password.

2. With either of the default menus (Storage System Name or World Wide Name) displayed, press ▼ three times to display System Password.

3. Press ▶ to display Change Password?

4. Press Enter for yes.

 The default password, AAAAAAAA, is displayed.

5. Press ▼ or ▲ to select the desired character.

6. Press ▶ to accept this character and select the next character.

7. Repeat the process to enter the remaining password characters.

8. Press Enter to enter the password and return to the default display.

Installing HP Command View EVA

HP Command View EVA is installed on the HP OpenView Storage Management Server or a Windows host and runs in the OpenView environment. Installation may be skipped if the latest version of HP Command View EVA is running. Verify the latest version at the HP web site: http://h18006.www1.hp.com/storage/software.html.

To install a new version, locate the management server update CD-ROM and the associated documentation that was shipped with your storage system. Follow the instructions in the HP OpenView Storage Management Server update installation card to install the new software.

Installing optional EVA software licenses

If you purchased optional EVA software, it will be necessary to install the license. Optional software available for the Enterprise Virtual Array includes HP Business Copy and HP Continuous Access. Installation instructions are included with the license.
3 Enterprise Virtual Array operation

This chapter presents the tasks that you might need to perform during normal operation of the storage system.

Best practices

Operating tips and information

Reserving adequate free space

To ensure efficient storage system operation, a certain amount of unallocated capacity, or free space, should be reserved in each disk group. The recommended amount of free space is influenced by your system configuration. For guidance on how much free space to reserve, refer to the HP StorageWorks Enterprise Virtual Array configuration best practices white paper. See Best practices.

Failback preference setting for HSV controllers

Table 3 describes the failback preference mode for each of the operating systems supported with HSV controllers and Command View EVA.

Table 4 describes the failback default behavior and settings allowed for each operating system. The table indicates when Secure Path is used in conjunction with the operating system.

Table 3 Failback preference settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Point in time</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>No preference</td>
<td>At initial presentation</td>
<td>The units are alternately brought online to Controller A or to Controller B.</td>
</tr>
<tr>
<td></td>
<td>On dual boot or controller resynch</td>
<td>If cache data for a LUN exists on a particular controller, the unit will be brought online there. Otherwise, the units are alternately brought online to Controller A or to Controller B.</td>
</tr>
<tr>
<td></td>
<td>On controller failover</td>
<td>All LUNs are brought online to the surviving controller.</td>
</tr>
<tr>
<td></td>
<td>On controller failback</td>
<td>All LUNs remain on the surviving controller. There is no failback except if a host moves the LUN using SCSI commands.</td>
</tr>
<tr>
<td>Setting</td>
<td>Point in time</td>
<td>Behavior</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Path A - Failover Only</td>
<td>At initial presentation</td>
<td>The units are brought online to Controller A.</td>
</tr>
<tr>
<td></td>
<td>On dual boot or controller resynch</td>
<td>If cache data for a LUN exists on a particular controller, the unit will be brought online there. Otherwise, the units are brought online to Controller A.</td>
</tr>
<tr>
<td></td>
<td>On controller failover</td>
<td>All LUNs are brought online to the surviving controller.</td>
</tr>
<tr>
<td></td>
<td>On controller failback</td>
<td>All LUNs remain on the surviving controller. There is no failback except if a host moves the LUN using SCSI commands.</td>
</tr>
<tr>
<td>Path B - Failover Only</td>
<td>At initial presentation</td>
<td>The units are brought online to Controller B.</td>
</tr>
<tr>
<td></td>
<td>On dual boot or controller resynch</td>
<td>If cache data for a LUN exists on a particular controller, the unit will be brought online there. Otherwise, the units are brought online to Controller B.</td>
</tr>
<tr>
<td></td>
<td>On controller failover</td>
<td>All LUNs are brought online to the surviving controller.</td>
</tr>
<tr>
<td></td>
<td>On controller failback</td>
<td>All LUNs remain on the surviving controller. There is no failback except if a host moves the LUN using SCSI commands.</td>
</tr>
<tr>
<td>Path A - Failover/Failback</td>
<td>At initial presentation</td>
<td>The units are brought online to Controller A.</td>
</tr>
<tr>
<td></td>
<td>On dual boot or controller resynch</td>
<td>If cache data for a LUN exists on a particular controller, the unit will be brought online there. Otherwise, the units are brought online to Controller A.</td>
</tr>
<tr>
<td></td>
<td>On controller failover</td>
<td>All LUNs are brought online to the surviving controller.</td>
</tr>
<tr>
<td></td>
<td>On controller failback</td>
<td>All LUNs remain on the surviving controller. After controller restoration, the units that are online to Controller B and set to Path A are brought online to Controller A. This is a one time occurrence. If the host then moves the LUN using SCSI commands, the LUN will remain where moved.</td>
</tr>
</tbody>
</table>
Setting Point in time Behavior

At initial presentation The units are brought online to Controller B.

On dual boot or controller resynch If cache data for a LUN exists on a particular controller, the unit will be brought online there. Otherwise, the units are brought online to Controller B.

On controller failover All LUNs are brought online to the surviving controller.

On controller failback All LUNs remain on the surviving controller. After controller restoration, the units that are online to Controller A and set to Path B are brought online to Controller B. This is a one time occurrence. If the host then moves the LUN using SCSI commands, the LUN will remain where moved.

Table 4 Failback Settings by Operating System

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Default behavior</th>
<th>Settings supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows® Secure Path</td>
<td>Autoback done by the host</td>
<td>No Preference, Path A/B - Failover Only.</td>
</tr>
<tr>
<td>Sun Solaris® Secure Path</td>
<td>Autoback done by the host</td>
<td>No Preference, Path A/B - Failover Only.</td>
</tr>
<tr>
<td>HP-UX Secure Path</td>
<td>Autoback done by the host</td>
<td>No Preference, Path A/B - Failover Only.</td>
</tr>
<tr>
<td>IBM AIX Secure Path</td>
<td>Autoback done by the host</td>
<td>No Preference, Path A/B - Failover Only.</td>
</tr>
<tr>
<td>Tru64 UNIX</td>
<td>Host follows the unit</td>
<td>All settings allowed. Recommended setting: Path A/B - Failover/Failback.</td>
</tr>
<tr>
<td>VMS (7.3-1 and greater)</td>
<td>Host follows the unit</td>
<td>All settings allowed. Recommended setting: Path A/B - Failover/Failback.</td>
</tr>
</tbody>
</table>

Changing virtual disk failover/failback setting

Changing the failover/failback setting of a virtual disk may impact which controller presents the disk. Table 5 identifies the presentation behavior that results when the failover/failback setting for a virtual disk is changed.
NOTE:
If the new setting causes the presentation of the virtual disk to move to a new controller, any snapshots or snapclones associated with the virtual disk will also be moved.

<table>
<thead>
<tr>
<th>New setting</th>
<th>Impact on virtual disk presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Preference</td>
<td>None. The disk maintains its original presentation</td>
</tr>
<tr>
<td>Path A Failover</td>
<td>If the disk is currently presented on controller B, it is moved to controller A. If the disk is on controller A, it remains there.</td>
</tr>
<tr>
<td>Path A Failover/Failback</td>
<td>If the disk is currently presented on controller A, it is moved to controller B. If the disk is on controller B, it remains there.</td>
</tr>
<tr>
<td>Path B Failover</td>
<td>If the disk is currently presented on controller A, it is moved to controller B. If the disk is on controller B, it remains there.</td>
</tr>
<tr>
<td>Path B Failover/Failback</td>
<td>If the disk is currently presented on controller A, it is moved to controller B. If the disk is on controller B, it remains there.</td>
</tr>
</tbody>
</table>

Storage system shutdown and powerup

The storage system is shut down using HP Command View EVA. The shutdown process performs the following functions in the indicated order:

1. Flushes cache
2. Removes power from the controllers
3. Disables cache battery power
4. Removes power from the drive enclosures
5. Disconnects the system from HP Command View EVA

NOTE:
The storage system may take a long time to complete the necessary cache flush during controller shutdown when snapshots are being used. The delay may be particularly long if multiple child snapshots are used, or if there has been a large amount of write activity to the snapshot source Vdisk.

Shutting down the storage system

To shut the storage system down, perform the following steps:

1. Start HP Command View EVA.
2. Select the appropriate storage system in the Navigation pane.

 The Initialized Storage System Properties window for the selected storage system opens.

3. Click System options.

 The System Options window opens.

4. Click Shut down.

 The Shutdown Options window opens.

5. Under System Shutdown click Power Down. If you want to delay the initiation of the shutdown, enter the number of minutes in the Shutdown delay field.
The controllers complete an orderly shutdown and then power off. The disk enclosures then power off. Wait for the shutdown to complete.

6. Turn off the power switch on the rear of each HSV controller.
7. Turn off the circuit breakers on both of the EVA rack Power Distribution Units (PDU).
8. If your management server is an SMA and you are not using it to manage other storage arrays, shut down the SMA. From the SMA user interface, click Settings > Maintenance > Shutdown.

Powering up the storage system

To power up a storage system, perform the following steps:

1. Verify that each fabric Fibre Channel switch to which the HSV controllers are connected is powered up and fully booted. The LED power indicator on each switch should be on.
 - If you must power up the SAN switches, wait for them to complete their power-on boot process before proceeding. This may take several minutes.
2. If the management server you shut down is an SMA, power it on and wait for it to completely boot. Verify the SMA is running by logging into it using the web interface.

NOTE:
Before applying power to the rack, ensure that the power switch on each HSV controller is off.

3. Power on the circuit breakers on both EVA rack PDUs. Verify that all drive enclosures are operating properly. The status indicator and the power indicator should be on (green).
4. Wait three minutes and then verify that all disk drives are ready. The drive ready indicator and the drive online indicator should be on (green).
5. Power on the upper controller. It takes the roll of master controller.
6. Wait 10 seconds and then power on the lower controller. It takes the roll of slave controller.
7. Verify that the (Operator Control Panel) OCP display on each controller displays the storage system name and the EVA WWN.
8. Start HP Command View EVA and verify connection to the storage system. If the storage system is not visible, click HSV Storage Network in the Navigation pane then click Discover in the Content pane to discover the array.

NOTE:
If the storage system is still not visible, reboot the management server to re-establish the communication link.

9. Check the storage system status using HP Command View EVA to ensure everything is operating properly. If any status indicator is not normal, check the log files or contact your HP—authorized service provider for assistance.

Saving storage system configuration data

As part of an overall data protection strategy, storage system configuration data should be saved during initial installation, and whenever major configuration changes are made to the storage system. This includes adding or removing disk drives, creating or deleting disk groups, and adding or deleting virtual disks. The saved configuration data can save substantial time should it ever become necessary to re-initialize the storage system. The configuration data is saved to a series of files stored in a location other than on the storage system.
This procedure can be performed from the SAN Management Appliance (SMA) or management server where the Command View EVA application is installed, or any host that can run the Storage System Scripting Utility (SSSU) to communicate with the Command View EVA application server.

NOTE:
SSSU version 4 is required for HP Command View EVA 4.0 and later. For more information on using SSSU, refer to the HP StorageWorks Storage System Scripting Utility reference, which can be downloaded from the following web site:

Click **Support & Documentation**.

1. Run SSSU on the platform and operating system of your choice.
2. Enter `SELECT MANAGER` and select the management server.
3. Enter `SHOW SYSTEM` to determine which storage systems are managed by this instance of HP Command View EVA.
4. Enter `SELECT SYSTEM` to select the appropriate storage system from which to collect configuration data.
5. Enter `CAPTURE CONFIGURATION`, specifying the full path and filename of the output files for the configuration data.

The configuration data is stored in a series of from one to five files, which are SSSU scripts. The file names begin with the name you choose, with the restore step appended. For example, if you specify a file name of `LargeEVA.txt`, the resultant configuration files would be `LargeEVA_Step1A.txt`, `LargeEVA_Step1B`, etc.

The contents of the configuration files can be viewed with a text editor.

NOTE:
If the storage system contains disk drives of different capacities, the SSSU procedures used do not guarantee that disk drives of the same capacity will be exclusively added to the same disk group. The use of this method does not ensure that there will be only disk drives of the same capacity in each disk group.

The following examples illustrate how to save and restore the storage system configuration data using SSSU on a Windows host.

Example 1. Saving configuration data using SSSU on a Windows Host

Run SSSU from a DOS Command Window on the SMA, a Windows Workstation or a Windows Server that can access the SMA by TCP/IP or the management host running Command View.

1. Click **Run** on the Window Start menu.
2. Enter `cmd` in the Open field to open the DOS Command Window.
3. Change to the directory (CD) in which you have installed SSSU. For example, `C:> cd \SSSUDir`
4. Enter `SSSU` to run the application.
5. Enter `SELECT MANAGER <SMAname or ip_addr> user=<username> pass=<userpassword>`.
6. Enter `SHOW SYSTEM` to display the EVA storage systems managed by the SMA or Windows Host.
7. Enter `SELECT SYSTEM <EVA_Name>`, where `EVA_name` is the name of the storage system.
 The storage system name is case sensitive. If there are spaces between the letters in the name, quotes must enclose the name. For example, `SELECT SYSTEM "Large EVA"`.
8. Enter \texttt{CAPTURE CONFIGURATION <pathname\filename>}, where \texttt{pathname} identifies the location where the configuration files will be saved, and \texttt{filename} is the name used as the prefix for the configurations files. For example, \texttt{CAPTURE CONFIGURATION c:\EVAConfig\LargeEVA}

9. Enter \texttt{EXIT} to close the DOS Command Window.

\textbf{Example 2. Restoring configuration data using SSSU on a Windows Host}

If it is necessary to restore the storage system configuration, it can be done using the

1. Click \texttt{Run} on the Window Start menu.
2. Enter \texttt{cmd} in the Open field to open the DOS Command Window.
3. Change to the directory (CD) in which you have installed SSSU. For example, \texttt{C:> cd \SSSUDir}
4. Enter \texttt{SSSU} to run the application.
5. Enter \texttt{FILE <pathname\filename>}, where \texttt{pathname} identifies the location where the configuration files are be saved and \texttt{filename} is the name of the first configuration file. For example, \texttt{FILE c:\EVAConfig\LargeEVA_Step1A.txt}
6. Repeat the preceding step for each configuration file.

\section*{Adding disk drives to the storage system}

As your storage requirements grow, you may be adding disk drives to your storage system. Adding new disk drives is the easiest way to increase the storage capacity of the storage system. Disk drives can be added online without impacting storage system operation.

\section*{Guidelines for adding disk drives}

When adding new disk drives to the storage system, you should ensure that the disk drives are installed in the correct positions to maintain availability. The disk drives should be distributed across the disk enclosures to protect against the failure of a single disk enclosure.

Use the following guidelines when adding disk drives to your storage system:

- Install high performance and FATA disk drives in separate groups. These different drive types must be in separate disk groups. You may also want to consider separating different drive capacities and spindle speeds into different groups.
- The disk drives should be distributed evenly across the disk enclosures. The number of disks of a given type in each enclosure should not differ by more than one. For example, no enclosure should have two disks until all the other enclosures have at least one.
- Disk drives should be installed in vertical columns within the disk enclosures. Add drives vertically in multiples of eight, completely filling columns if possible. Disk groups are more robust if filled with the same number of disk drives in each enclosure. See Figure 7 for an example.

\textbf{NOTE:}

When adding multiple disk drives, add a disk and wait for its activity indicator (1) to stop flashing (up to 90 seconds) before installing the next disk (see Figure 6). This procedure must be followed to avoid unexpected EVA system behavior.
Creating disk groups

The new disks you add will typically be used to create new disk groups. Although you cannot select which disks will be part of a disk group, you can control this by building the disk groups sequentially.

Add the disk drives required for the first disk group, and then create a disk group using these disk drives. Now add the disk drives for the second disk group, and then create that disk group. This process gives you control over which disk drives are included in each disk group. Figure 7 shows the sequential building of vertical disk groups.

NOTE:

Standard and FATA disk drives must be in separate disk groups. Disk drives of different capacities and spindle speeds can be included in the same disk group, but you may want to consider separating them into separate disk groups.
Adding a disk drive

This section describes the procedure for adding a Fibre Channel disk drive.

Removing the drive blank

1. Grasp the drive blank by the two mounting tabs (see Figure 8).
2. Lift up on the lower mounting tab and pull the blank out of the enclosure.

Figure 7 Sequential building of vertical disk groups

1. Disks installed in first group
2. Disks installed in second group

Figure 8 Removing the drive blank

1. Upper mounting tab
2. Lower mounting tab
Installing the disk drive

1. Push in the ejector button on the disk drive and pull the release lever down to the full open position.
2. Insert the drive into the enclosure as far as it will go (1, Figure 9).
3. Close the release lever until it engages the ejector button, and the disk drive seats in the backplane (2, Figure 9).
4. Press in firmly on the disk drive to ensure it is seated properly.

![Figure 9 Installing the disk drive](0116a)

Checking status indicators

After replacing the disk drive, check the following to verify that the disk drive is operating normally:

NOTE:

It may take up to 10 minutes for the component to display good status.

- Check the disk drive status indicators. See Figure 10.
 - Activity indicator (1) should be on or flashing
 - Online indicator (2) should be on or flashing
 - Fault indicator (3) should be off
- Check the following using Command View EVA.
 - Navigate to the disk drive and check the operational state. It should be
 - Ensure the disk drive is using the correct firmware. Check the **Firmware Version** against the supported disk firmware in the *HP StorageWorks Enterprise Virtual Array release notes*. The most current edition of the release notes can be downloaded from the following web site: http://www.hp.com/go/eva8000. If the disk drive is using an unsupported version of firmware, contact HP support for assistance. Do not add the disk drive to a disk group if it using an unsupported firmware version.
Adding the disk to a disk group

After replacing the disk, it should be added to a disk group.

1. In the Navigation pane, select Storage system > Hardware > Rack > Disk enclosure > Bay
2. In the Content pane, select the Disk Drive tab.
3. Click Group to initiate the process for adding the disk to a disk group.

NOTE: If the Device Addition Policy is set to automatic, the disk will automatically be added to a disk group. In this case the Group option will not be available.

Handling fiber optic cables

This section provides protection and cleaning methods for fiber optic connectors.

Contamination of the fiber optic connectors on either a transceiver or a cable connector can impede the transmission of data. Therefore, protecting the connector tips against contamination or damage is imperative. The tips can be contaminated by touching them, by dust, or by debris. They can be damaged when dropped. To protect the connectors against contamination or damage, use the dust covers or dust caps provided by the manufacturer. These covers are removed during installation, and are installed whenever the transceivers or cables are disconnected. Cleaning the connectors should remove contamination.

The transceiver dust caps protect the transceivers from contamination. Do not discard the dust covers.

CAUTION: To avoid damage to the connectors, always install the dust covers or dust caps whenever a transceiver or a fiber cable is disconnected. Remove the dust covers or dust caps from transceivers or fiber cable connectors only when they are connected. Do not discard the dust covers.

To minimize the risk of contamination or damage, do the following:

- **Dust covers**—Remove and set aside the dust covers and dust caps when installing an I/O module, a transceiver or a cable. Install the dust covers when disconnecting a transceiver or cable.
• **When to clean**—If a connector may be contaminated, or if a connector has not been protected by a dust cover for an extended period of time, clean it.

• **How to clean**:
 1. Wipe the connector with a lint–free tissue soaked with 100% isopropyl alcohol.
 2. Wipe the connector with a dry, lint–free tissue.
 3. Dry the connector with moisture-free compressed air.

One of the many sources for cleaning equipment specifically designed for fiber optic connectors is:
Alcoa Fujikura Ltd.
1-888-385-4587 (North America)
011-1-770-956-7200 (International)
This chapter describes the Enterprise Virtual Array hardware components. Topics to be discussed include:

- Fibre Channel drive enclosures
- Fibre Channel loop switches
- HSV controllers
- Racks

Fibre Channel drive enclosures

The drive enclosure contains the disk drives used for data storage. A storage system includes multiple drive enclosures. The major components of the enclosure are:

- 2.125–Gb, dual loop, 14–drive enclosure
- Dual-loop, Fibre Channel drive enclosure I/O modules
- Copper Fibre Channel cables
- Fibre Channel disk drives and drive blanks
- Power supplies
- Blowers
- Cache batteries
- EMU

Enclosure layout

The disk drives mount in bays in the front of the enclosure. The bays are numbered sequentially from left to right. A drive is referred to by its bay number. Enclosure status indicators are located in the lower-right, front corner. Figure 11 shows the front and rear views of the FC drive enclosure.
I/O modules

Two I/O modules provide the interface between the drive enclosure and the host controllers. See Figure 12. They route data to and from the disk drives using Loop A and Loop B, the dual-loop configuration. For redundancy, only dual-controller, dual-loop operation is supported. Each controller is connected to both I/O modules in the drive enclosure.
Figure 12 I/O module

1. Status indicators (Upper port, Power, and Lower port)
2. Upper port
3. Lower port

The I/O modules are functionally identical, but are not interchangeable. Module A can only be installed at the right end of the enclosure, and module B can only be installed at the left end of the enclosure. See Figure 11.

Each I/O module has two ports that can both transmit and receive data for bidirectional operation. Activating a port requires connecting a FC cable to the port. The port function depends upon the loop. See Figure 13.

Figure 13 Input and output ports

1. Loop A lower port
2. Loop A upper port
3. Loop B lower port
4. Loop B upper port
I/O module status indicators

There are three status indicators on the I/O module. See Figure 12. The status indicator states for an operational I/O module are shown in Table 6. Table 7 shows the status indicator states for a non-operational I/O module.

Table 6 Operational I/O module status indicators

<table>
<thead>
<tr>
<th>Upper</th>
<th>Power</th>
<th>Lower</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>• I/O Module is operational</td>
</tr>
<tr>
<td>On</td>
<td>Flashing, then On</td>
<td>On</td>
<td>• Top port—Fibre Channel drive enclosure signal detected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Power—Flashes for about 90 seconds after initial power application,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>then remains constant.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Bottom port—Fibre Channel drive enclosure signal detected.</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>On</td>
<td>• Top port—Fibre Channel drive enclosure signal detected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Power—Present.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Bottom port—Fibre Channel drive enclosure signal detected.</td>
</tr>
<tr>
<td>Flashing</td>
<td>Flashing</td>
<td>Flashing</td>
<td>• When the locate function is active, all three indicators flash simultaneously. The Locate function overrides all other indicator functions. Therefore, an error could be detected while the Locate function is active and not be indicated until the Locate action terminates.</td>
</tr>
</tbody>
</table>
Table 7 Non-operational I/O module status indicators

<table>
<thead>
<tr>
<th>Upper</th>
<th>Power</th>
<th>Lower</th>
<th>Descriptions</th>
</tr>
</thead>
</table>
| On | On | Off | • Top port—Fibre Channel drive enclosure signal detected.
 | | | | • Power—Present.
 | | | | • Bottom port—No Fibre Channel drive enclosure signal detected.
 | | | | Check transceiver and fiber cable connections.
| NOTE: | | | This status applies to configurations with and without FC loop switches. |
| Off | On | On | • Top port—No Fibre Channel drive enclosure signal detected.
 | | | | Check transceiver and fiber cable connections.
 | | | | • Power—Present.
 | | | | • Bottom port—Fibre Channel drive enclosure signal detected.
| Flashing | On | On | • Top port—EMU detected possible transceiver problem.
 | | | | Check transceiver and fiber cable connections.
 | | | | • Power—Present.
 | | | | • Bottom port—Fibre Channel drive enclosure signal detected.
| On | On | Flashing | • Top port—Fibre Channel drive enclosure signal detected.
 | | | | • Power—Present.
 | | | | • Bottom port—EMU detected possible transceiver problem.
 | | | | Check transceiver and fiber cable connections.
| NOTE: | | | The EMU will not flash the lower indicator on its own. It will flash only in response to a locate command. You can flash each of the lights independently during a locate action. |
| Off | Off | Off | • No I/O module power.
 | | | | • I/O module is nonoperational.
 | | | | • Check power supplies. If power supplies are operational, replace I/O module.

Fibre Optic Fibre Channel cables

The Enterprise Virtual Array uses orange, 50-μm, multi-mode, fiber optic cables for connection to the SAN. The fiber optic cable assembly consists of two, 2–m fiber optic strands and small form-factor connectors on each end. See Figure 14.

To ensure optimum operation, the fiber optic cable components require protection from contamination and mechanical hazards. Failure to provide this protection can cause degraded operation. Observe the following precautions when using fiber optic cables.

• To avoid breaking the fiber within the cable:
 • Do not kink the cable
 • Do not use a cable bend-radius of less than 30 mm (1.18 in)
• To avoid deforming, or possibly breaking the fiber within the cable, do not place heavy objects on the cable.
• To avoid contaminating the optical connectors:
 • Do not touch the connectors
 • Never leave the connectors exposed to the air
 • Install a dust cover on each transceiver and fiber cable connector when they are disconnected.
If an open connector is exposed to dust, or there is any doubt about the cleanliness of the connector, clean the connector as described in Handling fiber optic cables.

![Copper Fibre Channel cable](cx07972a)

Figure 14 Fibre Optic Fibre Channel cable

Copper Fibre Channel cables

The Enterprise Virtual Array Fibre Channel 10000-Series implementation uses copper Fibre Channel cables to connect the drive enclosures to each other, or to the loop switches and to the HSV controllers. The cables are available in 0.6–meter and 2.0–meter lengths. Copper cables provide performance comparable to fiber optic cables. Copper cable connectors differ from fiber optic small form-factor connectors (see Figure 15).

![Copper Fibre Channel cable](8364a.st)

Figure 15 Copper Fibre Channel cable

Fibre Channel disk drives

The Fibre Channel disk drives are hot-pluggable and include the following features:

- Dual-ported 2–Gbps Fibre Channel drive enclosure interface that allows up to 120 disk drives to be supported per Fibre Channel drive enclosure pair.
- Compact, direct-connect design for maximum storage density and increased reliability and signal integrity.
- Both online high-performance disk drives and FATA disk drives in a variety of capacities and spindle speeds.
- Better vibration damping for improved performance.

Up to 14 disk drives can be installed in a drive enclosure.

Disk drive status indicators

Three status indicators display the drive operational status. Figure 16 shows the disk drive status indicators. Table 8 provides a description of each status indicator.
Figure 16 Disk drive status indicators

1. Activity
2. Online
3. Fault

Table 8 Disk drive status indicator descriptions

<table>
<thead>
<tr>
<th>Status indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>This green status indicator flashes when the disk drive is being accessed. It is on when the drive is idle.</td>
</tr>
<tr>
<td>Online</td>
<td>The green status indicator is on when the disk drive is online and operating normally. This indicator will be off in the following situations: • There is no controller on the bus. • +5.1 VDC is not available. • The drive is not properly installed in the enclosure.</td>
</tr>
<tr>
<td>Fault</td>
<td>This amber status indicator is on when there is a disk drive failure. Depending on the host controller, this indicator may flash when the controller detects an error condition. The amber status indicator flashes in synchronization with the other two status indicators in response to the EMU locate command.</td>
</tr>
</tbody>
</table>

Disk drive status displays

The disk drive status indicators can assume three states: on, off, or flashing. The status indicators states for operational drive status are shown in Table 9. See Table 10 for the non-operational drive status indicator states.

Table 9 Operational disk drive status indications

<table>
<thead>
<tr>
<th>Activity</th>
<th>Online</th>
<th>Fault</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flashing</td>
<td>On</td>
<td>Off</td>
<td>Initial startup.</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>The drive is online but is not being accessed.</td>
</tr>
<tr>
<td>Flashing</td>
<td>Flashing</td>
<td>Flashing</td>
<td>The drive is being located.</td>
</tr>
<tr>
<td>Flashing</td>
<td>On</td>
<td>Off</td>
<td>The drive is operational and active.</td>
</tr>
</tbody>
</table>
Table 10 Non-operational disk drive status indications

<table>
<thead>
<tr>
<th>Activity</th>
<th>Online</th>
<th>Fault</th>
<th>Description</th>
</tr>
</thead>
</table>
| On | On | On | Indicates no connection or the controllers are offline. Recommended corrective actions:
1. Check power supplies for proper operation.
2. If defective, replace disk drive. |
| On | Off | Flashing | Indicates disk drive error/not active. Recommended corrective actions:
1. Verify FC loop continuity.
2. Replace disk drive. |

Disk drive blank

To maintain the proper enclosure air flow, a disk drive or a disk drive blank must be installed in each drive bay. The disk drive blank maintains proper airflow within the disk enclosure.

Power supplies and blowers

This section describes the function and operation of the disk enclosure power supplies and blowers. Figure 17 illustrates the major power supply and cooling components.

Figure 17 Power supply and blower assembly components

1. Power supply
2. Status indicator
3. AC Input connector with bail
4. Module latch (wine-colored)
5. Blower tabs (wine-colored)
6. Blower

Power supplies

The two power supplies mount in the rear of the enclosure (see Figure 27). The supplies are autoranging and operate on a country-specific AC input voltage of 202 to 240 VAC ±10%, 50 to 60 Hz, ±5%, (188 to 264 VAC, 47 to 63 Hz).

The DC outputs of this power supply are:
• +5.1 VDC for the EMU, I/O module, backplane, and disk drives
• +12.1 VDC for the disk drives
• +12.5 VDC for the disk drives

The output of each power supply is 499 W, with a peak output of 681 W. A single power supply can support an enclosure with a full complement of disks.

The power supply circuitry provides protection against:
• Overloads
• Short circuits
• Overheating

Power supply status and diagnostic information is reported to the EMU with voltage, current, and temperature signals.

See Regulatory Notices and Specifications for the enclosure power specifications.

The power supply temperature sensor provides a temperature range signal to the EMU, which uses this signal to set the blower speed.

The power supply internal temperature can also control the speed of the blower. The higher the power supply temperature, the faster the speed of the blower. If the power supply temperature exceeds a preset value, the power supply automatically shuts down.

Blowers

The power supply–mounted blowers cool the enclosure by circulating air through the enclosure. The blowers, under the control of the EMU or the associated power supply, can operate at multiple speeds. This ensures that when the enclosure temperature changes the blowers can automatically adjust the air flow.

If a blower is operating too slowly or has stopped (a “blower failure”), internal circuitry automatically operates the remaining blower at a higher speed. Simultaneously, the error condition is reported in several ways, including the power supply indicator, the audible alarm, the enclosure fault indicators, and the EMU alphanumeric display.

Should both blowers fail, the power supplies automatically shut down.

NOTE:
The blowers are field-replaceable units and can be replaced, individually, while the system is running. The blowers are also interchangeable. The failure of a power supply +12.5 VDC circuit disables the associated blower.

The status indicator on the blower (Figure 28) displays the status of both the power supply and the blower. See Table 11 for definitions of the indicator displays.

Table 11 Power supply/blower status indicators

<table>
<thead>
<tr>
<th>Blower status LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Both the power supply and the blower are operational.</td>
</tr>
<tr>
<td>Flashing</td>
<td>The power supply or the blower locate function is active.</td>
</tr>
</tbody>
</table>
| Off | The power supply or the blower is non–operational. When there is a blower problem, the other blower runs at a higher speed. Recommended corrective actions:
 • Check blower for proper operation. Replace if defective.
 • Check power supplies for proper operation. Replace if defective. |
Drive enclosure EMU

The EMU provides increased protection against catastrophic failures. The EMU detects conditions such as failed power supplies, failed blowers, elevated temperatures, and external air sense faults and communicates these conditions to the storage system controllers.

The EMU for Fibre Channel-Arbitrated Loop (FC–AL) drive enclosures is fully compliant with SCSI-3 Enclosure Services (SES), and mounts in the left rear bay of a drive enclosure (see 1, Figure 18).

![Figure 18 EMU location](CXD7971A)

Figure 18 EMU location

1. EMU

Controls and displays

Figure 19 illustrates the location and function of the EMU displays, controls, and connectors.

![Figure 19 EMU controls and displays](D'43a)

Figure 19 EMU controls and displays

1. Status indicators:
 a. EMU—This flashing green is the heartbeat for an operational EMU.
 b. Enclosure power—When both the +5 VDC and +12 VDC are correct, this green LED is on.
 c. Enclosure fault—This amber LED is normally off. The LED is lit when an enclosure error condition exists.

2. Alphanumeric display—A two-character, seven–segment alphanumeric display of the enclosure functions and status.

3. Function select button—The primary function of this button is to select a display group function. The indicator is on when an error condition exists.

4. Display group select button—This button is used to view display groups and control the audible alarm. The indicator is on when the audible alarm is muted or disabled.

5. RS232 – for use by HP-authorized service representatives

6. LCD ONLY–unused

7. CAB ONLY–enclosure address bus connector

54 Enterprise Virtual Array hardware components
WARNING!
To reduce the risk of electrical shock, fire, or damage to the equipment, do not plug telephone or telecommunications connectors into the “RS232 ONLY” receptacle.

EMU functions

The primary functions of the EMU include:

• Using the Enclosure Services Processor (ESP) to control the Enclosure Services Interface (ESI) and communicate with the controllers.
• Assigning the Enclosure Number (En), based upon the cabinet address bus feature.
• Displaying the bay 1 loop ID.
• Monitoring enclosure operation.
• Detecting, reporting, recording, and displaying conditions.
• Displaying EMU, enclosure, and element status.
• Implementing automatic corrective actions for some conditions.
• Providing enclosure status data to the controllers.
• Reporting the WWN and the logical address of all disk drives.

NOTE:
Although the EMU can determine the logical address of a drive, the EMU can neither display nor change this information. HP Command View EVA can display the addresses from the EMU-supplied status information.
EMU monitoring functions

The internal EMU circuitry monitors the enclosure and component functions listed in Table 12.

Table 12 EMU monitoring functions

<table>
<thead>
<tr>
<th>Component</th>
<th>Monitored Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blowers</td>
<td>• Installation • Removal</td>
</tr>
<tr>
<td></td>
<td>• Type • Speed (rpm)</td>
</tr>
<tr>
<td>Disk drives</td>
<td>• Installation • Removal</td>
</tr>
<tr>
<td></td>
<td>• Bypass status</td>
</tr>
<tr>
<td></td>
<td>• Loop ID • Temperature • Drive fault</td>
</tr>
<tr>
<td>EMU</td>
<td>• Temperature • Operation</td>
</tr>
<tr>
<td></td>
<td>• Type • Revision level</td>
</tr>
<tr>
<td>Enclosure</td>
<td>• Enclosure power • Enclosure fault</td>
</tr>
<tr>
<td></td>
<td>• Backplane type • Backplane revision level</td>
</tr>
<tr>
<td>I/O module</td>
<td>• Installation • Removal</td>
</tr>
<tr>
<td></td>
<td>• Status • Type • Revision level</td>
</tr>
<tr>
<td>Power supplies</td>
<td>• Installation • Removal</td>
</tr>
<tr>
<td></td>
<td>• Status • Type • Revision level</td>
</tr>
<tr>
<td></td>
<td>• +5 VDC voltage and current • +12 VDC voltage and current</td>
</tr>
<tr>
<td></td>
<td>• Total power • Temperature</td>
</tr>
<tr>
<td>Transceiver</td>
<td>• Type</td>
</tr>
<tr>
<td></td>
<td>• Link status</td>
</tr>
</tbody>
</table>

EMU displays

The EMU uses a combination of status indicators, alphanumeric display, and an audible alarm to indicate the operational status of the enclosure and its components. See Table 13.

Table 13 EMU status displays

<table>
<thead>
<tr>
<th>Display</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audible alarm (For information on the audible alarm, see "Audible Alarm Operations" on page 58.)</td>
<td>Any EMU-detected condition causes this alarm to sound.</td>
</tr>
<tr>
<td>Status indicators (For a description of the status indicators, see "EMU LED Displays" on page 56.)</td>
<td>Display enclosure and EMU status.</td>
</tr>
<tr>
<td>Alphanumeric display (For a description of the alphanumeric display, see "Using the Alphanumeric Display" on page 57.)</td>
<td>The two-character, seven-segment display displays alphanumeric characters.</td>
</tr>
</tbody>
</table>

EMU indicator displays

The EMU status indicators are located above the alphanumeric display. See Figure 19. These indicators present the same information as those on the front, lower right corner of the enclosure.
You can determine the EMU and enclosure status using the information in EMU LED displays table.

Table 14 EMU status indications

<table>
<thead>
<tr>
<th>EMU indicator (green)</th>
<th>Power indicator (green)</th>
<th>Fault indicator (amber)</th>
<th>Status and recommended actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flashing</td>
<td>Flashing</td>
<td>Flashing</td>
<td>The EMU Locate function is active. This display has precedence over all others. Fault conditions cannot be displayed when the Locate function is active.</td>
</tr>
<tr>
<td>Flashing</td>
<td>On</td>
<td>Off</td>
<td>The EMU is operational. The enclosure power (both +5 VDC and +12 VDC) is present and correct. There are no enclosure faults.</td>
</tr>
<tr>
<td>Flashing</td>
<td>On</td>
<td>On</td>
<td>The EMU is operational. There is an enclosure fault. Check the alphanumeric display error code for information about the problem.</td>
</tr>
<tr>
<td>Flashing</td>
<td>Off</td>
<td>Off</td>
<td>The EMU is operational. This display may be present when power is initially applied to the enclosure. Note: When the +5 VDC is incorrect, all the indicators are off.</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>There is an EMU fault. There is no enclosure fault.</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>There is an EMU fault. There is no enclosure fault.</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>There is an enclosure fault. Either +5 VDC is incorrect, or both +5 VDC and +12 VDC are incorrect. Other error conditions may exist.</td>
</tr>
</tbody>
</table>

Using the alphanumeric display

The two-character alphanumeric display is located at the top of the EMU (see Figure 19). This seven-segment display provides information about multiple enclosure functions. The push buttons control the data displayed or entered.

Alphanumeric display description

The top-level, two-character alphanumeric display (En, Li, rG, Au, and Er), is the display group. The function of the other displays is display-group dependent. The default display is the enclosure number, a decimal number in the range 00 through 14. The push buttons allow you to select the alphanumeric display or to enter data.

- The bottom push button sequentially moves between groups and selects a display group. See EMU display groups for a description of these display groups.
- The top push button moves between the levels within a display group (see 2, Figure 19).
Display groups

When you press and release the bottom push button, the alphanumeric display selects a different display group. **EMU display groups** describes the display groups.

Table 15 EMU display groups

<table>
<thead>
<tr>
<th>Display</th>
<th>Display group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>En</td>
<td>Enclosure Number</td>
<td>The enclosure number is the default display and is a decimal number in the range 00 through 14. See Using the Enclosure Number Feature for detailed information.</td>
</tr>
<tr>
<td>Li</td>
<td>Bay 1 Loop ID</td>
<td>This display group has a single sublevel display that defines the enclosure bay 1 loop ID. Valid loop IDs are in the range 00 through 7F.</td>
</tr>
<tr>
<td>rG</td>
<td>Reporting Group</td>
<td>This display group has two, two-digit displays that define the reporting group number in the range 0000 through 4095.</td>
</tr>
<tr>
<td>Au</td>
<td>Audible Alarm</td>
<td>This display group provides control over the audible alarm or horn. The sublevel displays are audible alarm enabled (on) or audible alarm disabled (off). See Audible Alarm Operations for detailed information.</td>
</tr>
<tr>
<td>Fr</td>
<td>Firmware Revision</td>
<td>This display group defines the EMU code firmware version.</td>
</tr>
<tr>
<td>Er</td>
<td>Error Condition</td>
<td>This display group reads Er when there is an error condition.</td>
</tr>
</tbody>
</table>

NOTE:

Any time you press and release the bottom push button the display will change to En, Li, rG, Au, or Er.

A flashing alphanumeric display indicates that you can edit an address, state, or view a condition report.

EMU push button status indicators

The push button status indicators display error conditions and the state of the audible alarm.

- When an error condition exists, the top push button status indicator is On.
 - For a single error condition, the status indicator is On until the error condition is viewed.
 - For multiple errors, the status indicator is On until the last error condition is viewed.
- The bottom push button indicator is On only when the alarm is muted or disabled.

Audible alarm operations

Whenever an error condition exists, the audible alarm automatically sounds until all errors are corrected. You have the option of either muting or disabling the alarm.

- Disabling the audible alarm prevents it from sounding for any error condition.
- Muting the alarm silences it for the existing condition, but any new condition causes the alarm to sound.
Audible alarm patterns

The audible alarm sound pattern differs depending on the type of error condition. See Table 16 for the duration and the approximate relationship of these alarms. The most severe, active error condition controls the alarm pattern.

Table 16 Audible alarm sound patterns

<table>
<thead>
<tr>
<th>Condition type</th>
<th>Cycle 1</th>
<th>Cycle 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNRECOVERABLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRITICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NONCRITICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFORMATION</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend

- ![Alarm On](image1)
- ![Alarm Off](image2)

Controlling the audible alarm

You can control the alarm with the push buttons. This process includes muting, enabling, and disabling. When an error condition exists, the alphanumeric display reads Er, the alarm sounds, and you can:

- Correct all errors, thereby silencing the alarm until a new error occurs.
- Mute, or temporarily disable, the alarm by pressing and holding the bottom push button. The alarm remains off until another error occurs, or until you enable (unmute) the alarm. When a new error occurs, the alarm sounds and the push button indicator is off.

 Using the mute feature ensures that you are aware of the more severe errors and provides you with the capability of correcting them promptly.
- Disable the alarm to prevent any error condition from sounding the alarm.

NOTE:

Disabling the alarm does not prevent the EMU alphanumeric display from displaying Er. Nor does it prevent HP Command View EVA from displaying the error condition report.

When the alarm is enabled (on), the bottom push button status indicator is off.

Enabling the audible alarm

To enable the alarm:

1. Press and release the bottom push button until the alphanumeric display is *Au*.
2. Press and hold the top push button until the alphanumeric display is a Flashing *Of* (Audible Alarm Off).
NOTE:

When the alarm display is flashing, press and hold the top push button to cause the display to toggle between *On* and *Off*. Press and release the top push button to cause the display to select the next state.

3. Press and release the top push button to change the display to a flashing *On* (Audible Alarm On).
4. Press and release the bottom push button to accept the change and to display *Au*. The bottom push button indicator is now off.

Muting or unmuting the audible alarm

You may want to mute the alarm in the following situations:

- The error does not require immediate corrective action.
- You cannot correct the error at this time. For example, the error may require a replacement part.

To mute the audible alarm:

NOTE:

Er is displayed in the alphanumeric display when an error condition is present.

1. Press and hold the bottom push button until the status indicator is *On*.

 A muted alarm will remain off until a new condition report exists.

2. To unmute the alarm, press and hold the bottom push button until the status indicator is *Off*. When a new error condition occurs, the alarm will sound.

Disabling the audible alarm

⚠️ **CAUTION:**

Disabling the audible alarm increases the potential of damage to equipment from a reported but unobserved fault. HP does not recommend disabling the audible alarm.

Disabling the audible alarm affects only one enclosure. This action does not affect condition report displays on the EMU alphanumeric display or errors reported by HP Command View EVA.

To disable the alarm:

1. Press and release the bottom push button until the alphanumeric display is *Au*.
2. Press and hold the top push button until the alphanumeric display is a flashing *On* (Audible Alarm On).

NOTE:

When the alarm display is flashing, pressing and holding the top push button causes the display to rapidly change between *on* and *off* and also causes the display to select the next state.

3. Press and release the top push button to change the display to a Flashing *Off* (Audible Alarm Off).
4. Press and release the bottom push button to accept the change and display *Au*. The bottom push button indicator is now on.
NOTE:
A disabled audible alarm (the bottom push button indicator is on) cannot sound for any error condition. To ensure that you are immediately alerted to error conditions, it is recommended that the alarm mute function be used rather than the alarm disable function. If you must use the disable function, remember to enable the audible alarm as soon as possible to ensure that you are alerted to errors.

Enclosure number feature
This section provides a description of the purpose, function, and operation of the EMU enclosure number (En) feature.

En description
In a single rack configuration, the En is a decimal number in the range 00 through 14, which is automatically assigned by the enclosure address bus.

NOTE:
Your storage system may use an enclosure address bus higher than 14 if your configuration includes an optional expansion cabinet. The enclosure address bus connection determines the En. For a single rack, the display is a decimal number in the range 01 through 14. For a multiple (two) rack configuration, the display is decimal number in the range 01 through 24.

By default, the two-character alphanumeric display shows this number. Pressing the bottom push button changes the display to En, the En display mode.

When the display is En, pressing and releasing the top push button displays the enclosure number.

A display of 00 indicates that the enclosure is not connected to the enclosure address bus. When this condition exists, there is no EMU-to-EMU communication over the enclosure address bus.

A display of 01 through 14 indicates that the enclosure is connected to the enclosure address bus and can exchange information with other enclosures on the enclosure address bus. The decimal number indicates the physical position of the enclosure in relation to the bottom of the rack.

• 01 is the address of the enclosure connected to the lower connector in the first (lower) enclosure ID expansion cable.
• 14 is the address of the enclosure closest to end of the bus, the upper connector in the last (upper) ID expansion cable.

Unless there is an error condition, the display automatically returns to the enclosure number (01 through 14) one minute after a push button was last pressed.

Enclosure address bus
The enclosure address bus provides a means for managing and reporting environmental conditions within the rack. It is composed of enclosure ID expansion cables that interconnect the drive enclosures and controller enclosures. Two drive enclosures connect to each enclosure ID expansion cable.

The drive enclosure numbers are always assigned by the enclosure address bus. Connecting the EMU CAB connector to an enclosure address bus enclosure ID expansion cable automatically establishes an enclosure number of 01 through 14. Any drive enclosure not connected to the enclosure address bus has the enclosure number 00.

NOTE:
The enclosure number is automatically assigned. You cannot manually assign an enclosure number.
The enclosures are numbered as shown in Figure 20.

Figure 20 Enclosure numbering with enclosure ID expansion cables

NOTE:
If an expansion rack is used, the enclosure numbering shown above may change or contain additional numbering. Refer to the *HP StorageWorks Enterprise Virtual Array hardware configuration guide* for more information.

For more information about the reporting group number, see Viewing the Reporting Group Feature.

Enclosure address bus connections

Connecting the enclosures to the enclosure ID expansion cables establishes the enclosure address bus. The enclosures are automatically numbered based on the enclosure ID expansion cable to which they are connected. Figure 21 shows the typical configuration of a 42U cabinet with 14 enclosures.
Figure 21 Enclosure address bus components with enclosure ID expansion cables

1. Shelf ID expansion cable port 1—Disk enclosure 1
2. Shelf ID expansion cable port 2—Disk enclosure 2
3. Shelf ID expansion cable port 3—Disk enclosure 3
4. Shelf ID expansion cable port 4—Disk enclosure 4
5. Shelf ID expansion cable port 5—Disk enclosure 5
6. Shelf ID expansion cable port 6—Disk enclosure 6
7. Shelf ID expansion cable port 7—Controller enclosures
8. Shelf ID expansion cable port 8—Disk enclosure 8
9. Shelf ID expansion cable port 9—Disk enclosure 9
10. Shelf ID expansion cable port 10—Disk enclosure 10
11. Shelf ID expansion cable port 11—Disk enclosure 11
12. Shelf ID expansion cable port 12—Disk enclosure 12
13. Shelf ID expansion cable port 13—Disk enclosure 13

Error Condition Reporting

The EMU constantly monitors enclosure operation and notifies you of conditions that could affect operation. When an error condition is detected, the following action is taken:

- The EMU alphanumeric display is changed to Er. A condition report has precedence over all other displays.
- The audible alarm sounds (if it is not disabled).
- The error is stored in the error queue.
- The error is passed to the controllers for processing and display by Command View EVA.
An error always generates a condition report. Not all condition reports are generated by errors.

Error condition categories

Each error condition is assigned to a category based on its impact on disk enclosure operation. The following four error categories are used:

- **Unrecoverable**—the most severe error condition, it occurs when one or more enclosure components have failed and have disabled some enclosure functions. The enclosure may be incapable of correcting, or bypassing the failure, and requires repairs to correct the error.

 NOTE:
 To maintain data integrity, corrective action should be implemented immediately for an UNRECOVERABLE condition.

- **Critical**—occurs when one or more enclosure components have failed or are operating outside of their specifications. The failures impact the normal operation of some components in the enclosure. Other components within the enclosure may be able to continue normal operations. Prompt corrective action should be taken to prevent system degradation.

- **Noncritical**—occurs when one or more components inside the enclosure have failed or are operating outside of their specifications. The failure of these components does not impact continued normal operation of the enclosure. All components in the enclosure continue to operate according to their specifications. The ability of the components to operate correctly may be reduced should other errors occur. Prompt corrective action should be taken to prevent system degradation.

- **Information**—the least severe condition indicates a condition exists that does not reduce the capability of a component. However, the condition can become an error and require corrective action. An INFORMATION condition provides an early warning, which enables you to prepare to implement corrective action before a component fails. Correction of the reported problem may be delayed.

The error conditions are prioritized by severity—from most severe to least. The most severe condition takes precedence and is reported first when multiple errors are detected. The reporting characteristics for each error condition are listed in Table 17.

Table 17 Error condition reporting characteristics

<table>
<thead>
<tr>
<th>Error condition</th>
<th>Takes precedence over</th>
<th>Audible alarm pattern¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNRECOVERABLE</td>
<td>All other conditions</td>
<td>On continuously</td>
</tr>
<tr>
<td>CRITICAL</td>
<td>NONCRITICAL and INFORMATION</td>
<td>Sounds three times per alarm cycle</td>
</tr>
<tr>
<td>NONCRITICAL</td>
<td>INFORMATION</td>
<td>Sounds two times per alarm cycle</td>
</tr>
<tr>
<td>INFORMATION</td>
<td>No other conditions</td>
<td>Sounds once per alarm cycle</td>
</tr>
</tbody>
</table>

¹The pattern occurs when the condition is the most severe active condition

Error queue

The EMU maintains an internal error queue for storing error conditions. Each error condition remains in the error queue until the problem is corrected, or for at least 15 seconds after the error is reported. This ensures that when there are multiple errors or a recurring error, each can be displayed. Each entry in the error queue can be displayed using a combination of the top and bottom buttons. Each error entry in the queue contains the element type, the element number, and the error code.
Correcting the error removes the associated condition from the error queue. Replacing the EMU will also clear the error conditions. The order in which the EMU displays the error queue information is based on two factors:

- The severity of the error
- The time the error occurred

The most severe error in the queue always has precedence, regardless of how long less severe errors have been in the queue. This ensures that the most severe errors are displayed immediately.

NOTE:
When viewing an error, the occurrence of a more severe error takes precedence and the display changes to the most severe error.

The earliest reported condition within an error type has precedence over errors reported later. For example, if errors at all levels have occurred, the EMU displays them in the following order:

1. UNRECOVERABLE errors in the sequence they occurred.
2. CRITICAL errors in the sequence they occurred.
3. NONCRITICAL errors in the sequence they occurred.
4. INFORMATION conditions in the sequence they occurred.

Error condition report format

Each EMU detected condition generates a condition report containing three pieces of information.

- **Element type** The first two-digit hexadecimal display defines the element type reporting the problem. The format for this display is e.t. with a period after each character. Valid element types are 0.1. through F.F.
- **Element number** The second display is a two-digit decimal number that defines the specific element reporting the problem. The format for this display is e.n. with a period after the second character.
- **Error code** The third display is a two-digit decimal number that defines the specific error code. The format for this display is e.c. without any periods.

For detailed information about each condition report, including recommended corrective actions.

Navigating the error condition display

When an error condition occurs, the alphanumeric display changes to **Er** and the error menu is active. The buttons are used to display the error condition values.

Perform the following procedure to display error conditions:

1. With **Er** in the display, press and hold the top push button until the first element type is displayed. The most severe error in the queue will be displayed.
2. Release the top push button when the element type is displayed. The element type has both decimal points lit.
3. Press and release the top push button to display the element number. This display has only the right decimal point lit.
4. Press and release the top push button again to display the error code. This display has no decimal points lit. Repeated press/release operations will cycle through these three values.
5. Press and hold the top push button from any of the three display states to move to the element type for the next error condition in the queue.
6. Use the top push button to display the values for the error condition.
7. When all error conditions have been displayed, press and release the bottom push button to return to the **Er** display.
Analyzing condition reports

Analyzing each error condition report involves three steps:

1. Identifying the element.
2. Determining the major problem.
3. Defining additional problem information.

Reporting group feature

Another function of the enclosure address bus is to provide communications within a reporting group. A Reporting Group (rG) is an HSV210 controller pair and the associated drive enclosures. The controller pair automatically assigns a unique (decimal) four-digit Reporting Group Number (RGN) to each EMU on a Fibre Channel drive enclosure.

Each of the drive enclosures on a loop pair are in one reporting group:

- All of the drive enclosures on loop pair 1, both loop 1A and loop 1B, share a unique reporting group number.
- All of the drive enclosures on loop pair 2, both loop 2A and loop 2B, share a unique reporting group number.

Each EMU collects environmental information from the associated enclosure and broadcasts the information to reporting group members using the enclosure address bus. Information from enclosures in other reporting groups is ignored.

Reporting group numbers

The reporting group number (RGN) range is 0000 through 4099, decimal.

- 0000 is reserved for enclosures that are not part of any reporting group.
- 0001 through 0015 are RGNs reserved for use by the EMU.
- 0016 through 4095 are valid RGNs.
- 4096 through 4099 are invalid RGNs.

The reporting group numbers are displayed on the EMU alphanumeric display as a pair of two-digit displays. These two displays are identified as rH and rL.

- Valid rH displays are in the range 00 through 40, and represent the high-order (most significant) two digits of the RGN.
- Valid rL displays are in the range 00 through 99, and represent the low-order (least significant) two digits of the RGN.

To view a reporting group number:

1. Press and release the bottom push button until the alphanumeric display is rG.
2. To display the two most significant digits of the Reporting Group Number, press and hold the top push button until the display is rH.
3. Press and release the top push button to display the first two digits of the RGN.
4. Press and release the top push button until the alphanumeric display is rH.
5. Press and hold the top push button until the alphanumeric display is rL.
6. Press and release the top push button to display the last two digits of the Reporting Group Number.
7. To exit the display, press and release the bottom push button until the alphanumeric display is rG.
Fibre Channel loop switches

The EVA8000 uses four FC loop switches (Figure 22) to connect all of the drive enclosures to the controller pair using FC cables. Each switch acts as a central point of interconnection and establishes a fault-tolerant physical loop topology.

1. Handle 2. Bezel snaps
3. Alignment tabs 4. Walk-up RS232 port
5. SFP status indicator 6. Port Bypassed indicator
7. POST fault indicator 8. Over Temp indicator
9. Power indicator 10. Loop operational indicator

Power-on self test (POST)

When you power on the Fibre Channel switch, it performs a Power-on Self Test (POST) to verify that the switch is functioning properly. During a POST, all of the indicators turn on for approximately two seconds. Then, turn off all of the indicators, except the power indicator.

If the Port Bypass indicators are blinking at a constant rate and the POST Fault indicator is on, the switch detected a fault during the POST. In this case, you need to contact your HP authorized service representative.

Reading the switch indicators

The Fibre Channel switch contains both system indicators and port indicators. The system indicators indicate the status of the switch, and the port indicators provide status of a specific port. Figure 22 shows the Fibre Channel switch with the system and port indicators.
Table 18 lists and describes the system indicators.

Table 18 Fibre Channel switch system indicators

<table>
<thead>
<tr>
<th>System indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>A green indicator. When lit, this indicates that the switch is plugged in and the internal power is functional.</td>
</tr>
<tr>
<td>Loop operational</td>
<td>A green indicator. When lit, this indicates that the Fibre Channel loop has completed initialization and is now operational.</td>
</tr>
<tr>
<td>POST fault</td>
<td>An amber indicator. When lit, this indicates that the internal hardware self-test failed and the switch will not function.</td>
</tr>
<tr>
<td>OverTemp</td>
<td>An amber indicator. When lit, this indicates that the ambient temperature has exceeded 40°C. The switch is still functional; however you should correct the problem immediately. The Over temp indicator turns off when the problem is corrected.</td>
</tr>
</tbody>
</table>

Table 19 describes the port indicators.

Table 19 Fibre Channel switch port indicators

<table>
<thead>
<tr>
<th>SFP status indicator (Green)</th>
<th>Port bypass indicator (Amber)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>Indicates that the port does not have an SFP installed and is bypassed by the loop.</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Indicates that the port is operating normally. The port and device are fully operational.</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>Indicates the that port is in a bypassed state. The port is non-operational due to loss of signal, poor signal integrity, or the Loop Initialization Procedure (LIP). Note: This condition is also normal when the SFP is present but not attached to a Fibre Channel drive enclosure node or when the SFP is present and attached to only a cable assembly. Attaching the SFP to a device and plugging it into the port should initiate the LIP by the attached device.</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Indicates a Tx fault. The port is non-operational due to an SFP transmitter fault, improperly-seated SFP, or another failed device.</td>
</tr>
</tbody>
</table>
Problem isolation

Table 20 lists several basic problems and their solutions.

Table 20 Fibre Channel switch basic troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Recommended action</th>
</tr>
</thead>
</table>
| SFPs are installed in ports but no indicators are lit. | 1. Verify that the power cord is firmly seated in the switch and is connected to the power outlet.
| | 2. Check the power indicator to verify that the switch is on. |
| SFP is installed, but the Port Bypassed indicator is lit. | Re-seat the SFP. If the same condition occurs, the SFP is probably faulty and should be replaced. |
| SFP is installed, but the SFP status indicator and the Port Bypassed indicator are lit. | This condition indicates that the switch is not receiving a valid Fibre Channel signal or that the switch is receiving an LIP.
| | 1. Ensure that the switch is powered on.
| | 2. Contact your HP authorized service representative for further assistance. |
| SFP is installed and the SFP status indicator is lit, but the devices are not communicating. | This condition indicates that the switch is receiving a valid Fibre Channel signal, but there are no upper level protocols active.
| | 1. Verify that you are running the correct firmware on all storage system hardware.
| | 2. Check the Loop Operational indicator.
| | a. If the Loop Operational indicator is lit, the devices have completed initialization.
| | b. If the Loop Operational indicator is off, the devices were not initialized. Disconnect the devices from the switch.
| | Reconnect the devices one at a time. This allows you to isolate the device that is responsible for the loop failure.
| | 3. Contact your authorized service representative for further assistance. |

HSV controllers

This section describes the major features, purpose, and function of the HSV210 and HSV200 controllers. Each Enterprise Virtual Array has a pair of these controllers. Figure 23 shows the HSV210 controller rear view. Figure 24 shows the HSV200 controller rear view. The front view of both controllers is shown in Figure 25.

Figure 23 HSV210 controller—rear view

1. Dual controller interconnect
2. CAB (cabinet address bus)
3. Unit ID
4. Power ON switch
5. FC device ports
6. FC cache mirror ports
7. FC host ports
8. Power supply 0
9. Power supply 1
10. Service connectors (not for customer use)
High availability features

Two interconnected controllers ensure that the failure of a controller component does not disable the system. A single controller can fully support an entire system until the defective controller, or controller component, is repaired. For EVA8000 configurations with more than four disk drive enclosures, the complete data redundancy configuration includes two Loop A and two Loop B data paths. For EVA4000 and EVA6000 configurations, data redundancy is accomplished with two Loop A data paths.

Each HSV210 controller has two lead-acid cache batteries that provide power to the cache memory. Each HSV200 controller has one battery. When the batteries are fully charged, they can provide power to the cache for up to 96 hours.

Operator control panel

The operator control panel (OCP) provides a direct interface to each controller. From the OCP you can display storage system status and configuration information, shut down the storage system, and manage the password.

The OCP includes a 40-character LCD alphanumeric display, six pushbuttons, and five status indicators. See Figure 26.
HP Command View EVA is the tool you will typically use to display storage system status and configuration information or perform the tasks available from the OCP. However, if HP Command View EVA is not available, the OCP can be used to perform these tasks.

![Figure 26 Controller OCP](image)

1. Status indicators (see Table 21) and UID button
2. 40-character alphanumeric display
3. Left, right, top, and bottom push buttons
4. Esc
5. Enter

Status indicators

The status indicators display the operational status of the controller. The function of each indicator is described in Table 21. During initial setup, the status indicators might not be fully operational.

The following sections define the alphanumeric displays modes, including the possible displays, the valid status indicator displays, and the push button functions.

Table 21 Controller status indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault ![exclamation mark]</td>
<td>When this indicator is on there is a controller problem. Check either HP Command View EVA or the LCD Fault Management displays for a definition of the problem and recommended corrective action.</td>
</tr>
<tr>
<td>Controller ![heartbeat]</td>
<td>When this indicator is flashing slowly, a heartbeat, the controller is operating normally. When this indicator is not flashing, there is a problem.</td>
</tr>
<tr>
<td>Physical link to hosts established ![link]</td>
<td>When this indicator is green, there is at least one physical link between the storage system and hosts that is active and functioning normally. When this indicator is off, there are no links between the storage system and hosts that are active and functioning normally.</td>
</tr>
<tr>
<td>Virtual disks presented to hosts ![link]</td>
<td>When this indicator is green, all virtual disks that are presented to hosts are healthy and functioning normally. When this indicator is amber, at least one virtual disk is not functioning normally. When this indicator is off, there are no virtual disks presented to hosts and this indicates a problem with the Vdisk on the array.</td>
</tr>
<tr>
<td>Cache Battery Assembly ![battery]</td>
<td>When this indicator is off, the battery assembly is charged. When this indicator is on, the battery assembly is discharged.</td>
</tr>
<tr>
<td>Unit ID ![unit ID]</td>
<td>Press to light the blue LED on the front and back of the controller. Also comes on in response to a Locate command issued by HP Command View EVA.</td>
</tr>
</tbody>
</table>
Each port on the rear of the controller has an associated status indicator located directly above it. Table 22 lists the port and its status description.

Table 22 Controller port status indicators

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibre Channel host ports</td>
<td>• Green—Normal operation</td>
</tr>
<tr>
<td></td>
<td>• Amber—No signal detected</td>
</tr>
<tr>
<td></td>
<td>• Off—No SFP(^1) detected or the Direct Connect OCP setting is incorrect</td>
</tr>
<tr>
<td>Fibre Channel device ports</td>
<td>• Green—Normal operation</td>
</tr>
<tr>
<td></td>
<td>• Amber—No signal detected or the controller has failed the port</td>
</tr>
<tr>
<td></td>
<td>• Off—No SFP(^1) detected</td>
</tr>
<tr>
<td>Fibre Channel cache mirror ports</td>
<td>• Green—Normal operation</td>
</tr>
<tr>
<td></td>
<td>• Amber—No signal detected or the controller has failed the port</td>
</tr>
<tr>
<td></td>
<td>• Off—No SFP(^1) detected</td>
</tr>
<tr>
<td>Dual controller interconnect port</td>
<td>• Green—Normal operation</td>
</tr>
<tr>
<td></td>
<td>• Amber—Interconnect cable not connected</td>
</tr>
</tbody>
</table>

\(^1\)On copper Fibre Channel cables, the SFP is integrated into the cable connector.

Navigation buttons

The operation of the navigation buttons is determined by the current display and location in the menu structure. Table 23 defines the basic push button functions when navigating the menus and options.

To simplify presentation and to avoid confusion, the push button reference names, regardless of labels, are left, right, top, and bottom.

Table 23 Navigation button functions

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼</td>
<td>Moves down through the available menus and options</td>
</tr>
<tr>
<td>▲</td>
<td>Moves up through the available menus and options</td>
</tr>
<tr>
<td>►</td>
<td>Selects the displayed menu or option.</td>
</tr>
<tr>
<td>◄</td>
<td>Returns to the previous menu.</td>
</tr>
<tr>
<td>Esc</td>
<td>Used for “No” selections and to return to the default display.</td>
</tr>
<tr>
<td>Enter</td>
<td>Used for “Yes” selections and to progress through menu items.</td>
</tr>
</tbody>
</table>

Alphanumeric display

The alphanumeric display uses two LCD rows, each capable of displaying up to 20 alphanumeric characters. By default, the alphanumeric display alternates between displaying the Storage System Name and the World Wide Name. An active (flashing) display, an error condition message, or a user entry (pressing a push button) overrides the default display. When none of these conditions exist, the default display returns after approximately 10 seconds.

Displaying the OCP menu tree

The Storage System Menu Tree lets you select information to be displayed, configuration settings to change, or procedures to implement. To enter the menu tree, press any navigation push button when the default display is active.

The menu tree is organized into the following major menus:
• System Info—displays information and provides the ability to change various configuration settings.
• Fault Management—displays fault information. Information about the Fault Management menu is included in Controller fault management.
• Shutdown Options—initiates the procedure for shutting down the system in a logical, sequential manner. Using the shutdown procedures maintains data integrity and avoids the possibility of losing or corrupting data.
• System Password—create a system password to ensure that only authorized personnel can manage the storage system using HP Command View EVA.

To enter and navigate the storage system menu tree:

1. Press any push button while the default display is in view. System Information becomes the active display.

2. Press ▼ to sequence down through the menus.
 Press ▲ to sequence up through the menus.
 Press ► to select the displayed menu.
 Press ◄ to return to the previous menu.

NOTE:
To exit any menu, press Esc or wait ten seconds for the OCP display to return to the default display.

Table 24 identifies all the menu options available within the OCP display.
Many of the configuration settings available through the OCP impact the operating characteristics of the storage system. You should not change any setting unless you understand how it will impact system operation. For more information on the OCP settings, contact your HP-authorized service representative.

Table 24 Menu options within the OCP display

<table>
<thead>
<tr>
<th>System Information Menu</th>
<th>Fault Management Menu</th>
<th>Shutdown options Menu</th>
<th>System Password Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versions</td>
<td>Last Fault</td>
<td>Restart</td>
<td>Change Password</td>
</tr>
<tr>
<td>Host Port Config (Sets Fabric or Direct Connect)</td>
<td>Detail View</td>
<td>Power Off</td>
<td>Clear Password</td>
</tr>
<tr>
<td>Device Port Config (Enables/disables device ports)</td>
<td></td>
<td>Uninitialize System</td>
<td>Current Password (Set or not)</td>
</tr>
<tr>
<td>IO Module Config (Enables/disables auto-bypass)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loop Recovery Config (Enables/disables recoveries)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unbypass Devices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UUID Unique Half</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debug Flags</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Print Flags</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mastership Status (Displays controller role — master or slave)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displaying system information

NOTE:
The purpose of this information is to assist the HP-authorized service representative when servicing your system.

The system information displays show the system configuration including the XCS version, the OCP firmware and application programming interface (API) versions, and the enclosure address bus programmable integrated circuit (PIC) configuration. You can only view, not change, this information.

Displaying versions system information

When you press ▼, the active display is Versions. From the Versions display you can determine the:
- OCP firmware version
- Controller version
- XCS version
NOTE:
The terms PPC, Sprite, Glue, SDC, CBIC, and Atlantis are for development purposes and have no significance for normal operation.

NOTE:
When viewing the software or firmware version information, pressing Displays the Versions Menu tree.

To display System Information
1. The default display alternates between the Storage System Name display and the World Wide Name display.
 Press any push button to select the Storage System Menu Tree display.
2. Press until the desired Versions Menu option appears, and then press or to move to sub-menu items per Table 24.

Shutting down the system

⚠️ CAUTION:
To power off the system for more than 96 hours, use HP Command View EVA.

You can use the Shutdown System function to implement the shutdown methods listed below. These shutdown methods are explained in Table 25.

- Shutting down the controller (see Shutting the controller down).
- Restarting the system (see Restarting the System).
- Uninitializing the system (see Uninitializing the System).

To ensure that you do not mistakenly activate a shutdown procedure, the default state is always NO, indicating do not implement this procedure. As a safeguard, implementing any shutdown method requires you to complete at least two actions.

<table>
<thead>
<tr>
<th>Table 25 Shutdown methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD prompt</td>
</tr>
<tr>
<td>Restart System?</td>
</tr>
<tr>
<td>Power off system?</td>
</tr>
<tr>
<td>Uninitialize?</td>
</tr>
</tbody>
</table>

Shutting the controller down

Use the following procedure to access the Shutdown System display and execute a shutdown procedure.
NOTE:

HP Command View EVA is the preferred method for shutting down the controller. Shut down the controller from the OCP only if HP Command View EVA cannot communicate with the controller. Shutting down the controller from the OCP removes power from the controller on which the procedure is performed only. To restore power, toggle the controller’s power switch.

CAUTION:

If you decide NOT to power off while working in the Power Off menu, Power Off System NO must be displayed before you press Esc. This reduces the risk of accidentally powering down.

1. Press ▼ three times to scroll to the Shutdown Options menu.
2. Press ▶ to display Restart.
3. Press ▼ to scroll to Power Off.
4. Press ▶ to select Power Off.
5. Power off system is displayed. Press Enter to power off the system.

Restarting the system

To restore the controller to an operational state, use the following procedure to restart the system.

1. Press ▼ three times to scroll to the Shutdown Options menu.
2. Press ▶ to select Restart.
3. Press ▶ to display Restart system?.
4. Press Enter to go to Startup.

No user input is required. The system will automatically initiate the startup procedure and proceed to load the Storage System Name and World Wide Name information from the operational controller.

Uninitializing the system

Uninitializing the system is another way to shut down the system. This action causes the loss of all storage system data. Because HP Command View EVA cannot communicate with the disk drive enclosures, the stored data cannot be accessed.

CAUTION:

Uninitializing the system destroys all user data. The WWN will remain in the controller unless both controllers are powered off. The password will be lost. If the controllers remain powered on until you create another storage system (initialize via GUI), you will not have to re-enter the WWN.

Use the following procedure to uninitialize the system.

1. Press ▼ three times to scroll to the Shutdown Options menu.
2. Press ▶ to display Restart.
3. Press ▼ twice to display Uninitialize System.
4. Press ▶ to display Uninitialize?
5. Select Yes and press Enter. The system is now uninitialized.
Password options

The password entry options are:

- Entering a password during storage system initialization (see Setting up an HSV210-series controller pair using the OCP).
- Showing the current password.
- Changing a password (see Changing a password).
- Removing password protection (see Clearing a password).

Changing a password

For security reasons, you may need to change a storage system password. Your password must contain eight characters consisting of any combination of the uppercase letters A through Z and the lowercase letters a through z.

Use the following procedure to change the password.

NOTE:
Changing a system password on the controller requires changing the password on any HP Command View EVA with access to the storage system.

1. Select a unique, eight-character password.
2. From the default menus (Storage System Name or World Wide Name) displayed, press \[\text{\textasciitilde}\] three times to display System Password.
3. Press \[\text{\textasciitilde}\] to display Change Password?
4. Press Enter for yes.

 The default password, AAAAAAAA, is displayed.
5. Press \[\text{\textasciitilde}\] or \[\text{\textasciitilde}\] to select the first character.
6. Press \[\text{\textasciitilde}\] to accept this character and select the next character.
7. Repeat the process to enter the remaining password characters.
8. Press Enter to enter the password and return to the default display.

Clearing a password

Use the following procedure to remove storage system password protection.

NOTE:
Changing a system password on the controller requires changing the password on any HP Command View EVA with access to the storage system.

1. Press \[\text{\textasciitilde}\] four times to scroll to the System Password menu.
2. Press \[\text{\textasciitilde}\] to display Change Password?
3. Press \[\text{\textasciitilde}\] to scroll to Clear Password.
4. Press \[\text{\textasciitilde}\] to display Clear Password.
5. Press Enter to clear the password.

 The Password cleared message will be displayed.
Setting up a controller pair using the OCP

For information about how to set up a controller pair during initial installation see Setting Up a Controller Pair Using the OCP.

Power supplies

Two power supplies provide the necessary operating voltages to all controller enclosure components. If one power supply fails, the remaining supply is capable of operating the enclosure.

![Power supplies diagram]

Figure 27 Power supplies

1. Status indicator
2. Power supply 0
3. Power supply 1

<table>
<thead>
<tr>
<th>Status indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Normal operation</td>
</tr>
<tr>
<td>Amber</td>
<td>Power supply failure</td>
</tr>
<tr>
<td>Flashing amber</td>
<td>The power cord is disconnected from the power supply</td>
</tr>
</tbody>
</table>

Blowers

Two blowers provide the cooling necessary to maintain the proper operating temperature within the controller enclosure. If one blower fails, the remaining blower is capable of cooling the enclosure.
Figure 28 Blower

1. Status indicator 2. Fault indicator
3. Blower 0 4. Blower 1

Table 27 Blower status indicators

<table>
<thead>
<tr>
<th>Status indicator</th>
<th>Fault indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Off</td>
<td>Normal operation</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Blower failure</td>
</tr>
</tbody>
</table>

Cache battery

Batteries provide backup power to maintain the contents of the controller cache when AC power is lost and the storage system has not been shutdown properly. When fully charged the batteries can sustain the cache contents for to 96 hours. Two batteries are used on the EVA8000 and a single battery is used on the EVA6000 and EVA4000. cache batteries illustrates the location of the cache batteries and the battery status indicators. Refer to Table 28 for additional information on the status indicators.
Figure 29 Cache batteries

1. Status indicator 2. Fault indicator
3. Battery 0 4. Battery 1

Table 28 Battery status indicators

<table>
<thead>
<tr>
<th>Status indicator</th>
<th>Fault indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Off</td>
<td>Normal operation</td>
</tr>
<tr>
<td>Flashing</td>
<td>Off</td>
<td>Battery is charging. This is the indication you will see when installing a new battery. Charging also occurs during the scheduled battery load test. The load test occurs infrequently and takes several hours.</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Battery failure</td>
</tr>
<tr>
<td>Off</td>
<td>Flashing</td>
<td>Battery code is being updated. When a new battery is installed, it may be necessary for the controllers to update the code on the battery to the correct version. This typically takes less than a minute.</td>
</tr>
<tr>
<td>Flashing</td>
<td>Flashing</td>
<td>Battery is undergoing a scheduled battery load test, during which the battery is discharged and then recharged to ensure it is working properly. During the discharge cycle, you will see this display. The load test occurs infrequently and takes several hours.</td>
</tr>
</tbody>
</table>

HSV controller cabling

All data cables and power cables attach to the rear of the controller. Adjacent to each data connector is a two-colored link status indicator. Table 22 identifies the status conditions presented by these indicators.

NOTE:

These indicators do not indicate whether there is communication on the link, only whether the link can transmit and receive data.

The data connections are the interfaces to the disk drive enclosures or loop switches (depending on your configuration), the other controller, and the fabric. Fiber optic cables link the controllers to the fabric, and, if an expansion cabinet is part of the configuration, link the expansion cabinet drive enclosures to the loop switches in the main cabinet. Copper cables are used between the controllers (mirror port) and between the controllers and the drive enclosures or loop switches.
Racks

Each rack has four feet and four casters. Raising the adjustable feet places the rack weight on the casters, so you can easily move the rack. Lowering the feet places the rack weight on the feet and prevents the rack from moving. The removable front and rear doors, and the removable side panels provide easy access to the rack interior.

Each configuration has an upper and lower controller enclosure (the controller pair), drive enclosures, and an expansion bulkhead. Each controller pair and all the associated drive enclosures form a single storage system.

Rack configurations

Each system configuration depends on the following factors:
- The controller pair
- The number of 3U Fibre Channel drive enclosures per rack

For more information about racks and configurations, including expansion and interconnection, refer to the HP StorageWorks Enterprise Virtual Array hardware configuration guide.

Power distribution

AC power is distributed to the rack through a dual Power Distribution Unit (PDU) assembly mounted at the bottom rear of the rack. The characteristics of the fully-redundant rack power configuration are as follows:

- Each PDU is connected to a separate circuit breaker-protected, 30–A AC site power source (220–240 VAC ±10%, 50 or 60–Hz, ±5%). Figure 30 illustrates the compatible 60–Hz and 50–Hz wall receptacles.

NEMA L6-30R receptacle, 3-wire, 30-A, 60-Hz

IEC 309 receptacle, 3–wire, 30–A, 50–Hz

Figure 30 60–Hz and 50–Hz wall receptacles

- The standard power configuration for any Enterprise Virtual Array rack is the fully redundant configuration. Implementing this configuration requires:
 - Two separate circuit breaker-protected, 30–A site power sources with a compatible wall receptacle (see Figure 30).
 - One dual PDU assembly. Each PDU connects to a different wall receptacle.
 - Six Power Distribution Modules (PDM) per rack. Three PDMs mount vertically on each side of the rack. Each set of PDMs connects to a different PDU.
 - The drive enclosure power supplies on the left (PS 1) connect to the PDMs on the left with a gray, 66 cm (26 in) power cord.
 - The drive enclosure power supplies on the right (PS 2) connect to the PDMs on the right with a black, 66 cm (26 in) power cord.
 - The upper controller connects to a PDM on the left with a gray, 152 cm (60 in) power cord.
 - The lower controller connects to a PDM on the right with a black, 66 cm (26 in) power cord.
NOTE:

Drive enclosures, when purchased separately, include one 50 cm black cable and one 50 cm gray cable.

The configuration provides complete power redundancy and eliminates all single points of failure for both the AC and DC power distribution.

PDUs

Each Enterprise Virtual Array rack has either a 50– or 60–Hz, dual PDU mounted at the bottom rear of the rack. The 228481–002/228481–003 PDU placement is back-to-back, plugs facing down, with switches on top.

- The standard 50–Hz PDU cable has an IEC 309, 3–wire, 30–A, 50–Hz connector.
- The standard 60–Hz PDU cable has a NEMA L6–30P, 3–wire, 30–A, 60–Hz connector.

If these connectors are not compatible with the site power distribution, you must replace the PDU power cord cable connector.

Each of the two PDU power cables has an AC power source specific connector. The circuit breaker-controlled PDU outputs are routed to a group of four AC receptacles (see Figure 31). The voltages are then routed to PDMs, sometimes referred to as AC power strips, mounted on the two vertical rails in the rear of the rack.

Figure 31 Dual PDU assembly

1. PDU 1
2. PDU 2
3. Circuit breakers
4. AC receptacles
5. Mounting hardware

PDU 1

PDU 1 connects to AC power distribution source 1. A PDU 1 failure:

- Disables the power distribution circuit.
- Removes power from PDMs 1, 2, and 3.
- Disables PS 1 in the drive enclosures.
- Disables the upper controller power supply.

PDU 2

PDU 2 connects to AC power distribution source 2. A PDU 2 failure:

- Disables the power distribution circuit.
• Removes power from PDMs 4, 5, and 6.
• Disables PS 2 in the drive enclosures.
• Disables the lower controller power supply.

PDMs

There are six PDMs mounted in the rear of each rack:
• Three mounted on the left vertical rail connect to PDU 1.
• Three mounted on the right vertical rail connected to PDU 2.

Each PDM has eight AC receptacles and one thermal circuit breaker. The PDMs distribute the AC power from the PDUs to the enclosures. Two power sources exist for each controller pair and drive enclosure. If a PDU fails, the system will remain operational.

⚠️ CAUTION:

The AC power distribution within a rack ensures a balanced load to each PDU and reduces the possibility of an overload condition. Changing the cabling to or from a PDM could cause an overload condition. HP supports only the AC power distributions defined in this user guide.

![Figure 32 Rack PDM](image)

1. Power receptacles
2. Thermal circuit breakers
3. AC power connector

Rack AC power distribution

The power distribution in an Enterprise Virtual Array rack is the same for all variants. The site AC input voltage is routed to the dual PDU assembly mounted in the rack lower rear. Each PDU distributes AC to a maximum of four PDMs mounted on the left and right vertical rails (see Figure 33).

- PDMs 1 through 3 connect to receptacles A through D on PDU 1. Grey power cords connect these PDMs to the number 1 drive enclosure power supplies and to the upper controller enclosure.
- PDMs 4 through 6 connect to receptacles A through D on PDU 2. Black power cords connect these PDMs to the number 2 drive enclosure power supplies and to the lower controller enclosure.
NOTE:
The locations of the PDUs and the PDMs are the same in all racks.

Figure 33 Rack AC power distribution

1. PDM 1 2. PDM 2
3. PDM 3 4. PDU 1
5. PDM 4 6. PDM 5
7. PDM 6 8. PDU 2

Rack System/E power distribution components

AC power is distributed to the Rack System/E rack through Power Distribution Units (PDU) mounted on the two vertical rails in the rear of the rack. Up to four PDUs can be mounted in the rack—two mounted on the right side of the cabinet and two mounted on the left side.

Each of the PDU power cables has an AC power source specific connector. The circuit breaker-controlled PDU outputs are routed to a group of ten AC receptacles. The storage system components plug directly into the PDUs.

Rack AC power distribution

The power distribution configuration in a Rack System/E rack depends on the number of storage systems installed in the rack. If one storage system is installed, only two PDUs are required. If multiple storage systems are installed, four PDUs are required.

The site AC input voltage is routed to each PDU mounted in the rack. Each PDU distributes AC through ten receptacles directly to the storage system components.

- PDUs 1 and 3 (optional) are mounted on the left side of the cabinet. Grey power cords connect these PDUs to the number 1 drive enclosure power supplies and to the controller enclosures.
- PDUs 2 and 4 (optional) are mounted on the right side of the cabinet. Black power cords connect these PDUs to the number 2 drive enclosure power supplies and to the controller enclosures.
Moving and stabilizing a rack

⚠️ **WARNING!**

The physical size and weight of the rack requires a minimum of two people to move. If one person tries to move the rack, injury may occur.

To ensure stability of the rack, always push on the lower half of the rack. Be especially careful when moving the rack over any bump (e.g., door sills, ramp edges, carpet edges, or elevator openings). When the rack is moved over a bump, there is a potential for it to tip over.

Moving the rack requires a clear, uncarpeted pathway that is at least 80 cm (31.5 in) wide for the 60.3 cm (23.7 in) wide, 42U rack. A vertical clearance of 203.2 cm (80 in) should ensure sufficient clearance for the 200 cm (78.7 in) high, 42U rack.

⚠️ **CAUTION:**

Ensure that no vertical or horizontal restrictions exist that would prevent rack movement without damaging the rack.

Make sure that all four leveler feet are in the fully raised position. This process will ensure that the casters support the rack weight and the feet do no impede movement.

Each rack requires an area 600 mm (23.62 in) wide and 1000 mm (39.37 in) deep (see Figure 34).

![Figure 34 Single rack configuration floor space requirements](image)

1. Front door
2. Rear door
3. Rack width 600 mm
4. Service area width 813 mm
5. Rear service area depth 300 mm
6. Rack depth 1000 mm
7. Front service area depth 406 mm
8. Total rack depth 1706 mm

If the feet are not fully raised, complete the following procedure:

1. Raise one foot by turning the leveler foot hex nut counterclockwise until the weight of the rack is fully on the caster (see Figure 35).
2. Repeat Step 1 for the other feet.
Figure 35 Raising a leveler foot

1. Hex nut 2. Leveler foot

3. Carefully move the rack to the installation area and position it to provide the necessary service areas (see Figure 34).

To stabilize the rack when it is in the final installation location:

1. Use a wrench to lower the foot by turning the leveler foot hex nut clockwise until the caster does not touch the floor. Repeat for the other feet.

2. After lowering the feet, check the rack to ensure it is stable and level.

3. Adjust the feet as necessary to ensure the rack is stable and level.
5 Customer replaceable units

This chapter describes the procedures for replacing CRUs. Information about initial enclosure installation, ESD protection, and common replacement procedures is also presented.

Customer self repair (CSR)

HP’s customer self-repair program offers you fast, easy service. It enables HP to deliver replacement components directly to you so that you can replace them at your own convenience.

- The WEBES fault management and diagnostics tool has been designed to identify many of the EVA4000/6000/8000 component failures that may qualify for customer self repair.
- Using WEBES, ISEE or other diagnostic tools, a support specialist will work with you to diagnose and assess whether a replacement component is required to address a system problem. The specialist will also determine whether you can perform the replacement.
- If you have a Same Business Day (SBD) entitlement (including 2–hour or 4–hour response), CSR components can be delivered for replacement as geography and local part stocking permits.
- Replacement instructions are included in this user guide, in spare kits and at hp.com. If further assistance is required, you can call the HP Technical Support Center and a technician will help you over the phone.
- Make sure you return the failed component to HP using the instructions included with the replacement part.
- CSR is available for most HP products currently under warranty. For more information on warranty service go to: http://h18006.www1.hp.com/products/storageworks/warranty.html.

Table 29 identifies which EVA 4000/6000/8000 hardware components are customer replaceable.

Best practices for replacing hardware components

The following information will help you replace the hardware components on your storage system successfully. Follow these tips any time you must replace a component.

⚠️ CAUTION:

Removing a component significantly changes the air flow within the enclosure. All components must be installed for the enclosure to cool properly. If a component fails, leave it in place in the enclosure until a new component is available to install.

Verifying component failure

- Make sure you confer with HP technical support to verify that the hardware component has failed and that you are authorized to replace it yourself.
- Additional hardware failures can complicate component replacement. Check HP StorageWorks Command View EVA and/or the WEBES System Event Analyzer as follows to detect any additional hardware problems:
 - When you have confirmed that a component replacement is required, you may want to clear the Real Time Monitoring view. This makes it easier to identify additional hardware problems that may occur while waiting for the replacement part.
 - Before installing the replacement part, check the Real Time Monitoring view for any new hardware problems. If additional hardware problems have occurred, contact HP support before replacing the component.
Procuring the spare part

- Table 29 lists the parts that qualify for CSR, including assembly and spare numbers. Parts have a nine-character spare component number on their label (Figure 36). The first six characters (123479) identify the element; the last three characters (002) define the revision level. The replacement component revision level must be the same as, or greater than, the number on the element being replaced. The higher the revision level, the later the revision.

Figure 36 Typical product label

1. Spare part number

- The spare part number for each disk drive is listed on the capacity label attached to each drive (Figure 37).
Table 29 Hardware component CSR support

<table>
<thead>
<tr>
<th>Part description</th>
<th>Assembly part number</th>
<th>Spare part number</th>
<th>CSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache battery</td>
<td>30-10013-01</td>
<td>348879-001 (30-10013-S1)</td>
<td>Recommended</td>
</tr>
<tr>
<td>Controller blower</td>
<td>12-10008-01</td>
<td>390852-001 (12-10008-S1)</td>
<td>Recommended</td>
</tr>
<tr>
<td>Controller power supply</td>
<td>339596-001</td>
<td>349800-001</td>
<td>Recommended</td>
</tr>
<tr>
<td>Disk enclosure blower</td>
<td>70-40085-01</td>
<td>123482-001 (70-40085-S1)</td>
<td>Recommended</td>
</tr>
<tr>
<td>Disk enclosure power supply</td>
<td>30-50872-X000-01, 02, 03, 12, 13</td>
<td>212398-001 (30-50872-S1 or -S2)</td>
<td>Recommended</td>
</tr>
<tr>
<td>Disk drive – 300 GB 10K</td>
<td>365608-001</td>
<td>366023-001</td>
<td>Recommended</td>
</tr>
<tr>
<td>Disk drive – 250 GB FATA</td>
<td>365606-001</td>
<td>366022-001</td>
<td>Recommended</td>
</tr>
<tr>
<td>Disk drive – 146 GB 10K</td>
<td>293557-001</td>
<td>300590-001</td>
<td>Recommended</td>
</tr>
<tr>
<td>Disk drive – 146 GB 15K</td>
<td>365610-001</td>
<td>366024-001</td>
<td>Recommended</td>
</tr>
<tr>
<td>Disk drive – 72 GB 10K</td>
<td>238926-001</td>
<td>244448-001</td>
<td>Recommended</td>
</tr>
<tr>
<td>Disk drive – 72 GB 15K</td>
<td>293569-001</td>
<td>300588-001</td>
<td>Recommended</td>
</tr>
<tr>
<td>Operator control panel</td>
<td>70-41143-01</td>
<td>390859-001 (70-41143-S1)</td>
<td>Recommended</td>
</tr>
<tr>
<td>EMU</td>
<td>70-40145-02</td>
<td>375393-001 (70-40145-S2)</td>
<td></td>
</tr>
<tr>
<td>FC I/O module A</td>
<td>70-40616-03</td>
<td>364549-001 (70-40616-S4)</td>
<td></td>
</tr>
<tr>
<td>FC I/O module B</td>
<td>70-40615-03</td>
<td>364548-001 (70-40615-S4)</td>
<td></td>
</tr>
<tr>
<td>2GB SFP Transceiver</td>
<td>212192-002</td>
<td>229204-001</td>
<td></td>
</tr>
<tr>
<td>Controller EVA8000</td>
<td>70-41138-01</td>
<td>390855-001 (70-41138-S1)</td>
<td></td>
</tr>
<tr>
<td>Controller EVA6000/4000</td>
<td>70-41138-02</td>
<td>390856-001 (70-41138-S2)</td>
<td></td>
</tr>
<tr>
<td>Front panel bezel EVA8000</td>
<td>70-41140-01</td>
<td>390853-001 (70-41140-S1)</td>
<td>Recommended</td>
</tr>
<tr>
<td>Front panel bezel EVA6000/4000</td>
<td>70-41140-02</td>
<td>390854-001 (70-41140-S2)</td>
<td>Recommended</td>
</tr>
</tbody>
</table>

1 Always use caution to avoid damage to cabling when replacing this component.
Replacing the failed component

⚠️ CAUTION:
Components can be damaged by electrostatic discharge. Use proper anti-static protection as discussed below.
• Always transport and store CRUs in an ESD protective enclosure.
• Do not remove the CRU from the ESD protective enclosure until you are ready to install it.
• Always use ESD precautions, such as a wrist strap, heel straps on conductive flooring, and an ESD protective smock when handling ESD sensitive equipment.
• Avoid touching the CRU connector pins, leads, or circuitry.
• Do not place ESD generating material such as paper or non anti-static (pink) plastic in an ESD protective enclosure with ESD sensitive equipment.

• HP recommends waiting until periods of low storage system activity to replace a component.
• When replacing components at the backend of the rack, cabling may obstruct access to the component. Carefully move any cables out of the way to avoid loosening any connections. In particular, avoid cable damage that may be caused by:
 • Kinking or bending.
 • Disconnecting cables without capping. If uncapped, cable performance may be impaired by contact with dust, metal or other surfaces.
 • Placing removed cables on the floor or other surfaces, where they may be walked on or otherwise compressed.
• Replacement procedures are provided with each component. You can also download the replacement instructions in Dutch, English, French, German, Italian, Spanish and Japanese from the following web sites:
 • http://www.hp.com/go/eva4000
 • http://www.hp.com/go/eva6000
 • http://www.hp.com/go/eva8000
From any of these web sites, select Technical documents under Product information for additional information.

Returning the defective part

• HP specifies, in the materials shipped with a replacement CSR part, whether the defective component must be returned to HP. Where required, you must ship the defective component back to HP within a defined period of time, normally five (5) business days. The defective component must be returned with the associated documentation provided in the shipping material. Failure to return the defective component may result in HP billing you for the replacement. With a customer self repair, HP will pay all shipping and component return costs and determine the courier/carrier to be used.

Replacing the cache battery

This section describes the procedure for replacing the cache battery used in Enterprise Virtual Array (EVA) products.
NOTE:

There are two cache batteries installed in the EVA8000 controller enclosure in slots 0 and 1 at the left end of the enclosure. There is only one battery in the EVA4000 and EVA6000 controller installed in the upper slot (0).

Before you begin

Observe the following precautions when replacing a battery.

⚠️ **CAUTION:**

Parts can be damaged by electrostatic discharge. Use proper anti-static protection. Refer to the documentation that shipped with your system for additional information.

Use two hands when removing a battery to ensure you do not drop it.

Have a copy of the product User Guide available for reference. You can download a copy of the user guide from the product support page on the HP web site.

Verifying component failure

Before replacing a battery, use the following methods to verify the component failure:

⚠️ **CAUTION:**

If Command View EVA does not present a status consistent with that of the battery status indicator, or if Command View or the System Event Analyzer indicates multiple hardware failures, contact HP support for assistance. The HP support web site is located at http://www.hp.com/support.

- Analyze any failure messages you may have received from system monitoring (System Event Analyzer).
- Check status using Command View EVA:

⚠️ **CAUTION:**

If you are running HP StorageWorks Command View EVA 4.0, the battery numbering presented in the management interface is inconsistent with the numbering used in the storage system and reported by the ISEE/WEBES monitoring tool. HP Command View EVA 4.0 identifies the top battery as 1 and the bottom battery as 2. The correct numbering should be 0 and 1 respectively. Remember to make this conversion when replacing a battery. This inconsistency is corrected in later versions of HP Command View EVA.

1. In the Navigation pane, select **Storage system > Hardware > Rack > Controller enclosure > Controller**.

2. In the Content pane, select the **Enclosure** tab. The status is displayed in the **Cache Battery Modules** field. The status should be Failed ✗.

3. To help identify the correct enclosure, click **Locate > Locate On** to display **Locate Confirmed** on the controller operator control panel (OCP). The blue Unit ID indicator will also turn on.

- Check the battery status indicators. See Figure 38. The battery fault indicator should be on. To view the status indicators it is necessary to remove the front panel as described in Removing a blower.
Removing a battery

1. Remove the front panel (1, Removing a battery) by grasping the panel at each end pulling it off the enclosure.

2. While moving the battery mounting latch (2, Removing a battery) to the right, pull the battery out of the enclosure (3). Support the battery with both hands as it is removed.

Installing a battery

• Position the battery as high in the slot as possible, then slide the battery into the enclosure (1, Figure 40) until it is fully seated and the mounting latch engages (2).
Verifying proper operation

After replacing the battery, check the following to verify that the component is operating properly:

NOTE:
It may take up to 10 minutes for the component to display good status.

- Check the battery status indicators. See Table 28
- During the first minute, both status indicators may be on or flashing.
- The status indicator (1) should then begin flashing, indicating the battery is charging. It may take several hours for a new battery to fully charge. The fault indicator (2) should be off during charging.

After checking the status indicator, install the front panel on the enclosure by pressing it firmly into place.

- **From Command View EVA**
- Navigate back to the component and check the status. It should be.
- Turn off the locate function by clicking **Locate > Locate Off**

Replacing a controller blower

This section describes the procedure for replacing the blower used in Enterprise Virtual Array (EVA) products.

Before you begin

Observe the following precautions when replacing a blower.

CAUTION:
Removing a blower significantly changes the air flow within the enclosure. Both blowers must be installed for the enclosure to cool properly. If a blower fails, leave it in place in the enclosure until a new blower is available to install.

Parts can be damaged by electrostatic discharge. Use proper anti-static protection. Refer to the documentation that shipped with your system for additional information.

Have a copy of the product User Guide available for reference. You can download a copy of the User Guide from the product support page on the HP web site.

Verifying component failure

Before replacing a blower, use the following methods to verify the component failure:
CAUTION:
If Command View EVA does not present a status consistent with that of the blower status indicators, or if Command View or the System Event Analyzer indicates multiple hardware failures, contact HP support for assistance. The HP support web site is located at http://www.hp.com/support.

- Analyze any failure messages you may have received from system monitoring (System Event Analyzer).
- Check status using Command View EVA:

CAUTION:
If you are running HP StorageWorks Command View EVA 4.0, the blower numbering presented in the management interface is inconsistent with the numbering used in the storage system and reported by the ISEE/WEBES monitoring tool. HP Command View EVA 4.0 identifies the top blower as 1 and the bottom blower as 2. The correct numbering should be 0 and 1 respectively. Remember to make this conversion when replacing a blower. This inconsistency is corrected in later versions of HP Command View EVA.

1. In the Navigation pane, select Storage system > Hardware > Rack > Controller enclosure > Controller.
2. In the Content pane, select the Enclosure tab. The status is displayed in the Cooling System field. The status should be Failed.
3. To help identify the correct enclosure, click Locate > Locate On to display Locate Confirmed on the controller operator control panel (OCP). The blue Unit ID indicator will also turn on.

- Check the blower status indicators. See Figure 41. The fault indicator (2) should be on. To view the status indicators it may be necessary to remove the front panel as described in Removing a blower.

![Figure 41 Blower status indicators](image)

Removing a blower

WARNING!
The blower motor does not stop immediately when the blower is removed. Keep your fingers away from the blower blades until the motor stops.
1. Remove the front panel (1) by grasping the panel at each end pulling it off the enclosure.
2. Move the wine-colored mounting latch (2) to the right, and pull the blower out of the enclosure (3).

![Figure 42 Removing a blower](image1)

Installing a blower
- Position the blower as high in the slot as possible, then slide the blower into the enclosure (1) until the mounting latch (2) engages.

![Figure 43 Installing a blower](image2)

Verifying proper operation
After replacing the blower, check the following to verify that the component is operating properly:
- Blower should begin operating immediately.
- Check the controller blower status indicators. See Figure 41
 - The status indicator (1) should be on.
 - The fault indicator (2) should be off.

After checking the status indicator, install the front panel on the enclosure by pressing it firmly into place. Also clear the locate message on the OCP by pressing the ESC push button.
- From Command View EVA
 - Navigate back to the component and check the status. It should be ![on icon]
 - Turn off the locate function by clicking **Locate > Locate Off**

Returning the failed component
Please follow the return instructions provided with the new component.
Replacing the controller power supply

This section describes the procedure for replacing the power supply used in EVA 4000/6000/8000 products.

NOTE:
Because this component is used in several products, the drawings may reflect a different enclosure than the one you have. The removal and replacement procedure is the same for each product.

Before you begin

Observe the following precautions when replacing a power supply.

⚠️ **CAUTION:**
Removing a power supply significantly changes the air flow within the enclosure. Both power supplies must be installed for the enclosure to cool properly. If a power supply fails, leave it in place in the enclosure until a new power supply is available to install.

If cabling is obstructing access to the power supply, carefully move the cables out of the way to avoid loosening any connections.

Parts can be damaged by electrostatic discharge. Use proper anti-static protection. Refer to the documentation that shipped with your system for additional information.

Have a copy of the product User Guide available for reference. You can download a copy of the User Guide from the product support page on the HP web site.

Verifying component failure

Before replacing a power supply, use the following methods to verify the component failure.

⚠️ **CAUTION:**
If Command View EVA does not present a status consistent with that of the power supply status indicator, or if Command View or the System Event Analyzer indicates multiple hardware failures, contact HP support for assistance. The HP support web site is located at http://www.hp.com/support.

- Analyze any failure messages you may have received from system monitoring (System Event Analyzer).
- Check status using Command View EVA:

⚠️ **CAUTION:**
If you are running HP StorageWorks Command View EVA 4.0, the power supply numbering presented in the management interface is inconsistent with the numbering used in the storage system and reported by the ISEE/WEBES monitoring tool. HP Command View EVA 4.0 identifies the left power supply as 1 and the right power supply as 2. The correct numbering should be 0 and 1 respectively. Remember to make this conversion when replacing a power supply. This inconsistency is corrected in later versions of HP Command View EVA.

1. In the Navigation pane, select Storage system > Hardware > Rack > Controller enclosure > Controller
2. In the Content pane, select the Enclosure tab. The status is displayed in the Power System field. The status should be Failed ❌
3. To help identify the correct enclosure, click Locate > Locate On to display Locate Confirmed on the controller operator control panel (OCP). The blue Unit ID indicator will also turn on.

- Check the power supply status indicator. See Figure 44. It should be amber or off.

![Figure 44 Power supply status indicator](image)

1. Status indicator
2. Power supply 0
3. Power supply 1

Removing a power supply

1. Disconnect the AC power cord from the power supply.

2. While moving the wine-colored latch to the left (1, Removing a power supply), grasp the handle and pull the power supply out of the enclosure (2).

![Figure 45 Removing a power supply](image)

Installing a power supply

1. Remove any connector protector that may be covering the AC power connector on the new power supply.

2. While pressing in on the mounting latch (1, Installing a power supply), slide the power supply into the enclosure until it is fully seated (2).

3. Connect the AC power cord to the power supply.
Figure 46 Installing a power supply

Verifying proper operation

After replacing the power supply, check the following to verify that the component is operating properly:

• Check the power supply status indicator. It should be green.
• Navigate back to the component and check the status. It should be ✓.
• Turn off the locate function by clicking Locate > Locate Off.

Returning the failed component

Please follow the return instructions provided with the new component.

Replacing a disk drive

This section describes the procedure for replacing the Fibre Channel disk drive used in the EVA 4000/6000/8000 products.

Before you begin

Observe the following precautions when replacing the disk drive.

⚠️ CAUTION:

- Make sure you have a replacement part available before removing the failed component. Removing a component impacts cooling within the enclosure.
- Do not remove more than one disk drive at a time from the enclosure. Doing so will impact cooling of the enclosure and may cause data loss.
- Parts can be damaged by electrostatic discharge. Use proper anti-static protection. Refer to the documentation that shipped with your system for additional information.
- Have a copy of the product User Guide available for reference. You can download a copy of the User Guide from the product support page on the HP web site.

Verifying component failure

Before beginning the replacement procedure, use the following methods to verify the component failure.
△ CAUTION:
If Command View EVA does not present a status consistent with that of the disk drive status indicators, or if Command View or the System Event Analyzer indicates multiple hardware failures, contact HP support for assistance. The HP support web site is located at http://www.hp.com/support

- Analyze any failure messages you may have received from system monitoring (System Event Analyzer).
- Check the disk drive status indicators. See Figure 47. The Fault indicator should be On.
- Check status using Command View EVA:
 1. In the Navigation pane, select Storage system > Hardware > Rack > Disk enclosure > Bay
 2. In the Content pane, select the Disk Drive tab. The Operational state should be ✗ Failed.
 3. Verify the following status conditions are met before proceeding:
 - Migration state - Not migrating
 - Requested usage - Ungrouped
 - Actual usage - Ungrouped
 4. Click Remove to prepare the disk for removal. The status indicators on the disk drive will begin flashing to help you locate the disk.

![Figure 47 Disk drive status indicators](image)

Removing a disk

△ CAUTION:
Rotating media can make the disk drive difficult to handle. To avoid dropping and damaging the disk drive, wait approximately 30 seconds for the media to stop rotating before removing the drive from the enclosure.

1. Push in the wine-colored ejector push button (1) and pull the release lever (2) down to the full open position.
2. Pull the disk drive part way out of the enclosure (3) and wait for the media to stop spinning.
3. When the media has stopped spinning, remove the disk drive from the enclosure.
Installing a disk drive

1. Push in the ejector push button on the disk drive and pull the release lever down to the full open position.
2. Insert the drive into the enclosure as far as it will go (1).
3. Close the release lever until it engages the ejector push button, and the disk drive seats in the backplane (2).
4. Press in firmly on the disk drive to ensure it is seated properly.

Verifying proper operation

After replacing the disk drive, check the following to verify that the disk drive is operating normally:

NOTE:

It may take up to 10 minutes for the component to display good status.

- Check the disk drive status indicators. See Figure 47.
 - Activity indicator (1) should be on or flashing
 - Online indicator (2) should be on or flashing
 - Fault indicator (3) should be off
- Check the following using Command View EVA.
 - Navigate back to the component and check the operational state. It should be

• Ensure the disk drive is using the correct firmware. Check the Firmware Version against the supported disk firmware in the HP StorageWorks Enterprise Virtual Array release notes. The most current edition of the release notes can be downloaded from the following web site: http://www.hp.com/go/eva8000

If the disk drive is using an unsupported version of firmware, contact HP support for assistance. Do not add the disk drive to a disk group if it using an unsupported firmware version.

Adding a disk to the group

After replacing the disk, it should be added to a disk group. The disk is typically added back into its original disk group.

1. In the Navigation pane, select Storage system > Hardware > Rack > Disk enclosure > Bay
2. In the Content pane, select the Disk Drive tab.
3. Click Group to initiate the process for adding the disk to a disk group.

NOTE:
If the Device Addition Policy is set to automatic, the disk will automatically be added to a disk group. In this case the Group option will not be available.

Returning the failed component

Please follow the return instructions provided with the new component.

Replacing the disk enclosure power supply/blower

This section describes the procedure for replacing the power supply/blower assembly used in EVA 4000/6000/8000 products.

NOTE:
Because this component is used in several products, the drawings may reflect a different enclosure than the one you have. The removal and replacement procedure is the same for each product.

Before you begin

Observe the following precautions when replacing the power supply/blower.

⚠️ **CAUTION:**

You have only seven minutes to perform the replacement procedure! Both power supplies must be installed for the enclosure to cool properly. If a power supply fails, leave it in place in the enclosure until a new power supply is available to install. The enclosure could shut down due to overheating unless the power supply is replaced within seven minutes of removal of the failed/failing power supply.

If cabling is obstructing access to the power supply/blower, carefully move the cables out of the way to avoid loosening any connections.

Parts can be damaged by electrostatic discharge. Use proper anti-static protection. Refer to the documentation that shipped with your system for additional information.

Have a copy of the product User Guide available for reference. You can download a copy of the User Guide from the product support page on the HP web site.
Verifying component failure

⚠️ CAUTION: ⚠️
If Command View EVA does not present a status consistent with that of the power supply/blower status indicator, or if Command View or the System Event Analyzer indicates multiple hardware failures, contact HP support for assistance. The HP support web site is located at http://www.hp.com/support.

The power supply and blower are separately replaceable components. Before replacing a power supply or blower, use the following methods to verify the component failure:

- Analyze any failure messages you may have received from system monitoring (System Event Analyzer).
- Check status using Command View EVA:
 1. In the Navigation pane, select Storage system > Hardware > Rack > Disk enclosure
 2. In the Content pane, select the Power tab or the Cooling tab then the appropriate component (1 or 2). The Operational state should be ✗ Failed.
 3. To help identify the correct enclosure, click Locate > Locate On to flash the status indicators on the front of the disk enclosure.
- Check the power supply/blower status indicator. See Figure 50. It should be off.

![Figure 50 Power supply/blower status indicator](image)

1. Status indicator
2. Power supply/blower 1
3. Power supply/blower 2

Removing a blower

It is not necessary to remove the power supply to replace a failed blower.

⚠️ WARNING! ⚠️
The blower motor does not stop immediately when the blower is removed. Keep your fingers away from the blower blades until the motor stops.

- While pushing in on the two wine-colored mounting tabs (1, Removing a blower), pull the blower (2) away from the power supply.
Installing a blower

⚠️ **CAUTION:**
Pressing on the center section of the blower can damage the blades or the housing. Only press on the outer edge of the blower when installing it.

1. Align the blower guide post (2, **Installing a blower**) with the mounting hole next to the power supply connector (1).
2. Slide the blower onto the power supply (4) until the mounting tabs (3) snap into place.

Figure 52 Installing a blower

Removing a power supply

⚠️ **CAUTION:**
When a power supply is removed, the enclosure could shut down within seven minutes due to overheating unless the power supply is replaced.

1. Disengage the power cord lock (1, **Figure 53**) and disconnect the power cord from the power supply.

⚠️ **CAUTION:**
When removing the left power supply, ensure the cord lock on the right power supply is engaged. This will avoid inadvertently disconnecting the right power supply. Also take care to avoid disrupting the cables on the I/O module to left of the power supply.

2. Lift up on the wine-colored mounting latch (2), then grasp the blower (3) and pull the power supply out of the enclosure.
3. Remove the blower from the defective power supply and install it on the replacement power supply.
Installing a power supply

1. Lift up on the module latch (1, Figure 54) and slide the power supply into the enclosure until it is fully seated.
2. Connect the power cord to the power supply and engage the cord lock.

Verifying proper operation

After replacing the power supply or blower, check the following to verify that the component is operating properly:

NOTE:

It may take up to 10 minutes for the component to display good status.

- Make sure the blower begins operating immediately.
- The status indicator should be on.
• From Command View EVA
 • Navigate back to the component and check the status. It should be ✔.
 • Turn off the locate function by clicking Locate > Locate Off

Returning the failed component

Please follow the return instructions provided with the new component.
A Regulatory notices and specifications

This appendix includes regulatory notices and product specifications for the HP StorageWorks Enterprise Virtual Array family.

The following topics are included:

• Regulatory notices
• Fibre Channel drive enclosure specifications
• Fibre Channel switch specifications
• Controller specifications
• Rack specifications

Regulatory notices

Federal Communications Commission (FCC) notice

Part 15 of the Federal Communications Commission (FCC) Rules and Regulations has established Radio Frequency (RF) emission limits to provide an interference-free radio frequency spectrum. Many electronic devices, including computers, generate RF energy incidental to their intended function and are, therefore, covered by these rules. These rules place computers and related peripheral devices into two classes, A and B, depending upon their intended installation. Class A devices are those that may reasonably be expected to be installed in a business or commercial environment. Class B devices are those that may reasonably be expected to be installed in a residential environment (for example, personal computers). The FCC requires devices in both classes to bear a label indicating the interference potential of the device as well as additional operating instructions for the user.

The rating label on the device shows the classification (A or B) of the equipment. Class B devices have an FCC logo or FCC ID on the label. Class A devices do not have an FCC logo or FCC ID on the label. After the class of the device is determined, refer to the corresponding statement in the following sections.

FCC Class A certification

This equipment generates, uses, and may emit radio frequency energy. The equipment has been type tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC rules, which are designed to provide reasonable protection against such radio frequency interference.

Operation of this equipment in a residential area may cause interference, in which case the user at the user’s own expense will be required to take whatever measures may be required to correct the interference.

Any modifications to this device—unless approved by the manufacturer—can void the user’s authority to operate this equipment under Part 15 of the FCC rules.

NOTE:

Additional information on the need to interconnect the device with shielded (data) cables or the need for special devices, such as ferrite beads on cables, is required if such means of interference suppression was used in the qualification test for the device. This information will vary from device to device and needs to be obtained from the HP EMC group.
Class A equipment

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at personal expense.

Class B equipment

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and receiver.
• Connect the equipment into an outlet on a circuit that is different from that to which the receiver is connected.
• Consult the dealer or an experienced radio or television technician for help.

Declaration of conformity for products marked with the FCC logo, United States only

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

For questions regarding your product, refer to http://thenew.hp.com.

For questions regarding this FCC declaration, contact:
• Hewlett-Packard Company
 Product Regulations Manager
 3000 Hanover St.
 Palo Alto, CA 94304
• Or call 1-650-857-1501

To identify this product, refer to the part, series, or model number found on the product.

Modifications

The FCC requires the user to be notified that any changes or modifications made to this device that are not expressly approved by Hewlett-Packard Company may void the user’s authority to operate the equipment.

Cables

Connections to this device must be made with shielded cables with metallic RFI/EMI connector hoods in order to maintain compliance with FCC Rules and Regulations.

Laser device

All Hewlett-Packard systems equipped with a laser device comply with safety standards, including International Electrotechnical Commission (IEC) 825. With specific regard to the laser, the equipment complies with laser product performance standards set by government agencies as a Class 1 laser product. The product does not emit hazardous light; the beam is totally enclosed during all modes of customer operation and maintenance.
Laser safety warnings

Heed the following warning:

⚠️ WARNING!

WARNING: To reduce the risk of exposure to hazardous radiation:

- Do not try to open the laser device enclosure. There are no user-serviceable components inside.
- Do not operate controls, make adjustments, or perform procedures to the laser device other than those specified herein.
- Allow only HP authorized service technicians to repair the laser device.

Compliance with CDRH regulations

The Center for Devices and Radiological Health (CDRH) of the U.S. Food and Drug Administration implemented regulations for laser products on August 2, 1976. These regulations apply to laser products manufactured from August 1, 1976. Compliance is mandatory for products marketed in the United States.

Certification and classification information

This product contains a laser internal to the Optical Link Module (OLM) for connection to the Fibre communications port.

In the USA, the OLM is certified as a Class 1 laser product conforming to the requirements contained in the Department of Health and Human Services (DHHS) regulation 21 CFR, Subchapter J. The certification is indicated by a label on the plastic OLM housing.

Outside the USA, the OLM is certified as a Class 1 laser product conforming to the requirements contained in IEC 825-1:1993 and EN 60825-1:1994, including Amendment 11:1996.

The OLM includes the following certifications:

- UL Recognized Component (USA)
- CSA Certified Component (Canada)
- TUV Certified Component (European Union)
- CB Certificate (Worldwide)

Canadien notice (avis Canadien)

Class A equipment

This Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.

Cet appareil numérique de la classe A respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

Class B equipment

This Class B digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.

Cet appareil numérique de la classe B respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.
European union notice

Products with the CE Marking comply with both the EMC Directive (89/336/EEC) and the Low Voltage Directive (73/23/EEC) issued by the Commission of the European Community.

Compliance with these directives implies conformity to the following European Norms (the equivalent international standards are in parenthesis):

- EN55022 (CISPR22) - Electromagnetic Interference
- EN55024 (IEC61000-4-2, 3, 4, 5, 6, 8, 11) - Electromagnetic Immunity
- EN61000-3-2 (IEC61000-3-2) - Power Line Harmonics
- EN61000-3-3 (IEC61000-3-3) - Power Line Flicker
- EN60950 (IEC950) - Product Safety

Notice for France

DECLARATION D’INSTALLATION ET DE MISE EN EXPLOITATION d’un matériel de traitement de l’information (ATI), classé A en fonction des niveaux de perturbations radioélectriques émis, définis dans la norme européenne EN 55022 concernant la Compatibilité Electromagnétique.

WEEE Recycling Notices

English notice

Disposal of waste equipment by users in private household in the European Union

This symbol on the product or on its packaging indicates that this product must not be disposed of with your other household waste. Instead, it is your responsibility to dispose of your waste equipment by handing it over to a designated collection point for recycling of waste electrical and electronic equipment. The separate collection and recycling of your waste equipment at the time of disposal will help to conserve natural resources and ensure that it is recycled in a manner that protects human health and the environment. For more information about where you can drop off your waste equipment for recycling, please contact your local city office, your household waste disposal service, or the shop where you purchased the product.

Dutch notice

Verwijdering van afgedankte apparatuur door privé-gebruikers in de Europese Unie

Dit symbool op het product of de verpakking geeft aan dat dit product niet mag worden gedepeqneerd bij het normale huishoudelijke afval. U bent zelf verantwoordelijk voor het inleveren van uw afgedankte apparatuur bij een inzamelingspunt voor het recyclen van oude elektrische en elektronische apparatuur. Door uw oude apparatuur apart aan te bieden en te recyclen, kunnen natuurlijke bronnen worden behouden en kan het materiaal worden hergebruikt op een manier waarmee de volksgezondheid en het milieu worden beschermd. Neem contact op met uw gemeente, het afvalinzamelingsbedrijf of de winkel waar u het product hebt gekocht voor meer informatie over inzamelingspunten waar u oude apparatuur kunt aanbieden voor recycling.

Czechoslovakian notice

Likvidace zařízení soukromými domácími uživateli v Evropské unii
Tento symbol na produktu nebo balení označuje výrobek, který nesmí být vyhozen spolu s ostatním domácím odpadem. Povinností uživatele je předat takto označený odpad na předem určené sběrné místo pro recyklaci elektrických a elektronických zařízení. Okamžité třídění a recyklace odpadu pomáže uchovat přírodní prostředí a zajistí takový způsob recyklace, který ochráni zdraví a životní prostředí člověka. Další informace o možnostech odevzdání odpadu k recyklaci získáte na příslušném obecním nebo městském úřadě, od firmy zabyvající se sběrem a svozem odpadu nebo v obchodě, kde jste produkt zakouřili.

Estonian notice

Seadmete jäätmete kõrvaldamine eramajapidamistes Euroopa Liidus

See tootel või selle pakendil olev sümbol näitab, et kõnealust toodet ei tohi koos teiste majapidamisjäätmetega kõrvaldada. Teie kohus on oma seadmete jäätmed kõrvaldada, viies need elektri- ja elektroonikaseadmete jäätmete ringlussevõtmiseks selleks ettenähtud kogumispunkti. Seadmete jäätmete eraldi kogumine ja ringlussevõtmine kõrvaldamise ajal aitab kaitsta loodusvarasid ning tagada, et ringlussevõtmine toimub viisil, mis kaitseb inimeste tervist ning keskkonda. Lisateabe saamiseks selle kohta, kuhu oma seadmete jäätmed ringlussevõtmiseks viia, võtke palun ühendust oma kohaliku linnakantselei, majapidamisjäätmete kõrvaldamise teenistuse või kauplusega, kust Te toote ostsite.

Finnish notice

Laitteiden hävittäminen kotitalouksissa Euroopan unionin alueella

Jos tuotel tai sen pakauksessa on tämä merkki, tuotetta ei saa hävittää kotitalousjäätteiden mukana. Tällöin hävitettävä laite on toimitettava sähkö- ja elektroniikaseudmeten hävittämisepäätöksensä selleks ettenähtud kogumispisteeseen. Seadmete jätmete eraldi käsittely ja ringlussevottaminen kõrvaldamise ajal auttaa myös säästämään luonnonvaroja ja varmistamaan, että laite kierretään tavalla, joka estää terveyshaitoja ja suojelee luontoa. Lisätietoja paikoista, joihin hävitettävät laitteet voi toimittaa kierretettäväksi, saa ottamalla yhteyttä jätehuoltoon tai liikkeeseen, josta tuote on ostettu.

French notice

Élimination des appareils mis au rebut par les ménages dans l’Union européenne

Le symbole apposé sur ce produit ou sur son emballage indique que ce produit ne doit pas être jeté avec les déchets ménagers ordinaires. Il est de votre responsabilité de mettre au rebut vos appareils en les déposant dans les centres de collecte publique désignés pour le recyclage des équipements électriques et électroniques. La collecte et le recyclage de vos appareils mis au rebut indépendamment du reste des déchets contribue à la préservation des ressources naturelles et garantit que ces appareils seront recyclés dans le respect de la santé humaine et de l’environnement. Pour obtenir plus d’informations sur les centres de collecte et de recyclage des appareils mis au rebut, veuillez contacter les autorités locales de votre région, les services de collecte des ordures ménagères ou le magasin dans lequel vous avez acheté ce produit.

German notice

Entsorgung von Altgeräten aus privaten Haushalten in der EU

Greek notice

Απόρριψη άχρηστου εξοπλισμού από χρήστες σε ιδιωτικά νοικοκυριά στην Ευρωπαϊκή Ένωση

To σύμβολο αυτό στο προϊόν ή τη συσκευασία του υποδεικνύει ότι το συγκεκριμένο προϊόν δεν πρέπει να διατίθεται μαζί με τα άλλα οικιακά σας απορρίμματα. Αντίθετα, είναι δική σας ευθύνη να απορρίπτετε τον άχρηστο εξοπλισμό σας παραδίδοντάς τον σε καθορισμένο σημείο συλλογής για την ανακύκλωση άρηστου ηλεκτρικού και ηλεκτρονικού εξοπλισμού. Η διεξαγωγή συλλογής και ανακύκλωσης του άχρηστου εξοπλισμού σας κατά την απόρριψη θα συμβάλει στη διατήρηση των φυσικών πόρων και θα διασφαλίσει ότι η ανακύκλωση γίνεται με τρόπο που προστατεύει την ανθρώπινη υγεία και το περιβάλλον. Για περισσότερες πληροφορίες σχετικά με το πώς μπορείτε να παραδώσετε τον άχρηστο εξοπλισμό σας για ανακύκλωση, επικοινωνήστε με το αρμόδιο τοπικό γραφείο διάθεσης οικιακών απορριμμάτων ή το κατάστημα όπου αγόρασατε το προϊόν.

Hungarian notice

Készülékek magánháztartásban történő selejtezése az Európai Unió területén

A készüléken, illetve a készülék csomagolásán látható azonos szimbólum annak jelzésére szolgál, hogy a készülék a selejtezés során az egyéb háztartási hulladéktól eltérő módon kezelendő. A vásárló a hulladékká vált készülékét köteles a kijelölt gyűjtőhelyre szállítani az elektromos és elektronikai készülékül újrahasznosítása céljából. A hulladékká vált készülékek selejtezéskor begyűjtése és újrahasznosítása hozzájárul a természeti erőforrások megóváséhez, valamint biztosítja a selejtezett termékek környezetre és emberi egészségre nézve biztonságos feldolgozását. A begyűjtés pontos helyéről bővebb tájékoztatást a lakhelye szerint illetékes önkormányzattól, az illetékes személytakarító vállalattól, illetve a terméket elárusító helyen kaphat.

Italian notice

Smaltimento delle apparecchiature da parte di privati nel territorio dell’Unione Europea

Questo simbolo presente sul prodotto o sulla sua confezione indica che il prodotto non può essere smaltito insieme ai rifiuti domestici. È responsabilità dell’utente smaltire le apparecchiature consegnandole presso un punto di raccolta designato al riciclo e allo smaltimento di apparecchiature elettriche ed elettroniche. La raccolta differenziata e il corretto riciclo delle apparecchiature da smaltire permette di proteggere la salute degli individui e l’ecosistema. Per ulteriori informazioni relative ai punti di raccolta delle apparecchiature, contattare l’ente locale per lo smaltimento dei rifiuti, oppure il negozio presso il quale è stato acquistato il prodotto.
Latvian notice

Nolietotu iekārtu iznicināšanas noteikumi lietotājiem Eiropas Savienības privātajās mājsaimniecībās

Šāds simbols uz izstrādājuma vai uz tā iesainojuma norāda, ka šo izstrādājumu nedrikst izmest kopā ar citiem sadzīves atkritumiem. Jūs atbildat par to, lai nolietotās iekārtas tiktu nodotas speciāli iekārtotos punktos, kas paredzēti izmantoto elektrisko un elektronisko iekārtu savākšanai otrieziejai pārstrādei. Atsevišķa nolietoto iekārtu savākšana un otrieziejā pārstrāde palīdzēs saglabāt dabas resursus un garantēs, ka šis iekārtas tiks otrieziejā pārstrādātas tādā veidā, lai pasargātu viidi un cilvēku veselību. Lai uzzinātu, kur nolietotās iekārtas var izmest otrieziejai pārstrādei, jāvēršas savas dzīves vietas pašvaldībā, sadzīves atkritumu savākšanas dienestā vai veikalā, kurā izstrādājums tika nopirkti.

Lithuanian notice

Vartotojų iš privačių namų ūkių įrangos atliekų šalinimas Europos Sąjungoje

Šis simbolis ant gaminio arba jo pakuotės rodo, kad šio gaminio šalinti kartu su kitomis namų ūkiu atliekais negalima. Šalinimas įrangos atliekas privalote pristatyti į specialią surinkimo vietą elektrus ir elektroninės įrangos atliekoms perdirbti. Atskirai surenkamos ir perdirbamos šalininos įrangos atliekos padės saugoti gaminius išteklius ir užtikrinti, kad jos bus perdirbtos tokiu būdu, kuris nekenkia žmonių sveikatai ir aplinkai. Jeigu norite sužinoti daugiau apie tai, kur galima pristatyti perdirbtinas įrangos atliekas, kreipkitės į savo seniūniją, namų ūkiu atliekų šalinimo tarnybą arba parduotuvę, kurioje įsigijote gaminį.

Polish notice

Pozbywanie się zużytego sprzętu przez użytkowników w prywatnych gospodarstwach domowych w Unii Europejskiej

Ten symbol na produkcie lub jego opakowaniu oznacza, że produktu nie wolno wyrzucać do zwykłych pojemników na śmieci. Obowiązkiem użytkownika jest przekazanie zużytego sprzętu do wyznaczonego punktu zbiórki w celu recyklingu odpadów powstałych ze sprzętu elektrycznego i elektronicznego. Osobna zbiórka oraz recykling zużytego sprzętu pomagają w ochronie zasobów naturalnych i zapewnią ponowne wprowadzenie go do obiegu w sposób chroniący zdrowie człowieka i środowisko. Aby uzyskać więcej informacji o tym, gdzie można przekazać zużyty sprzęt do recyklingu, należy się skontaktować z urzędem miasta, zakładem gospodarki odpadami lub sklepem, w którym zakupiono produkt.

Portuguese notice

Descarte de Lixo Elétrico na Comunidade Européia

Este símbolo encontrado no produto ou na embalagem indica que o produto não deve ser descartado no lixo doméstico comum. É responsabilidade do cliente descartar o material usado (lixo elétrico), encaminhando-o para um ponto de coleta para reciclagem. A coleta e a reciclagem seletivas desse tipo de lixo ajudarão a conservar as reservas naturais; sendo assim, a reciclagem será feita de uma forma segura, protegendo o ambiente e a saúde das pessoas. Para obter mais informações sobre locais que reciclam esse tipo de material, entre em contato com o escritório da HP em sua cidade, com o serviço de coleta de lixo ou com a loja em que o produto foi adquirido.
Likvidácia vyradených zariadení v domácnostiach v Európskej únii

Symbol na výrobku alebo jeho balení označuje, že daný výrobok sa nesmie likvidovať s domovým odpadom. Povinnosťou spotrebitel’a je odovzdať vyradené zariadenie v zbiernom mieste, ktoré je určené na recykláciu vyradených elektrických a elektronických zariadení. Separovaný zber a recyklácia vyradených zariadení prispieva k ochranie prírodných zdrojov a zabezpečuje, že recyklácia sa vykonáva spôsobom chrániacim ľudské zdravie a životné prostredie. Informácie o zbierných miestach na recykláciu vyradených zariadení vám poskytne miestne zastúpenie, spoločnosť zabezpečujúca odvoz domového odpadu alebo obchod, v ktorom ste si výrobok zakúpili.

Odstranjevanje odslužene opreme uporabnikov v zasebnih gospodinjstvih v Evropski uniji

Ta znak na izdelku ali njegovi embalaži pomeni, da izdelka ne sme odvreči med gospodinjske odpadke. Nasprotno, odsluženo opremo morate predati na zbiralnišče, pooblaščeno za recikliranje odslužene električne in elektronske opreme. Ločeno zbiranje in recikliranje odslužene opreme prispeva k ohranjanju naravnih virov in zagotavlja recikliranje te opreme na zdravju in okolju neskodljiv način. Za podrobnnejše informacije o tem, kam lahko odsluženo opremo na recikliranje, se obrnite na pristojni organ, komunalno službo ali trgovino, kjer ste izdelek kupili.

Eliminación de residuos de equipos eléctricos y electrónicos por parte de usuarios particulares en la Unión Europea

Este símbolo en el producto o en su envase indica que no debe eliminarse junto con los desperdicios generales de la casa. Es responsabilidad del usuario eliminar los residuos de este tipo depositándolos en un "punto limpio" para el reciclado de residuos eléctricos y electrónicos. La recogida y el reciclado selectivos de los residuos de aparatos eléctricos en el momento de su eliminación contribuirá a conservar los recursos naturales y a garantizar el reciclado de estos residuos de forma que se proteja el medio ambiente y la salud. Para obtener más información sobre los puntos de recogida de residuos eléctricos y electrónicos para reciclado, póngase en contacto con su ayuntamiento, con el servicio de eliminación de residuos domésticos o con el establecimiento en el que adquirió el producto.

Bortskaffande av avfallsprodukter från användare i privathushåll inom Europeiska Unionen

Germany noise declaration

Schalldruckpegel \(L_p = 70 \text{ dB(A)} \)

Am Arbeitsplatz (operator position)

Normaler Betrieb (normal operation)

Nach ISO 7779:1999 (Typprüfung)

Japanese notice

ご使用になっている装置にVCCIマークが付いていましたら、次の説明文をお読み下さい。

この装置は、情報処理装置等電波障害自主規制協議会（VCCI）の基準に基づくクラスB情報技術装置です。この装置は、家庭環境で使用することを目的としていますが、この装置がラジオやテレビジョン受信機に近接して使用されると、受信障害を引き起こすことがあります。取扱説明書に従って正しい取り扱いをして下さい。

VCCIマークが付いていない場合には、次の点にご注意下さい。

この装置は、情報処理装置等電波障害自主規制協議会（VCCI）の基準に基づくクラスB情報技術装置です。この装置を家庭環境で使用すると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ずるよう要求されることがあります。

Harmonics conformance (Japan)

Taiwanese notice

警告使用者:
這是甲類的資訊產品，在居住的
環境中使用時，可能會造成射頻
干擾，在這種情況下，使用者會
被要求採取某些適當的對策。

Japanese power cord notice

製品には、同梱された電源コードをお使い下さい。
同梱された電源コードは、他の製品では使用出来ません。

Country-specific certifications

HP tests electronic products for compliance with country-specific regulatory requirements, as an individual item or as part of an assembly. The product label (see Figure 55) specifies the regulations with which the product complies.
NOTE:
Components without an individual product certification label are qualified as part of the next higher assembly (for example, enclosure, rack, or tower).

Figure 55 Typical enclosure certification label

NOTE:
The certification symbols on the label depend upon the certification level. For example, the FCC Class A certification symbol is not the same as the FCC Class B certification symbol.

Fibre Channel drive enclosure specifications

This appendix defines the physical, environmental, and power specifications of the Fibre Channel drive enclosure and the elements.

Physical specifications

This section describes the physical specifications of the drive enclosure and elements.

⚠️ **WARNING!**

An assembled enclosure (all elements installed) weighs more than 29.5 kg (65 lb) and requires a minimum of two individuals to move.

Table 30 defines the dimensions and weights of the enclosure.

Table 30 Drive enclosure physical specifications

<table>
<thead>
<tr>
<th></th>
<th>Empty</th>
<th>Installed</th>
<th>Shipping Carton</th>
<th>Shipping Carton and pallet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (mm/in)</td>
<td>131 (5.16)</td>
<td>131 (5.16)</td>
<td>641 (25.25)</td>
<td>768 (30.25)</td>
</tr>
<tr>
<td>Width (mm/in)</td>
<td>505 (19.875)</td>
<td>505 (19.875)</td>
<td>318 (12.5)</td>
<td>610 (24)</td>
</tr>
<tr>
<td>Depth (mm/in)</td>
<td>448 (17.625)</td>
<td>448 (17.625)</td>
<td>597 (23.5)</td>
<td>1016 (40)</td>
</tr>
<tr>
<td>Weight (kg/lb)</td>
<td>10.9 (24)</td>
<td>30.9 (68)</td>
<td>43.6 (96)</td>
<td>49 (108)</td>
</tr>
</tbody>
</table>

NOTE: Metric dimensions are expressed in whole numbers. For example, 10.795 cm is expressed as 108 mm. Millimeter dimensions are always expressed in whole numbers.
Environmental specifications

To ensure optimum product operation, you must maintain the operational environmental specifications listed in Table 31. The ambient temperature (the enclosure air intake or room temperature) is especially critical.

Table 31 Environmental operating specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>+10 ºC to +35 ºC (+50 ºF to +95 ºF) with an average rate of change of 1 ºC/hour maximum and a step change of 3 ºC or less. Maintaining the optimum ambient temperature within the specified range ensures that the internal operating temperatures support the drive manufacturer’s MTBF specifications.</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>40% to 60% (noncondensing) with a step change of 10% or less (noncondensing)</td>
</tr>
<tr>
<td>Air quality</td>
<td>Not to exceed a maximum of 500,000 particles, 0.5 micron or larger, per cubic foot of air.</td>
</tr>
<tr>
<td>Heat dissipation</td>
<td>1600 BTUs per hour</td>
</tr>
</tbody>
</table>

When shipping, or placing this product in short term storage, HP recommends maintaining the environmental conditions listed in Table 32.

Table 32 Environmental shipping or short-term storage specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>−40 ºC to +66 ºC (−40 ºF to +151 ºF)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>10% to 80% (noncondensing)</td>
</tr>
<tr>
<td>Altitude</td>
<td>15,240 m (50,000 ft)</td>
</tr>
</tbody>
</table>

Power specifications

The input voltage to the drive enclosure power supplies is a function of the country-specific input voltage to Enterprise storage system rack power distribution units (PDUs). Enterprise storage system AC input line voltages defines the AC input power available to the drive enclosure power supplies.
CAUTION:
The AC power distribution within a rack ensures a balanced to each PDA and reduces the possibility of an overload condition. Changing the cabling to or from a PDM could cause an overload condition.

Table 33 Enterprise storage system AC input line voltages

<table>
<thead>
<tr>
<th>Specification</th>
<th>Minimal</th>
<th>Nominal</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Hz service</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC Line Voltage</td>
<td>57 Hz</td>
<td>60 Hz</td>
<td>63 Hz</td>
</tr>
<tr>
<td>AC Line Voltage—Japan</td>
<td>180 VAC</td>
<td>202 VAC</td>
<td>220 VAC</td>
</tr>
<tr>
<td>AC Line Voltage—North America</td>
<td>180 VAC</td>
<td>208 VAC</td>
<td>220 VAC</td>
</tr>
<tr>
<td>AC Line Voltage—Europe</td>
<td>208 VAC</td>
<td>240 VAC</td>
<td>254 VAC</td>
</tr>
<tr>
<td>50 Hz service</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC Line Frequency</td>
<td>47 Hz</td>
<td>50 Hz</td>
<td>53 Hz</td>
</tr>
<tr>
<td>AC Line Voltage—Japan</td>
<td>180 VAC</td>
<td>202 VAC</td>
<td>220 VAC</td>
</tr>
<tr>
<td>AC Line Voltage—North America</td>
<td>190 VAC</td>
<td>220 VAC</td>
<td>235 VAC</td>
</tr>
<tr>
<td>AC Line Voltage—North America</td>
<td>200 VAC</td>
<td>230 VAC</td>
<td>244 VAC</td>
</tr>
<tr>
<td>AC Line Voltage—Europe</td>
<td>208 VAC</td>
<td>240 VAC</td>
<td>254 VAC</td>
</tr>
</tbody>
</table>

Table 34 defines the AC input current and wattage to the drive enclosure power supplies.

Table 34 AC input current and wattage

<table>
<thead>
<tr>
<th>Input voltage</th>
<th>Nominal</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amps</td>
<td>Watts</td>
</tr>
<tr>
<td></td>
<td>Amps</td>
<td>Watts</td>
</tr>
</tbody>
</table>

60–Hz input

| 100 VAC–JBOD | 4.35 | 436 | 6.41 | 641 |
| 208 VAC–North America | 2.03 | 419 | 2.94 | 609 |

50–Hz input

120 VAC–JBOD	3.59	419	5.27	633
220 VAC–North America	1.92	418	2.78	608
230 VAC–North America	1.92	418	2.78	608
240 VAC–Europe	1.76	416	2.55	607
Table 35 Output voltage and current specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5.1 VDC</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Voltage, Steady state current</td>
<td>+5.13 VDC, 1.0 A</td>
<td>+5.18 VDC N/A</td>
<td>+5.23 VDC, 26.0 A</td>
</tr>
<tr>
<td>+12.2 VDC (Disk Drive Voltage)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Initial Voltage, Steady state current</td>
<td>+12.13 VDC, 1.0 A</td>
<td>+12.25 VDC N/A</td>
<td>+12.37 VDC, 26.0 A</td>
</tr>
<tr>
<td>+12.5 VDC (Disk Drive Voltage)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Initial Voltage, Steady state current</td>
<td>+12.25 VDC, 0.0 0A</td>
<td>+12.50 VDC N/A</td>
<td>+12.75 VDC, 2.0 A</td>
</tr>
</tbody>
</table>

Table 36 Power specifications

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Current (A)</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5.1 VDC (with a minimum +12.2 VDC load of 0A)</td>
<td>26.0 A</td>
<td>132 W</td>
</tr>
<tr>
<td>+12.2 VDC (with a minimum +5 VDC load of 4A)</td>
<td>28.0 A</td>
<td>342.0 W</td>
</tr>
<tr>
<td>+12.5 VDC</td>
<td>2.0 A</td>
<td>25.0 W</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>499.0 W</td>
</tr>
<tr>
<td>Maximum peak current (simultaneous seek activity)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+5.1 VDC</td>
<td>26.0 A</td>
<td>132.0 W</td>
</tr>
<tr>
<td>+12.2 VDC</td>
<td>43.0 A</td>
<td>524.0 W</td>
</tr>
<tr>
<td>+12.5 VDC</td>
<td>2.0 A</td>
<td>25.0 W</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>681.0 W</td>
</tr>
</tbody>
</table>

Fibre Channel switch specifications

The Fibre Channel Switch requires a clean, dry environment for normal operation. Table 37 lists the specifications for the Fibre Channel Switch.

Table 37 Fibre Channel switch specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>Approximately 7.0 lbs.</td>
</tr>
<tr>
<td>Dimensions</td>
<td>8.50 x 1.57 x 16.00 inches (W x H x D) NOTE: The switch with extender is 21.66 in (depth).</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0 °C to 40 °C for normal operation (ambient air temperature)</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-40 °C to 80 °C noncondensing</td>
</tr>
<tr>
<td>Power</td>
<td>50 or 60 Hz 100–250 VAC 0.6–0.4 A</td>
</tr>
</tbody>
</table>
Controller specifications

This section defines the physical, power, and environmental specifications of the controller enclosure.

Physical specifications

Table 38 defines the dimensions of the controller.

Table 38 Controller enclosure physical specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Installed</th>
<th>Shipping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>62 mm (2.45 in)</td>
<td>267 mm (10.5 in)</td>
</tr>
<tr>
<td>Width</td>
<td>502 mm (19.56 in)</td>
<td>762 mm (30 in)</td>
</tr>
<tr>
<td>Depth</td>
<td>444 mm (17.49 in)</td>
<td>762 mm (30 in)</td>
</tr>
<tr>
<td>Weight</td>
<td>10.4 kg (23 lb)</td>
<td>12.7 kg (28 lb)</td>
</tr>
</tbody>
</table>

Power specifications

Table 39 and Table 40 define the controller power supply input power requirements and output power specifications.

Table 39 Controller power supply AC power requirements

<table>
<thead>
<tr>
<th>AC Input Voltage</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>Nominal</td>
</tr>
<tr>
<td>180 VAC</td>
<td>202 VAC</td>
</tr>
<tr>
<td>208 VAC</td>
<td>57 Hz</td>
</tr>
</tbody>
</table>

Table 40 Controller power supply output specifications

<table>
<thead>
<tr>
<th>Voltage Specification</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>+3.3 VDC</td>
<td>3.23 VDC</td>
<td>3.30 VDC</td>
<td>3.36 VDC 18 A 59.4 W</td>
</tr>
<tr>
<td>+5.1 VDC</td>
<td>4.80 VDC</td>
<td>5.00 VDC</td>
<td>5.25 VDC 5.0 A 25.5 W</td>
</tr>
</tbody>
</table>

1. +3.3 VDC steady state current requires a minimum 5.0-V load of 1 A.
2. Total power includes 14.0 watts for the internal blower.
Table 41 defines the AC input current and wattage to the controller power supplies.

Table 41 AC input current and wattage

<table>
<thead>
<tr>
<th>Nominal Voltage</th>
<th>Nominal Amps</th>
<th>Nominal Watts</th>
<th>Maximum Amps</th>
<th>Maximum Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-Hz Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 VAC</td>
<td>0.928</td>
<td>94</td>
<td>1.53</td>
<td>150</td>
</tr>
<tr>
<td>120 VAC</td>
<td>0.788</td>
<td>94</td>
<td>1.25</td>
<td>148</td>
</tr>
<tr>
<td>208 VAC</td>
<td>0.576</td>
<td>97</td>
<td>0.73</td>
<td>146</td>
</tr>
<tr>
<td>50–Hz Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220 VAC</td>
<td>0.616</td>
<td>102</td>
<td>0.69</td>
<td>146</td>
</tr>
<tr>
<td>240 VAC</td>
<td>0.573</td>
<td>100</td>
<td>0.64</td>
<td>147</td>
</tr>
</tbody>
</table>

Environmental specifications

There are no controller environmental specifications. See the section called “Environmental specifications” in Rack specifications for this information.

Rack specifications

Physical specifications

⚠️ **WARNING!**
The weight of the drive enclosure with the elements installed always requires at least two individuals to move. HP recommends using a fork lift or a hand truck to move an enclosure in the shipping container.

Table 42 through Table 43 define the dimensions and weights of the Enterprise storage system racks.

Table 42 Enterprise 42U storage system rack physical dimensions

<table>
<thead>
<tr>
<th>Enterprise 42U</th>
<th>Height in / mm</th>
<th>Width in / mm</th>
<th>Depth in / mm</th>
<th>Max Wt lbs / kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C2D</td>
<td>79/2000</td>
<td>24/602</td>
<td>36/910</td>
<td>609/277</td>
</tr>
<tr>
<td>2C6D</td>
<td>79/2000</td>
<td>24/602</td>
<td>36/910</td>
<td>918/416</td>
</tr>
<tr>
<td>2C12D</td>
<td>79/2000</td>
<td>24/602</td>
<td>36/910</td>
<td>1350/612</td>
</tr>
<tr>
<td>2C1D</td>
<td>79/2000</td>
<td>2/602</td>
<td>36/910</td>
<td>781/354</td>
</tr>
<tr>
<td>4000 2C2D</td>
<td>79/2000</td>
<td>24/602</td>
<td>36/910</td>
<td>832/377</td>
</tr>
<tr>
<td>2C3D</td>
<td>79/2000</td>
<td>24/602</td>
<td>36/910</td>
<td>883/401</td>
</tr>
<tr>
<td>2C4D</td>
<td>79/2000</td>
<td>24/602</td>
<td>36/910</td>
<td>934/424</td>
</tr>
<tr>
<td>2C5D</td>
<td>79/2000</td>
<td>24/602</td>
<td>36/910</td>
<td>985/447</td>
</tr>
<tr>
<td>2C6D</td>
<td>79/2000</td>
<td>24/602</td>
<td>36/910</td>
<td>1036/470</td>
</tr>
<tr>
<td>2C7D</td>
<td>79/2000</td>
<td>24/602</td>
<td>36/910</td>
<td>1087/493</td>
</tr>
<tr>
<td>2C8D</td>
<td>79/2000</td>
<td>24/602</td>
<td>36/910</td>
<td>1138/516</td>
</tr>
</tbody>
</table>
Table 43 Enterprise 42U storage system rack shipping dimensions

<table>
<thead>
<tr>
<th>Model</th>
<th>Height in / mm</th>
<th>Width in / mm</th>
<th>Depth in / mm</th>
<th>Max Wt lbs / kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise 2C2D</td>
<td>85/2166</td>
<td>36/914</td>
<td>48/1220</td>
<td>802/365</td>
</tr>
<tr>
<td>Enterprise 2C6D</td>
<td>85/2166</td>
<td>36/914</td>
<td>48/1220</td>
<td>1111/504</td>
</tr>
<tr>
<td>Enterprise 2C12D</td>
<td>85/2166</td>
<td>36/914</td>
<td>48/1220</td>
<td>1543/700</td>
</tr>
<tr>
<td>Enterprise 2C1D</td>
<td>85/2166</td>
<td>36/914</td>
<td>48/1220</td>
<td>806/366</td>
</tr>
<tr>
<td>4000 2C2D</td>
<td>85/2159.0</td>
<td>36/914</td>
<td>48/1220</td>
<td>857/389</td>
</tr>
<tr>
<td>Enterprise 2C3D</td>
<td>85/2166</td>
<td>36/914</td>
<td>48/1220</td>
<td>908/412</td>
</tr>
<tr>
<td>Enterprise 2C4D</td>
<td>85/2166</td>
<td>36/914</td>
<td>48/1220</td>
<td>959/435</td>
</tr>
<tr>
<td>Enterprise 2C5D</td>
<td>85/2166</td>
<td>36/914</td>
<td>48/1220</td>
<td>1010/458</td>
</tr>
<tr>
<td>Enterprise 2C6D</td>
<td>85/2166</td>
<td>36/914</td>
<td>48/1220</td>
<td>1061/481</td>
</tr>
<tr>
<td>Enterprise 2C7D</td>
<td>85/2166</td>
<td>36/914</td>
<td>48/1220</td>
<td>1112/504</td>
</tr>
<tr>
<td>Enterprise 2C8D</td>
<td>85/2166</td>
<td>36/914</td>
<td>48/1220</td>
<td>1163/528</td>
</tr>
</tbody>
</table>

Environmental specifications

To ensure optimum product operation, you must maintain the operational environmental specifications listed in Table 44. The ambient temperature (the enclosure air intake or room temperature) is especially critical.

Table 44 Environmental operating specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>+10 °C to +35 °C (+50 °F to +95 °F) with an average rate of change of 1 °C/hour maximum and a step change of 3 °C or less. Maintaining the optimum ambient temperature within the specified range ensures that the internal operating temperatures support the drive manufacturer’s MTBF specifications.</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>40% to 60% (noncondensing) with a step change of 10% or less (noncondensing).</td>
</tr>
<tr>
<td>Air quality</td>
<td>Not to exceed a maximum of 500,000 particles, 0.5 micron or larger, per cubic foot of air.</td>
</tr>
<tr>
<td>Heat dissipation</td>
<td>12,708 BTUs per hour.</td>
</tr>
</tbody>
</table>

When shipping, or placing this product in short-term storage, HP recommends maintaining the environmental conditions listed in Table 45.

Table 45 Environmental shipping or short-term storage specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>−40 °C to +66 °C (−40 °F to +151 °F)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>10% to 80% (noncondensing)</td>
</tr>
<tr>
<td>Altitude</td>
<td>15,240 m (50,000 ft)</td>
</tr>
</tbody>
</table>
Power specifications

Table 46 defines the AC power specifications for the enterprise storage system PDUs, PDMs, drive enclosure power supplies, and controller enclosure power supplies.

Table 46 Enterprise storage system AC power specifications

<table>
<thead>
<tr>
<th>Nominal input voltage</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-Hz service</td>
<td></td>
</tr>
<tr>
<td>202 VAC Voltage Range Power Receptacle</td>
<td>Japan 180—220 VAC, 57—63 Hz, 32 A, Single Phase 3-wire, 2-pole, IEC 309</td>
</tr>
<tr>
<td>208 VAC Voltage Range Power Receptacle</td>
<td>North America 180—220 VAC, 57—63 Hz, 30 A, Single Phase 3-wire, 2-pole, NEMA L6-30</td>
</tr>
<tr>
<td>240 VAC Voltage Range Power Receptacle</td>
<td>Europe 208—254 VAC, 57—63 Hz, 32 A, Single Phase 3-wire, 2-pole, IEC 309</td>
</tr>
<tr>
<td>50-Hz service</td>
<td></td>
</tr>
<tr>
<td>202 VAC Voltage Range Power Receptacle</td>
<td>Japan 180—220 VAC, 47—63 Hz, 32 A, Single Phase 3-wire, 2-pole, IEC 309</td>
</tr>
<tr>
<td>220 VAC Voltage Range Power Receptacle</td>
<td>North America 190—235 VAC, 47—63 Hz, 30 A, Single Phase 3-wire, 2-pole, NEMA L6-30</td>
</tr>
<tr>
<td>230 VAC Voltage Range Power Receptacle</td>
<td>North America 200—244 VAC, 47—63 Hz, 30 A, Single Phase 3-wire, 2-pole, NEMA L6-30</td>
</tr>
<tr>
<td>240 VAC Voltage Range Power Receptacle</td>
<td>Europe 208—254 VAC, 57—63 Hz, 32 A, Single Phase 3-wire, 2-pole, IEC 309</td>
</tr>
</tbody>
</table>

The power consumption of an enterprise storage system is 3,724 W.
This section provides a description of the EMU generated condition reports that contain the following information:

- Element type (et), a hexadecimal number in the range 01 through FF.
- Element number (en), a decimal number in the range 00 through 99 that defines a specific problem.
- Error code (ec), a decimal number in the range 00 through 99.
- The recommended corrective action.

NOTE:
The conventions used to differentiate between the elements of the condition report are:

- Element type—period after each character
- Element number—period after the second character
- Error code—no periods

The EMU can send error messages to the controller for transmission to HP Command View EVA. The messages displayed are specific to HP Command View EVA and are not within the scope of this publication.

The I/O modules have the built-in intelligence to:

- Observe fibre channel events
- Bypass drive ports based on events
- Perform drive port testing and monitoring to prevent poor-performing drives from participating in the loop
- Communicate fibre channel events to the controllers

This appendix explains the condition report format, correcting problems, and how to identify element types. The error codes are arranged in element type sequence (that is, 0.1., 0.2., 0.3., etc.).

Condition report format

When the EMU alphanumeric display is Er, three additional displays identify the possible cause of the problem: the element type, the specific element, and the error code, which defines the possible cause of the problem.

- The first-level display identifies the type of element affected with two alphanumeric characters separated by periods such as 0.1., 0.2., 1.3., F.F., and so forth. A disk drive problem would display an element type number of 0.1.
- The second-level display identifies the element affected with a two-digit, decimal number followed by a period. For example, when a bay 6 drive error occurs, the element number display is 06.; a display of 14. indicates a bay 14 problem.
- The third-level display identifies a specific problem, the error code with a two-digit, decimal number. For example, should the problem be either the installation of an incorrectly configured drive or one that cannot operate at the loop link rate, the display is 01.
Correcting errors

Correcting an error may require you to perform a specific set of actions. In some cases, the only available corrective action is to replace the element.

Table 47 lists the element type codes assigned to the drive enclosure elements.

<table>
<thead>
<tr>
<th>Code</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1.</td>
<td>Disk Drives</td>
</tr>
<tr>
<td>0.2.</td>
<td>Power Supplies</td>
</tr>
<tr>
<td>0.3.</td>
<td>Blowers</td>
</tr>
<tr>
<td>0.4.</td>
<td>Temperature Sensors</td>
</tr>
<tr>
<td>0.6</td>
<td>Audible Alarm</td>
</tr>
<tr>
<td>0.7.</td>
<td>EMU</td>
</tr>
<tr>
<td>0.C.</td>
<td>Controller OCP LCD</td>
</tr>
<tr>
<td>0.F.</td>
<td>Transceivers</td>
</tr>
<tr>
<td>1.0.</td>
<td>Language</td>
</tr>
<tr>
<td>1.1.</td>
<td>Communication Port</td>
</tr>
<tr>
<td>1.2.</td>
<td>Voltage Sensors</td>
</tr>
<tr>
<td>1.</td>
<td>Current Sensors</td>
</tr>
<tr>
<td>8.0</td>
<td>Drive Enclosure</td>
</tr>
<tr>
<td>8.2</td>
<td>Drive Enclosure Backplane</td>
</tr>
<tr>
<td>8.7</td>
<td>I/O Modules</td>
</tr>
</tbody>
</table>

1Does not generate a condition report. However, for any error, you should record the error code. Then, implement the recommended corrective action.

Drive conditions

The format of a disk drive condition report is $0.1.en.ec$, where:

- $0.1.$ is the disk drive element type number
- $en.$ is the two-character disk drive element
- ec is the error code

A direct correlation exists between the disk drive element number and the bay number. However, no direct correlation exists between the disk drive bay number and the device Fibre Channel drive enclosure physical address. The Fibre Channel drive enclosure physical address is assigned by negotiation during system initialization.

The following sections define the disk drive error codes.

0.1.en.01 CRITICAL condition—Drive configuration or drive link rate

As each drive spins up and comes on-line, the EMU determines if the drive is Fibre Channel compatible and can operate at the link rate (1 Gbps or 2 Gbps) established by the I/O module. If either of these conditions are not met, the EMU issues the condition report $0.1.en.01$.

The corrective actions for these conditions are:

- When the drive is not Fibre Channel-compatible you must install a Fibre Channel compatible drive or a drive blank.
• When the drive is Fibre Channel-compatible, the EMU compares the drive link rate with the I/O module link rate, the loop link rate.

If the EMU cannot determine the drive link rate, the EMU activates the drive bypass function for one minute. During this time the EMU continually checks the drive to determine the link rate.

• If the EMU determines the drive cannot operate at the Fibre Channel link rate set by the I/O module, the drive bypass function ends and the drive is placed on the loop. This does not generate a condition report.

• The EMU issues the condition report 0.1.en.01 when the drive link rate is incompatible with Fibre Channel link rate.

• When the EMU cannot determine the drive link rate during the one-minute drive bypass time, the EMU places the drive on the loop. This process allows the drive to negotiate for an address.
 • If negotiation indicates the link rates are compatible, the EMU rechecks the drive link rate to verify compatibility.
 • If negotiation indicates the link rates are incompatible, an error condition exists and drive loop data transfers stop.

This condition report remains active until the problem is corrected. The problem affects disk drive en. Therefore, correction to prevent the possible failure of other elements is not required.

Complete the following procedure to correct this problem:

1. Record all six characters of the condition report.
2. Replace the defective drive with:
 • A Fibre Channel-compatible drive.
 • A Fibre Channel drive capable of operating at a link rate supported by I/O modules and transceivers.
3. Observe the EMU to ensure the error is corrected.
4. If unable to correct the problem, contact your authorized service representative.

0.1.en.02 INFORMATION condition—Drive missing

The drive is improperly installed or missing. Either option could affect the enclosure air flow and cause an overtemperature condition for another element.

• This error remains active for one minute, or until the problem is corrected, whichever occurs first.
• Immediate correction is not required. However, correction cannot be delayed indefinitely.

Complete the following procedure to correct this problem:

1. Record all six characters of the condition report.
2. Remove and install the drive to ensure that it is properly installed.
3. Observe the EMU to ensure the error is corrected.
4. If removing and installing the drive did not correct the problem, install a replacement drive or a drive blank.
5. Observe the EMU to ensure the error is corrected.
6. If unable to correct the problem, contact your authorized service representative.

0.1.en.03 INFORMATION condition—Drive software lock active

Some enclosures have a software-activated lock that prevents physically removing a drive while this feature is active. This feature can be activated even when an enclosure does not have a physical lock. Removing a drive when this feature is active generates a condition report. This error remains active for 15 seconds.

No action is required to correct this condition.
0.1.en.04 CRITICAL condition—Loop a drive link rate incorrect

The drive is capable of operating at the loop link rate but is running at a different rate. For example, the drive is operating at 1 Gbps, and the loop is operating at 2 Gbps. Only when the drive is operating at the Fibre Channel link rate established by the I/O module can this drive transfer data.

This error remains active until the problem is corrected.

Complete the following procedure to correct this problem:

1. Record all six characters of the condition report.
2. Remove and replace the drive in the enclosure.
3. Observe the drive status indicators to ensure the drive is operational.
4. Observe the EMU to ensure the error is corrected.
5. If removing and replacing the drive did not correct the problem, replace the drive.
6. Observe the drive status indicators to ensure the drive is operational.
7. Observe the EMU to ensure the error is corrected.
8. If unable to correct the problem, contact your authorized service representative.

0.1.en.05 CRITICAL condition—Loop b drive link rate incorrect

The drive is capable of operating at the loop link rate but is running at a different rate. For example, the drive is operating at 1 Gbps, and the loop is operating at 2 Gbps. Only when the drive is operating at the Fibre Channel link rate established by the I/O module can this drive transfer data.

This error remains active until the problem is corrected.

Complete the following procedure to correct this problem:

1. Record all six characters of the condition report.
2. Remove and replace the drive in the enclosure.
3. Observe the drive status indicators to ensure the drive is operational.
4. Observe the EMU to ensure the error is corrected.
5. If removing and replacing the drive did not correct the problem, replace the drive.
6. Observe the drive status indicators to ensure the drive is operational.
7. Observe the EMU to ensure the error is corrected.
8. If unable to correct the problem, contact your authorized service representative.

Power supply conditions

The format of a power supply condition report is 0.2.en.ec, where:

• 0.2. is the power supply element type number
• en. is the two-character power supply element number
• ec is the error code

Figure 56 shows the location of power supply 1 and power supply 2.
The following sections define the power supply condition reports.

0.2.en.01 NONCRITICAL Condition—Power supply AC input missing

The loss of the AC input to a power supply makes the remaining power supply a single point of failure.

This condition report remains active until AC power is applied to the power supply.

Complete the following procedure to correct this problem:

1. Record all six characters of the condition report.
2. Ensure that there is AC power to the rack PDU, and from the PDU to the PDMs and that the PDU and PDM circuit breakers are not reset.
 - If there is no AC power to the PDU, contact building facilities management.
 - Verify that the power supply AC power cord is properly connected.
3. If AC is present, and the rack power distribution circuitry is functioning properly, the power supply indicator should be on.
4. Observe the EMU to ensure the error is corrected.
5. Contact your authorized service representative.

0.2.en.02 UNRECOVERABLE condition—Power supply missing

This condition report indicates a power supply is not installed or installed incorrectly. Both of these conditions affect air flow within the enclosure and can cause an overtemperature condition. Enclosure shutdown is imminent.

The operational power supply will automatically shut down after seven minutes, thereby disabling the enclosure. This condition report remains active until either the problem is corrected, or the operational power supply shuts down, whichever occurs first.

To correct this problem, record all six characters of the condition report, then contact your authorized service representative.

CAUTION:

Removing power from an enclosure may cause the loss or corruption of data. To avoid this condition, shut down the system using HP Command View EVA. An automatic shutdown and possible data corruption may result if the power supply is removed before a replacement is available.

0.2.en.03 CRITICAL condition—Power supply load unbalanced

This condition report indicates that a component within a power supply may have failed. This can make the remaining power supply a single point of failure.

This condition report remains active until corrected.

Complete the following procedure to correct this problem:
1. Record all six characters of the condition report.
2. Ensure that the blower on the power supply is functioning properly. If not, correct the blower condition and wait one minute.
3. Contact your authorized service representative.

Blower conditions

The format of a blower condition report is 0.3.en.ec, where:

- 0.3. is the blower element type number
- en. is the two-character blower element number
- ec is the error code

As shown in Figure 57, blower 1 is in location 1 and blower 2 is in location 2.

![Figure 57 Blower element numbering](image)

CAUTION:
A single blower operating at high speed can provide sufficient air flow to cool an enclosure and the elements for up to 100 hours. However, operating an enclosure at temperatures approaching an overheating threshold can damage elements and may reduce the MTBF of a specific element. Immediate replacement of the defective blower is required.

The following sections define the power supply condition reports.

0.3.en.01 NONCRITICAL condition—Blower speed

A blower is operating at a speed outside of the EMU specified range, possibly because of a bearing problem. This can affect enclosure cooling and cause an element to fail. This condition report remains active until the problem is corrected.

This error does not normally require immediate correction. However, an error of this type could contribute to an element overheating.

HP recommends replacing the blower as soon as possible.

To correct this problem, record all six characters of the condition report, then contact your HP authorized service representative.

0.3.en.02 CRITICAL condition—Blower speed

A blower is operating at a speed that is significantly outside the EMU specified range, possibly because of a bearing problem. This can cause the loss of cooling and cause an element to fail. The error remains active until the problem is corrected.

HP recommends replacing the blower as soon as possible.

To correct this problem, record all six characters of the condition report, then contact your authorized service representative.
0.3.en.03 UNRECOVERABLE condition—Blower failure

A blower has stopped. The operational blower now operates at high speed and is a single point of failure. This condition report remains active until the problem is corrected.

To correct this problem, record all six characters of the condition report, then contact your authorized service representative.

0.3.en.04 UNRECOVERABLE condition—Blower internal

A power supply reported an internal blower error that could affect enclosure cooling and cause an element to fail. HP recommends correcting the problem before the blower fails. This condition report remains active until the problem is corrected.

To correct this problem, record all six characters of the condition report, then contact your HP authorized service representative.

0.3.en.05 NONCRITICAL condition—Blower missing

A blower has been removed or is improperly installed. Even though the blower flaps close to maintain the proper air flow, the reduced cooling capability can cause overheating, causing an element to fail. This condition report remains active until the problem is corrected.

To correct this problem, record all six characters of the condition report, then contact your HP authorized service representative.

0.3.en.06 UNRECOVERABLE condition—No blowers installed

NOTE:

IMPORTANT

When this condition exists there will be two error messages. The first message will be 0.3.en.05 and will identify the first blower. The second message will be 0.3.en.06 and will identify the second blower.

The EMU cannot detect any installed blowers. **Shutdown is imminent!** The EMU will shut down the enclosure in seven minutes unless you correct the problem. This condition report remains active until you correct the problem or the EMU shuts down the power supplies, whichever occurs first.

Complete the following procedure to correct this problem.

1. Record all six characters of the condition report.
2. Use the controller shutdown procedure to shut down the controllers.
3. Contact your authorized service representative.

CAUTION:

An automatic shutdown and possible data corruption may result if the blower is removed before a replacement is available.

Temperature conditions

The format of a temperature condition report is 0.4.en.ec, where:

- 0.4. is temperature sensor element type
- en. is the two-character temperature sensor element
- ec is the error code
Refer to Table 48 to determine the location of each temperature sensor.

Table 48 Temperature sensor element numbering

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Sensor location</th>
<th>Sensor</th>
<th>Sensor location</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.</td>
<td>Power Supply 1 Exhaust</td>
<td>10.</td>
<td>Drive Bay 7</td>
</tr>
<tr>
<td>02.</td>
<td>Power Supply 2 Exhaust</td>
<td>11.</td>
<td>Drive Bay 8</td>
</tr>
<tr>
<td>03.</td>
<td>EMU</td>
<td>12.</td>
<td>Drive Bay 9</td>
</tr>
<tr>
<td>04.</td>
<td>Drive Bay 1</td>
<td>13.</td>
<td>Drive Bay 10</td>
</tr>
<tr>
<td>05.</td>
<td>Drive Bay 2</td>
<td>14.</td>
<td>Drive Bay 11</td>
</tr>
<tr>
<td>06.</td>
<td>Drive Bay 3</td>
<td>15.</td>
<td>Drive Bay 12</td>
</tr>
<tr>
<td>07.</td>
<td>Drive Bay 4</td>
<td>16.</td>
<td>Drive Bay 13</td>
</tr>
<tr>
<td>08.</td>
<td>Drive Bay 5</td>
<td>17.</td>
<td>Drive Bay 14</td>
</tr>
<tr>
<td>09.</td>
<td>Drive Bay 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following sections list the temperature condition reports and the default temperature thresholds. Use HP Command View EVA to view the temperature sensor ranges for the disk drives, EMU, and power supplies.

0.4.en.01 NONCRITICAL condition—High temperature

This condition report indicates that an element temperature is approaching, but has not reached, the high temperature CRITICAL threshold. Continued operation under these conditions may result in a CRITICAL condition. This condition report remains active until the problem is corrected.

Complete the following procedure to correct this problem.

1. Record all six characters of the condition report.
2. Ensure that all elements are properly installed to maintain proper air flow.
3. Ensure that nothing is obstructing the air flow at either the front of the enclosure or the rear of the blower.
4. Ensure that both blowers are operating properly (the indicators are on) and neither blower is operating at high speed.
5. Verify that the ambient temperature range is +10 °C to +35 °C (+50 °F to +95 °F). Correct the ambient conditions.
6. Observe the EMU to ensure the error is corrected.
7. If unable to correct the problem, contact your authorized service representative.

0.4.en.02 CRITICAL condition—High temperature

This condition report indicates that an element temperature is above the high temperature CRITICAL threshold. Continued operation under these conditions may result in element failure and may reduce an element MTBF. This condition report remains active until the problem is corrected.

Complete the following procedure to correct this problem.

1. Record all six characters of the condition report.
2. Ensure that all elements are properly installed to maintain proper air flow.
3. Ensure that nothing is obstructing the air flow at either the front of the enclosure or the rear of the blower.
4. Ensure that both blowers are operating properly (the indicators are on) and neither blower is operating at high speed.
5. Verify that the ambient temperature range is +10 °C to +35 °C (+50 °F to +95 °F). Adjust as necessary.
6. Observe the EMU to ensure the error is corrected.
7. If unable to correct the problem, contact your authorized service representative.

0.4.en.03 NONCRITICAL condition—Low temperature
This condition report indicates that an element temperature is approaching, but has not reached, the low temperature CRITICAL threshold. Continued operation under these conditions may result in a CRITICAL condition. This condition report remains active until the problem is corrected.

Complete the following procedure to correct this problem.
1. Record all six characters of the condition report.
2. Verify that the ambient temperature range is +10 °C to +35 °C (+50 °F to +95 °F). Adjust as necessary.
3. Observe the EMU to ensure the error is corrected.
4. If the ambient temperature is correct and the problem persists, contact your Authorized Service Representative.

0.4.en.04 CRITICAL condition—Low temperature
This condition report indicates that an element temperature has reached the low temperature CRITICAL threshold. HP recommends correcting this error to prevent affecting other elements. This condition report remains active until the problem is corrected.

Complete the following procedure to correct this problem.
1. Record all six characters of the condition report.
2. Verify that the ambient temperature range is +10 °C to +35 °C (+50 °F to +95 °F). Adjust as necessary.
3. Observe the EMU to ensure the error is corrected.
4. If the ambient temperature is correct and the problem persists, contact your authorized service representative.

0.4.en.05 UNRECOVERABLE condition—High temperature
This condition report indicates that the EMU has evaluated the temperature of the three temperature groups (EMU, disk drives, and power supplies), and determined that the average temperature of two of the three groups exceeds the critical level (use HP Command View EVA to view the temperature thresholds). Under these conditions the EMU starts a timer that will automatically shut down the enclosure in seven minutes unless you correct the problem. Enclosure shutdown is imminent!

⚠️ CAUTION:
An automatic shutdown and possible data corruption may result if the procedure below is not performed immediately.

Complete the following procedure to correct this problem.
1. Ensure that all disk drives, I/O modules, and power supply elements are fully seated.
2. Ensure that all blowers are operating properly.
3. Verify that the ambient temperature range is +10 °C to +35 °C (+50 °F to +95 °F). Adjust as necessary.
4. If steps 1, 2 or 3 did not reveal a problem, use HP Command View EVA to request the HSV210 controller to shut down the drive enclosure. Completing this action will halt the drive enclosure data transfers.

5. Contact your authorized service representative and request assistance.

EMU conditions

The format of an EMU condition report is 0.701.ec, where:

- 0.7 is the EMU element type number
- 01. is the two-character EMU element number
- ec is the error code

NOTE:

There is only one EMU in a drive enclosure. Therefore, the element number is always 01.

Resetting the EMU

In some cases, the only corrective action for an EMU error is to replace the EMU. Call your authorized service representative if this action is required. Another option is to reset the EMU using the following procedure.

1. Firmly grasp the EMU mounting handle and pull the EMU partially out of the enclosure.

NOTE:

You do not need to remove the EMU from the enclosure or disconnect the cables. You must avoid putting any strain on the cables or connectors.

2. Wait 30 seconds, and then push the EMU in and fully seat the element in the backplane. The EMU should display any enclosure condition report within two minutes.

07.01.01 CRITICAL condition—EMU internal clock

There is an internal EMU clock error that will remain active until the problem is corrected. Complete the following procedure to correct this problem.

1. Record all six characters of the condition report.
2. Reset the EMU.
3. If resetting the EMU did not correct the problem, replace the EMU.
4. Observe the EMU to ensure the error is corrected.
5. If unable to correct the problem, contact your HP authorized service representative.

07.01.02 UNRECOVERABLE condition—EMU interrupted

The Inter-IC (I2C) bus is not processing data and the EMU is unable to monitor or report the status of the elements or enclosures. **IMMEDIATE** corrective action is required to ensure proper enclosure operation. This condition report remains active until the problem is corrected. Complete the following procedure **NOW** to correct this problem.

1. Record all six characters of the condition report.
2. Reset the EMU.
3. Observe the EMU to ensure the error is corrected.
4. If resetting the EMU did not correct the problem, replace the EMU.
5. If unable to correct the problem, contact your HP authorized service representative.

0.7.01.03 UNRECOVERABLE Condition—Power supply shutdown

This message only appears in HP Command View EVA to report a power supply has already shut down. This message can be the result of the controller shutdown command or an EMU or power supply initiated power shutdown.

This message cannot be displayed until after restoration of power. Therefore, there is no corrective action required.

0.7.01.04 INFORMATION condition—EMU internal data

The EMU is unable to collect data for the SCSI-3 Engineering Services (SES) page. This condition report remains active for 15 seconds. The condition report affects only internal EMU operations. There is no degradation of enclosure operations.

The EMU initiates automatic recovery procedures.

If the problem is not automatically corrected after one minute, contact your HP authorized service representative.

0.7.01.05 UNRECOVERABLE condition—Backplane NVRAM

NOTE:

IMPORTANT

Backplane NVRAM errors usually occur during manufacture. At this time they are identified and corrected. They rarely occur during normal operation.

When a backplane NVRAM is not programmed or cannot be read by the EMU, there is no communication with the disk drives. This condition report remains active until the problem is corrected.

Complete the following procedure to correct this problem.

1. Record all six characters of the condition report.
2. Reset the EMU.
3. Observe the EMU to ensure the error is corrected.
4. If resetting the EMU did not correct the problem, contact your HP authorized service representative.

0.7.01.10 NONCRITICAL condition—NVRAM invalid read data

The data read from the EMU NVRAM is invalid. This error initiates an automatic recovery process. This condition report remains active until the problem is corrected.

If the automatic recovery process does not correct the problem, complete the following procedure.

1. Record all six characters of the condition report.
2. Reset the EMU.
3. Observe the EMU to ensure the error is corrected.
4. If resetting the enclosure did not correct the problem, contact your HP authorized service representative.

0.7.01.11 NONCRITICAL condition—EMU NVRAM write failure

The EMU cannot write data to the NVRAM. This condition report remains active until the problem is corrected.
Complete the following procedure to correct this problem:

1. Record all six characters of the condition report.
2. Reset the EMU.
3. Observe the EMU to ensure the error is corrected.
4. If resetting the enclosure did not correct the problem, contact your HP authorized service representative.

0.7.01.12 NONCRITICAL condition—EMU cannot read NVRAM data

The EMU is unable to read data from the NVRAM. This condition report remains active until the problem is corrected.

Complete the following procedure to correct this problem:

1. Record all six characters of the condition report.
2. Reset the EMU.
3. Observe the EMU to ensure the error is corrected.
4. If resetting the enclosure did not correct the problem, contact your HP authorized service representative.

0.7.01.13 UNRECOVERABLE condition—EMU load failure

The EMU Field Programmable Gate Array (FPGA) that controls the ESI bus failed to load information required for EMU operation. This condition report remains active until the problem is corrected.

Complete the following procedure to correct this problem:

1. Record all six characters of the condition report.
2. Reset the EMU.
3. Observe the EMU to ensure the error is corrected.
4. If resetting the enclosure did not correct the problem, contact your HP authorized service representative.

0.7.01.14 NONCRITICAL condition—EMU enclosure address

Either the enclosure address is incorrect or the enclosure has no address. Possible causes include a defective enclosure address bus cable, an incorrectly connected cable, or a defective enclosure address bus enclosure ID expansion cable. This condition report remains active until the problem is corrected.

Complete the following procedure to correct this problem:

1. Record all six characters of the condition report.
2. Remove and reconnect the cable between the address bus enclosure ID expansion cable and the EMU.

NOTE:

The EMU display may not display a change in condition for up to 30 seconds.

3. Observe the EMU to ensure the error is corrected.
4. If the problem is not corrected, remove and reinstall the lower and upper terminators, and all the enclosure ID expansion cable-to-enclosure ID expansion cables.
5. Observe the EMU to ensure the error is corrected.
6. Reset the EMU, then observe the EMU to ensure the error is corrected.
7. If resetting the EMU did not correct the problem, contact your HP authorized service representative.
0.7.01.15 UNRECOVERABLE condition—EMU hardware failure

The EMU has detected an internal hardware problem. This condition report remains active until the problem is corrected.

Complete the following procedure to correct this problem:

1. Record all six characters of the condition report.
2. Reset the EMU.
3. Observe the EMU to ensure the error does not recur within the first minute.
4. If the error does recur, contact your HP authorized service representative. The EMU is inoperative and must be replaced as soon as possible.

0.7.01.16 INFORMATION condition—EMU internal ESI data corrupted

The EMU ESI data is corrupted. This condition does not affect any other element and no action is required.

0.7.01.17 UNRECOVERABLE condition—Power shutdown failure

The power supply did not respond to a controller, EMU, or power supply shut down command. Shutting down the supply is required to prevent overheating.

Complete the following procedure to correct the problem:

1. Record all six characters of the condition report.
2. Move the power cord bail lock 1, Figure 58, to the left.
3. Disconnect the AC power cord 2 from the supply.

![Figure 58 Disconnecting AC power](CX07490A)

0.7.01.18 UNRECOVERABLE condition—EMU hardware failure

The EMU has detected an internal hardware problem. This condition report remains active until the problem is corrected.

Complete the following procedure to correct this problem:

1. Record all six characters of the condition report.
2. Reset the EMU.
3. Observe the EMU to ensure the error does not recur within the first minute.
4. If the error does recur, contact your HP authorized service representative. The EMU is inoperative and must be replaced as soon as possible.

0.7.01.19 UNRECOVERABLE condition—EMU ESI driver failure

The EMU has detected an internal hardware problem. This condition report remains active until the problem is corrected.

Complete the following procedure to correct this problem:
1. Record all six characters of the condition report.
2. Reset the EMU.
3. Observe the EMU to ensure the error does not recur within the first minute.
4. If the error does recur, contact your HP authorized service representative. The EMU is inoperative and must be replaced as soon as possible.

Transceiver conditions

The format of a transceiver condition report is 0.F.en.ec, where:

- **0.F.** is the transceiver element type number
- **en.** is the two-character transceiver element number (see Figure 59)
- **ec** is the error code

![Transceiver element numbering](image)

Figure 59 Transceiver element numbering

1. Transceiver 01
2. Transceiver 02
3. Transceiver 03
4. Transceiver 04

0.F.en.01 CRITICAL condition—Transceiver incompatibility

The transceivers on this link are not the same type or they are incompatible with the I/O module. This error prevents the controller from establishing a link with the enclosure disk drives and eliminates the enclosure dual-loop capability. This error remains active until the problem is corrected.

To correct this problem, record all six characters of the condition report, then contact your HP authorized service representative.

0.F.en.02 CRITICAL condition—Transceiver data signal lost

This symptom can occur when a controller has been powered off or a cable has been removed from the transceiver. The transceiver can no longer detect a data signal. This error prevents the controller from transferring data on a loop and eliminates the enclosure dual-loop capability. This error remains active until the problem is fixed.
To correct this problem, record all six characters of the condition report, then contact your HP authorized service representative.

0.F.en.03 CRITICAL condition—Transceiver fibre channel drive enclosure bus fault
The system has detected a Fibre Channel drive enclosure bus fault involving a transceiver. This error prevents the controller from transferring data on a loop and eliminates the enclosure dual-loop capability.

Complete the following procedure to correct this problem:
1. Record all six characters of the condition report.
2. Check all the transceivers and cables to ensure they are properly connected.
3. Check all the transceivers on the loop to ensure they are compatible with the I/O module.
4. If the problem persists, contact your HP authorized service representative.

0.F.en.04 CRITICAL condition—Transceiver removed
The EMU detects that a transceiver has been removed. This error remains active until the problem is fixed.

The error can be cleared by doing one of the following:
1. Install a new transceiver,
or
 Reconfigure the system by switching from a loop topology to one with Vixel switches, then the transceiver is not necessary.
2. Clear the error by resetting the EMU or by removing and then re-installing the I/O module.

0.F.en.05 CRITICAL condition—Invalid fibre channel character
This symptom can occur under the following conditions:
• The incoming data stream is corrupted.
• A cable is not completely connected.
• The signal is degraded.

This error prevents the controller from transferring data on a loop and eliminates the enclosure dual-loop capability. This error remains active until the problem is fixed.

To correct this problem, record all six characters of the condition report, then contact your HP authorized service representative.

Voltage sensor and current sensor conditions
The format of these sensor condition reports is 1.2.en.ec for a voltage sensor, and 1.3.en.ec for a current sensor, where:
• 1.2. is the voltage sensor element type
• 1.3. is the current sensor element type number
• en. is the sensor element number
• ec is the error code
Table 49 lists the location of the power supply voltage and current sensors.

Table 49 Voltage and current sensor locations

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Sensor Element Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.</td>
<td>Power Supply 1 +5 VDC</td>
</tr>
<tr>
<td>02.</td>
<td>Power Supply 1 +12 VDC</td>
</tr>
<tr>
<td>03.</td>
<td>Power Supply 2 +5 VDC</td>
</tr>
<tr>
<td>04.</td>
<td>Power Supply 2 +12 VDC</td>
</tr>
</tbody>
</table>

Use HP Command View EVA to view the voltage and current error thresholds for both +5 VDC and +12 VDC power supplies.

1.2.en.01 NONCRITICAL condition—High voltage

This condition report indicates that an element voltage is approaching, but has not reached, the high voltage CRITICAL threshold. Continued operation under these conditions may result in a CRITICAL condition. This condition report remains active until the problem is corrected.

To correct this problem, record all six characters of the condition report, then contact your HP authorized service representative.

1.2.en.02 CRITICAL condition—High voltage

This condition report indicates that an element voltage has reached the high voltage CRITICAL threshold. This report remains active until the problem is corrected.

To correct this problem, record all six characters of the condition report, then contact your HP authorized service representative.

1.2.en.03 NONCRITICAL condition—Low voltage

This condition report indicates that an element voltage is approaching, but has not reached, the low voltage CRITICAL threshold. Continued operation under these conditions may result in a CRITICAL condition. This condition report remains active until the problem is corrected.

To correct this problem, record all six characters of the condition report, then contact your HP authorized service representative.

1.2.en.04 CRITICAL condition—Low voltage

This condition report indicates that an element voltage has reached the low voltage CRITICAL threshold. This condition report remains active until the problem is corrected.

To correct this problem, record all six characters of the condition report, then contact your HP authorized service representative.

1.3.en.01 NONCRITICAL condition—High current

This condition report indicates that an element current is approaching, but has not reached, the high current CRITICAL threshold. Continued operation under these conditions may result in a CRITICAL condition. This condition report remains active until the problem is corrected.

To correct this problem, record all six characters of the condition report, then contact your HP authorized service representative.

1.3.en.02 CRITICAL condition—High current

This condition report indicates that an element current has reached the high current CRITICAL threshold. This condition report remains active until the problem is corrected.
To correct this problem, record all six characters of the condition report, then contact your HP authorized service representative.

Backplane conditions

IMPORTANT:

Backplane NVRAM errors usually occur during manufacture. At this time they are identified and corrected. They rarely occur during normal operation.

The format of a backplane condition report is 8.2.01.ec, where:

- 8.2. is the backplane element type number
- 01. is the two-character backplane element number
- ec is the error code

The only corrective action available for this error is to replace the drive enclosure.

8.2.01.10 NONCRITICAL condition—Backplane NVRAM read

An invalid NVRAM read occurred and an automatic recovery process has begun. This condition report is active for 15 seconds.

If the automatic recovery process does not correct the problem, record all six characters of the condition report, then contact your HP authorized service representative.

8.2.01.11 NONCRITICAL condition—Backplane NVRAM write failure

The system is unable to write data to the NVRAM. This problem prevents communication between elements in the enclosure. This condition report is active for 15 seconds.

To correct this problem, record all six characters of the condition report, then contact your HP authorized service representative.

8.2.01.12 NONCRITICAL condition—Backplane NVRAM read failure

The system is unable to read data from the NVRAM. This problem prevents communication between elements in the enclosure. This condition report is active for 15 seconds.

To correct this problem, record all six characters of the condition report, then contact your HP authorized service representative.

8.2.01.13 NONCRITICAL condition—Backplane WWN is blank

The system is unable to read valid data from the NVRAM. This report is active until corrected. This condition can result in incorrect device location data being displayed.

To correct this problem, record all six characters of the condition report, then contact your HP authorized service representative.

I/O Module conditions

The format of an I/O module condition report is 8.7.en.ec, where:

- 8.7. is the I/O module element type number
- en. is the two-character I/O module element number (see Figure 60)
- ec is the error code
Correction of an I/O module problem normally requires replacing the module. The following sections define the I/O module problem by I/O module location.

8.7.en.01 CRITICAL condition—I/O module unsupported
The I/O module Fibre Channel link speed is not supported by the backplane. This error prevents the controller from establishing a link with enclosure drives and eliminates the enclosure dual-loop capability. This condition report remains active until the problem is corrected.

To correct this problem, record all six characters of the condition report, then contact your HP authorized service representative.

8.7.en.02 CRITICAL condition—I/O module communication
The I/O module is unable to communicate with the EMU.

Complete the following procedure to correct this problem:
1. Record all six characters of the condition report.
2. Contact your HP authorized service representative.

IMPORTANT:
Multiple erroneous error messages indicating I2C bus errors, such as NVRAM errors, blowers missing, and so forth, could indicate an EMU problem.

8.7.en.10 NONCRITICAL condition—I/O module NVRAM read
An invalid NVRAM read occurred and automatic recovery was initiated.

Complete the following procedure to correct this problem:
1. Record all six characters of the condition report.
2. Observe the I/O module status indicators for an operational display.
3. Contact your HP authorized service representative.

8.7.en.11 NONCRITICAL condition—I/O module NVRAM write
The system is unable to write data to the I/O module NVRAM.

Complete the following procedure to correct this problem:
1. Record all six characters of the condition report.
2. Observe the I/O module status indicators for an operational display.
3. Contact your HP authorized service representative.

8.7.en.12 NONCRITICAL condition—I/O Module NVRAM read failure
The system is unable to read data from the I/O module NVRAM.
Complete the following procedure to correct this problem:
1. Record all six characters of the condition report.
2. Contact your HP authorized service representative.

8.7.en.13 NONCRITICAL condition—I/O module removed
The system detects that an I/O module has been removed.
To correct the problem, install an I/O module.

Host conditions
The EMU has the capability of displaying host controller defined condition reports on the EMU alphanumeric display.
The format of a host condition report is \textit{F.F.en.ec}, where:
• \textit{F.F.} is the host element type number
• \textit{en.} is the two-character host element number
• \textit{ec} is the error code
The host controller can display host controller defined error codes on the EMU alphanumeric display
C Controller fault management

This appendix describes how the controller displays events and termination event information. Termination event information is displayed on the LCD. HP Command View EVA enables you to view controller events. This appendix also discusses how to identify and correct problems.

Once you create a storage system, an error condition message has priority over other controller displays.

HP Command View EVA provides detailed descriptions of the storage system error conditions, or faults. The Fault Management displays provide similar information on the LCD, but not in as much detail. Whenever possible, refer to HP Command View EVA for fault information.

Using HP Command View EVA

HP Command View EVA provides detailed information about each event affecting system operation in either a Termination Event display or an Event display. These displays are similar, but not identical.

GUI termination event display

A problem that generates the Termination Event display prevents the system from performing a specific function or process. You can use the information in this display (see GUI Termination Event Display) to diagnose and correct the problem.

NOTE:
The major differences between the Termination Event display and the Event display are:

- The Termination Event display includes a Code Flag field; it does not include the EIP Type field.
- The Event display includes an EIP type field; it does not include a Code Flag field.
- The Event display includes a Corrective Action Code field.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>SWCID</th>
<th>Evt No</th>
<th>Code Flag</th>
<th>Description</th>
</tr>
</thead>
</table>

Figure 61 GUI termination event display

The fields in the Termination Event display include:

- Date—The date the event occurred.
- Time—The time the event occurred.
- SWCID—Software Identification Code. A hexadecimal number in the range 0–FF that identifies the controller software component reporting the event.
- Evt No—Event Number. A hexadecimal number in the range 0–FF that is the software component identification number.
- Code Flag—An internal code that includes a combination of other flags.
- Description—The condition that generated the event. This field may contain information about an individual field’s content and validity.

GUI event display

A problem that generates the Event display reduces the system capabilities. You can use the information in this display (see Figure 62) to diagnose and correct problems.
NOTE:
The major differences between the Event Display and the Termination Event display are:
- The Event display includes an EIP type field; it does not include a Code Flag field.
- The Event display includes a Corrective Action Code (CAC) field.
- The Termination Event display includes a Code Flag field; it does not include the EIP Type field.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>SWCID</th>
<th>Evt No</th>
<th>CAC</th>
<th>EIP Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Figure 62 Typical HP Command View EVA Event display

The Event display provides the following information:
- **Date**—The date the event occurred.
- **Time**—The time the event occurred.
- **SWCID**—Software Identification Code. A number in the range 1–256 that identifies the internal firmware module affected.
- **Evt No**—Event Number. A hexadecimal number in the range 0–FF that is the software component identification number.
- **CAC**—Corrective Action Code. A specific action to correct the problem.
- **EIP Type**—Event Information Packet Type. A hexadecimal character that defines the event information format.
- **Description**—The problem that generated the event.

Fault management displays

When you do not have access to the GUI, you can display and analyze termination codes (TCs) on the OCP LCD display. You can then use the event text code document, as described in the section titled “Interpreting Fault Management Information” to determine and implement corrective action. You can also provide this information to the authorized service representative should you require additional support. This lets the service representative identify the tools and components required to correct the condition in the shortest possible time.

When the fault management display is active, you can either display the last fault or display detailed information about the last 32 faults reported.

Displaying Last Fault Information

Complete the following procedure to display Last Fault information

1. When the Fault Management display is active, press ▶ to select the Last Fault menu.
2. Press ▶ to display the last fault information.
 - The first line of the TC display contains the eight-character TC error code and the two-character IDX (index) code. The IDX is a reference to the location in the TC array that contains this error. The second line of the TC display identifies the affected parameter with a two-character parameter number (0–30), the eight-character parameter code affected, and the parameter code number.
3. Press ▼ to return to the Last Fault menu.

Displaying Detailed Information

The Detail View menu lets you examine detailed fault information stored in the Last Termination Event Array (LTEA). This array stores information for the last 32 termination events.

Complete the following procedure to display the LTEA information about any of the last 32 termination events:
1. When the Fault Management display is active (flashing), press ▼ to select the Detail View menu. The LTEA selection menu is active (LTEA 0 is displayed).

2. Press ▼ or ▲ to increment to a specific error.

3. Press ► to observe data about the selected error.

Interpreting fault management information

Each version of HP Command View EVA includes an ASCII text file that defines all the codes that the authorized service representative can view either on the GUI or on the OCP.

IMPORTANT:
This information is for the exclusive use of the authorized service representative.

The file name identifies the controller model, file type, XCS baselevel id, and XCS version. For example, the file name hsv210_event_cr08d3_5020.txt provides the following information:

- hsv210 —The EVA controller model number
- event —The type of information in the file
- w010605 —the base level build string (the file creation date).
 - 01 —creation year
 - 06 —creation month
 - 05 —creation date
- 5020 —The XCS version

Table 50 describes types of information available in this file.

Table 50 Controller event text description file

<table>
<thead>
<tr>
<th>Information type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Code</td>
<td>This hexadecimal code identifies the reported event type.</td>
</tr>
<tr>
<td>Termination Code (TC)</td>
<td>The hexadecimal code specifies the condition that generated the termination code. It might also define either a system or user initiated corrective action.</td>
</tr>
<tr>
<td>Coupled Crash Control Codes</td>
<td>This single digit, decimal character defines the requirement for the other controller to initiate a coupled crash control. 0. Other controller SHOULD NOT complete a coupled crash. 1. Other controller SHOULD complete a coupled crash.</td>
</tr>
<tr>
<td>Dump/Restart Control Codes</td>
<td>This single decimal character (0, 1, 3) defines the requirement to: 0. Perform a crash dump and then restart the controller. 1. DO NOT perform a crash dump; just restart the controller. 3. DO NOT perform a crash dump; DO NOT restart the controller.</td>
</tr>
<tr>
<td>Corrective Action Codes (CAC)</td>
<td>These hexadecimal codes supplement the Termination Code information to identify the faulty element and the recommended corrective action.</td>
</tr>
<tr>
<td>Software Component ID Codes (SWCID)</td>
<td>These decimal codes identify software associated with the event.</td>
</tr>
<tr>
<td>Event Information Packets (EIP)</td>
<td>These codes specify the packet organization for specific type events.</td>
</tr>
</tbody>
</table>
This glossary defines terms used in this guide or related to this product and is not a comprehensive glossary of computer terms.

μm
A symbol for micrometer; one millionth of a meter. For example, 50 μm is equivalent to 0.000050 m.

3U
A unit of measurement representing three “U” spaces. “U” spacing is used to designate panel or enclosure heights. Three “U” spaces is equivalent to 5.25 inches (133 mm).
See also rack-mounting unit.

active member of a virtual disk family
An active member of a virtual disk family is a simulated disk drive created by the controllers as storage for one or more hosts. An active member of a virtual disk family is accessible by one or more hosts for normal storage. An active virtual disk member and its snapshot, if one exists, constitute a virtual disk family. An active member of a virtual disk family is the only necessary member of a virtual disk family.
See also virtual disk, virtual disk copy, virtual disk family, and snapshot.

adapter
See controller.

AL_PA
Arbitrated Loop Physical Address. A 1-byte value the arbitrated loop topology uses to identify the loop ports. This value becomes the last byte of the address identifier for each public port on the loop.

allocation policy
Storage system rules that govern how virtual disks are created. Allocate Completely and Allocate on Demand are the two rules used in creating virtual disks.
- Allocate Completely—The space a virtual disk requires on the physical disks is reserved, even if the virtual disk is not currently using the space.
- Allocate on Demand—The space a virtual disk requires on the physical disks is not reserved until needed.

ambient temperature
The air temperature in the area where a system is installed. Also called intake temperature or room temperature.

ANSI
American National Standards Institute. A non-governmental organization that develops standards (such as SCSI I/O interface standards and Fibre Channel interface standards) used voluntarily by many manufacturers within the United States.

arbitrated loop
A Fibre Channel topology that links multiple ports (up to 126) together on a single shared simplex media. Transmissions can only occur between a single pair of nodes at any given time. Arbitration is the scheme that determines which node has control of the loop at any given moment.

arbitrated loop physical address
See AL_PA.

arbitrated loop topology
See arbitrated loop.

array
All the physical disk drives in a storage system that are known to and under the control of a controller pair.
array controller See controller.

asynchronous Events scheduled as the result of a signal requesting the event or that which is without any specified time relation.

audible alarm The Environmental Monitoring Unit (EMU) alarm that sounds when there is a drive enclosure element condition report. The audible alarm can be muted or disabled.

backplane An electronic printed circuit board that distributes data, control, power, and other signals to element connectors.

bad block A data block that contains a physical defect.

bad block replacement A replacement routine that substitutes defect-free disk blocks for those found to have defects. This process takes place in the controller and is transparent to the host.

bail lock Part of the power supply AC receptacle that engages the AC power cord connector to ensure that the cord cannot be accidentally disconnected.

baud The maximum rate of signal state changes per second on a communication circuit. If each signal state change corresponds to a code bit, then the baud rate and the bit rate are the same. It is also possible for signal state changes to correspond to more than one code bit so the baud rate may be lower than the code bit rate.

bay The physical location of an element, such as a drive, I/O module, EMU or power supply in a drive enclosure. Each bay is numbered to define its location.

bidirectional Also called Bi-Di. The movement of optical signals in opposite directions through a common fiber cable such as the data flow path typically on a parallel printer port. A parallel port can provide two-way data flow for disk drives, scanning devices, FAX operations and even parallel modems.

block Also called a sector. The smallest collection of consecutive bytes addressable on a disk drive. In integrated storage elements, a block contains 512 bytes of data, error codes, flags, and the block address header.

blower A variable speed airflow device that pulls air into an enclosure or element. It usually pulls air in from the front and exhausts the heated air out the rear.

cabinet An alternate term used for a rack.

cable assembly A fiber optic cable that has connectors installed on one or both ends. General use of these cable assemblies includes the interconnection of multimode fiber optic cable assemblies with either LC or SC type connectors.

CAC Corrective Action Code. An HP Command View EVA graphical user interface (GUI) display component that defines the action required to correct a problem. See also read cache, write cache, and mirrored cache.

cache High-speed memory that sets aside data as an intermediate data buffer between a host and the storage media. The purpose of cache is to improve performance.

cache battery A rechargeable unit mounted within a controller enclosure that supplies back-up power to the cache module in case of primary power shortage.
cache battery indicator

1. An orange light emitting diode (indicator) that illuminates on the controller operator control panel (OCP) to define the status of the HSV Controller cache batteries.

2. An amber status indicator that illuminates on a cache battery. When illuminated, it indicates that one or more cache battery cells have failed and the battery must be replaced with a new battery.

carrier

A drive-enclosure-compatible assembly containing a disk drive or other storage devices.

client

A software program that uses the services of another software program. The HP Command View EVA client is a standard internet browser.

clone

See Virtual Disk Copy.

communication logical unit number (LUN)

See console LUN.

condition report

A three-element code generated by the EMU in the form where e.t. is the element type (a hexadecimal number), en. is the element number (a decimal number), and ec is the condition code (a decimal number).

console LUN

A SCSI-3 virtual object that makes a controller pair accessible by the host before any virtual disks are created. Also called a communication LUN.

console LUN ID

The ID that can be assigned when a host operating system requires a unique ID. The console LUN ID is assigned by the user, usually when the storage system is initialized. See also console LUN.

controller

A hardware/firmware device that manages communications between host systems and other devices. Controllers typically differ by the type of interface to the host and provide functions beyond those the devices support.

controller enclosure

A unit that holds one or more controllers, power supplies, blowers, cache batteries, transceivers, and connectors.

controller event

A significant occurrence involving any storage system hardware or software component reported by the controller to HP Command View EVA.

controller fault indicator

An amber fault indicator that illuminates on the controller OCP to indicate when there is an HSV Controller fault.

controller pair

Two interconnected controller modules which together control the disk enclosures in the storage system.

corrective action code

See CAC.

CRITICAL Condition

A drive enclosure EMU condition that occurs when one or more drive enclosure elements have failed or are operating outside of their specifications. The failure of the element makes continued normal operation of at least some elements in the enclosure impossible. Some enclosure elements may be able to continue normal operations. Only an UNRECOVERABLE condition has precedence. This condition has precedence over NONCRITICAL errors and INFORMATION condition.

CRU

Customer Replaceable Unit. A storage system element that a user can replace without using special tools or techniques, or special training.

customer replaceable unit

See CRU.
data entry mode The state in which controller information can be displayed or controller configuration data can be entered. On the Enterprise Storage System, the controller mode is active when the LCD on the HSV Controller OCP is Flashing.

default disk group The first disk group created at the time the system is initialized. The default disk group can contain the entire set of physical disks in the array or just a few of the disks.
See also disk group.

Detailed Fault View An HSV Controller OCP display that permits a user to view detailed information about a controller fault.

device channel A channel used to connect storage devices to a host I/O bus adapter or intelligent controller.

device ports Controller pair device ports connected to the storage system’s physical disk drive array through the Fibre Channel drive enclosure. Also called a device-side port.

device-side ports See device ports.

DIMM Dual Inline Memory Module. A small circuit board holding memory chips.

dirty data The write-back cached data that has not been written to storage media even though the host operation processing the data has completed.

disk drive A carrier-mounted storage device supporting random access to fixed size blocks of data.

disk drive blank A drive that replaces a disk drive to control airflow within a drive enclosure whenever there is less than a full complement of storage devices.

drive enclosure A unit that holds storage system devices such as disk drives, power supplies, blowers, I/O modules, transceivers, or EMUs.

drive enclosure event A significant operational occurrence involving a hardware or software component in the drive enclosure. The drive enclosure EMU reports these events to the controller for processing.

disk failure protection A method by which a controller pair reserves drive capacity to take over the functionality of a failed or failing physical disk. For each disk group, the controllers reserve space in the physical disk pool equivalent to the selected number of physical disk drives.

disk group A physical disk drive set or pool in which a virtual disk is created. A disk group may contain all the physical disk drives in a controller pair array or a subset of the array.

disk migration state A physical disk drive operating state. A physical disk drive can be in a stable or migration state:
- Stable—The state in which the physical disk drive has no failure nor is a failure predicted.
- Migration—The state in which the disk drive is failing, or failure is predicted to be imminent. Data is then moved off the disk onto other disk drives in the same disk group.

disk replacement delay The time that elapses between a drive failure and when the controller starts searching for spare disk space. Drive replacement seldom starts immediately in case the “failure” was a glitch or temporary condition.

drive blank See disk drive blank.

drive enclosure See drive enclosure.

dual-loop A configuration where each drive is connected to a pair of controllers through two loops. These two Fibre Channel loops constitute a loop pair.
dual power supply configuration See redundant power configuration.

dynamic capacity expansion A storage system feature that provides the ability to increase the size of an existing virtual disk. Before using this feature, you must ensure that your operating system supports capacity expansion of a virtual disk (or LUN).

EIA Electronic Industries Alliance. A standards organization specializing in the electrical and functional characteristics of interface equipment.

EIP Event Information Packet. The event information packet is an HSV element hexadecimal character display that defines how an event was detected. Also called the EIP type.

electromagnetic interference See EMI.

electrostatic discharge See ESD.

element 1. In a drive enclosure, a device such as an EMU, power supply, disk, blower, or I/O module. The object can be controlled, interrogated, or described by the enclosure services process.

2. In the Open SAN Manager, a controllable object, such as the Enterprise storage system.

Command View EVA GUI The graphical user interface (GUI) through which a user can control and monitor a storage system. HP Command View EVA can be installed on more than one storage management server in a fabric. Each installation is a management agent. The client for the agent is a standard browser.

EMI Electromagnetic Interference. The impairment of a signal by an electromagnetic disturbance.

EMU Environmental Monitoring Unit. An element which monitors the status of an enclosure, including the power, air temperature, and blower status. The EMU detects problems and displays and reports these conditions to a user and the controller. In some cases, the EMU implements corrective action.

enclosure A unit used to hold various storage system devices such as disk drives, controllers, power supplies, blowers, an EMU, I/O modules, or blowers.

enclosure address bus An Enterprise storage system bus that interconnects and identifies controller enclosures and disk drive enclosures by their physical location. Enclosures within a reporting group can exchange environmental data. This bus uses enclosure ID expansion cables to assign enclosure numbers to each enclosure. Communications over this bus do not involve the Fibre Channel drive enclosure bus and are, therefore, classified as out-of-band communications.

enclosure number (En) One of the vertical rack-mounting positions where the enclosure is located. The positions are numbered sequentially in decimal numbers starting from the bottom of the cabinet. Each disk enclosure has its own enclosure number. A controller pair shares an enclosure number. If the system has an expansion rack, the enclosures in the expansion rack are numbered from 15 to 24, starting at the bottom.

enclosure services Those services that establish the mechanical environmental, electrical environmental, and external indicators and controls for the proper operation and maintenance of devices with an enclosure as described in the SES SCSI-3 Enclosure Services Command Set (SES), Rev 8b, American National Standard for Information Services.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure Services Interface</td>
<td>See ESI.</td>
</tr>
<tr>
<td>Enclosure Services Processor</td>
<td>See ESP.</td>
</tr>
<tr>
<td>Enterprise Virtual Array</td>
<td>The Enterprise Virtual Array is a product that consists of one or more storage systems. Each storage system consists of a pair of HSV controllers and the disk drives they manage. A storage system within the Enterprise Virtual Array can be formally referred to as an Enterprise storage system, or generically referred to as the storage system.</td>
</tr>
<tr>
<td>Enterprise Virtual Array rack</td>
<td>A unit that holds controller enclosures, disk drive enclosures, power distribution supplies, and enclosure address buses that, combined, comprise an Enterprise storage system solution. Also called the Enterprise storage system rack. See also rack.</td>
</tr>
<tr>
<td>environmental monitoring unit</td>
<td>See EMU.</td>
</tr>
<tr>
<td>error code</td>
<td>The portion of an EMU condition report that defines a problem.</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic Discharge. The emission of a potentially harmful static electric voltage as a result of improper grounding.</td>
</tr>
<tr>
<td>ESI</td>
<td>Enclosure Services Interface. The SCSI-3 engineering services interface implementation developed for StorageWorks products. A bus that connects the EMU to the disk drives.</td>
</tr>
<tr>
<td>ESP</td>
<td>Enclosure Services Processor. An EMU that implements an enclosure’s services process.</td>
</tr>
<tr>
<td>event</td>
<td>Any significant change in the state of the Enterprise storage system hardware or software component reported by the controller to HP Command View EVA. See also controller event, drive enclosure event, management agent event, and termination event.</td>
</tr>
<tr>
<td>Event Information Packet</td>
<td>See EIP.</td>
</tr>
<tr>
<td>Event Number</td>
<td>See Evt No.</td>
</tr>
<tr>
<td>Evt No.</td>
<td>Event Number. A sequential number assigned to each Software Code Identification (SWCID) event. It is a decimal number in the range 0-255.</td>
</tr>
<tr>
<td>exabyte</td>
<td>A unit of storage capacity that is the equivalent of 2^{60} bytes or 1,152,921,504,606,846,976 bytes. One exabyte is equivalent to 1,024 petabytes.</td>
</tr>
<tr>
<td>fabric</td>
<td>A Fibre Channel fabric switch or two or more interconnected Fibre Channel switches allowing data transmission.</td>
</tr>
<tr>
<td>fabric port</td>
<td>A port which is capable of supporting an attached arbitrated loop. This port on a loop will have the AL_PA hexadecimal address 00 (loop ID 7E), giving the fabric the highest priority access to the loop. A loop port is the gateway to the fabric for the node ports on a loop.</td>
</tr>
<tr>
<td>failover</td>
<td>The process that takes place when one controller assumes the workload of a failed companion controller. Failover continues until the failed controller is operational.</td>
</tr>
<tr>
<td>fan</td>
<td>The variable speed airflow device that cools an enclosure or element by forcing ambient air into an enclosure or element and forcing heated air out the other side. See also blower.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Fault Management Code</td>
<td>See FMC.</td>
</tr>
<tr>
<td>Fibre Channel drive enclosure</td>
<td>Fibre Channel Arbitrated Loop. The American National Standards Institute’s (ANSI) document that specifies arbitrated loop topology operation.</td>
</tr>
<tr>
<td>FC HBA</td>
<td>Fibre Channel Host Bus Adapter. An interchangeable term for Fibre Channel adapter. See also FCA.</td>
</tr>
<tr>
<td>FCA</td>
<td>Fibre Channel Adapter. An adapter used to connect the host server to the fabric. Also called a Host Bus Adapter (HBA) or a Fibre Channel Host Bus Adapter (FC HBA). See also FC HBA.</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission. The federal agency responsible for establishing standards and approving electronic devices within the United States.</td>
</tr>
<tr>
<td>FCP</td>
<td>Fibre Channel Protocol. The mapping of SCSI-3 operations to Fibre Channel.</td>
</tr>
<tr>
<td>fiber</td>
<td>The optical media used to implement Fibre Channel.</td>
</tr>
<tr>
<td>fiber optics</td>
<td>The technology where light is transmitted through glass or plastic (optical) threads (fibers) for data communication or signaling purposes.</td>
</tr>
<tr>
<td>fiber optic cable</td>
<td>A transmission medium designed to transmit digital signals in the form of pulses of light. Fiber optic cable is noted for its properties of electrical isolation and resistance to electrostatic contamination.</td>
</tr>
<tr>
<td>fibre</td>
<td>The international spelling that refers to the Fibre Channel standards for optical media.</td>
</tr>
<tr>
<td>Fibre Channel</td>
<td>A data transfer architecture designed for mass storage devices and other peripheral devices that require very high bandwidth.</td>
</tr>
<tr>
<td>Fibre Channel adapter</td>
<td>See FCA.</td>
</tr>
<tr>
<td>Fibre Channel Loop Switch</td>
<td>An enclosure that provides twelve-port central interconnect for Fibre Channel Arbitrated Loops following the ANSI Fibre Channel drive enclosure standard.</td>
</tr>
<tr>
<td>field replaceable unit</td>
<td>See FRU.</td>
</tr>
<tr>
<td>flush</td>
<td>The act of writing dirty data from cache to a storage media</td>
</tr>
<tr>
<td>form factor</td>
<td>A storage industry dimensional standard for 3.5inch (89 mm) and 5.25inch (133 mm) high storage devices. Device heights are specified as low-profile (1 inch or 25.4 mm), half-height (1.6inch or 41 mm), and full-height (5.25inch or 133 mm).</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array. A programmable device with an internal array of logic blocks surrounded by a ring of programmable I/O blocks connected together through a programmable interconnect.</td>
</tr>
<tr>
<td>frequency</td>
<td>The number of cycles that occur in one second expressed in Hertz (Hz). Thus, 1 Hz is equivalent to one cycle per second.</td>
</tr>
<tr>
<td>FRU</td>
<td>Field Replaceable Unit. A hardware element that can be replaced in the field. This type of replacement can require special training, tools, or techniques. Therefore, FRU procedures are usually performed only by an Authorized Service Representative.</td>
</tr>
</tbody>
</table>
Gb | Gigabit. A measurement of the rate at which the transfer of bits of data occurs. Sometimes referred to as Gbps. Nominally, a Gb is a transfer rate of $1,000,000,000 \times 10^9$ bits per second. For Fibre Channel transceivers or FC loops the Gb transfer rates are:
• 1 Gb is a transmission rate of 1,062,500,000 bits per second.
• 2 Gb is a transmission rate of 2,125,000,000 bits per second.

GB | Gigabyte. A unit of measurement defining either:
• A data transfer rate.
• A storage or memory capacity of $1,073,741,824 \times 2^{30}$ bytes.
See also GBps.

Gbps | Gigabits per second. A measurement of the rate at which the transfer of bits of data occurs. Nominally, a Gb is a transfer rate of $1,000,000,000 \times 10^9$ bits per second.
See also Gb.

GBps | Gigabytes per second. A measurement of the rate at which the transfer of bytes of data occurs. A GBps is a transfer rate of $1,000,000,000 \times 10^9$ bytes per second.
See also GB.

Giga (G) | The notation to represent 10^9 or 1 billion $1,000,000,000$.

gigabaud | An encoded bit transmission rate of one billion 10^9 bits per second.

gigabit | See Gb.

gigabit per second | See Gbps.

graphical user interface | See GUI.

GUI | Graphical User Interface. Software that displays the status of a storage system and allows its user to control the storage system.

HBA | Host Bus Adapter. See also FCA.

host | A computer that runs user applications and uses (or can potentially use) one or more virtual disks created and presented by the controller pair.

Host Bus Adapter | See FCA.

host computer | See host.

host link indicator | The HSV Controller display that indicates the status of the storage system Fibre Channel links.

host ports | A connection point to one or more hosts through a Fibre Channel fabric. A host is a computer that runs user applications and that uses (or can potentially use) one or more of the virtual disks that are created and presented by the controller pair.

host-side ports | See host ports.

hot-pluggable | A method of element replacement whereby the complete system remains operational during element removal or insertion. Replacement does not interrupt data transfers to other elements.

hub | A communications infrastructure device to which nodes on a multi-point bus or loop are physically connected. It is used to improve the manageability of physical cables.
I/O module

Input/Output module. The enclosure element that is the Fibre Channel drive enclosure interface to the host or controller. I/O modules are bus speed specific, either 1 Gb or 2 Gb.

IDX

A 2-digit decimal number portion of the HSV controller termination code display that defines one of 32 locations in the Termination Code array that contains information about a specific event. See also param and TC.

in-band communication

The method of communication between the EMU and controller that utilizes the Fibre Channel drive enclosure bus.

INFORMATION condition

A drive enclosure EMU condition report that may require action. This condition is for information only and does not indicate the failure of an element. All condition reports have precedence over an INFORMATION condition.

initialization

A process that prepares a storage system for use. Specifically, the system binds controllers together as an operational pair and establishes preliminary data structures on the disk array. Initialization also sets up the first disk group, called the default disk group.

input/output module

See I/O module.

intake temperature

See ambient temperature

interface

A set of protocols used between components such as cables, connectors, and signal levels.

JBOD

Just a Bunch of Disks. A number of disks connected to one or more controllers.

K

Kilo. A scientific notation denoting a multiplier of one thousand (1,000).

KB

Kilobyte. A unit of measurement defining either storage or memory capacity.
1. For storage, a KB is a capacity of 1,000 \((10^3)\) bytes of data.
2. For memory, a KB is a capacity of 1,024 \((2^{10})\) bytes of data.

LAN

Local area network. A group of computers and associated devices that share a common communications line and typically share the resources of a single processor or server within a small geographic area.

laser

A device that amplifies light waves and concentrates them in a narrow, very intense beam.

Last Fault View

An HSV Controller display defining the last reported fault condition.

Last Termination Error Array

See LTEA.

LCD

Liquid Crystal Display. The indicator on a panel that is associated with an element. The LCD is usually located on the front of an element.

indicator

Light Emitting Diode. A semiconductor diode, used in an electronic display, that emits light when a voltage is applied to it.

License Key

A WWN-encoded sequence that is obtained from the license key fulfillment Web site.

light emitting diode

See indicator.

link

A connection between ports on Fibre Channel devices. The link is a full duplex connection to a fabric or a simplex connection between loop devices.
logon
Also called login, it is a procedure whereby a user or network connection is identified as being an authorized network user or participant.

loop
See arbitrated loop.

loop ID
Seven-bit values numbered contiguously from 0 to 126 decimal and represent the 127 valid AL_PA values on a loop (not all 256 hexadecimal values are allowed as AL_PA values per Fibre Channel).

loop pair
A Fibre Channel attachment between a controller and physical disk drives. Physical disk drives connect to controllers through paired Fibre Channel arbitrated loops. There are two loop pairs, designated loop pair 1 and loop pair 2. Each loop pair consists of two loops (called loop A and loop B) that operate independently during normal operation, but provide mutual backup in case one loop fails.

LTEA
Last Termination Event Array. A two-digit HSV Controller number that identifies a specific event that terminated an operation. Valid numbers range from 00 to 31.

LUN
Logical Unit Number. A SCSI convention used to identify elements. The host sees a virtual disk as a LUN. The LUN address a user assigns to a virtual disk for a particular host will be the LUN at which that host will see the virtual disk.

management agent
The HP Command View EVA software that controls and monitors the Enterprise storage system. The software can exist on more than one management server in a fabric. Each installation is a management agent.

management agent event
Significant occurrence to or within the management agent software, or an initialized storage cell controlled or monitored by the management agent.

Mb
Megabit. A term defining a data transfer rate. See also Mbps.

MB
Megabyte. A term defining either:
- A data transfer rate.
- A measure of either storage or memory capacity of 1,048,576 (2^20) bytes. See also MBps.

Mbps
Megabits per second. A measure of bandwidth or data transfers occurring at a rate of 1,000,000 (10^6) bits per second.

MBps
Megabytes per second. A measure of bandwidth or data transfers occurring at a rate of 1,000,000 (10^6) bytes per second.

mean time between failures
See MTBF.

Mega
A notation denoting a multiplier of 1 million (1,000,000).

metadata
Information that a controller pair writes on the disk array. This information is used to control and monitor the array and is not readable by the host.

micro meter
See μm.

mirrored caching
A process in which half of each controller’s write cache mirrors the companion controller’s write cache. The total memory available for cached write data is reduced by half, but the level of protection is greater.

mirroring
The act of creating an exact copy or image of data.

MTBF
Mean Time Between Failures. The average time from start of use to first failure in a large population of identical systems, components, or devices.
multi-mode fiber A fiber optic cable with a diameter large enough (50 microns or more) to allow multiple streams of light to travel different paths from the transmitter to the receiver. This transmission mode enables bidirectional transmissions.

Network Storage Controller See NSC.

NONCRITICAL Condition A drive enclosure EMU condition report that occurs when one or more elements inside the enclosure have failed or are operating outside of their specifications. The failure does not affect continued normal operation of the enclosure. All devices in the enclosure continue to operate according to their specifications. The ability of the devices to operate correctly may be reduced if additional failures occur. UNRECOVERABLE and CRITICAL errors have precedence over this condition. This condition has precedence over INFORMATION condition. Early correction can prevent the loss of data.

node port A device port that can operate on the arbitrated loop topology.

non-OFC (Open Fibre Control) A laser transceiver whose lower-intensity output does not require special open Fibre Channel mechanisms for eye protection. The Enterprise storage system transceivers are non-OFC compatible.

NSC Network Storage Controller. The HSV Controllers used by the Enterprise storage system.

NVRAM Nonvolatile Random Access Memory. Memory whose contents are not lost when a system is turned Off or if there is a power failure. This is achieved through the use of UPS batteries or implementation technology such as flash memory. NVRAM is commonly used to store important configuration parameters.

occupancy alarm level A percentage of the total disk group capacity in blocks. When the number of blocks in the disk group that contain user data reaches this level, an event code is generated. The alarm level is specified by the user.

OCP Operator Control Panel. The element that displays the controller’s status using indicators and an LCD. Information selection and data entry is controlled by the OCP push buttons.

online/nearonline An online drive is a normal, high-performance drive, while a near-online drive is a lower-performance drive.

operator control panel See OCP.

OpenView Storage Management Server A centralized, appliance-based monitoring and management interface that supports multiple applications, operating systems, hardware platforms, storage systems, tape libraries and SAN-related interconnect devices. It is included and resides on the SANWorks Management Server, a single aggregation point for data management.

param That portion of the HSV controller termination code display that defines:
• The 2-character parameter identifier that is a decimal number in the 0 through 30 range.
• The 8-character parameter code that is a hexadecimal number.
See also IDX and TC.

password A security interlock where the purpose is to allow:
• A management agent to control only certain storage systems
• Only certain management agents to control a storage system

PDM Power Distribution Module. A thermal circuit breaker-equipped power strip that distributes power from a PDU to Enterprise Storage System elements.
PDU Power Distribution Unit. The rack device that distributes conditioned AC or DC power within a rack.

petabyte A unit of storage capacity that is the equivalent of 2^{50}, 1,125,899,906,842,624 bytes or 1,024 terabytes.

physical disk A disk drive mounted in a drive enclosure that communicates with a controller pair through the device-side Fibre Channel loops. A physical disk is hardware with embedded software, as opposed to a virtual disk, which is constructed by the controllers. Only the controllers can communicate directly with the physical disks. The physical disks, in aggregate, are called the array and constitute the storage pool from which the controllers create virtual disks.

physical disk array See array.

port A Fibre Channel connector on a Fibre Channel device.

port_name A 64-bit unique identifier assigned to each Fibre Channel port. The port_name is communicated during the login and port discovery processes.

port-wine colored A convention of applying the color of port wine to a CRU tab, lever, or handle to identify the unit as hot-pluggable.

power distribution module See PDM.

power distribution unit See PDU.

power supply An element that develops DC voltages for operating the storage system elements from either an AC or DC source.

preferred address An AL_PA which a node port attempts to acquire during loop initialization.

preferred path A preference for which controller of the controller pair manages the virtual disk. This preference is set by the user when creating the virtual disk. A host can change the preferred path of a virtual disk at any time. The primary purpose of preferring a path is load balancing.

protocol The conventions or rules for the format and timing of messages sent and received.

push button A switch that is engaged or disengaged when it is pressed.

quiesce The act of rendering bus activity inactive or dormant. For example, “quiesce the SCSI bus operations during a device warm-swap.”

rack A floorstanding structure primarily designed for, and capable of, holding and supporting storage system equipment. All racks provide for the mounting of panels per Electronic Industries Alliance (EIA) Standard RS310C.

rack-mounting unit A measurement for rack heights based upon a repeating hole pattern. It is expressed as “U” spacing or panel heights. Repeating hole patterns are spaced every 1.75 inches (44.45 mm) and based on EIA’s Standard RS310C. For example, a 3U unit is 5.25 inches (133.35 mm) high, and a 4U unit is 7.0 inches (177.79 mm) high.

read caching A cache method used to decrease subsystem response times to a read request by allowing the controller to satisfy the request from the cache memory rather than from the disk drives. Reading data from cache memory is faster than reading data from a disk. The read cache is specified as either On or Off for each virtual disk. The default state is on.
read ahead caching

A cache management method used to decrease the subsystem response time to a read request by allowing the controller to satisfy the request from the cache memory rather than from the disk drives.

reconstruction

The process of regenerating the contents of a failed member data. The reconstruction process writes the data to a spare set disk and incorporates the spare set disk into the mirrorset, striped mirrorset or RAID set from which the failed member came.

redundancy

1. Element Redundancy—The degree to which logical or physical elements are protected by having another element that can take over in case of failure. For example, each loop of a device-side loop pair normally works independently but can take over for the other in case of failure.

2. Data Redundancy—The level to which user data is protected. Redundancy is directly proportional to cost in terms of storage usage; the greater the level of data protection, the more storage space is required.

redundant power configuration

A capability of the Enterprise storage system racks and enclosures to allow continuous system operation by preventing single points of power failure.

- For a rack, two AC power sources and two power conditioning units distribute primary and redundant AC power to enclosure power supplies.
- For a controller or drive enclosure, two power supplies ensure that the DC power is available even when there is a failure of one supply, one AC source, or one power conditioning unit. Implementing the redundant power configuration provides protection against the loss or corruption of data.

reporting group

An Enterprise Storage System controller pair and the associated disk drive enclosures. The Enterprise Storage System controller assigns a unique decimal reporting group number to each EMU on its loops. Each EMU collects disk drive environmental information from its own sub-enclosure and broadcasts the data over the enclosure address bus to all members of the reporting group. Information from enclosures in other reporting groups is ignored.

room temperature

See ambient temperature

SCSI

1. Small Computer System Interface. An American National Standards Institute (ANSI) interface which defines the physical and electrical parameters of a parallel I/O bus used to connect computers and a maximum of 16 bus elements.

2. The communication protocol used between a controller pair and the hosts. Specifically, the protocol is Fibre Channel drive enclosure or SCSI on Fibre Channel. SCSI is the higher command-level protocol and Fibre Channel is the low-level transmission protocol. The controllers have full support for SCSI-2; additionally, they support some elements of SCSI-3.

SCSI-3

The ANSI standard that defines the operation and function of Fibre Channel systems.

SCSI-3 Enclosure Services

See SES.

selective presentation

The process whereby a controller presents a virtual disk only to the host computer which is authorized access.

serial transmission

A method of transmission in which each bit of information is sent sequentially on a single channel rather than simultaneously as in parallel transmission.

SES

SCSI-3 Enclosures Services. Those services that establish the mechanical environment, electrical environment, and external indicators and controls for the proper operation and maintenance of devices within an enclosure.
Snapclone
A virtual disk that can be manipulated while the data is being copied. Only an Active member of a virtual disk family can be snapcloned. The Snapclone, like a snapshot, reflects the contents of the source virtual disk at a particular point in time. Unlike the snapshot, the Snapclone is an actual clone of the source virtual disk and immediately becomes an independent Active member of its own virtual disk family.

Snapshot
A temporary virtual disk (Vdisk) that reflects the contents of another virtual disk at a particular point in time. A snapshot operation is only done on an active virtual disk. Up to seven snapshots of an active virtual disk can exist at any point. The active disk and its snapshot constitute a virtual family. See also active virtual disk, virtual disk copy, and virtual disk family.

SSN
Storage System Name. An HP Command View EVA-assigned, unique 20-character name that identifies a specific storage system.

storage carrier
See carrier.

storage pool
The aggregated blocks of available storage in the total physical disk array.

storage system
The controllers, storage devices, enclosures, cables, and power supplies and their software.

Storage System Name
See SSN.

switch
An electro-mechanical device that initiates an action or completes a circuit.

TB
Terabyte. A term defining either:
• A data transfer rate.
• A measure of either storage or memory capacity of 1,099,5111,627,776 (2^40) bytes.
See also TBps.

TBps
Terabytes per second. A data transfer rate of 1,000,000,000,000 (10^12) bytes per second.

TC
Termination Code. An Enterprise Storage System controller 8-character hexadecimal display that defines a problem causing controller operations to halt. See also IDX and param.

Termination Code
See TC.

termination event
Occurrences that cause the storage system to cease operation.

terminator
Interconnected elements that form the ends of the transmission lines in the enclosure address bus.

topology
An interconnection scheme that allows multiple Fibre Channel ports to communicate. Point-to-point, arbitrated loop, and switched fabric are all Fibre Channel topologies.

transceiver
The device that converts electrical signals to optical signals at the point where the fiber cables connect to the FC elements such as hubs, controllers, or adapters.

uninitialized system
A state in which the storage system is not ready for use. See also initialization.

UNRECOVERABLE Condition
A drive enclosure EMU condition report that occurs when one or more elements inside the enclosure have failed and have disabled the enclosure. The enclosure
may be incapable of recovering or bypassing the failure and will require repairs
to correct the condition.
This is the highest level condition and has precedence over all other errors and
requires immediate corrective action.

unwritten cached
data

Also called unflushed data.
See also dirty data.

UPS

Uninterruptible Power Supply. A battery-operated power supply guaranteed to
provide power to an electrical device in the event of an unexpected interruption
to the primary power supply. Uninterruptible power supplies are usually rated
by the amount of voltage supplied and the length of time the voltage is supplied.

Vdisk

Virtual Disk. A simulated disk drive created by the controllers as storage
for one or more hosts. The virtual disk characteristics, chosen by the storage
administrator, provide a specific combination of capacity, availability,
performance, and accessibility. A controller pair simulates the characteristics
of the virtual disk by deploying the disk group from which the virtual disk was
created.
The host computer sees the virtual disk as “real,” with the characteristics of an
identical physical disk.
See also active virtual disk, virtual disk copy, virtual disk family, and virtual
disk snapshot.

virtual disk

See Vdisk.

virtual disk copy

A clone or exact replica of another virtual disk at a particular point in time.
Only an active virtual disk can be copied. A copy immediately becomes the
active disk of its own virtual disk family.
See also active virtual disk, virtual disk family, and virtual disk snapshot

virtual disk family

A virtual disk and its snapshot, if a snapshot exists, constitute a family. The
original virtual disk is called the active disk. When you first create a virtual disk
family, the only member is the active disk.
See also active virtual disk, virtual disk copy, and virtual disk snapshot.

virtual disk snapshot

See snapshot.

Vraid0

A virtualization technique that provides no data protection. Data host is broken
down into chunks and distributed on the disks comprising the disk group from
which the virtual disk was created. Reading and writing to a Vraid0 virtual disk
is very fast and makes the fullest use of the available storage, but there is no
data protection (redundancy) unless there is parity.

Vraid1

A virtualization technique that provides the highest level of data protection.
All data blocks are mirrored or written twice on separate physical disks. For
read requests, the block can be read from either disk, which can increase
performance. Mirroring takes the most storage space because twice the storage
capacity must be allocated for a given amount of data.

Vraid5

A virtualization technique that uses parity striping to provide moderate data
protection. Parity is a data protection mechanism for a striped virtual disk. A
striped virtual disk is one where the data to and from the host is broken down
into chunks and distributed on the physical disks comprising the disk group in
which the virtual disk was created. If the striped virtual disk has parity, another
chunk (a parity chunk) is calculated from the set of data chunks and written to
the physical disks. If one of the data chunks becomes corrupted, the data can
be reconstructed from the parity chunk and the remaining data chunks.

World Wide
Name

See WWN.
write back caching

A controller process that notifies the host that the write operation is complete when the data is written to the cache. This occurs before transferring the data to the disk. Write back caching improves response time since the write operation completes as soon as the data reaches the cache. As soon as possible after caching the data, the controller then writes the data to the disk drives.

write caching

A process when the host sends a write request to the controller, and the controller places the data in the controller cache module. As soon as possible, the controller transfers the data to the physical disk drives.

WWN

World Wide Name. A unique Fibre Channel identifier consisting of a 16-character hexadecimal number. A WWN is required for each Fibre Channel communication port.
Symbols
+5.1 VDC, 53

A
AC input missing, 129
AC power
 distributing, 81
 frequency, 52
 specifications, 121
 voltage, 52
AC power specifications, 118
air flow
 affecting temperature, 53
 adjusting automatically, 53
air quality
 environmental specifications, 117
 operating specifications, 122
alarm code cycles, 59
alphanumeric display
 controlling, 57
 description, 56, 57
altitude
 shipping, 117, 122
 short-term storage, 117
ambient temperature
 environmental specifications, 117
 operating, 122
 shipping, 117, 122
 short-term storage, 117, 122
API versions, 74
ASCII, error codes definitions, 147
asynchronous disk swap, 20
audible alarm
 unmuting, 60
 disabling, 60
 enabling, 59
 muting, 60
 selecting display group, 58
 sound patterns, 59
 automatically correcting errors, 55

B
backplane
 NONCRITICAL conditions, 141, 141, 141
 NVRAM conditions, 135, 141
bays
 locating, 45
 numbering, 45
benefits, 17
bidirectional operation, 47
blowers
cooling enclosures, 53
UNRECOVERABLE conditions, 131
CRITICAL conditions, 130
failure, 131
missing, 131, 131
monitored functions, 56
NONCRITICAL conditions, 130, 131
speed, 130
status indicators, 53
UNRECOVERABLE conditions, 131
browser interface, 19
BTU specifications, 117, 122

cables
 FCC compliance statement, 108
cabling controller, 80
CAC, 145, 147
cache battery assembly indicator, 71
CAUTIONs
 initializing the system, 76
CDRH, compliance regulations, 109
Center for Devices and Radiological Health
 See CDRH
certification product labels, 115
changing passwords, 77
checksum, 30
Class A equipment, Canadian compliance
 statement, 109
Class B equipment, Canadian compliance
 statement, 109
cleaning fiber optic connectors, 44
clearing passwords, 77
clustering, 17
code flag, 145
Command View EVA
 defined, 19, 20
 location of, 25
Command View GUI
 displaying events, 145
 displaying termination events, 145
commercial environments, use in, 17
components, storage system, 19
condition reporting
 backplane, 141
current sensors, 139
 drives, 126
 element types, 126
 EMU, 134
 hosts, 143
 I/O modules, 141
power supplies, 128
<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>186</td>
<td>transceivers, 138</td>
</tr>
<tr>
<td>186</td>
<td>voltage sensor, 139</td>
</tr>
<tr>
<td>186</td>
<td>condition reporting</td>
</tr>
<tr>
<td>186</td>
<td>temperature, 131</td>
</tr>
<tr>
<td>186</td>
<td>conditions, EMU detection of, 55</td>
</tr>
<tr>
<td>186</td>
<td>configuration</td>
</tr>
<tr>
<td>186</td>
<td>physical layout, 21</td>
</tr>
<tr>
<td>186</td>
<td>connectors</td>
</tr>
<tr>
<td>186</td>
<td>power IEC 309 receptacle, 81</td>
</tr>
<tr>
<td>186</td>
<td>power NEMA L6-30R, 81</td>
</tr>
<tr>
<td>186</td>
<td>protecting, 43</td>
</tr>
<tr>
<td>186</td>
<td>controller</td>
</tr>
<tr>
<td>186</td>
<td>cabling, 80</td>
</tr>
<tr>
<td>186</td>
<td>connectors, 80</td>
</tr>
<tr>
<td>186</td>
<td>defined, 21, 22</td>
</tr>
<tr>
<td>186</td>
<td>initial setup, 29</td>
</tr>
<tr>
<td>186</td>
<td>status indicators, 71</td>
</tr>
<tr>
<td>186</td>
<td>controllers</td>
</tr>
<tr>
<td>186</td>
<td>physical dimensions, 120</td>
</tr>
<tr>
<td>186</td>
<td>power requirements, 120</td>
</tr>
<tr>
<td>186</td>
<td>controls, 54</td>
</tr>
<tr>
<td>186</td>
<td>conventions</td>
</tr>
<tr>
<td>186</td>
<td>text symbols, 14</td>
</tr>
<tr>
<td>186</td>
<td>cooling</td>
</tr>
<tr>
<td>186</td>
<td>enclosures, 53</td>
</tr>
<tr>
<td>186</td>
<td>blowers, 52</td>
</tr>
<tr>
<td>186</td>
<td>power supplies, 53</td>
</tr>
<tr>
<td>186</td>
<td>Corrective Action Code</td>
</tr>
<tr>
<td>186</td>
<td>See CAC</td>
</tr>
<tr>
<td>186</td>
<td>Corrective Action Codes</td>
</tr>
<tr>
<td>186</td>
<td>See CAC</td>
</tr>
<tr>
<td>186</td>
<td>country-specific certifications, 115</td>
</tr>
<tr>
<td>186</td>
<td>coupled crash control codes, 147</td>
</tr>
<tr>
<td>186</td>
<td>CRITICAL conditions</td>
</tr>
<tr>
<td>186</td>
<td>I/O modules communication, 142</td>
</tr>
<tr>
<td>186</td>
<td>audible alarm, 59</td>
</tr>
<tr>
<td>186</td>
<td>blowers speed, 130</td>
</tr>
<tr>
<td>186</td>
<td>drive link rate, 126, 128, 128</td>
</tr>
<tr>
<td>186</td>
<td>drives configuration, 126</td>
</tr>
<tr>
<td>186</td>
<td>EMU internal clock, 134</td>
</tr>
<tr>
<td>186</td>
<td>high current, 140</td>
</tr>
<tr>
<td>186</td>
<td>high temperature, 132</td>
</tr>
<tr>
<td>186</td>
<td>high voltage, 140</td>
</tr>
<tr>
<td>186</td>
<td>I/O modules unsupported, 142</td>
</tr>
<tr>
<td>186</td>
<td>low temperature, 133</td>
</tr>
<tr>
<td>186</td>
<td>low voltage, 140</td>
</tr>
<tr>
<td>186</td>
<td>transceivers, 138, 139</td>
</tr>
<tr>
<td>186</td>
<td>current sensors, 139</td>
</tr>
</tbody>
</table>

D	data center, use in, 17
D	DC power
D	+5.1 VDC, 53
D	DC power specifications, 118, 121
D	detail view, 146
D	detail view menu, 147
D	diagnostic information, 53
D	disabling the audible alarm, 60
D	disk drives
D	defined, 50
D	hot swapping, 20
D	power usage, 53
D	reporting status, 50
D	disk drives, MTBF specifications, 117, 122
D	display groups
D	error code, Er, 58
D	audible alarm, Au, 58
D	enclosure number, En, 58
D	loop ID, Li, 58
D	reporting group, rG, 58
D	displaying errors, 55
D	displays
D	audible alarm, 56, 58
D	EMU status, 56
D	enclosure status, 56
D	document
D	prerequisites, 13
D	drive enclosures
D	defined, 21
D	front view, 45
D	drives
D	detecting configuration error, 126
D	detecting drive link error, 128, 128
D	detecting link rate error, 126
D	missing, 127
D	monitoring functions, 56
D	reporting conditions, 126
D	dump/restart control codes, 147
D	dust covers, using, 43
D	dynamic capacity expansion, 20

E	EIP, 146, 147
E	element condition reporting, 126
E	EMU
E	controls, 54
E	alphanumeric display, 56
E	conditions, 134
E	CRITICAL conditions, 134
E	displaying status, 54
E	INFORMATION conditions, 135, 137
E	locating, 22
E	NONCRITICAL conditions, 135, 135, 136, 136
E	resetting, 134
E	status indicators, 56
E	UNRECOVERABLE conditions, 134, 136, 137
E	EMU indicator displays, 56
E	EMU monitoring functions, 56
E	En description, 61
E	enabling the audible alarm, 59
E	enclosure address bus
E	defined, 61
E	detecting errors with, 136
E	enclosure certification label, 116
E	enclosure functions, 56
E	enclosure number description, 61
enclosure number display group, 58
Enclosure Services Interface
 See ESI
Enclosure Services Interface
 See ESI
Enclosure Services Processor
 See ESP
enclosures
 cooling, 53
 adjusting temperature, 53
 bays, 45
 managing air flow, 53
 sensing temperature, 53
enclosures, physical specifications, 116
Enterprise rack
 physical layout, 21
environmental specifications
 ambient temperature
 operating specifications; 122
environmental specifications
 air quality, 117, 122
 altitude, 117
 ambient temperature
 short-term storage, 122
 ambient temperature:
 shipping, 122
controllers, 121
 drive enclosure, 117
 Fibre Channel loop switches, 119
 heat dissipation, 122
 relative humidity, 117, 122
 shipping, 117, 122
 short-term storage, 122
error code
 selecting display group, 58
error codes, defined, 147
error messages, 55
errors
 displaying, 55
 correcting automatically, 55
ESI, 18, 55
ESP, 55
event code, defined, 147
event GUI display, 145
Event Information Packet
 See EIP
Event Information Packets
 See EIP
event number, 145

F
 failure, 141
 fan redundancy, 22
 fault management
 details, 146
 display, 73
 displays, 146
 fault tolerance, 20
 FC loop switches environmental specifications, 119
 FC loops, 25, 47
FCC
 Class A Equipment, compliance notice, 108
 Class B Equipment, compliance notice, 108
 Declaration of Conformity, 108
 modifications, 108
FCC Class A certification, 107
 features
 defined, 17
 XCS, 20
Federal Communications Commission (FCC)
 notice, 107
fiber optics
 cleaning cable connectors, 44
 protecting cable connectors, 43
Fibre Channel Drive Enclosure
 defined, 21, 21
 disk capacity, 21
Fibre Channel drive enclosures, 54
Fibre Channel Loop Switches
 connecting to, 21
 defined, 21, 22, 67
 reading indicators, 68
 testing, 67
file name, error code definitions, 147
firmware version display, 74
fork lift, using, 121
functions monitoring, 56

H
 hand truck, using, 121
 hardware components, 21
 harmonics conformance
 Japan, 115
 high availability
 HSV Controllers, 70
 high current conditions, 140, 140
 high temperature conditions, 132, 132, 133
 high voltage conditions, 140, 140
 host bus adapters, 29
 hot swap, 20
HP
 Subscriber's choice web site, 15
HSV Controllers
 defined, 21, 22
 initial setup, 29
HSV210 controller
 OCP
 shutting down the controller, 75
 shutdown, 76
 humidity, 122
I
 I/O modules
 bidirectional, 47
 CRITICAL conditions, 142
 monitored functions, 56
NONCRITICAL conditions, 142, 142, 143
I/O modules
 CRITICAL conditions, 142
 element numbering, 142
IDX code display, 146
indicators
 battery status, 71
 EMU displays, 56
 push buttons, 72
 push buttons, 58
INFORMATION conditions
 audible alarm, 59
 drive missing, 127
 EMU, 135, 137
INITIALIZE LCD, 75
initializing the system
 defined, 75
intake temperature
 See ambient temperature
internal clock, 134
labels
 enclosure certification, 116
 product certification, 115
laser device
 regulatory compliance notice, 108
lasers
 radiation, warning, 109
last fault information, 146
Last Termination Event Array
 See LTEA
LCD
 default display, 72
Li
 display group, 58
Loop ID
 display group, 58
loop switches
 defined, 21
loop switches, environmental specifications for, 119
low temperature
 CRITICAL conditions, 133
 NONCRITICAL conditions, 133
low voltage
 CRITICAL conditions, 140
 NONCRITICAL conditions, 140
LTEA, 146
LUN numbers, 29
monitored functions
 blowers, 56
 I/O module, 56
 power supply, 56
 moving enclosure WARNING, 121
MTBF, 117, 122
multipathing, 17

NONCRITICAL conditions
 audible alarm, 59
 blowers
 missing, 131
EMU
 NVRAM write failure, 135
 enclosure address, 136
 backplane, 141
 NVRAM conditions, 141
 blowers
 speed, 130
EMU
 cannot read NVRAM data, 136
 enclosure address, 136
 NVRAM invalid read data, 135
high current, 140
high temperature, 132
high voltage, 140
I/O modules, 142
low temperature, 133
low voltage, 140
NVRAM, 135
NVRAM read, 141
NVRAM write failure, 135
power supplies, 129
NONCRITICAL conditions
 NVRAM read failure, 141
not installed
 power supplies, 129
NVRAM read failure, 143
NVRAM write failure, 135

OCP
 fault management displays, 146
 using, 29
OCP
 pushbutton icons, 78
online help system, 20
OpenView Storage Management Server, 20, 31

page-level help, 20
parameter code, 146
parameter code number, 146
password
 clearing, 77
entering, 77
changing, 77, 77
clearing, 77
entering, 31
removing, 77
PDUs, 81
physical configuration, 21
physical specifications
enclosures, 116
PIC, 74
port indicators, 67
POST, 67
power connectors
IEC 309 receptacle, 81
NEMA L6-30R, 81
POWER OFF LCD, 75
power specifications
AC, 118, 121
controller, 120
DC, 118, 121
drive enclosure, 117
power supplies, 53
sensing temperature, 53
AC frequency, 52
AC input missing, 129
AC voltage, 52
cooling, 53
DC outputs, 52
missing, 129, 129
NONCRITICAL conditions, 129
not installed, 129
overload, 53
protection, 53
status indicators, 53
thermal protection, 53
UNRECOVERABLE conditions, 135, 137
power supplies
monitored functions, 56
power supply redundancy, 22
Power-On Self Test
See POST
powering off the system
defined, 75
prerequisites, 13
product certification, 115
protecting
power supplies, 53
protecting fiber optic connectors
cleaning supplies, 44
dust covers, 43
how to clean, 44
push buttons
indicators, 72
definition, 72
navigating with, 72
pushbuttons
EMU, 58
pushbuttons
icons, 78
R
rack
defined, 22
environmental specifications, 122
physical layout, 21
power specifications, 123
rack configurations, 81
regulatory compliance notices
cables, 108
Class A, 108
Class B, 108
European Union, 110
Japan, 115
laser devices, 108
modifications, 108
Taiwan, 115
WEEE recycling notices, 110
regulatory notices, 107
relative, 117
relative humidity
drive enclosure, 117
operating, 122
shipping, 122
short term storage, 122
short-term storage, 117
resetting EMU, 134
RESTART LCD, 75
restarting the system, 75, 76
restarting the system
defined, 75
rH displays, 66
rL displays, 66
room temperature
See ambient temperature
S
sensing
power supply temperature, 53
SES compliance, 54
setting password, 31
SFP, 69
shipping container, moving, 121
shipping specifications, 117, 122
short circuit, 53
short-term storage specifications, 122
shutdown
controllers, 76
shutdown failure, 137
shutdown system, 73
shutting down the system, 75
restarting, 76
signals, diagnostic, 53
slots
See enclosures, bays
Software Component ID Codes
See SWCID
Software Identification Code
See SWCID
software version display, 74, 74
specifications
 disk drive, MTBF, 117, 122
 enclosure, 120
 environmental, 122
 heat dissipation, 117
 operating, 122
 physical, 116, 120
 power, 117, 120
 shipping, 122
 short-term storage, 122
speed conditions, blower, 130, 130, 131
status indicators
 power supplies, 53
status, disk drives, 50
storage system
 restarting, 76
 initializing, 76
 shutting down, 75
storage system components, 19
storage system menu tree
 fault management, 73
 system information, 73
Storage System Name, 72
storage system racks, defined, 22
Subscriber’s choice, HP, 15
SWCID, 145, 146, 147
symbols in text, 14
system information
 firmware version, 74
 software version, 74
 versions, 74
system information display, 73
system menu tree
 shut down system, 73
 system password, 73
system password, 73
system rack configurations, 81

T
TC, 147
TC display, 146
TC error code, 146
temperature
 condition reports, 131
 effect of air flow, 53
 sensing, 53
Termination Code
 See TC
termination event GUI display, 145
text symbols, 14
transceivers
 CRITICAL conditions, 138, 138, 139
 monitored functions, 56
 turning off power, 75

U
Uninitializing, 76
uninitializing the system, 76
universal disk drives, 50
UNRECOVERABLE conditions
 blowers
 no blowers installed, 131
 audible alarm, 59
 backplane NVRAM, 135
 blowers
 failure, 131
 EMU
 load failure, 136
 communications interrupted, 134
 hardware failure, 137
 high temperature, 133
 power supplies
 missing, 129
 shutdown, 135
 missing, 129
 shutdown failure, 137
 shutdown, 135
user interface, 19, 20
using fork lifts, 121
using hand trucks, 121
using the OCP, 29

V
verifying operation, 54
version information
 displaying, 74
 software, 74
 Controller, 74
 firmware, 74
 OCP, 74
 software, 74
 XCS, 74
version information: firmware, 74
virtual RAID, 17
 See also vRAID
virtualization, 18
voltage sensors, 139
vraid, 18, 20

W
warnings
 lasers, radiation, 109
WARNINGs, enclosure moving, 121
web sites
 HP Subscriber’s choice, 15
WEEE recycling notices, 110
WWN labels, 29
WWN, backplane, 141
WWN, blank, 141

X
XCS
 defined, 20
 features, 20