This guide describes the general operations, components, specifications, and options for the HP StorageWorks Disk Array XP128 and Disk Array XP1024.
Powering down the disk array 39
 Emergency power-off 39
 Planned power-off 39
Recovering from a power outage to the disk array 41
 Manual restart of the disk array after power is restored 41
 Automatic power on restart 42
Specifications 43
 Temperature 43
 Humidity 43
 Mechanical vibration 43
 AC line voltage 44
Web site 46

3 XP1024 Hardware 47
General safety guidelines 48
Physical components 50
 Disk control frame 53
 Control panel 54
 Service processor 54
 Disk array frames 55
 Available disk drives 56
 RAID options 57
 Management console PC (optional) 57
Control panel 59
Emergency power-off 64
Normal operations 66
Powering down the disk array 67
 Emergency power-off 67
 Planned power-off 68
Recovering from a power outage to the disk array 69
 Manual restart of the disk array after power is restored 70
 Automatic power on restart 71
Specifications 72
 Temperature 72
 AC line voltage requirements for the HP Disk Array XP1024 (DKC) 73
 AC line voltage requirements for the HP Disk Array XP1024 (DKU) 75
4 Optional software products 79
XP array management 80
 HP StorageWorks Command View XP 80
Storage management and LUN security 81
 HP StorageWorks LUN Configuration and Security Manager XP 81
Remote and local data replication 82
 HP StorageWorks Continuous Access XP 82
 HP StorageWorks Continuous Access Extension XP 82
 HP StorageWorks Business Copy XP 82
Failover and load balancing 83
 HP StorageWorks Auto Path XP 83
 HP StorageWorks Secure Path 83
Performance management 84
 HP StorageWorks Cache LUN XP 84
 HP StorageWorks Auto LUN XP 84
 HP StorageWorks Performance Advisor XP 84
 HP StorageWorks Application Policy Manager XP 85
Network management products 86
 HP OpenView SPI for XP Disk Arrays 86
 HP OpenView SPI for HP storage devices 86
Mainframe solutions 87
 HP StorageWorks Resource Manager XP 87
 HP StorageWorks Data Exchange XP 87

5 Troubleshooting 89
Monitoring and reporting 90
Troubleshooting flow diagram 91

6 Regulatory statements 93
FCC EMC Statement (USA) 94
IEC Statement (Worldwide) 95
EMC Statement (Canada) 96
Spécification ATI Classe A (France) 97
VCCI EMC Statement (Japan) 98
BSMI EMC Statement (Taiwan) 99
RRL EMC Statement (Korea) 100
Harmonics Conformance (Japan) 101
German Noise Declaration 102
Laser Safety 103
XP128 Declaration of Conformity 104
XP1024 Declaration of Conformity 105
Glossary 107

Index 119
About this guide

This guide describes the general operations, components, specifications, and options for the HP StorageWorks Disk Array XP128 and Disk Array XP1024.

Intended audience

This guide is intended for use by system administrators who have expertise with the mass storage systems, software, and related topics:

- data processing concepts
- direct-access storage device subsystems and their basic functions
- disk arrays and RAID technology
- operating system commands and utilities

Disk arrays

Unless otherwise noted, the term disk array refers to these disk arrays:

- HP StorageWorks Disk Array XP128
- HP StorageWorks Disk Array XP1024

Related documentation

HP provides the following related documentation:

- HP StorageWorks Command View XP for XP Disk Arrays: User Guide
- HP StorageWorks Disk Array XP128 Site Preparation Guide
- HP StorageWorks Disk Array XP1024 Site Preparation Guide

For information about operating system commands and third-party products, refer to the manufacturer’s documentation.
Conventions

This guide uses the following text conventions.

Figure 1 Blue text represents a cross-reference. For the online version of this guide, the reference is linked to the target.

www.hp.com Underlined, blue text represents a website on the Internet. For the online version of this guide, the reference is linked to the target.

literal Bold text represents literal values that you type exactly as shown, as well as key and field names, menu items, buttons, file names, application names, and dialog box titles.

variable Italics indicates that you must supply a value. Italics is also used for manual titles.

input/output Monospace font denotes user input and system responses, such as output and messages.

Example Denotes an example of input or output. The display shown in this guide may not match your configuration exactly.

[] Indicates an optional parameter.

{} Indicates that you must specify at least one of the listed options.

| Separates alternatives in a list of options.

Getting help

If you have additional questions, contact an HP authorized service provider or access our website:

www.hp.com
HP technical support

In North America, call technical support at 1-800-652-6672, available 24 hours a day, 7 days a week.

Outside North America, call technical support at the nearest location. Telephone numbers for worldwide technical support are listed on the HP website under support:

http://h18006.www1.hp.com/storage/arraysystems.html

Be sure to have the following information available before calling:
- technical support registration number (if applicable)
- product serial numbers
- product model names and numbers
- applicable error messages
- operating system type and revision level
- detailed, specific questions

For continuous quality improvement, calls may be recorded or monitored.

HP storage website

For the most current information about HP StorageWorks XP products, visit the support website. Select the appropriate product or solution from this website:

http://h18006.www1.hp.com/storage/arraysystems.html

For information about product availability, configuration, and connectivity, consult your HP account representative.
HP authorized reseller

For the name of your nearest HP authorized reseller, you can obtain information by telephone:

United States 1-800-345-1518
Canada 1-800-263-5868
Or contact: www.hp.com
Revision history

May 2002 First Edition
May 2004 Third Edition
May 2005 Fourth Edition
The Disk Array XP128 and Disk Array XP1024 are part of the HP StorageWorks Disk Array family of products. These disk arrays provide reliable and secure data storage and protection, featuring redundant circuitry and RAID storage options for data security. These disk arrays also support multiple operating systems, platforms, and RAID groups. The advantages include:

- Continuous data availability
- Nondisruptive service and upgrades
- Connectivity
- Scalability
- Data integrity
Continuous data availability

The HP StorageWorks Disk Array XP family are the first RAID disk arrays to provide truly continuous data availability. They are designed for nonstop operation and continuous access to all user data.

HP StorageWorks Disk Array XP128 and XP1024 disk arrays have no single point of component failure, which enables uninterrupted access to data.

The disk array has component and function redundancy, providing full fault tolerance for disk array microprocessors, control storage, control and data buses, power supplies, and cooling fans. The disk array can sustain multiple component failures and still continue to provide full access to your stored data.

While access to your data is never compromised, the failure of a key component can cause a temporary reduction in disk array performance.
Nondisruptive service and upgrades

Monitoring software detects internal hardware component problems and notifies the HP Storage Technology Center automatically. At the support center, the problem is verified and the appropriate maintenance activity is executed by an HP service representative. There are no user serviceable components. Only an HP service representative should open the cabinets.

All hardware subassemblies can be removed, serviced, repaired, or replaced non-disruptively during disk array operation. All microcode upgrades can be performed during normal disk array operations (provided array connectivity infrastructure requirements are satisfied), using your disk array’s built-in service processor (SVP). Alternate paths can be set by host failover software and/or alternate Fibre Channel paths.
Connectivity

The HP StorageWorks Disk Array XP128 and HP StorageWorks Disk Array XP1024 are connected to host systems using one of these types of connections:

- Fibre Channel
- ESCON
- FICON
- iSCSI

Fibre Channel connectivity

HP StorageWorks Disk Array XP128

The XP128 supports a maximum of three pairs of channel adapters that can support up to 48 Fibre Channel ports. Your disk array can support up to 8,192 LDEVs which can be configured as up to 24,576 LUNs through the Fibre Channel. The Fibre Channel provides data transfer rates up to 2Gb/sec depending on which Fibre Channel interface option is installed. The disk array can support Fibre Channel Arbitrated Loop (FC-AL) and Fabric Fibre Channel topologies.

HP StorageWorks Disk Array XP1024

The XP1024 supports a maximum of four pairs of channel adapters that can support up to 64 Fibre Channel ports. Your disk array can support up to 8,192 LDEVs which can be configured as up to 32,768 LUNs through the Fibre Channel. The Fibre Channel provides data transfer rates up to 2Gb/sec depending on which Fibre Channel interface option is installed. The disk array can support Fibre Channel Arbitrated Loop (FC-AL) and Fabric Fibre Channel topologies.
ESCON connectivity

HP StorageWorks Disk Array XP128

The XP128 supports a maximum of three pairs of channel adapters that can support 24 ESCON ports for connection to mainframe hosts. The disk array can support up to 8,192 LDEVs.

HP StorageWorks Disk Array XP1024

The XP1024 supports a maximum of six pairs of channel adapters that can support 48 ESCON ports for connection to mainframe hosts. The disk array can support up to 8,192 LDEVs.

Note: When more than four pairs of ESCON channel adapters are configured, the number of disk drives that can be installed is reduced. Other restrictions may apply, depending on what other types of channel adapters are installed.

FICON connectivity

HP StorageWorks Disk Array XP128

The XP128 supports a maximum of three pairs of channel adapters that can support up to 24 FICON ports. The disk array can support up to 8,192 LDEVs.

HP StorageWorks Disk Array XP1024

The XP1024 supports a maximum of four pairs of channel adapters that can support up to 32 FICON ports. The disk array can support up to 8,192 LDEVs.
iSCSI connectivity

HP StorageWorks Disk Array XP128

The XP128 supports a maximum of three pairs of channel adapters that can support up to 24 iSCSI ports. The disk array can support up to 6,144 LDEVs through iSCSI.

HP StorageWorks Disk Array XP1024

The XP1024 supports a maximum of four pairs of channel adapters that can support up to 32 iSCSI ports. Your disk array can support up to 8,192 LDEVs through iSCSI.
Data integrity

HP disk arrays provide the highest levels of data integrity. This is accomplished using RAID technologies, together with redundant hardware throughout the disk array. The following hardware features allow the HP StorageWorks Disk Array XP family to achieve its high availability and data integrity:

- RAID1, RAID5
- Mirrored write cache
- Dual channel adapters (CHAs) and array control processors (ACPs)
- Dual and concurrently active data and control paths through the array
- Split power domains on internal data paths
- Hot-pluggable boards
- Hot-pluggable fans, power supplies, and controllers
- Online upgradable firmware
Some of the available software features and products that complement the disk array hardware are listed below:

- **HP StorageWorks Disk Array XP128 support**
 “Phone Home” capability to the multidisciplinary Storage Technology Center
 advanced remote diagnostics
 full solution (Host-SAN-Storage) support

- **Full software and solution integration**
 local and remote mirroring for online backup and disaster recovery (HP StorageWorks Business Copy XP and Continuous Access XP)
 security for multiple server consolidation (HP StorageWorks LUN Configuration and Security Manager XP)
 zero downtime backup (HP OmniBack, Exchange, Oracle, or SAP)
 centralized resource management (HP StorageWorks Command View XP, HP StorageWorks SAN Manager LM/DM, Performance Advisor XP and Auto LUN XP)

- **I/O path failover and load balancing** (HP StorageWorks AutoPath XP).
To obtain updates to the software, go to the following main website and access the appropriate support product:

http://www.hp.com
Summary of features

Table 1. XP128 and XP1024 Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>XP128</th>
<th>XP1024 with XP1024 & XP512 DKU Support</th>
<th>XP1024 XP1024 DKU Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Single-phase or 3-phase</td>
<td>Single-phase or 3-phase</td>
<td></td>
</tr>
<tr>
<td>DKC/DKU</td>
<td>Single cabinet unit only (no expansion)</td>
<td>One DKC with either: 1 or 2 XP1024 DKUs, 1 to 3 XP512 DKUs</td>
<td>One DKC cabinet with 1 to 4 XP1024 DKU cabinets</td>
</tr>
<tr>
<td>Maximum hard disk drives</td>
<td>128</td>
<td>768</td>
<td>1024</td>
</tr>
<tr>
<td>Maximum spare disk drives</td>
<td>4</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Maximum parity groups/subsystem</td>
<td>31</td>
<td>191</td>
<td>255</td>
</tr>
<tr>
<td>Maximum Disk Drive Capacity</td>
<td>36 TB</td>
<td>121 TB</td>
<td>149 TB</td>
</tr>
<tr>
<td>Max. cache</td>
<td>64 GB</td>
<td>128 GB</td>
<td>128 GB</td>
</tr>
</tbody>
</table>

(continued)
Available hard disk drives

<table>
<thead>
<tr>
<th>Feature</th>
<th>XP128</th>
<th>XP1024 with XP1024 & XP512 DKU Support</th>
<th>XP1024 DKU Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available hard disk drives</td>
<td>73GB 10K rpm Fibre Channel disk drive</td>
<td>73GB 10K rpm Fibre Channel disk drive</td>
<td>73GB 10K rpm Fibre Channel disk drive</td>
</tr>
<tr>
<td></td>
<td>36GB 15K rpm Fibre Channel disk drive</td>
<td>47GB 10K rpm Fibre Channel disk drive(^1)</td>
<td>36GB 15K rpm Fibre Channel disk drive</td>
</tr>
<tr>
<td></td>
<td>73GB 15K rpm Fibre Channel disk drive</td>
<td>18GB 10K rpm Fibre Channel disk drive(^1)</td>
<td>73GB 15K rpm Fibre Channel disk drive</td>
</tr>
<tr>
<td></td>
<td>146GB 10K rpm Fibre Channel disk drive</td>
<td>18GB 15K rpm Fibre Channel disk drive(^1)</td>
<td>146GB 10K rpm Fibre Channel disk drive</td>
</tr>
<tr>
<td></td>
<td>300GB 10K rpm Fibre Channel disk drive</td>
<td>181GB 7200 rpm Fibre Channel disk drive(^1)</td>
<td>300GB 10K rpm Fibre Channel disk drive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36GB 15K rpm Fibre Channel disk drive(^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>73GB 15K rpm Fibre Channel disk drive(^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>146GB 10K rpm Fibre Channel disk drive(^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>300GB 10K rpm Fibre Channel disk drive(^2)</td>
<td></td>
</tr>
</tbody>
</table>

\(\text{\(^1\)XP512 DKU Only}\)

\(\text{\(^2\)XP1024 DKU Only}\)

<table>
<thead>
<tr>
<th>Feature</th>
<th>XP128</th>
<th>XP1024 with XP1024 & XP512 DKU Support</th>
<th>XP1024 DKU Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max shared memory</td>
<td>4.0 GB</td>
<td>4.0 GB</td>
<td>4.0 GB</td>
</tr>
<tr>
<td>Max ACP pairs</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Feature</td>
<td>XP128</td>
<td>XP1024 with XP1024 & XP512 DKU Support</td>
<td>XP1024 DKU Support</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>Max CHIP pairs</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2 if >1 ACP pair installed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuration disk</td>
<td>XP128-specific</td>
<td>XP1024-specific</td>
<td>XP1024-specific</td>
</tr>
<tr>
<td>SVP code</td>
<td>XP128-specific</td>
<td>XP1024-specific</td>
<td>XP1024-specific</td>
</tr>
<tr>
<td>High Availability SVP</td>
<td>Optionally Available</td>
<td>Optionally Available</td>
<td>Optionally Available</td>
</tr>
<tr>
<td>RAID level</td>
<td>RAID 1 (2D+2D)</td>
<td>RAID 1 (2D+2D)</td>
<td>RAID 1 (2D+2D)</td>
</tr>
<tr>
<td></td>
<td>RAID 1 (4D+4D)</td>
<td>RAID 1 (4D+4D)*</td>
<td>RAID 1 (4D+4D)</td>
</tr>
<tr>
<td></td>
<td>RAID 5 (3D+1P)</td>
<td>RAID 5 (3D+1P)</td>
<td>RAID 5 (3D+1P)</td>
</tr>
<tr>
<td></td>
<td>RAID 5 (7D+1P)</td>
<td>RAID 5 (7D+1P)*</td>
<td>RAID 5 (7D+1P)</td>
</tr>
<tr>
<td>Maximum LDEV #</td>
<td>8192</td>
<td>8192</td>
<td>8192</td>
</tr>
<tr>
<td>Available LUNs</td>
<td>24,576</td>
<td>32,768</td>
<td>32,768</td>
</tr>
<tr>
<td>Maximum LU #/port</td>
<td>512</td>
<td>512</td>
<td>512</td>
</tr>
</tbody>
</table>

*XP1024 DKU supported only.
XP128 Hardware
General safety guidelines

Read the following safety guidelines carefully and follow them when you work with the HP StorageWorks Disk Array XP128 disk array.

- Remember that the maintenance of your machine must be done only by trained and qualified HP field engineers. Only an HP service representative can power off the disk array in a non-emergency situation.

- Please read and follow the safety guidelines and procedures in this manual and you other disk array manuals.

- In this manual and on the machine, hazard warnings are provided to aid you in preventing or reducing the risk of death, personal injury, or product damage. Understand and follow these hazard warnings fully.

- The hazard warnings that appear on the warning labels on the machine or in the manual have one of the following alert headings consisting of an alert symbol and a signal word, “Warning,” or “Caution”:

<table>
<thead>
<tr>
<th>Warning</th>
<th>This indicates a potentially hazardous situation which, if not avoided, can result in death or serious injury.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caution</td>
<td>This indicates a hazardous situation which, if not avoided, will or can result in serious damage to the product or loss of data.</td>
</tr>
</tbody>
</table>

- The signal word “NOTICE” is used to present warnings that are not directly related to personal injury hazards.

- When warning labels become dirty or start peeling off, replace them.

- If any physical accident such as abnormal noise, smell, or smoke occurs on the disk array while it is running, immediately power off the disk array by pulling the UNIT EMERGENCY POWER OFF switch on the disk array.
• Do not power off the system unless it is an emergency power-off situation.

• Keep the front and rear doors closed at all times.

• Keep the tops and sides of the cabinets clear to allow air to flow properly.

• Do not perform any procedures not described in this document. If you have any questions or concerns, please contact your HP service representative.

Warning

Do not touch areas marked HAZARDOUS, even with the power off. These areas contain high-voltage power.

Keep in mind that the hazard warnings in this manual or on the machine cannot cover every possible case, as it is impossible to predict and evaluate all circumstances before hand.

Follow the procedures in this guide carefully and always be alert for any unusual equipment indications or behavior. If you have any questions, contact your HP service representative.
Physical components

The HP StorageWorks Disk Array XP128 is a high-performance disk array system. It is used to store large quantities of data in an efficient and secure manner.

Your disk array has the following major hardware components:

- **Disk array cabinet**
 The single disk array frame cabinet contains the control panel, connection hardware, the service processor, control boards and hard disk drives.

- **One service processor (SVP)**
 The service processor (SVP) is a built-in PC inside the disk array cabinet. The SVP gives your HP service representative a method of accessing the software system on the disk array.

Your HP service representative uses the SVP to configure, maintain, and upgrade your disk array software and hardware. The service
processor also collects performance data about the disk array for diagnostic testing and analysis.

To ensure data security, the SVP does not have access to any user data stored on the disk array.

• (Optional) second service processor

This is available for users with extreme high availability requirements. This is not a required feature.

• Control panel

The control panel is your view of the disk array. Once the disk array is powered on and running normally, there are no user operations required at the control panel, except in the case of a power failure recovery. The control panel is discussed in further detail on page 31.

• Hard disk drives

The disk array uses 3.5-inch disk drives, and different disk capacities are available. Ask your HP service representative about currently available disk drives or visit the XP128 web site at http://www.hp.com. Any of the disk drives in the disk array frames can be replaced without disrupting user activity. The disk array automatically detects and corrects disk errors.

• (Optional) management station PC

The management station PC is attached to your disk array by a local area network (LAN) connection. The management station PC runs HP Command View XP, which, combined with other optional applications, allows you to monitor and manage disk array operations.

The following figure illustrates how the management station PC and host connect to the XP128.
Figure 2. The XP128 connections

1. The management station connects to the XP128 by means of a public LAN connection. The XP128 has an Ethernet connection to connect for this purpose.

2. The host server uses a Fibre Channel, FICON, iSCSI, or ESCON connection.

The hardware requirements for your management station PC, such as the required processor speed, storage capacity, and memory, will vary depending on the optional software that you use and the number of disk array frames you have connected to the system.

To ensure data security, the HP Command View XP software does not have access to any user data stored on the disk array.

There is no single point of failure in the disk array. It is designed with redundant logic assemblies, disk drives and power supplies, all of which can be removed or replaced without interrupting access to your data.

Caution

Only your HP service representative can remove or replace hardware.
Control panel

Figure 3 and Table 2 on page 32 show the control panel and its functions, respectively.

![Control Panel Diagram](image-url)
<table>
<thead>
<tr>
<th>Item</th>
<th>Label</th>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SUBSYSTEM READY</td>
<td>LED (Green)</td>
<td>Indicates that channel interface input/output operations are enabled. If the LED is off, the system is not accepting data.</td>
</tr>
<tr>
<td>2</td>
<td>SUBSYSTEM ALARM</td>
<td>LED (Red)</td>
<td>Indicates DC under voltage, DC over current, abnormally high temperature, or an unrecoverable failure. If your disk array is set up to report messages to the remote center, your HP service representative is notified automatically. If the disk array is not set up to report messages to the remote center, you should place a service call to HP to have the message evaluated to determine if any action is required.</td>
</tr>
</tbody>
</table>
| 3 | SUBSYSTEM MESSAGE | LED (Amber) | ON: Indicates that a message has been issued from either cluster. If your disk array is set up to report messages to the remote center, your HP service representative is notified automatically. If your disk array is not set up to report messages to the remote center, you should place a service call to HP to have the message evaluated to determine if any action is required.
Blinking: Indicates the internal service processor has failed. The disk array will continue to operate normally. You should place a service call to HP to ensure notification. Service processor failures may not be reported automatically to the remote center. |
| 4 | SUBSYSTEM RESTART | Switch | Used to unfence the fenced drive path and to release Write Inhibit. There is a blocked path somewhere between a host and a disk drive. By restarting the subsystem, a soft reset will be performed to try to recover. If system restart does not unblock the path, an HP service representative will be notified. |
Table 2. Control or indicator function on control panel (Continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Label</th>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>REMOTE MAINTENANCE PROCESSING</td>
<td>LED (Amber)</td>
<td>Indicates remote maintenance activity. An HP service representative is checking your system, but the system is online and accepting data.</td>
</tr>
</tbody>
</table>
| 6 | REMOTE MAINTENANCE ENABLE/DISABLE | Switch | Used to permit remote service maintenance.
Disable: No one can provide maintenance
Enable: HP service representative can provide maintenance. |
| 7 | STORAGE CLUSTER 1 CHANNEL A-M U: UPPER L: LOWER | LED (Green) | Serial Channel/Fibre Channel:
(1) On: Indicates some of the logical paths are established.
(2) Fast blinking: Indicates the corresponding channel route is executing the channel command. (Only Serial Channel)
(3) Slow blinking: Indicates none of the logical paths are established.
(4) Off: Indicates the corresponding channel route is not enabled. |
<table>
<thead>
<tr>
<th>Item</th>
<th>Label</th>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>STORAGE CLUSTER 2</td>
<td>LED (Green)</td>
<td>Serial Channel/Fibre Channel:</td>
</tr>
<tr>
<td></td>
<td>CHANNEL A-M</td>
<td></td>
<td>(1) On: Indicates some of the logical paths are established.</td>
</tr>
<tr>
<td></td>
<td>U: UPPER</td>
<td></td>
<td>(2) Fast blinking: Indicates the corresponding channel route is executing the channel command. (Only Serial Channel)</td>
</tr>
<tr>
<td></td>
<td>L: LOWER</td>
<td></td>
<td>(3) Slow blinking: Indicates none of the logical paths are established.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) Off: Indicates the corresponding channel route is not enabled.</td>
</tr>
<tr>
<td>9</td>
<td>BS ON</td>
<td>LED (Yellow)</td>
<td>When the LED is on, unit is plugged in and receiving power from either AC power source. The SVP is receiving power from the outlet.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If BS is off, the disk array is not receiving power from either AC power source. Check the electrical outlets in your building.</td>
</tr>
<tr>
<td>10</td>
<td>PS ON</td>
<td>LED (Green)</td>
<td>When the LED is on power is on and the array is ready to process data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Off means the disk array power is off. The disk array is not ready to process data.</td>
</tr>
</tbody>
</table>
PWR SW ENABLE Switch Used to enable the PWR on/off switch. To enable the PWR on/off switch, turn the PWR SW ENABLE switch to the ENABLE position. If the automatic power on restart feature is not being used, this switch should be in the DISABLE (opposite of ENABLE) position during normal operation.

PWR ON/PWR OFF Switch To switch on/off the subsystem, use this switch while turning the PWR SW ENABLE switch is in the ENABLE position. This switch only performs this function when the REMOTE/LOCAL switch is set to the LOCAL position. This switch should be in the PWR ON position during normal operation. The position of this switch should only be changed when directed by HP service personnel.

EMERGENCY POWER OFF Switch Used to power off the storage subsystem in an emergency situation.

PWR ON/PWR OFF REMOTE/LOCAL Switch Determines how the disk array is powered on or off. REMOTE: Disk array power on/off is controlled by the power control interface to the CPU (mainframe only). LOCAL: Disk array power on/off is controlled by the PWR ON/PWR OFF switch,

LED TEST/CHK RESET Switch LED TEST position: The LEDs on the panel go on. CHK RESET position: The PS ALARM and TH ALARMS are reset.
Emergency power-off

A switch is provided on the control panel for an emergency powering off. See Figure 4 on page 37.

If you detect an abnormal sound, smell, or smoke, power off the disk subsystem by operating the UNIT EMERGENCY POWER OFF switch following the procedure below. The procedure for operating the switch is as follows:

1. Push the operator panel cover at the location where PUSH is marked, open the operator panel cover, then operate the EMERGENCY POWER OFF switch.

2. In using a UNIT EMERGENCY POWER OFF switch, first pull it up and then pull it toward you as illustrated in the figure below.

Caution

Pulling the UNIT EMERGENCY POWER OFF switch on the disk array cabinet instantly shuts down the array, neglecting the system’s power-off sequence. Jobs in process are aborted and their integrity after recovery is not guaranteed. Therefore, this method should be used only in an emergency and not in normal operation.

Caution

The UNIT EMERGENCY POWER OFF switch on the disk array cabinet only partially removes power from the array. AC input power remains present at the primary circuit. Therefore, do not use the Emergency Power-Off switch unless you need to power off of the unit as an emergency measure.

When pulled, a UNIT EMERGENCY POWER OFF switch locks itself to prevent further powering on and requires a trained and qualified HP field engineer for recovery. Any time the unit Emergency/Only OFF switch is pulled, place a service call to Hewlett-Packard to have the switch reset and have the disk array restored to service.
Figure 4. Pulling Unit Emergency Power OFF Switch
Normal operations

The disk array does not require user intervention. The disk array automatically reports any remote system information messages (R-SIMs) to your management station PC running HP Command View XP, to the internal disk array service processor, and also to the HP Service Center. For more information on SIMs, see Chapter 5, "Troubleshooting" on page 89.
Powering down the disk array

Situations may arise in the operation of the disk array that require you to power down the disk array. These situations include:

- Emergency power-off
- Planned power-off

Emergency power-off

An emergency is a critical situation such as a physical plant catastrophe. In an emergency, the critical need is to quickly remove power from the disk array. A quick restart is not necessary.

In an emergency, the operator should trip the Emergency Power-Off (EPO) switch. The disk array emergency power-off (EPO) switch is located on the control panel.

Caution

Use this switch only in case of an emergency. An HP service representative is required to reset the EPO and to power-on the disk array.

To power off the disk array in an emergency:

1. Open the control panel cover by pushing on the point marked PUSH.
2. Pull the emergency power-off switch up and then out towards you as illustrated on the switch. See Figure 4 on page 37.
3. Call the HP support center. The EPO switch must be reset by an HP service representative before the disk array can be powered on again.

Planned power-off

There may be times when a site power outage is planned. These situations would include alterations to the data center, inspections, or work by the electric company. If a scheduled power outage affects an HP StorageWorks Disk Array XP128, the power down of the disk array must be scheduled with a trained HP support representative.
Caution
Only a trained HP representative can shut down and power-off a disk array. Shutting down and powering off a disk array is not a customer activity. A user should not attempt to power down the disk array at any time other than an emergency.

When planning for your planned power outage, please contact your HP CE to schedule a customer visit.
Recovering from a power outage to the disk array

If AC input power is lost, the disk array maintains its state and recovers when power is restored. The array cache is backed up by batteries that will maintain its state for a minimum of 48 hours. This length of time will provide coverage for most outages. In cases where the outage will extend beyond 48 hours, the batteries can be replaced by a HP to extend the time, if necessary. To extend the backup time beyond 48 hours, you must notify HP support in time to receive service.

Manual restart of the disk array after power is restored

Caution

Before you restore power to the disk array after an outage, HP recommends you have an electrician check the power to ensure it is stable and clean.

You may opt to call a trained HP representative or you may restore power to the disk array yourself:

1. Move the ENABLE/DISABLE switch to the ENABLE position. Move the PWR ON/OFF switch to the PWR ON position (Figure 3 on page 31, items 11 & 12)

2. The following LED sequence will occur:

 The BS-ON LED (Figure 3 on page 31, item 9) will turn amber and the PS ON LED (10, Figure 3 on page 31, item 10) will turn green.

 The CHANNEL LED (Figure 3 on page 31, item 7) will light green for every adapter installed.

 The MESSAGE LED (Figure 3 on page 31, item 3) may turn amber if your disk array is not configured for automatic maintenance notification, signifying a SIM was generated (because the disk array went down unexpectedly).

 Finally, the Ready LED (Figure 3 on page 31, item 1) will light green when the system is ready, which may take up to 10 minutes, depending on the number of disks installed in your disk array.

3. Move the ENABLE/DISABLE switch to the DISABLE position.
Automatic power on restart

Caution As with all sophisticated electronic equipment, unstable power during a restart can induce problems. Hewlett-Packard recommends automatic power on restart only when the power to the disk array is conditioned to ensure stability (for example, using a UPS). If your site does not have a UPS, HP recommends configuring the disk array for manual restart by keeping the ENABLE/DISABLE switch in the DISABLE position and using the manual restart procedure when power has been restored and verified.

Your disk array will automatically restart and return to service when power is restored. To enable this feature, place the ENABLE/DISABLE switch in the ENABLE position and the PWR ON/OFF switch in the PWR ON position (Figure 3 on page 31, items 11 & 12). When power is restored, your disk array will restart and the following LED sequence will occur:

- The BS-ON LED (Figure 3 on page 31, item 9) will turn amber and the PS ON LED (10, Figure 3 on page 31, item 10) will turn green.
- The CHANNEL LED (Figure 3 on page 31, item 7) will light green for every adapter installed.
- The MESSAGE LED (Figure 3 on page 31, item 3) may turn amber if your disk array is not configured for automatic maintenance notification, signifying a SIM was generated (because the disk array went down unexpectedly).
- Finally, the Ready LED (Figure 3 on page 31, item 1) will light green when the system is ready, which may take up to 10 minutes, depending on the number of disks installed in your disk array.
Specifications

Some of the HP StorageWorks Disk Array XP128 disk array specifications are listed in this section. For a complete set of environmental specifications, refer to the HP Disk Array XP128 Site Prep Guide on the following main web site and access the appropriate support product:

http://www.hp.com

Temperature

Table 3. Temperature Specifications

<table>
<thead>
<tr>
<th>Temperature Specification (Degrees F = 1.8 x Degrees C + 32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonoperating temperature Range</td>
</tr>
<tr>
<td>Operating Temperature</td>
</tr>
<tr>
<td>Recommended Operating Temperature Range</td>
</tr>
<tr>
<td>Shipping and storage temperature</td>
</tr>
<tr>
<td>Temperature Shock Immunity—Maximum rate of change</td>
</tr>
<tr>
<td>Over-Temperature shutdown</td>
</tr>
</tbody>
</table>

Humidity

Table 4. Humidity Specifications

<table>
<thead>
<tr>
<th>Humidity Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonoperating/storage Humidity Range</td>
</tr>
<tr>
<td>Operating Humidity Range at 22° C</td>
</tr>
<tr>
<td>Recommended Operating Humidity Range at 22° C</td>
</tr>
<tr>
<td>Procedure for recovery from moisture condensation</td>
</tr>
</tbody>
</table>

Mechanical vibration

Table 5. Mechanical vibration

<table>
<thead>
<tr>
<th>Mechanical vibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Operating Acceleration</td>
</tr>
</tbody>
</table>
AC line voltage

The following AC power recommendations for the HP StorageWorks Disk Array XP128 are for each power cord. Each array frame has two power cords (with the AC power cord option there are four cords). In case of a failure of the power source for one cord, the power requirements and the current requirement for the remaining power cord will double.

Table 6 (page 44) lists the basic AC power requirements for a 50-amp single-phase XP128 DKU. Table 7 (page 44) lists the basic AC power requirements for a 30-amp single-phase XP128 DKU.

Table 6. 50-Amp, 50 or 60 Hz, Single-Phase DKU Operation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal Rated Voltage (Vac)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Rated line current per power cord (Arms)</td>
<td>16.2</td>
</tr>
<tr>
<td>Number of power cords</td>
<td>2</td>
</tr>
<tr>
<td>Number of circuit breakers</td>
<td>2</td>
</tr>
<tr>
<td>Recommended circuit breakers</td>
<td>50A</td>
</tr>
</tbody>
</table>

* 60 Hz only.

Table 7. 30-Amp, 50 or 60 Hz, Single-Phase DKC Operation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal Rated Voltage (Vac)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Rated line current per power cord (Arms)</td>
<td>10.2</td>
</tr>
<tr>
<td>Number of power cords</td>
<td>4</td>
</tr>
<tr>
<td>Number of circuit breakers</td>
<td>4</td>
</tr>
<tr>
<td>Recommended circuit breakers</td>
<td>30A</td>
</tr>
</tbody>
</table>

* 60 Hz only.
Table 8 (page 45) lists the basic AC power requirements for three-phase operation of the XP128 DKC.

Table 8. 30-Amp, 50 or 60 Hz, Three-Phase DKU Operation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal Rated Voltage (Vac)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Rated line current per power cord (Arms)</td>
<td>11.1</td>
</tr>
<tr>
<td>Number of power cords</td>
<td>2</td>
</tr>
<tr>
<td>Number of circuit breakers</td>
<td>2</td>
</tr>
<tr>
<td>Recommended circuit breakers</td>
<td>30 A</td>
</tr>
</tbody>
</table>

* 60 Hz only.
Web site

For the most current support information on the HP StorageWorks Disk Array XP128, please visit the following main web site and access the appropriate support product:

http://www.hp.com
3

XP1024 Hardware
General safety guidelines

Read the following safety guidelines carefully and follow them when you work with your XP1024 disk array.

• Remember that maintenance of your machine must be done only by trained and qualified HP field engineers. Only an HP service representative can power off the disk array.

• Please read and follow the safety guidelines and procedures in this manual and any of your related manuals.

• In this manual and on the machine, hazard warnings are provided to aid you in preventing or reducing the risk of death, personal injury, or product damage. Understand and follow these hazard warnings fully.

• The hazard warnings that appear on the warning labels on the machine or in the manual have one of the following alert headings consisting of an alert symbol and a signal word, “Warning,” or “Caution”:

| Warning
| This indicates a potentially hazardous situation which, if not avoided, can result in death or serious injury. |

| Caution
| This indicates a hazardous situation which, if not avoided, will or can result in serious damage of product or loss of data. |

• The signal word “NOTICE” is used to present warnings that are not directly related to personal injury hazards.

• When warning labels become dirty or start peeling off, replace them.

• If any physical accident such as abnormal noise, smell, or smoke occurs on the disk subsystem while running, immediately power off.
the disk subsystem by pulling the UNIT EMERGENCY POWER OFF switch on the disk subsystem.

- Do not power off the system unless it is in an emergency power-off state.
- Keep the front and rear doors closed at all times.
- Keep the tops and sides of the cabinets clear to allow air to flow properly.
- Do not perform any procedures not described in this document. If you have any questions or concerns, please contact your HP service representative.

Warning

Do not touch areas marked HAZARDOUS, even with the power off. These areas contain high-voltage power.

Keep in mind that the hazard warnings in this manual or on the machine cannot cover every possible case, as it is impossible to predict and evaluate all circumstances before hand.

Be alert and use your common sense. If you have any questions, contact your HP service representative.
Physical components

The HP Disk Array XP1024 is a high-performance RAID-capable disk array system. It is used to store large quantities of data in an efficient and secure manner.

Minimum Disk Subsystem

![Diagram of Minimum Disk Subsystem]

| DKU frame | DKU frame | DKC | DKU frame | DKU frame |

Table 9. HP StorageWorks 1024 Disk Array
The maximum HDD configuration for an XP1024 with XP512 DKUs is 768. This is due to specifications for the 3 XP512 DKUs, which can contain a total of 256 HDDs (96+96+64).

Figure 5. HP Disk Array XP1024 with HP Disk Array XP512 DKUs
The disk array has the following major hardware components:

- One disk control frame (DKC)

 The single disk control frame cabinet contains the control panel, connection hardware, the service processor, and control boards for the disk arrays.

- One to four XP1024 disk array frames (DKU) or

- One to two XP1024 disk array frames and one to three XP512 DKU frames.

 The DKU cabinets contain your disk drives.

 When using only XP1024 DKUs, you can connect up to 4 DKUs.

 When connecting XP512 DKUs to the XP1024 disk array, the supported configuration is a maximum of 2 XP12024 DKUs on the right, and a maximum of 3 XP512 DKUs on the left.

Warning

XP1024 and XP512 DKUs may not be configured on the same side of the DKC. Only XP1024 DKUs may be installed on the right of the DKC and only XP512 DKUs may be installed on the left of the DKC in configurations that support both types of DKUs.

- One service processor (SVP)

 The SVP is an internally mounted notebook computer used for maintenance. The SVP is located in the disk control frame cabinet. The SVP is used by your HP service representative only.

- *(Optional)* second service processor

 This is available for users with extreme availability requirements. This is not a required feature.
Disk control frame

The disk control frame controls your disk array. It provides you with a control panel, power supplies, controller boards, and your service processor. See Figure 6.

There is no single point of failure in the disk array. It is designed with redundant controllers and redundant power supplies, all of which can be removed or replaced without interrupting access to your data. Only your HP service representative can remove or replace hardware.
Control panel

The control panel is your view to the disk array. Once the disk array is powered on and running normally, there are no user operations required at the control panel, except in case of a power failure recovery. The control panel will be discussed in further detail later in this chapter.

Service processor

The service processor (SVP) is a built-in PC connected inside the disk control frame. The SVP gives your HP service representative a method to access the software system on the disk array.

Your HP service representative uses the SVP to configure, maintain, and upgrade your disk array software and hardware. The service processor also collects performance data on the disk array for diagnostic testing and analysis.

To protect the user’s security, the SVP does not have access to any user data stored on the disk array.

An optional service processor is available for users with extreme availability requirements. This is not a required feature.

Disk array frames

The disk array frames are where the physical disk drives, the disk groups, and any dynamic spare disk drives are located. You must have at least one disk array frame to operate the system, and you may have up to a maximum of four disk array frames installed on your system. If you have four disk array frames that are fully populated with disk drives, you will have a maximum of 149 TB. You may also have one to two XP1024 disk array frames grouped with one to three XP512 DKU frames.

Figure 7. XP1024 Disk Array Frames
Available disk drives

The disk array uses 3.5-inch disk drives, and a variety of disk capacities are available. Ask your HP service representative about currently available disk drives. Any of the disk drives in your disk array frames can be replaced without disrupting user activity. The disk array automatically detects and corrects disk errors. All HP Disk Array XP512 disk drives are supported in XP512 DKU frames.

XP512 DKUs can be used in conjunction with the XP1024.
RAID options

Any of your spare disk drives can back up any other disk drive of the same or lesser capacity (and equal rotational speed), in any DKU frame, even if the failed disk and the spare disk are in different array domains, whether you are using RAID1 or RAID5 array groups.

XP512 DKU Supported disk drives must have a spare drive in the XP512 DKU domain(s).

Your disk arrays can be configured with a minimum of one and a maximum of 16 spare disk drives.

Management console PC (optional)

The management console is for user access to the system software. Your management console runs a main remote control application and other standard and optional software to manage and monitor the disk array. The management console can be connected to up to eight disk arrays using a special LAN connection. See Figure 9. See Table 10 on page 58.

![Figure 9. XP1024 Disk Array](image)
Table 10. Connections to the XP1024 Disk Array

<table>
<thead>
<tr>
<th>Callout in figure 9 (page 57)</th>
<th>Connecting</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A DKC to a DKU; A DKU to another DKU</td>
<td>Fibre Channel</td>
</tr>
<tr>
<td>2</td>
<td>The DKC to the server host</td>
<td>Fibre Channel ESCON FICON iSCSI</td>
</tr>
<tr>
<td>3</td>
<td>DKC to the Management Console</td>
<td>LAN</td>
</tr>
</tbody>
</table>

The specific hardware requirements for your management console PC, such as the required processor speed, storage capacity, and memory, vary depending on the optional software that you use and the number of disk array frames you have connected to the system.

To protect your user’s security, the HP Command View XP software for the management console PC does not have access to any user data stored on the disk array.

There is no single point of failure in the disk array. It is designed with redundant logic assemblies, disk drives, and the power supplies, all of which can be removed or replaced without interrupting access to your data.

Caution

Only your HP service representative can remove or replace hardware.
Figure 10 and Table 11 on page 60 show the control panel and its functions, respectively.

Figure 10. Control panel
Table 11. Control panel functions

<table>
<thead>
<tr>
<th>Item</th>
<th>Label</th>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SUBSYSTEM READY</td>
<td>LED (Green)</td>
<td>Indicates that input/output operation on the channel interface is enabled. If the LED is off, the system is not accepting data.</td>
</tr>
<tr>
<td>2</td>
<td>SUBSYSTEM ALARM</td>
<td>LED (Red)</td>
<td>Indicates DC under voltage, DC over current, abnormally high temperature, or an unrecoverable failure has occurred. If your disk array is set up to report messages to the remote center, your HP service representative is notified automatically. If your disk array is not setup to report messages to the remote center, you should place a service call to HP to have the message evaluated to determine if any action is required.</td>
</tr>
</tbody>
</table>
| 3 | SUBSYSTEM MESSAGE | LED (Amber) | ON: Indicates a message has been issued from either Cluster. If your disk array is set up to report messages to the remote center, your HP service representative is notified automatically. If your disk array is not set up to report messages to the remote center, you should place a service call to HP to have the message evaluated to determine if any action is required.
Blinking: Indicates the internal service processor has experienced a failure. The disk array will continue to operate normally. You should place a service call to HP to ensure notification. Service processor failures may not be reported automatically to the remote center. |
| 4 | SUBSYSTEM RESTART | Switch | Used to unfence the fenced drive path and to release Write Inhibit. There is a blocked path somewhere between a host and a disk drive. By restarting the subsystem, a soft reset will be performed to try to recover. If system restart does not unblock the path, an HP service representative will be notified. |
| 5 | REMOTE MAINTENANCE PROCESSING | LED (Amber) | Indicates remote maintenance is being processed. An HP service representative may be working on your system, but the system is online and accepting data. |
Table 11. Control panel functions

<table>
<thead>
<tr>
<th>Item</th>
<th>Label</th>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>REMOTE MAINTENANCE ENABLE/DISABLE</td>
<td>Switch</td>
<td>Used to permit remote service maintenance. Disable: No one can provide maintenance Enable: HP service representative can provide maintenance.</td>
</tr>
</tbody>
</table>
| 7 | STORAGE CLUSTER 1 CHANNEL A-R ENABLE | LED (Green) | Serial Channel/Fibre Channel:
(1) On: Indicates some of the logical paths are established.
(2) Fast blinking: Indicates the corresponding channel route is executing the channel command. (Only Serial Channel)
(3) Slow blinking: Indicates none of the logical paths are established.
(4) Off: Indicates the corresponding channel route is not enabled. |
| 8 | STORAGE CLUSTER 2 CHANNEL A-R ENABLE | LED (Green) | Serial Channel/Fibre Channel:
(1) On: Indicates some of the logical paths are established.
(2) Fast blinking: Indicates that the corresponding channel route is executing the channel command. (Only Serial Channel)
(3) Slow blinking: Indicates none of the logical paths are established.
(4) Off: Indicates that the corresponding channel route is not enabled. |
When the LED is on, unit is plugged in and receiving power from the primary AC outlet. The SVP is receiving power from the outlet.

If BS is off, then the disk array is not receiving power from the primary AC outlet. Check the electrical outlets in your building.

When the LED is on power switch is on, the array is ready to receive data.

Off means the power switch is off; the disk array is not powered on and is not ready to receive data.

Used to enable the PWR on/off switch. To enable the PWR on/off switch, turn the PWR SW ENABLE switch to the ENABLE position. If the automatic power on restart feature is not being used, this switch should be in the DISABLE (opposite of ENABLE) position during normal operation.

To switch on/off the subsystem, use this switch while turning the PWR SW ENABLE switch is in the ENABLE position. This switch only performs this function when the REMOTE/LOCAL switch is set to the LOCAL position. This switch should be in the PWR ON position during normal operation. The position of this switch should only be changed when directed by HP service personnel.

Used to power off the storage subsystem in an emergency situation.

<table>
<thead>
<tr>
<th>Item</th>
<th>Label</th>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>BS ON</td>
<td>LED (Yellow)</td>
<td>When the LED is on, unit is plugged in and receiving power from the primary AC outlet. The SVP is receiving power from the outlet. If BS is off, then the disk array is not receiving power from the primary AC outlet. Check the electrical outlets in your building.</td>
</tr>
<tr>
<td>10</td>
<td>PS ON</td>
<td>LED (Green)</td>
<td>When the LED is on power switch is on, the array is ready to receive data. Off means the power switch is off; the disk array is not powered on and is not ready to receive data.</td>
</tr>
<tr>
<td>11</td>
<td>PWR SW ENABLE</td>
<td>Switch</td>
<td>Used to enable the PWR on/off switch. To enable the PWR on/off switch, turn the PWR SW ENABLE switch to the ENABLE position. If the automatic power on restart feature is not being used, this switch should be in the DISABLE (opposite of ENABLE) position during normal operation.</td>
</tr>
<tr>
<td>12</td>
<td>PWR ON/PWR OFF</td>
<td>Switch</td>
<td>To switch on/off the subsystem, use this switch while turning the PWR SW ENABLE switch is in the ENABLE position. This switch only performs this function when the REMOTE/LOCAL switch is set to the LOCAL position. This switch should be in the PWR ON position during normal operation. The position of this switch should only be changed when directed by HP service personnel.</td>
</tr>
<tr>
<td>13</td>
<td>EMERGENCY POWER OFF</td>
<td>Switch</td>
<td>Used to power off the storage subsystem in an emergency situation.</td>
</tr>
</tbody>
</table>
Table 11. Control panel functions

<table>
<thead>
<tr>
<th>Item</th>
<th>Label</th>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>PWR ON/PWR OFF REMOTE/LOCAL</td>
<td>Switch</td>
<td>Determines how the disk array is powered on or off.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>REMOTE: Disk array is powered on/off by the instructions of the host power control interface (mainframe only).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LOCAL: Disk array is powered on/off by the PWR ON/PWR OFF switch,</td>
</tr>
<tr>
<td>15</td>
<td>LED TEST/CHK RESET</td>
<td>Switch</td>
<td>LED TEST position: The LEDs on the panel go on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHK RESET position: The PS ALARM and TH ALARMS is reset.</td>
</tr>
</tbody>
</table>
Emergency power-off

A switch is provided on the operator panel on the front side of the disk control frame (DKC) for turning power off in an emergency.

If you encounter any abnormality such as an abnormal sound, smell, or smoke, power off the disk subsystem by operating the UNIT EMERGENCY POWER OFF switch following the procedure below. The procedure for operating the switch is as follows:

1. Push the operator panel cover at the location where PUSH is marked, open the operator panel cover, then operate the EMERGENCY POWER OFF switch.

2. In using a UNIT EMERGENCY POWER OFF switch, first pull it up and then pull it toward you as illustrated in the figure below.

Caution Pulling a UNIT EMERGENCY POWER OFF switch on the disk controller instantly shuts down, neglecting the system's power-off sequence. Jobs in process are aborted and their integrity after recovery is not guaranteed. Therefore, this method should be used only in an emergency and not in usual maintenance.

Caution The UNIT EMERGENCY POWER OFF switch on the disk controller only provides partial power-off capability. AC input power remains present at the primary circuit. Therefore, do not use the switches on these units unless you need to power off of the unit as an emergency measure.

When pulled, the UNIT EMERGENCY POWER OFF switch mechanically locks itself in the off position to prevent restoring power in a potentially hazardous situation. A qualified HP service representative is required on site to restore power. Any time the unit Emergency/Only OFF switch is pulled, place a service call to Hewlett-Packard to have the switch reset and have the disk array restored to service.
Figure 11. Pulling Unit Emergency Power OFF Switch
Normal operations

The disk array does not require intervention from the user. The disk array reports any remote system information messages (R-SIMs) to your management console PC running HP Command View XP. The internal disk array service processor also sends the report to the HP Service Center automatically. For more information on SIMs, see Chapter 5, "Troubleshooting" on page 89.
Situations may arise in the operation of the disk array that require the user to power down the disk array. These situations include:

- Emergency power-off
- Planned power-off

Emergency power-off

An emergency is a critical situation such as a physical plant catastrophe. In an emergency, the critical need is to quickly remove power from the disk array. A quick restart is not necessary.

In an emergency, you should trip the Emergency Power-Off (EPO) switch, which is located on the control panel.

Caution Use this switch only in case of an emergency. An HP service representative is required to reset the EPO and to power-on the disk array.

To power off the disk array in an emergency:

1. Open the control panel cover by pushing on the point marked **PUSH**.
2. Pull the emergency power-off switch (**Figure 11 on page 65**) up and then out towards you as illustrated on the switch.
3. Call the HP support center. The EPO switch must be reset by an HP service representative before the disk array can be powered on again.
Planned power-off

There may be times when a site power outage is planned, such as to make alterations to the data center, do inspections, or to allow work by the electric company. If a scheduled power outage affects an HP Disk Array XP1024, the power down of the disk array must be scheduled with a trained HP support representative.

Caution
Only a trained HP representative may shut-down and power-off a disk array. Shutting down and powering off a disk array should not be done by customers except in an emergency.

When planning for your planned power outage, please contact your HP customer engineer to schedule a customer visit.
Recovering from a power outage to the disk array

If a power outage to the array occurs, the disk array will maintain its state and recover when power is restored. The array cache is backed up by batteries that will maintain its state for a minimum of 48 hours. This length of time will provide coverage for most outages. In cases where the outage will extend beyond 48 hours, the batteries can be replaced by an HP CE which will extend the time, if necessary. You must notify HP support if your power outage is expected to extend beyond the backup time.
Manual restart of the disk array after power is restored

Caution Before restoring power to the disk array, HP recommends that an electrician check the input power to ensure it is stable and clean.

You may call a trained HP representative or you may use the following procedure yourself to recover the disk array from a power failure:

1. Move the ENABLE/DISABLE switch to the ENABLE position. Move the PWR ON/OFF switch to the PWR ON position. (Figure 10 on page 59, item 11/12)

2. The following LED power sequence will occur:
 - The BS-ON (Figure 10 on page 59, item 9) will turn amber and the PS ON LED (Figure 10 on page 59, item 10) will turn green.
 - The CHANNEL LED (Figure 10 on page 59, item 7) will light green for every adapter installed.
 - The MESSAGE LED (Figure 10 on page 59, item 3) may turn amber, if your disk array is not configured for automatic maintenance notification, signifying a SIM was generated (because the disk array went down unexpectedly).

 Finally, the READY LED (Figure 10 on page 59, item 1) will light green signifying the system is ready. Powering on the disk array may take up to 10 minutes, depending on the number of disks installed in the disk array. Power-on is complete only when the READY LED turns green.

3. Move the ENABLE/DISABLE switch to the DISABLE position.
Automatic power on restart

Caution

As with all sophisticated electronic equipment, unstable power conditions during a restart can induce problems. HP recommends automatic power on restart only when power to the disk array is conditioned to ensure it is stable, such as by using a UPS. If your site does not have a UPS, HP recommends the disk array be configured for manual restart by keeping the ENABLE/DISABLE switch in the DISABLE position and using the manual restart procedure when power has been restored and verified.

The disk array will automatically restart and return to service when power is restored. To enable this feature, place the ENABLE/DISABLE switch in the ENABLE position and the PWR ON/OFF switch in the PWR ON position. *(Figure 10 on page 59, item 11/12).* When power is restored, your disk array will restart and the following LED power sequence will occur:

- The BS-ON *(Figure 10 on page 59, item 9)* will turn amber and the PS ON LED *(Figure 10 on page 59, item 10)* will turn green.
- The CHANNEL LED *(Figure 10 on page 59, item 7)* will light green for every adapter installed.
- The MESSAGE LED *(Figure 10 on page 59, item 3)* may turn amber, if your disk array is not configured for automatic maintenance notification, signifying a SIM was generated (because the disk array went down unexpectedly).
- Finally, the READY LED *(Figure 10 on page 59, item 1)* will light green when the system is ready, which may take up to 10 minutes, depending on the number of disks installed in the disk array.
Specifications

Some of the XP1024 disk array specifications are listed in this section. Refer to the HP Disk Array XP1024 Site Prep Guide on the XP1024 web site at on the following main web site and access the appropriate product for a complete set of XP1024 specifications:

http://www.hp.com

Temperature

<table>
<thead>
<tr>
<th>Table 12. Temperature Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Specifications (Degrees F = 1.8 x Degrees C + 32)</td>
</tr>
<tr>
<td>Nonoperating/storage Temperature Range</td>
</tr>
<tr>
<td>Operating Temperature</td>
</tr>
<tr>
<td>Recommended Operating Temperature Range</td>
</tr>
<tr>
<td>Shipping and storage temperature</td>
</tr>
<tr>
<td>Temperature Shock Immunity—Maximum rate of change</td>
</tr>
<tr>
<td>Over-Temperature shutdown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 13. Humidity Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity Specifications</td>
</tr>
<tr>
<td>Nonoperating/storage Humidity Range</td>
</tr>
<tr>
<td>Non-operating humidity range</td>
</tr>
<tr>
<td>Operating Humidity Range at 22° C</td>
</tr>
<tr>
<td>Recommended Operating Humidity Range at 22° C</td>
</tr>
<tr>
<td>Procedure for recovery from moisture condensation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 14. Mechanical Vibration Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Vibration Specifications</td>
</tr>
<tr>
<td>Maximum Operating Acceleration</td>
</tr>
</tbody>
</table>
AC line voltage requirements for the HP Disk Array XP1024 (DKC)

Table 15 (page 73) lists the basic AC power requirements for a 40-amp, single-phase XP1024 DKC.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal Rated Voltage (Vac)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Rated line current per power cord (Arms)</td>
<td>8.0</td>
</tr>
<tr>
<td>Number of power cords</td>
<td>2</td>
</tr>
<tr>
<td>Number of circuit breakers</td>
<td>2</td>
</tr>
<tr>
<td>Recommended circuit breakers</td>
<td>40 A</td>
</tr>
</tbody>
</table>

* 60 Hz only.

Table 16 (page 73) lists the basic AC power requirements for a 30-amp, single-phase, XP1024 DKC.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal Rated Voltage (Vac)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Rated line current per power cord (Arms)</td>
<td>4.0</td>
</tr>
<tr>
<td>Number of power cords</td>
<td>4</td>
</tr>
<tr>
<td>Number of circuit breakers</td>
<td>4</td>
</tr>
<tr>
<td>Recommended circuit breakers</td>
<td>30 A</td>
</tr>
</tbody>
</table>

* 60 Hz only.
Table 17 (page 74) lists the basic AC power requirements for a 30-amp, three-phase XP1024 DKC.

Table 17. 30-Amp, 50 or 60 Hz, Three-Phase DKC Operation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal Rated Voltage (Vac)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Rated line current per power cord (Arms)</td>
<td>5.2</td>
</tr>
<tr>
<td>Number of power cords</td>
<td>2</td>
</tr>
<tr>
<td>Number of circuit breakers</td>
<td>2</td>
</tr>
<tr>
<td>Recommended circuit breakers</td>
<td>30 A</td>
</tr>
</tbody>
</table>

* 60 Hz only.
AC line voltage requirements for the HP Disk Array XP1024 (DKU)

Table 18 (page 75) lists the basic AC power requirements for a 50-amp, single-phase, XP1024 DKU.

Table 18. 50-Amp, 50 or 60 Hz, Single-Phase DKU Operation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal Rated Voltage (Vac)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Rated line current per power cord (Arms)</td>
<td>22.3</td>
</tr>
<tr>
<td>Number of power cords</td>
<td>2</td>
</tr>
<tr>
<td>Number of circuit breakers</td>
<td>2</td>
</tr>
<tr>
<td>Recommended circuit breakers</td>
<td>50 A</td>
</tr>
</tbody>
</table>

* 60 Hz only.

Table 19 (page 75) lists the basic AC power requirements for a 30-amp, single-phase XP1024 DKU.

Table 19. 30-Amp, 50 or 60 Hz, Single-Phase DKU Operation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal Rated Voltage (Vac)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Rated line current per power cord (Arms)</td>
<td>13.5</td>
</tr>
<tr>
<td>Number of power cords</td>
<td>4</td>
</tr>
<tr>
<td>Number of circuit breakers</td>
<td>4</td>
</tr>
<tr>
<td>Recommended circuit breakers</td>
<td>30 A</td>
</tr>
</tbody>
</table>

* 60 Hz only.
Table 20 (page 76) lists the basic AC power requirements for a 60-amp, three-phase XP1024 R1 DKU.

Table 20. 60-Amp, 50 or 60 Hz, three-phase R1 DKU operation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal Rated Voltage (Vac)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Rated line current per power cord (Arms)</td>
<td>19.0</td>
</tr>
<tr>
<td>Number of power cords</td>
<td>2</td>
</tr>
<tr>
<td>Number of circuit breakers</td>
<td>2</td>
</tr>
<tr>
<td>Recommended circuit breakers</td>
<td>60 A</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. 60 Hz only.
2. 30-amp breakers are adequate at 380, 400, and 415 Vac, because the current drawn at these voltages is considerably less than at the lower voltages.

Table 21 (page 76) lists the basic AC power requirements for 60-amp, three-phase, R2, L1, and L2 XP1024 DKUs. Unlike the first DKU (R1), DKUs R2, L1, and L2 do not provide AC power to the DKC.

Table 21. 60-Amp, 50 or 60 Hz, three-phase, R2, L1, and L2 DKU operation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal Rated Voltage (Vac)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Rated line current per power cord (Arms)</td>
<td>19.0</td>
</tr>
<tr>
<td>Number of power cords</td>
<td>2</td>
</tr>
<tr>
<td>Number of circuit breakers</td>
<td>2</td>
</tr>
<tr>
<td>Recommended circuit breakers</td>
<td>60 A</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. 60 Hz only.
2. 30-amp breakers are adequate at 380, 400, and 415 Vac, because the current drawn at these voltages is considerably less than at the lower voltages.
Table 22 (page 77) lists the basic AC power requirements for a 30-amp, three-phase XP1024 DKU.

Table 22. 30-Amp, 50 or 60 Hz, three-phase DKU operation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal Rated Voltage (Vac)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Rated line current per power cord (Arms)</td>
<td>15.0</td>
</tr>
<tr>
<td>Number of power cords</td>
<td>2</td>
</tr>
<tr>
<td>Number of circuit breakers</td>
<td>2</td>
</tr>
<tr>
<td>Recommended circuit breakers</td>
<td>30 A</td>
</tr>
</tbody>
</table>

* 60 Hz only.

If you intend to use HP Disk Array XP512 DKUs with your HP XP1024 Disk Array, see the *HP StorageWorks Disk Array XP512 Site Preparation Guide* for power requirements information for these DKUs.
Several optional HP software packages are available to increase your data accessibility and enable continuous access to user data on the disk array. This chapter describes how these optional software applications can help you run your disk array system.

Before installing the optional software packages, refer to the package’s manual to verify equipment requirements.
XP array management

HP StorageWorks Command View XP

Command View XP provides a common management platform for the XP family of disk arrays. The Command View management station enables you to manage multiple XP arrays, even globally distributed arrays, from one console. Command View XP provides:

- A web-browser-based GUI or command line interface
- Three levels of security
 - User authentication and authorization
 - Host IP authentication and authorization
 - Secure socket layer support for encrypted connection between the XP array and host
- Visual representation of host and storage resources
- Graphical representation of status, storage allocations, and health of XP array subcomponents
- Common user interface from which all XP management applications launch
- Event level integration into the leading network and system management solutions, such as OpenView Network Node Manager, CA Unicenter TNG, Tivoli and BMC Patrol
Storage management and LUN security

HP StorageWorks LUN Configuration and Security Manager XP

LUN Configuration Manager allows you to create, define, and configure LUNs on your disk array. LUN Configuration Manager comes with three applications that are executed from StorageWorks Command View XP.

LUN Configuration Manager enables:

- LUN creation and port assignment
- consolidation of LUNs (up to 36 LUNs can be combined)
- creation of small size LUNs to accommodate data place in cache

Security Manager establishes security at the LUN level, allowing you to enable secure multiple server connectivity to the disk array. Secure Manager XP enables the disk array to hide LUNs assigned to one server from other servers.
Remote and local data replication

Continuous Access XP, Continuous Access Extension XP, and Business Copy XP are valuable tools for creating copies of data for testing, backup, and disaster recovery.

HP StorageWorks Continuous Access XP

Continuous Access allows you to make ongoing synchronous copies of disk array data to a remote site 27 miles (43 kilometers) away.

HP StorageWorks Continuous Access Extension XP

Continuous Access Extension XP is similar to Continuous Access XP, but operating in asynchronous mode. This can produce increased performance in remote copying. Copy operations are sequenced-stamped to ensure they are executed and sorted correctly at the remote disk array.

You must purchase Continuous Access Extension as an upgrade if you are currently using the Continuous Access XP in synchronous mode, but would prefer to use asynchronous mode.

HP StorageWorks Business Copy XP

Business Copy allows you to make up to nine ongoing copies of data. These copies are maintained on the local disk array. Use Business Copy for non-production activities such as backup, batching, and system testing.
Failover and load balancing

HP StorageWorks Auto Path XP

Using Auto Path XP, you can enable Windows NT server I/O path failover and load balancing control for dual path connections. You can configure up to eight multiple paths per LUN that will provide automatic and transparent failover in the event of path failure. You can also enable dynamic, multi-path load balancing to prevent overloaded I/O operations.

HP StorageWorks Secure Path

HP StorageWorks Secure Path is a family of high availability multi-pathing software products providing continuous data access from the disk array to host servers running Windows Server 2003, Windows 2000, Windows NT, Linux, Sun Solaris, Novell NetWare, IBM AIX, and HP-UX.

Redundant hardware, advanced RAID technology and Secure Path’s automated failover capability enhance fault tolerance and availability. Secure Path effectively eliminates controllers, disk drives, interconnect hardware and host bus adapters as single points of failure. Secure Path:

- Ensures increased business efficiency by maintaining high availability of business critical data and by simplifying the task of path management.
- Monitors path status, and in the case of a path failure, automatically re-routes data to an alternate path.
- Allows easy path management from a single application with graphical displays and task automation.
Performance management

HP StorageWorks Cache LUN XP

Cache LUN XP enables you to reserve disk array cache memory for storing high-use data, greatly increasing access speed to that data.

HP StorageWorks Auto LUN XP

Auto LUN XP provides monitoring and disk usage analysis for your disk array based on user thresholds. Auto LUN develops a plan to migrate impacted data volumes to lower usage LUNs, using the data acquired during monitoring. You can perform the migration manually or automatically.

HP StorageWorks Performance Advisor XP

HP StorageWorks Performance Advisor XP is an Internet application used to monitor real-time performance of the HP StorageWorks XP family of disk array products. Using a simple, browser-based interface, you can quickly customize performance data collection and set performance alarms. Performance Advisor provides real-time and historical data on:

- LDEV I/Os
- front-end and back-end port utilization
- internal bus utilization
- cache usage

You can easily integrate with VantagePoint’s DSI log and user PerfView to view your performance metrics.
HP StorageWorks Application Policy Manager XP

HP StorageWorks Application Policy Manager XP is a performance allocation and management tool for XP disk arrays. It lets you allocate storage performance resources to hosts by means of policies you define.

It ensures that critical business processes have all the XP disk array performance they need to meet business objectives. You can ensure that processes such as backups and data warehouse loads get the array bandwidth necessary to meet deadlines. Application Policy Manager enables sophisticated service provider solutions based on distinct levels of service.

Application Policy Manager has a rich feature set for flexible policy definition, scheduling, monitoring, and analysis.
Network management products

HP OpenView SPI for XP Disk Arrays

HP OpenView SPI for XP Disk Arrays establishes an agent that monitors XP disk arrays, provides a correlation of events on the disk arrays, and then forwards those events to the OpenView Operations management console.

HP OpenView SPI for HP storage devices

The OpenView SPI solutions enable integration of the XP disk array infrastructure into the OpenView Operations and OpenView Service Navigator, providing you with the ability to integrate storage into your service level agreements. These solutions perform the following functions:

• Intercept and filter over 1,000 events from the XP disk array
• Show associations and dependencies existing between XP components
• Isolate root causes of failures and predict results
• Enable management of globally distributed XP disk arrays from the OpenView management console
Mainframe solutions

HP StorageWorks Resource Manager XP

HP StorageWorks Resource Manager XP allows you to share data stored on the disk array with mainframe systems and open system servers. This can reduce and optimize your storage maintenance and management overhead.

HP StorageWorks Resource Manager XP allows an XP array to connect to a mainframe system via an ESCON link.

HP StorageWorks Data Exchange XP

Data Exchange XP provides high-speed bidirectional data sharing between mainframe systems and open systems. File translations are provided through a file conversion utility.

Together, these products can free your network of host-to-host data conversion traffic.
This chapter explains the monitoring and reporting capabilities and the flow of troubleshooting used on the HP StorageWorks Disk Array family of disk arrays.
Monitoring and reporting

The disk array generates service information messages (SIMs) to identify normal operations, service requirements, and failures. SIMs can be generated on the disk array by the CHIP (Client Host Interface Processor) and ACP (Array Control Processor) microprocessors and by the internal service processor (SVP). Your HP service representative will use the SIMs to monitor and troubleshoot your disk array.
When the system encounters trouble, it will report the trouble to the HP Storage Technology Center.

If a failure occurs in the disk array, it is detected and reported to the system log, the SIM log, and the HP Storage Technology Center. Figure 12 is a flow diagram that explains the progress of error detection and reporting.

1. A failure is detected in your disk array.
2. The failure is reported to the system.
3. The system stores the failure information in the system log.

 The generated SIMs are stored on your disk array’s SVP for use by HP personnel and logged on the remote console PC as remote SIMs (R-SIMs). The Continuous Track remote maintenance software tool also reports SIMs to the HP Storage Technology Center. When a SIM is generated, the amber message LED on your disk array control panel turns on if the disk array is not configured to automatically phone the HP Storage Technology Center. In this case, call HP to determine the reason for the message.

 SIMs are classified according to severity: service, moderate, serious, or acute. Service-level and moderate-level SIMs do not require immediate attention and are addressed during routine maintenance. These failures are often corrected before the failure actually occurs.

 Serious-level and acute-level SIMs are reported to the HP Storage Technology Center immediately to ensure that the problem is addressed as soon as possible. Your HP service representative will configure your modem during installation.

4. The Continuous Track remote maintenance tool reports the SIMs to the HP Storage Technology Center through a dedicated dial up connection.

 The HP Storage Technology Center then takes action to correct the failure.
Figure 12. Error Detection and Reporting
The following regulatory statements apply to the HP Disk Array XP128 and XP1024.
FCC EMC Statement (USA)

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his or her own expense. The end user of this product should be aware that any changes or modifications made to this equipment without the approval of Hewlett-Packard could result in the product not meeting the Class A limits, in which case the FCC could void the user’s authority to operate the equipment.

Hewlett-Packard’s device certification tests were conducted with HP computer systems and HP shielded cables, such as those you received with your product. Changes or modifications not expressly approved by Hewlett-Packard could void the user’s authority to operate the equipment. Cables used with this device must be properly shielded to comply with the requirements of the FCC.
IEC Statement (Worldwide)

This is a Class A product. In a domestic environment this product may cause radio interference, in which case the user may be required to take adequate measures.
EMC Statement (Canada)

This Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.

Cet appareil numérique de la Classe A respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.
Spécification ATI Classe A (France)

DECLARATION D'INSTALLATION ET DE MISE EN EXPLOITATION
d'un matériel de traitement de l'information (ATI), classé A en fonction des
niveaux de perturbations radioélectriques émis, définis dans la norme
européenne EN 55022 concernant la Compatibilité Electromagnétique.
VCCI EMC Statement (Japan)

この装置は、情報処理装置等電波障害自主規制協議会（VCCI）の基準に基づくクラスA情報技術装置です。この装置を家庭環境で使用すると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ずるよう要求されることがあります。
警告使用者：
這是甲類的資訊產品，在居住的環境中使用時，可能會造成射頻干擾，在這種情況下，使用者會被要求採取某些適當的對策的對策
사용자 안내문 : A 급 기기

이 기기는 업무용으로 전자파적합등록을 받은 기기이오니, 판매자 또는 사용자는 이 점을 주의 하시기 바라며, 만약 잘못 구입 하였을 때에는 구입한 곳에서 비업무용으로 교환 하시기 바랍니다.
Harmonics Conformance (Japan)

高調波ガイドライン適合品
German Noise Declaration

XP128: Schalldruckpegel Lp = 56 dB(A)
XP1024: Schalldruckpegel Lp = 64 dB(A)
Am Arbeitsplatz (operator position)
Normaler Betrieb (normal operation)
Laser Safety

When equipped with native Fibre Channel adapters or iSCSI adapters, this product contains a laser internal to the Optical Link Module (OLM) contained on the 4-port Fibre Channel Adapter board and 4-port FICON board, the 8-port Fibre Channel Adapter board and 8-port FICON board, and the 4-port iSCSI board for connection to a fiber communications network.

In the USA, the OLM is certified as a Class 1 laser product conforming to the requirements contained in the Department of Health and Human Services (DHHS) regulation 21 CFR, Subchapter J. The certification is indicated by a label on the plastic OLM housing. Outside the USA, the OLM is certified as a Class 1 laser product conforming to the requirements contained in IEC 825-1:1993 and EN 60825-1:1994, including Amendment 11:1996.

The following figure shows the Class 1 information label that appears on the plastic housing of the OLM.

```
CLASS 1 LASER PRODUCT

Complies with
21 CFR 1040.10 and 1040.11
```

Each communications port consists of a transmitter and receiver optical subassembly. The transmitter subassembly contains internally a semiconductor laser diode in the wavelength range of 770 to 850 nanometers. In the event of a break anywhere in the fibre path, the OLM control system prevents laser emissions from exceeding Class 1 levels. Class 1 laser products are not considered hazardous.

Caution

There are no user maintenance operations, service operations, or adjustments to be performed on the Optical Link Module.
XP128 Declaration of Conformity

Manufacturer's Name: Hewlett-Packard Company

Manufacturer's Address: 8000 Foothills Blvd.
 Roseville, CA 95747
 USA

declares, that the product
Product Name: hp StorageWorks disk array xp128
Model Number(s): A7876A, A7876AR
Regulatory Model: N/A
Product Options: All

conforms to the following Product Specifications:

 GB 4943-1995
 GB 9254-1088
 IEC 61000-3-2:1995 / EN 61000-3-2:1995 + A1, A2
 IEC 61000-3-3:1994 / EN 61000-3-3:1995

Supplementary Information:
The product herewith complies with the requirements of the Low Voltage Directive

1) The Product was tested in a typical configuration with an HP xp512 disk array and
 system peripherals from several manufacturers.

Roseville, January 18, 2002
George E. Barrett, Regulatory Mgr.

European Contact: Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH,
Department HQ-TRE, Herrenberger Straße 130, D-71034 Böblingen (FAX: +49-7031-14-3143)
XP1024 Declaration of Conformity

<table>
<thead>
<tr>
<th>Manufacturer’s Name:</th>
<th>Hewlett-Packard Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer’s Address:</td>
<td>8000 Foothills Blvd., Roseville, CA 95747 USA</td>
</tr>
<tr>
<td>declares, that the product</td>
<td></td>
</tr>
<tr>
<td>Product Name:</td>
<td>hp StorageWorks disk array xp1024</td>
</tr>
<tr>
<td>Model Number(s):</td>
<td>A7906A, A7906AR, A7925A, A7925AR, A7925U</td>
</tr>
<tr>
<td>Regulatory Model:</td>
<td>N/A</td>
</tr>
<tr>
<td>Product Options:</td>
<td>All</td>
</tr>
</tbody>
</table>

conforms to the following Product Specifications:

Safety:
- GB 4943-1995

EMC:
- CISPR 22:1997 / EN 55022:1998 Class A
- GB 9254-1988
- IEC 61000-3-2:1995 / EN 61000-3-2:1995+A1+A2
- IEC 61000-3-3:1994 / EN 61000-3-3:1995

Supplementary Information:

1) The Product was tested in a typical configuration with an HP xp512 disk array and system peripherals from several manufacturers.

Roseville, October 8, 2002

George E. Barrett, Regulatory Mgr.

European Contact: Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH, Department H2-3RE, Herrenberger Straße 130, D-71034 Böblingen (FAX: +49-7031-4-3143)
ACP
Array control processor. The ACP handles the passing of data between the cache and the physical drives held in the DKUs. ACPs work in pairs, providing a total of eight SCSI buses. Each SCSI bus associated with one ACP is paired with a SCSI bus on the other ACP pair element. In the event of an ACP failure, the redundant ACP takes control. Both ACPs work together sharing the load.

AL
Arbitrated loop.

AL-PA
Arbitrated loop physical address.

allocation
The ratio of allocated storage capacity versus total capacity as a percentage. “Allocated storage” refers to those LDEVs that have paths assigned to them. The allocated storage capacity is the sum of the storage of these LDEVs. Total capacity refers to the sum of the capacity of all LDEVs on the disk array.

array group
A group of 4 or 8 physical hard disk drives (HDDs) installed in an XP disk array and assigned a common RAID level. RAID1 2d+2d array groups are made up of 4 HDDs. A RAID1 4d+4d group is two 4 HDD array groups concatenated together. RAID5 array groups are made up of 4 or 8 HDDs, depending on whether they are RAID5 3d+1p or RAID5 7d+1p, respectively. RAID6 array groups are made up of 8 HDDs (not supported by XP128 or XP1024 disk arrays).

BC
The HP StorageWorks Business Copy XP software program, which enables you to maintain up to nine internal copies of logical volumes on the disk array.

BS
Basic supply.
BTU
British thermal unit.

°C
Degrees centigrade/Celsius.

C-Track
The HP StorageWorks Continuous Track XP software program, which detects internal hardware component problems on a disk array and automatically reports them to the HP STC.

CA
The HP StorageWorks Continuous Access XP software program, which enables you to create and maintain duplicate copies of the data stored on a local disk array.

cache
Very high speed memory that is used to speed I/O transaction time. All reads and writes to the XP array family are sent to the cache. The data is buffered there until the transfer to/from physical disks (with slower data throughput) is complete.

The benefit of cache memory is that it speeds I/O throughput to the application. The larger the cache size, the greater amount of data buffering can occur and the greater throughput to the applications.

XP arrays support a range of cache memory. In the event of power loss, battery power allows the contents of the cache boards to survive for up to 48 hours.

CDE
Common desktop environment.

CE
Customer engineer.

CFW
Cache fast write.

CH
Channel.

channel adapter (CHA)
The channel adapter (CHA) provides the interface between the disk array and the external host system. Occasionally this term is used synonymously with the term channel host interface processor (CHIP).

channel host interface processor (CHIP)
Synonymous with the term channel adapter (CHA).
<table>
<thead>
<tr>
<th>channel processor (CHP)</th>
<th>The processors located on the channel adapter (CHA).</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHPID</td>
<td>Channel path identifier.</td>
</tr>
<tr>
<td>CKD</td>
<td>Count key data.</td>
</tr>
<tr>
<td>CL</td>
<td>Cluster.</td>
</tr>
<tr>
<td>command device</td>
<td>A volume on the disk array that accepts CA or BC control operations which are then executed by the disk array.</td>
</tr>
<tr>
<td>configuration file</td>
<td>A file that defines the pair configurations.</td>
</tr>
<tr>
<td>consistency group ID (CTGID)</td>
<td>The group identifier for which the disk array guarantees the sequence of asynchronous data transfer for the asynchronous CA volume group.</td>
</tr>
<tr>
<td>control unit</td>
<td>To organize the storage space attached to the DKC, you can group similarly configured logical devices (LDEVs) with unique control unit images (CUs). CUs are numbered sequentially. The disk array supports a certain number of CUs, depending on the disk array model. Each CU can manage multiple LDEVs. Therefore, to uniquely identify a particular LDEV requires both the CU number and the LDEV number.</td>
</tr>
<tr>
<td>CSA</td>
<td>Canadian Standards Association.</td>
</tr>
<tr>
<td>CU</td>
<td>Control unit.</td>
</tr>
<tr>
<td>CVS</td>
<td>Custom volume size (also called virtual LVI).</td>
</tr>
<tr>
<td>daemon</td>
<td>A process that runs in the background and performs a specific operation at predefined times in response to certain events.</td>
</tr>
<tr>
<td>DASD</td>
<td>Direct access storage device.</td>
</tr>
<tr>
<td>DCR</td>
<td>Dynamic cache residency.</td>
</tr>
<tr>
<td>DE</td>
<td>HP StorageWorks Data Exchange XP.</td>
</tr>
<tr>
<td>DFDSS</td>
<td>Data Facility Dataset Services.</td>
</tr>
<tr>
<td>DFSMS</td>
<td>Data Facility System Managed Storage.</td>
</tr>
<tr>
<td>DFW</td>
<td>DASD fast write.</td>
</tr>
</tbody>
</table>
disk adapter (DKA) | Synonymous with the term ACP.
---|---
disk control frame (DKC) | The disk control frame (DKC) refers to the array hardware that houses the channel adapters and service processor (SVP).
disk array frame (DKU) | The disk array frame (DKU) refers to the array hardware that houses the physical disks in the array.
disk recovery and restore unit (DRR) | The unit located on the ACP that is responsible for data recovery and restoration in the event of a cache failure.
disk group | The physical disk locations associated with a parity group.
disk type | The manufacturing label burned into the physical disk controller firmware. In most cases, the disk type is identical to the disk model number.
DMP | Dynamic multipathing.
dr | Drive.
DSF | Device support facilities.
DW | Duplex write.
DWL | Duplex write line.
ECKD | Extended count key data.
EFS | The IRIX standard file system.
emulation modes | The logical devices (LDEVs) associated with each RAID group can have one of the following emulation modes. These modes change the behavior of the disks and determine their size.

<table>
<thead>
<tr>
<th>Emulation Mode</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN-3</td>
<td>2.46 GB</td>
</tr>
<tr>
<td>OPEN-8</td>
<td>7.38 GB</td>
</tr>
<tr>
<td>OPEN-9</td>
<td>7.42 GB</td>
</tr>
<tr>
<td>OPEN-E</td>
<td>13.56 GB</td>
</tr>
<tr>
<td>OPEN-K</td>
<td>Not available on all XP arrays</td>
</tr>
<tr>
<td>OPEN-L</td>
<td>36 GB</td>
</tr>
<tr>
<td>OPEN-M</td>
<td>Not available on all XP arrays</td>
</tr>
<tr>
<td>OPEN-V</td>
<td>User-defined custom size</td>
</tr>
</tbody>
</table>
EOF End of field.

EPO Emergency power-off.

ERE Error reporting.

ESA Enterprise Systems Architecture.

ESCON Enterprise System Connection (the IBM trademark for optical channels).

expanded LUN A LUN is normally associated with only a single LDEV. The LUSE feature allows a LUN to be associated with 1 to 36 LDEVs. Essentially, LUSE makes it possible for applications to access a single large pool of storage. The LUSE feature is available when the HP StorageWorks LUN Configuration Manager product is installed.

ExSA Extended serial adapter.

failover Disconnecting a failed portion and replacing it with another normal portion or alternative portion in order to continue functioning.

°F Degrees Fahrenheit.

FAL File access library (part of the Data Exchange software).

FBA Fixed-block architecture.

FC Fibre Channel.

FC-AL Fibre Channel arbitrated loop.

FCC Federal Communications Commission.

FCP Fibre Channel Protocol.

FCU File conversion utility (part of the Data Exchange software).

FDR Fast dump/restore.

fence level A level for selecting rejection of a write I/O request from the host according to the condition of mirroring consistency.

F/M Format/message.

ft. Foot or feet.
FWD Fast wide differential.
fx The IRIX disk utility.
GB Gigabytes.
GLM Gigabyte link module.
HA High availability.
HBA Host bus adapter.
HCD Hardware configuration definition.
HORCM_CMD A section of the RAID Manager instance configuration file that defines the
disk devices used by RAID Manager to communicate with the disk array.
HORCM_DEV A section of the RAID Manager instance configuration file that defines the
volumes of the instance.
HORCM_INST A section of the RAID Manager instance configuration file that defines
how RAID Manager groups link to remote RAID Manager instances.
HORCM_MON A section of the RAID Manager instance configuration file that defines the
instance you are configuring.
host mode Each port can be configured with various options referred to as host modes.
These modes are represented as two-digit hexadecimal numbers. The first
digit, usually 0, represents different things on different arrays. The second
hex digit represents the host system type. For example, the 8 in mode 08
represents an HP-UX host.
hot standby Using two or more servers as a standby in case of a primary server failure.
HP Hewlett-Packard Company.
H/W Hardware.
Hz Hertz.
ICKDSF A DSF command used to perform media maintenance.
IDCAMS Access method services (a component of Data Facility Product).
IML Initial microprogram load.
in. Inches.
I/O Input/output (applies to an operation or device).
IOCP Input/output configuration program
instance An independent copy of RAID Manager. Instances are local or remote and can run on the same host.
JCL Job control language.
KB Kilobyte.
kcald Kilocalorie.
kg Kilogram.
km Kilometer.
kV A Kilovolt-ampere.
kW Kilowatt.
LAN Local area network.
lb. Pound.
LCP Local control port.
LD, LDEV Logical device. An LDEV is created when a RAID group is carved into pieces according to the selected host emulation mode (that is, OPEN-3, OPEN-8, OPEN-9). The number of resulting LDEVs depends on the selected emulation mode. The term LDEV is often used synonymously with the term volume.
LED Light emitting diode.
local disk A local disk in the host.
local instance The instance currently being configured or the instance to which commands are issued.
LPAR Logical partition.
LCP Link control processor or local control port.
LRU Least recently used.
LU Logical unit.
LUN Logical unit number. A LUN results from mapping a SCSI logical unit number, port ID, and LDEV ID to a RAID group. The size of the LUN is determined by the emulation mode of the LDEV, and the number of LDEVs associated with the LUN. For example, a LUN associated with two OPEN-3 LDEVs has a size of 4,693 MB.
LUSE Logical unit size expansion.
LVI Logical volume image.
LVM Logical Volume Manager.
LVM mirror A disk duplicating function provided by Logical Volume Manager (LVM) (capable of triplicating disks).
m Meters.
MB Megabytes.
MCU Main control unit.
mirroring consistency The consistency (usability) of data in a volume (for example, S-VOL).
mm Millimeters.
MP Microprocessor.
MPLF Multipath Locking Facility.
MR Magnetoresistive.
ms, msec Milliseconds.
mutual hot standby system Two servers that are poised to cover for each other if necessary.
MVS Multiple Virtual Storage (including MVS/370, MVS/ESA, MVS/XA).
NHAS Novell High Availability Server.
<table>
<thead>
<tr>
<th>node</th>
<th>Logically speaking, an environment where instances can be executed. Physically, a processor, which is an element of a cluster system.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVS</td>
<td>Nonvolatile storage.</td>
</tr>
<tr>
<td>OFC</td>
<td>Open Fibre Control.</td>
</tr>
<tr>
<td>OLM</td>
<td>Optical link module.</td>
</tr>
<tr>
<td>ORM</td>
<td>Online read margin.</td>
</tr>
<tr>
<td>OS</td>
<td>Operating system.</td>
</tr>
<tr>
<td>P/DAS</td>
<td>PPRC/dynamic address switching.</td>
</tr>
<tr>
<td>PA</td>
<td>Physical address.</td>
</tr>
<tr>
<td>parity group</td>
<td>A parity group is a mode of disk operation and configuration. It is synonymous with the term “array group.”</td>
</tr>
<tr>
<td>partition</td>
<td>Dividing a specific physical disk according to the HP-UX kernel or device driver layer into two or more areas as if there are two or more physical disks.</td>
</tr>
<tr>
<td>path</td>
<td>Paths are created by associating a port, a target, and a LUN ID to one or more LDEVs.</td>
</tr>
<tr>
<td>PCI</td>
<td>Power control interface or peripheral component interconnect.</td>
</tr>
<tr>
<td>PM</td>
<td>HP StorageWorks Performance Manager XP software.</td>
</tr>
<tr>
<td>port</td>
<td>The number of supported ports on an XP disk array is dependent upon the number of supported I/O slots and the number of ports available per I/O adapter. The XP family of disk arrays supports SCSI, Fibre Channel (FC/AL), ESCON, and FICON I/O interfaces. I/O support can vary with the selected disk array. Ports are named based upon their port group and port letter. Examples of port names include CL1-A through CL1-R and CL2-A through CL2-R (letters I and O are skipped).</td>
</tr>
<tr>
<td>P-P</td>
<td>Point-to-point.</td>
</tr>
<tr>
<td>PPRC</td>
<td>Peer-to-peer remote copy.</td>
</tr>
</tbody>
</table>
PS Power supply.

P-VOL The primary or main volume that contains the data to be copied.

RS Russellstoll®, a brand of electrical plugs and receptacles manufactured by Thomas & Betts Corporation.

RAID Redundant array of inexpensive disks.

RAID group See “array group.”

RAID level A RAID Level is one of the ways that disk drives are grouped together in a RAID to improve performance, data availability/reliability or both. RAID levels are defined from RAID0 to RAID6. HP StorageWorks Disk Arrays in the XP product family support RAID1, RAID5 and RAID6. Not all of these RAID levels are supported by all XP family members. Consult the owner's guide or your HP representative for the details of which RAID levels are supported by your specific XP disk array.

RAM Random access memory.

remote instance The instance to which the local instance communicates as configured in the HORCM_INST section of the RAID Manager instance configuration file.

RISC Reduced instruction set computer.

RM HP StorageWorks RAID Manager XP.

RM instance configuration file A file that defines the link between a volume and a RAID Manager instance. This file consists of four sections: HORCM_MON, HORCM_CMD, HORCM_DEV, and HORCM_INST.

R-SIM Remote service information message.

R/W, r/w Read/write.

S/390 IBM System/390 architecture.

SAM System Administration Manager.

script file A file containing a shell script.

SCSI Small computer system interface.

sec. Second.
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seq.</td>
<td>Sequential.</td>
</tr>
<tr>
<td>SGI</td>
<td>Silicon Graphics Incorporated.</td>
</tr>
<tr>
<td>shell script</td>
<td>A command sequence executed by a UNIX shell.</td>
</tr>
<tr>
<td>Sidefile</td>
<td>An area of cache used to store the data sequence number, record location, record length, and queued control information before transmit over the ESCON link.</td>
</tr>
<tr>
<td>SIM</td>
<td>Service information message.</td>
</tr>
<tr>
<td>SMI-S</td>
<td>Storage Management Initiative Specification.</td>
</tr>
<tr>
<td>SMIT</td>
<td>System Management Interface Tool.</td>
</tr>
<tr>
<td>SMS</td>
<td>System managed storage.</td>
</tr>
<tr>
<td>special files</td>
<td>Files that indicate physical devices and that are different from regular files in the UNIX system. The functions of the device drivers (that is, access to system peripherals) become available through these special files.</td>
</tr>
<tr>
<td>SSID</td>
<td>Storage subsystem identification.</td>
</tr>
<tr>
<td>STC</td>
<td>HP Storage Technology Center.</td>
</tr>
<tr>
<td>SVP</td>
<td>Service processor, which is the laptop PC that is built into the DKC. The SVP provides a direct interface into the disk array. SVP use is reserved for HP support representatives only.</td>
</tr>
<tr>
<td>S-VOL</td>
<td>Secondary or remote volume. The copy volume that receives the data from the primary volume.</td>
</tr>
<tr>
<td>takeover</td>
<td>The actions of a standby server that takes over processing from the previously active server.</td>
</tr>
<tr>
<td>TB</td>
<td>Terabyte.</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission control protocol/Internet protocol</td>
</tr>
<tr>
<td>TID</td>
<td>Target ID.</td>
</tr>
<tr>
<td>TPF</td>
<td>Transaction processing facility.</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TSO</td>
<td>Time-sharing option (an IBM System/370 operating system option).</td>
</tr>
<tr>
<td>UCB</td>
<td>Unit control block.</td>
</tr>
<tr>
<td>UL</td>
<td>Underwriters’ Laboratories.</td>
</tr>
<tr>
<td>VDE</td>
<td>Verband Deutscher Elektrotechniker.</td>
</tr>
<tr>
<td>VM</td>
<td>Virtual machine (an IBM S/390 system control program).</td>
</tr>
<tr>
<td>VOLID</td>
<td>Volume ID.</td>
</tr>
<tr>
<td>volser</td>
<td>Volume serial number.</td>
</tr>
<tr>
<td>Volume</td>
<td>Synonymous with LDEV.</td>
</tr>
<tr>
<td>XRC</td>
<td>Extended Remote Copy.</td>
</tr>
<tr>
<td>VSE</td>
<td>Virtual Storage Extension (an IBM S/390 operating system).</td>
</tr>
<tr>
<td>VTOC</td>
<td>Volume table of contents.</td>
</tr>
<tr>
<td>XA</td>
<td>System/370 Extended Architecture.</td>
</tr>
<tr>
<td>XDF</td>
<td>Extended distance feature (for ExSA channels).</td>
</tr>
<tr>
<td>XF</td>
<td>IRIX extended file system.</td>
</tr>
<tr>
<td>XLV</td>
<td>Extended logical volume manager.</td>
</tr>
</tbody>
</table>
A
audience
 intended 7
authorized reseller, HP 10

C
connectivity
 ESCON connectivity 17
 Fibre Channel connectivity 16
conventions
 documentation 8
core solutions
 Cache LUN XP 84

D
data integrity
 hardware features 19
 software and solution integration 20
 software features/products 20
 support 20
disaster recovery
 Continuous Access Extension XP 82
 Continuous Access XP 82
disk array features
 connectivity 16
 continuous data availability 14
 data integrity 19
 ESCON connectivity 17
 Fibre Channel connectivity 16
 hardware features 19
 nondisruptive service and upgrades 15
 software and solution integration 20
 software features/products 20
 support 20
disk array frame
 available disk drives 56
 RAID options 57
 remote console 57
disk arrays
 supported 7
disk control frame
 control panel 54
 service processor 54
documentation
 conventions 8
 related 7

E
Emergency power-off 39, 67
Emergency power-off switch 67
environmental specifications
 AC line voltage 44
 humidity 43, 72
 mechanical vibration 43
 temperature 43, 72
EPO switch 67

F
failover & load balancing
 Auto LUN XP 84
 Auto Path XP 83

H
hardware
 available disk drives 56
 disk array frames 52, 55
 disk control frame 28, 30, 52, 53
 emergency power-off 36, 64
 major hardware components 29
 normal operations 38, 66
 operator control panel 31, 59
 physical components 28, 50
 RAID options 57
 remote console 29, 57
 service processor 28, 52, 54
 specifications 43, 72
hazard warnings
 definitions 26, 48
help
 obtaining 8
high availability
 Business Copy XP 82
HP
 authorized reseller 10
 technical support 9
HP Disk Array XP1024 with P Disk Array
 XP512 DKUs 51
HP StorageWorks E Disk Array XP512
 advantages 13

M
mainframe solutions
 Data Exchange XP 87
 Resource Manager XP 87
major hardware components
 disk array features 52
 disk control frame 28, 52
 remote console 29
 service processor 28, 52
Management Console PC (Optional) 57
monitoring and reporting
 array control processor 90
 client host interface processor 90
 service information messages 91
 SIM classification 91

N
Network Management Products
 OpenView/ITO SPI 86
Normal power-off 39, 68
Normal power-on 41, 43, 69

O
operations
 emergency power-off switch 26, 49
 general safety guidelines 26, 48
 hazard warnings 26, 48
 safety precautions 26, 48
optional software
Auto LUN XP 84
Auto Path XP 83
Business Copy XP 82
Cache LUN XP 84
Command View XP 80
Continuous Access Extension XP 82
Continuous Access XP 82
Data Exchange XP 87
OpenView/ITO SPI 86
Resource Manager XP 87
Secure Manager XP 81

P
physical components
disk array frames 55
disk control frame 30, 53, 54
emergency power-off 36, 64
major hardware components 29
normal operations 38, 66
operator control panel 31, 59
Power-off
emergency 39, 67
normal 39, 68
Power-on 41, 43, 69

R
regulatory statements
ATI Classe A 97
EMC Statement 96
FCC EMC statement 94
German noise declaration 102
harmonics conformance 101
IEC statement 95
laser safety 103
VCCI EMC 98

related documentation
list of 7
remote console
 hardware requirements 30, 58

S
safety precautions
emergency power-off 36, 64
emergency power-off switch 26, 49
general safety guidelines 26, 48
hazard warnings 26, 48
high voltage power 27, 49
security
 Secure Manager XP 81
SIMs
 classification 91
software features
 support 20
specifications
 AC line voltage 44
 environmental specifications 43, 72
 humidity 43, 72
 mechanical vibration 43
 temperature 43, 72
system administrator
 required knowledge 7

T
technical support
 HP 9
troubleshooting
 flow diagram 91
 monitoring and reporting 90
 service information messages 91
 SIM classification 91
W
warnings
 high voltage power 27, 49
web-based console
 HP StorageWorks E Command View XP 80

X
XP1024
 second service processor 52
 support for 7
XP128
 second service processor 29
 support for 7
XP48 disk array
 safety 26
XP512 DKU Diagram 56