
HP-UX Reference

Release 11i

User Commands

Section 1
Part 1of 2 (A-M)

Volume 1 of 9

Edition 1

Customer Order Number: B2355-90688

Manufacturing Part Number: B2355-90689

E1200

Printed in: United States

© Copyright 1983-2000 Hewlett-Packard Company. All rights reserved.

ii

Legal Notices
The information in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Warranty

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013
for DOD agencies, and subparagraphs (c) (1) and (c) (2) of the
Commercial Computer Software Restricted Rights clause at FAR
52.227-19 for other agencies.

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304 U.S.A.

Use of this document and any supporting software media (CD-ROMs,
flexible disks, and tape cartridges) supplied for this pack is restricted to
this product only. Additional copies of the programs may be made for
security and backup purposes only. Resale of the programs in their
present form or with alterations is expressly prohibited.

Copyright Notices

Copyright 1983-2000 Hewlett-Packard Company. All rights reserved.

Reproduction, adaptation, or translation of this document without prior
written permission is prohibited, except as allowed under the copyright
laws.

iii

Copyright 1979, 1980, 1983, 1985-93 Regents of the University of
California. This software is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University
of California.

Copyright 1988 Carnegie Mellon University.

Copyright 1990-1995 Cornell University.

Copyright 1986 Digital Equipment Corporation.

Copyright 1997 Isogon Corporation.

Copyright 1985, 1986, 1988 Massachusetts Institute of Technology.

Copyright 1991-1997 Mentat, Inc.

Copyright 1996 Morning Star Technologies, Inc.

Copyright 1990 Motorola, Inc.

Copyright 1980, 1984, 1986 Novell, Inc.

Copyright 1989-1993 The Open Software Foundation, Inc.

Copyright 1996 Progressive Systems, Inc.

Copyright 1989-1991 The University of Maryland

Copyright 1986-1992 Sun Microsystems, Inc.

Trademark Notices

Apple and Macintosh are trademarks of Apple Computer, Inc.,
registered in the United States and other countries.

AppleShare is a registered trademark of Apple Computer, Inc.

CHAMELEON is a trademark of NetManage, Inc.

DIGITAL and PATHWORKS are trademarks of Digital Equipment
Corporation.

DiskAccess is a registered trademark of Intergraph.

EXCURSION is a trademark of Digital Equipment Corporation.

Exeed is a registered trademark of Hummingbird Communications
Ltd.

eXodus is a trademark of White Pine Software, Inc.

iv

MS-DOS and Microsoft are U.S. registered trademarks of Microsoft
Corporation.

NTRIGUE is a trademark of Insignia Solutions, Inc.

OSF/Motif is a trademark of the Open Software Foundation, Inc. in the
U.S. and other countries.

PC_Xware is a trademark, and WinCenter is a registered trademark
of Network Computing Devices, Inc.

REFLECTION and WRQ are registered trademarks of WRQ, Inc.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through The Open Group.

VERITAS is a registered trademark of VERITAS Software
Corporation.

VERITAS File System is a trademark of VERITAS Software
Corporation.

WinDD is a trademark of Tektronix, Inc.

X Window System is a trademark of the Massachusetts Institute of
Technology.

v

Publication History
The manual publication date and part number indicate its current
edition. The printing date will change when a new edition is printed.
Minor changes may be made at reprint without changing the printing
date. The manual part number will change when extensive changes are
made.

Manual updates may be issued between editions to correct errors or
document product changes. To ensure that you receive the updated or
new editions, you should subscribe to the appropriate product support
service. See your HP sales representative for details.

First Edition: December 2000 (HP-UX Release 11i)

vi

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/ROSE/BRICK/Checkout/FATBRAIN/TABS/tab1a.inL__________________________________ L

___ L L ___

LL LL

Volume One
Table of Contents

Introduction

Section 1

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/ROSE/BRICK/Checkout/FATBRAIN/TABS/tab1a.inL__________________________________ L

___ L L ___

LL LL

Volume One
Table of Contents

Introduction

Section 1

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/FLIT/FOUT.man1.tocprintL__________________________________ L

___ L L___

Table of Contents
Volumes One and Two

Section 1: User Commands
Entry Name(Section): name Description
intro(1) ... introduction to command utilities and application programs
adb(1): adb ... absolute debugger
adjust(1): adjust ... simple text formatter
admin(1): admin ... create and administer SCCS files
alias : substitute command and/or file name ... see sh-posix(1)
alias : substitute command and/or filename .. see csh(1)
alias : substitute command and/or filename .. see ksh(1)
alloc : show dynamic memory usage ... see csh(1)
answer(1): answer ... phone message transcription system
ar(1): ar .. maintain portable archives and libraries
as(1): as ... assembler (Precision Architecture)
asa(1): asa .. interpret ASA carriage control characters
at(1): at , batch .. execute batched commands immediately or at a later time
attributes(1): attributes .. describe audio file
awk(1): awk .. text pattern scanning and processing language
banner(1): banner .. make posters in large letters
basename(1): basename , dirname ... extract portions of path names
batch : execute batched commands immediately .. see at(1)
bc(1): bc .. arbitrary-precision arithmetic language
bdiff(1): bdiff ... diff for large files
bfs(1): bfs ... big file scanner
break : exit from enclosing for/next loop ... see csh(1)
break : exit from enclosing for/next loop .. see ksh(1)
break : exit from enclosing for/next loop ... see sh-bourne(1)
break : exit from enclosing for/next loop .. see sh-posix(1)
breaksw : break from switch and resume after endsw .. see csh(1)
bs(1): bs ... a compiler/interpreter for modest-sized programs
cal(1): cal .. print calendar
calendar(1): calendar .. reminder service
cancel : cancel requests on an LP printer or plotter .. see lp(1)
case : label in a switch statement ... see csh(1)
case : label in a switch statement .. see ksh(1)
case : label in a switch statement .. see sh-posix(1)
cat(1): cat ... concatenate, copy, and print files
ccat : cat compacted files ... see compact(1)
cc_bundled(1): cc_bundled .. bundled C compiler
cd : change working directory ... see csh(1)
cd : change working directory ... see ksh(1)
cd : change working directory ... see sh-bourne(1)
cd : change working directory ... see sh-posix(1)
cd(1): cd .. change working directory
cd(1): command .. execute a simple command
cdc(1): cdc .. change the delta commentary of an SCCS delta
chacl(1): chacl add, modify, delete, copy, or summarize access control lists (ACLs) of files
chatr(1): chatr ... change program’s internal attributes
chdir : change current working directory .. see csh(1)
checknr(1): checknr ... check nroff/troff files
chfn(1): chfn .. change user information in password file; used by finger
chgrp : change file group .. see chown(1)
chkey(1): chkey .. change user’s secure RPC key
chmod(1): chmod .. change file mode access permissions
chown(1): chown , chgrp ... change file owner or group
chsh(1): chsh .. change default login shell
ci(1): ci ... check in RCS revisions
ckconfig(1): ckconfig .. verify pathname of FTP configuration files

HP-UX Release 11i: December 2000 Hewlett-Packard Company vii

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/FLIT/FOUT.man1.tocprintL__L

___ L L___
Table of Contents
Volumes One and Two

Entry Name(Section): name Description
cksum(1): cksum .. print file checksum and sizes
clear(1): clear .. clear terminal screen
cmp(1): cmp ... compare two files
co(1): co ... check out RCS revisions
col(1): col .. filter reverse line-feeds and backspaces
comb(1): comb .. combine SCCS deltas
comm(1): comm .. select or reject lines common to two sorted files
compact(1): compact , uncompact , ccat compact and uncompact files, and cat them
compress(1): compress , compressdir , uncompress , uncompressdir , zcat compress and expand data
compressdir : compress files in a directory ... see compress(1)
continue : resume execution of nearest while or foreach ... see csh(1)
continue : resume next iteration of enclosing for/next loop ... see ksh(1)
continue : resume next iteration of enclosing for/next loop .. see sh-bourne(1)
continue : resume next iteration of enclosing for/next loop ... see sh-posix(1)
convert(1): convert .. convert audio file
cp(1): cp .. copy file, files, or directory subtree
cpio(1): cpio ... copy file archives in and out
cpp(1): cpp ... the C language preprocessor
crontab(1): crontab .. user crontab file operations
crypt(1): crypt ... encode/decode files
csh(1): csh .. a shell (command interpreter) with C-like syntax
csplit(1): csplit ... context split
ct(1): ct .. spawn getty to a remote terminal (call terminal)
ctags(1): ctags ... create a tags file
cu(1): cu .. call another (UNIX) system; terminal emulator
cue(1): cue ... HP Character-Terminal User Environment (CUE)
cut(1): cut .. cut out (extract) selected fields of each line of a file
date(1): date .. display or set the system-clock date and time
dc(1): dc .. desk calculator
dd(1): dd .. convert, reblock, translate, and copy a (tape) file
default : label default in switch statement .. see csh(1)
delta(1): delta .. make a delta (change) to an SCCS file
deroff(1): deroff .. remove nroff, tbl, and neqn constructs
diff(1): diff , diffh .. differential file comparator
diff3(1): diff3 .. 3-way differential file comparison
diffh : differential file comparator ... see diff(1)
diffmk(1): diffmk ... mark differences between files
dircmp(1): dircmp .. directory comparison
dirname : extract portions of path names .. see basename(1)
dirs : print the directory stack ... see csh(1)
disable : disable LP printers .. see enable(1)
dmpxlt(1): dmpxlt ... dump iconv translation tables to a readable format
domainname(1): domainname ... set or display NIS domain name
dos2ux(1): dos2ux , ux2dos ... convert ASCII file format
doschmod(1): doschmod ... change attributes of a DOS file
doscp(1): doscp .. copy to or from DOS files
dosdf(1): dosdf .. report number of free disk clusters
dosll : list contents of DOS directories .. see dosls(1)
dosls(1): dosls , dosll ... list contents of DOS directories
dosmkdir(1): dosmkdir ... make a DOS directory
dosrm(1): dosrm , dosrmdir ... remove DOS files or directories
dosrmdir : remove DOS directories ... see dosrm(1)
du(1): du ... summarize disk usage
dumpmsg: extract messages from message catalog file ... see findmsg(1)
echo : echo (print) arguments ... see csh(1)
echo : echo (print) arguments .. see ksh(1)
echo : echo (print) arguments ... see sh-bourne(1)
echo : echo (print) arguments .. see sh-posix(1)
echo(1): echo .. echo (print) arguments
ed(1): ed , red .. line-oriented text editor
edit : extended line-oriented text editor .. see ex(1)

viii Hewlett-Packard Company HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/FLIT/FOUT.man1.tocprintL__L

___ L L___
Table of Contents

Volumes One and Two

Entry Name(Section): name Description
egrep : search a file for a pattern .. see grep(1)
elfdump(1): elfdump .. dump information contained in object files
elm(1): elm ... process electronic mail through a screen-oriented interface
elmalias(1): elmalias .. display/verify elm user and system aliases
enable(1): enable , disable ... enable/disable LP printers
end : terminate foreach or while loop .. see csh(1)
endsw : terminate switch statement ... see csh(1)
env(1): env ... set environment for command execution
eucset(1): eucset ... set and get EUC code widths for ldterm
eval : read arguments as shell input and execute resulting .. see csh(1)
eval : read arguments as shell input and execute resulting commands .. see ksh(1)
eval : read arguments as shell input and execute resulting commands see sh-bourne(1)
eval : read arguments as shell input and execute resulting commands .. see sh-posix(1)
ex(1): edit , ex .. extended line-oriented text editor
exec : execute command without creating new process ... see csh(1)
exec : execute command without creating new process .. see ksh(1)
exec : execute command without creating new process ... see sh-bourne(1)
exec : execute command without creating new process .. see sh-posix(1)
exit : exit shell with exit status ... see csh(1)
exit : exit shell with exit status ... see ksh(1)
exit : exit shell with exit status ... see sh-bourne(1)
exit : exit shell with exit status ... see sh-posix(1)
expand(1): expand , unexpand ... expand tabs to spaces, and vice versa
expand_alias(1): expand_alias .. recursively expands the sendmail aliases
export : export variable names to environment of subsequent commands ... see ksh(1)
export : export variable names to environment of subsequent commands see sh-bourne(1)
export : export variable names to environment of subsequent commands see sh-posix(1)
expr(1): expr .. evaluate arguments as an expression
factor(1): factor , primes .. factor a number, generate large primes
false : do nothing and return non-zero exit status ... see true(1)
fastbind(1): fastbind prepare an incomplete executable for faster program start-up
fastmail(1): fastmail ... quick batch mail interface
fc : edit and execute previous command ... see ksh(1)
fc : edit and execute previous command ... see sh-posix(1)
fgrep : search a file for a string (fast) .. see grep(1)
file(1): file ... determine file type
find(1): find ... find files
findmsg(1): findmsg , dumpmsg ... create message catalog file for modification
findstr(1): findstr ... find strings for inclusion in message catalogs
finger(1): finger .. user information lookup program
fmt(1): fmt .. format text
fold(1): fold ... fold long lines for finite width output device
for : execute a do list ... see ksh(1)
for : execute a do list ... see sh-posix(1)
forder(1): forder .. convert file data order
foreach : initiate repetitive loop .. see csh(1)
from(1): from .. who is my mail from?
fruled(1): fruled .. turn on/off attention LEDs
ftio(1): ftio ... faster tape I/O
ftp(1): ftp .. file transfer program
ftpaccess(1): ftpaccess ... create shutdown message files to shutdown ftp servers
ftpcount(1): ftpcount ... show current number of users for each ftp class
ftprestart(1): ftprestart ... remove the shutdown message files created by ftpshut
ftpwho(1): ftpwho .. show process information on each ftp user
gencat(1): gencat .. generate a formatted message catalog file
genxlt(1): genxlt .. generate iconv translation
get(1): get .. get a version of an SCCS file
getaccess(1): getaccess .. list access rights to file(s)
getacl(1): getacl ... list access control lists for files, JFS only
getconf(1): getconf .. get POSIX configuration values
getopt(1): getopt .. parse command options

HP-UX Release 11i: December 2000 Hewlett-Packard Company ix

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/FLIT/FOUT.man1.tocprintL__L

___ L L___
Table of Contents
Volumes One and Two

Entry Name(Section): name Description
getopts(1): getopts .. parse utility (command) options
getprivgrp(1): getprivgrp ... get special attributes for group
glob : echo without ’\\’ escapes ... see csh(1)
goto : continue execution on specified line .. see csh(1)
gprof(1): gprof .. display call graph profile data
grep(1): grep , egrep , fgrep .. search a file for a pattern
grget : get password and group information .. see pwget(1)
groups(1): groups .. show group memberships
hash : remember command location in search path ... see sh-bourne(1)
hashcheck : create hash codes from compressed spelling list .. see spell(1)
hashmake : convert words to 9-digit hashcodes .. see spell(1)
hashstat : print hash table effectiveness statistics .. see csh(1)
head(1): head ... print first few lines in a file
history : display event history list .. see csh(1)
hostname(1): hostname ... set or display name of current host system
hp(1): hp ... handle special functions of HP 2640 and HP 2621-series terminals
hp-mc680x0 : provide truth value about processor type ... see machid(1)
hp-pa : provide truth value about processor type ... see machid(1)
hp9000s200 : provide truth value about processor type ... see machid(1)
hp9000s300 : provide truth value about processor type ... see machid(1)
hp9000s500 : provide truth value about processor type ... see machid(1)
hp9000s800 : provide truth value about processor type ... see machid(1)
hyphen(1): hyphen ... find hyphenated words
iconv(1): iconv ... character code set conversion
id(1): id .. print user and group IDs and names
ident(1): ident .. identify files in RCS
idlookup(1): idlookup .. identify the user of a particular TCP connection
ied(1): ied ... input editor and command history for interactive programs
if : execute command if expression evaluates true ... see csh(1)
if : execute command if previous command returns exit status 0 ... see ksh(1)
if : execute command if previous command returns exit status 0 ... see sh-posix(1)
insertmsg(1): insertmsg .. use findstr(1) output to insert calls to catgets(3C)
inv : make unprintable and non-ASCII characters in a file invisible .. see vis(1)
iostat(1): iostat .. report I/O statistics
ipcrm(1): ipcrm ... remove a message queue, semaphore set or shared memory id
ipcs(1): ipcs .. report status of interprocess communication facilities
jobs : list active jobs .. see csh(1)
jobs : list active jobs .. see ksh(1)
jobs : list active jobs .. see sh-posix(1)
join(1): join ... relational database operator
kdestroy(1): kdestroy .. destroy Kerberos tickets
kermit(1): kermit .. communication software for serial and network connections
keylogin(1): keylogin ... decrypt and store secret key
keylogout(1): keylogout ... delete secret key stored with keyserv
keysh(1): keysh ... context-sensitive softkey shell
kill : send termination or specified signal to a process .. see csh(1)
kill : terminate job or process ... see ksh(1)
kill : terminate job or process ... see sh-posix(1)
kill(1): kill .. send a signal to a process; terminate a process
kinit(1): kinit .. obtain and cache Kerberos ticket-granting ticket
klist(1): klist ... list cached Kerberos tickets
kpasswd(1): kpasswd ... change a user’s Kerberos password
ksh(1): ksh , rksh .. shell, the standard/restricted command programming language
ktutil(1): ktutil ... Kerberos keytab file maintenance utility
kvno(1): kvno ... print key version numbers of Kerberos principals
l : list contents of directories ... see ls(1)
last(1): last , lastb .. indicate last logins of users and ttys
lastb : indicate last bad logins of users and ttys ... see last(1)
lastcomm(1): lastcomm ... show last commands executed in reverse order
lc : list contents of directories ... see ls(1)
ld(1): ld .. link editor

x Hewlett-Packard Company HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/FLIT/FOUT.man1.tocprintL__L

___ L L___
Table of Contents

Volumes One and Two

Entry Name(Section): name Description
ldd(1): ldd .. list dynamic dependencies of executable files or shared libraries
leave(1): leave .. remind you when you have to leave
let : evaluate arithmetic expression .. see ksh(1)
let : evaluate arithmetic expression .. see sh-posix(1)
liblu62.a : IBM APPC (Advanced Program-to-Program Communications) API see sna(1)
lifcp(1): lifcp .. copy to or from LIF files
lifinit(1): lifinit ... write LIF volume header on file
lifls(1): lifls .. list contents of a LIF directory
lifrename(1): lifrename ... rename LIF files
lifrm(1): lifrm .. remove a LIF file
limit : limit usage by current process .. see csh(1)
line(1): line .. read one line from user input
listusers(1M): listusers .. display user login data
ll : list contents of directories ... see ls(1)
ln(1): ln ... link files and directories
locale(1): locale ... get locale-specific (NLS) information
lock(1): lock .. reserve a terminal
logger(1): logger ... make entries in the system log
login : terminate login shell .. see csh(1)
login(1): login .. sign on; start terminal session
logname(1): logname .. get login name
logout : terminate login shell .. see csh(1)
lorder(1): lorder .. find ordering relation for an object library
lp(1): cancel , lp , lpalt ... print/alter/cancel requests on an LP printer or plotter
lpalt : alter requests on an LP printer or plotter .. see lp(1)
lpfilter(1): lpfilter .. filters used by the lp interface scripts
lpstat(1): lpstat ... print LP status information
ls(1): ls , l , lc , ll , lsf , lsr , lsx ... list contents of directories
lsacl(1): lsacl ... list access control lists (ACLs) of files
lsf : list contents of directories ... see ls(1)
lsr : list contents of directories ... see ls(1)
lsx : list contents of directories ... see ls(1)
m4(1): m4 ... macro processor
machid(1): hp9000s200 , hp9000s300 , hp9000s500 , hp9000s800 ,

pdp11 , u3b , u3b5 , vax .. provide truth value about processor type
mail(1): mail , rmail .. send mail to users or read mail
mailfrom(1): mailfrom ... summarize mail folders by subject and sender
mailq(1): mailq .. prints the mail queue
mailstats(1): mailstats ... print mail traffic statistics
mailx(1): mailx .. interactive message processing system
make(1): make ... maintain, update, and regenerate groups of programs
makekey(1): makekey ... generate encryption key
man(1): man .. find manual information by keywords; print out a manual entry
mediainit(1): mediainit .. initialize disk or cartridge tape media, partition DDS tape
merge(1): merge ... three-way file merge
mesg(1): mesg .. permit or deny messages to terminal
mkdir(1): mkdir ... make a directory
mkfifo(1): mkfifo ... make FIFO (named pipe) special files
mkmf(1): mkmf .. make a makefile
mkmsgs(1): mkmsgs .. create message files for use by gettxt()
mkstr(1): mkstr .. extract error messages from C source into a file
mktemp(1): mktemp ... make a name for a temporary file
mkuupath : manage the pathalias database .. see uupath(1)
mm(1): mm, osdd ... print/check documents formatted with the mm macros
model(1): model ... print name of current HP-UX version
more(1): more , page ... file perusal filter for crt viewing
mpsched(1): mpsched control processor or locality domain on which a specific process executes
mt(1): mt ... magnetic tape manipulating program
mv(1): mv .. move or rename files and directories
neqn(1): neqn ... format mathematical text for nroff
netstat(1): netstat ... show network status

HP-UX Release 11i: December 2000 Hewlett-Packard Company xi

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/FLIT/FOUT.man1.tocprintL__L

___ L L___
Table of Contents
Volumes One and Two

Entry Name(Section): name Description
newalias(1): newalias .. install new elm aliases for user or system
newform(1): newform ... change or reformat a text file
newgrp : equivalent to exec newgrp .. see sh-bourne(1)
newgrp : equivalent to exec newgrp ... see csh(1)
newgrp : equivalent to exec newgrp ... see ksh(1)
newgrp : equivalent to exec newgrp ... see sh-posix(1)
newgrp(1): newgrp .. switch to a new group
newmail(1): newmail ... notify users of new mail in mailboxes
news(1): news .. print news items
nice : alter command priority .. see csh(1)
nice(1): nice .. run a command at nondefault priority
nis+(1): nis+ ... new version of the network information name service.
niscat(1): niscat ... display NIS+ tables and objects
nischgrp(1): nischgrp ... change the group owner of an NIS+ object
nischmod(1): nischmod ... change access rights on an NIS+ object
nischown(1): nischown .. change the owner of an NIS+ object
nischttl(1): nischttl .. change the time to live value of an NIS+ object
nisdefaults(1): nisdefaults ... display NIS+ default values
niserror(1): niserror .. display NIS+ error messages
nisgrep(1): nisgrep .. utility for searching NIS+ tables
nisgrpadm(1): nisgrpadm ... administer NIS+ groups
nisln(1): nisln .. symbolically link NIS+ objects
nisls(1): nisls .. list the contents of an NIS+ directory
nismatch(1): nismatch .. utility for searching NIS+ tables
nismkdir(1): nismkdir .. create NIS+ directories
nispasswd(1): nispasswd ... change NIS+ password information
nisrm(1): nisrm ... remove NIS+ objects from the namespace
nisrmdir(1): nisrmdir .. remove NIS+ directories
nistbladm(1): nistbladm .. administer NIS+ tables
nistest(1): nistest return the state of the NIS+ namespace using a conditional expression
nl(1): nl .. line numbering filter
nljust(1): nljust .. justify lines, left or right, for printing
nm(1): nm ... print name list of common object file
nohup : ignore hangups during command execution .. see csh(1)
nohup(1): nohup .. run a command immune to hangups
notify : notify user of change in job status .. see csh(1)
nroff(1): nroff ... format text
nslookup(1): nslookup ... query name servers interactively
nsquery(1): nsquery ... query the Name Service Switch backend libraries
od(1): od , xd ... octal and hexadecimal dump
odump(1): odump .. dump information contained in SOM object files
on(1): on execute a command on a remote host; environment similar to local environment
onintr : specify shell’s treatment of interrupts .. see csh(1)
osdd : print/check documents formatted with the mm macros ... see mm(1)
pack(1): pack , pcat , unpack ... compress and expand files
page : file perusal filter for crt viewing .. see more(1)
parstatus(1): parstatus ... display information about the Superdome complex
partition(1): partition .. display information about Superdome commands
passwd(1): passwd .. change login password and associated attributes
paste(1): paste .. merge same lines of several files or subsequent lines of one file
patch(1): patch .. applying a diff file to an original
pathalias(1): pathalias ... electronic address router
pathchk(1): pathchk ... check path names
pax(1): pax ... portable archive exchange
pcat : compress and expand files .. see pack(1)
pdclean(1): pdclean ... remove jobs from specified object
pdcreate(1): pdcreate ... creates print objects
pddelete(1): pddelete ... deletes print objects
pddisable(1): pddisable .. stops printers from accepting jobs and logs from logging
pdenable(1): pdenable .. enables printers to accept jobs and logs to log
pdls(1): pdls ... lists selected attribute values

xii Hewlett-Packard Company HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/FLIT/FOUT.man1.tocprintL__L

___ L L___
Table of Contents

Volumes One and Two

Entry Name(Section): name Description
pdmod(1): pdmod ... modifies attributes of submitted print jobs
pdmsg(1): pdmsg displays the text and description of a HPDPS message at the command line
pdp11 : provide truth value about processor type ... see machid(1)
pdpause(1): pdpause ... pauses jobs, physical printers, servers, or queues
pdpr(1): pdpr ... submits print jobs
pdpromote(1): pdpromote ... advances a job to the top of a queue
pdq(1): pdq .. queries and lists the status of one or more print jobs
pdresubmit(1): pdresubmit ... resubmits previously submitted print jobs
pdresume(1): pdresume ... enables paused objects to resume operation
pdrm(1): pdrm ... removes print jobs
pdset(1): pdset ... modifies attributes of submitted print jobs
pdshutdown(1): pdshutdown ... stop servers
pg(1): pg .. file perusal filter for soft-copy terminals
popd : pop directory stack ... see csh(1)
pppd(1): pppd ... point to point protocal daemon
pr(1): pr .. format and print files
praliases(1): praliases .. print system-wide sendmail aliases
prealloc(1): prealloc ... preallocate disk storage
primes : generate large prime numbers ... see factor(1)
print : output from shell ... see ksh(1)
print : output from shell ... see sh-posix(1)
printenv(1): printenv .. print out the environment
printf(1): echo .. print formatted arguments
prmail(1): prmail .. print out mail in the incoming mailbox file
prof(1): prof ... display profile data
prs(1): prs .. print and summarize an SCCS file
ps(1): ps ... report process status
ptx(1): ptx ... permuted index
pty : get the name of the pseudo-terminal ... see tty(1)
pushd : push directory stack ... see csh(1)
pwd: print current working directory ... see ksh(1)
pwd: print current working directory ... see sh-posix(1)
pwd: working directory name ... see sh-bourne(1)
pwd(1): pwd ... working directory name
pwget(1): pwget , grget ... get password and group information
quota(1): quota ... display disk usage and limits
ranlib(1): ranlib ... regenerate archive symbol table
rcp(1): rcp ... remote file copy
rcp(1): rcp ... remote file copy
rcs(1): rcs .. change RCS file attributes
rcsdiff(1): rcsdiff ... compare RCS revisions
rcsmerge(1): rcsmerge .. merge RCS revisions
rdist(1): rdist ... remote file distribution
read : input and parse a line .. see ksh(1)
read : input and parse a line .. see sh-posix(1)
read : read line from standard input ... see sh-bourne(1)
read(1): read ... read a line from standard input
readmail(1): readmail .. read mail from a mail folder or incoming mailbox
readonly : mark name as read-only ... see sh-bourne(1)
readonly : mark names as unredefinable .. see ksh(1)
readonly : mark names as unredefinable .. see sh-posix(1)
red : restricted line-oriented text editor ... see ed(1)
rehash : recompute internal hash table .. see csh(1)
remsh(1): remsh .. execute from a remote shell
repeat : execute command more than once .. see csh(1)
return : exit function with return value ... see sh-bourne(1)
return : shell function return to invoking script .. see ksh(1)
return : shell function return to invoking script .. see sh-posix(1)
rev(1): rev .. reverse lines of a file
rksh : restricted Korn shell command programming language ... see ksh(1)
rlog(1): rlog .. print log messages and other information on RCS files

HP-UX Release 11i: December 2000 Hewlett-Packard Company xiii

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/FLIT/FOUT.man1.tocprintL__L

___ L L___
Table of Contents
Volumes One and Two

Entry Name(Section): name Description
rlogin(1): rlogin ... remote login
rm(1): rm .. remove files or directories
rmail : send mail to users or read mail .. see mail(1)
rmdel(1): rmdel ... remove a delta from an SCCS file
rmdir(1): rmdir .. remove directories
rmnl(1): rmnl ... remove extra new-line characters from file
rpcgen(1): rpcgen .. an RPC protocol compiler
rsh : restricted shell command programming language ... see sh-bourne(1)
rtprio(1): rtprio ... execute process with real-time priority
rtsched(1): rtsched ... execute process with POSIX real-time priority
rup(1): rup .. show host status of local machines (RPC version)
ruptime(1): ruptime .. show status of local machines
rusers(1): rusers .. determine who is logged onto machines on the local network
rwho(1): rwho ... show who is logged in on local machines
sact(1): sact .. print current SCCS file editing activity
samlog_viewer(1): samlog_viewer ... tool for viewing and saving the SAM logfile
sccs(1): sccs .. utility program for SCCS commands
sccsdiff(1): sccsdiff .. compare two versions of an SCCS file
sccshelp(1): sccshelp ... help for SCCS commands
script(1): script .. make typescript of terminal session
sdiff(1): sdiff .. side-by-side difference program
sed(1): sed .. stream text editor
send_sound(1): send_sound ... play audio file
serialize(1): serialize ... force target process to run serially with other processes
set : set/define flags and arguments ... see csh(1)
set : set/define options and arguments ... see ksh(1)
set : set/define options and arguments ... see sh-bourne(1)
set : set/define options and arguments ... see sh-posix(1)
setacl(1): setacl .. modify access control lists for files (JFS only)
setenv : define environment variable ... see csh(1)
sh(1): sh .. overview of various system shells
sh-bourne(1): sh , rsh shell, the standard/restricted command programming language
sh-posix(1): sh .. shell, the standard/restricted command programming language
shar(1): shar .. make a shell archive package
shift : shift argv members one position to left ... see csh(1)
shift : shift argv members one position to left .. see ksh(1)
shift : shift argv members one position to left .. see sh-posix(1)
shift : shift positional parameters to next lower position ... see sh-bourne(1)
shl(1): shl .. shell layer manager
size(1): size .. print section sizes of object files
sleep(1): sleep ... suspend execution for an interval
slp(1): slp .. set printing options for a non-serial printer
sna(1): sna3179g , sna3270 , sna3770 IBM 3179G/3192G, 3270, 3777 terminal emulator
soelim(1): soelim ... eliminate .so’s from nroff input
sort(1): sort .. sort or merge files
source : define source for command input .. see csh(1)
spell(1): spell , hashmake , spellin , hashcheck .. find spelling errors
spellin : create compressed spelling list from hash codes .. see spell(1)
split(1): split ... split a file into pieces
ssp(1): ssp ... remove multiple line-feeds from output
strings(1): strings .. find the printable strings in an object or other binary file
strip(1): strip .. strip symbol and line number information from an object file
stty(1): stty .. set the options for a terminal port
su(1): su .. switch user
sum(1): sum .. print checksum and block count of a file
switch : define switch statement ... see csh(1)
tabs(1): tabs .. set tabs on a terminal
tail(1): tail ... deliver the last part of a file
talk(1): talk .. talk to another user
tar(1): tar .. tape file archiver
tbl(1): tbl .. format tables for nroff

xiv Hewlett-Packard Company HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/FLIT/FOUT.man1.tocprintL__L

___ L L___
Table of Contents

Volumes One and Two

Entry Name(Section): name Description
tee(1): tee ... pipe fitting
telnet(1): telnet ... user interface to the TELNET protocol
test : evaluate conditional expression .. see csh(1)
test : evaluate conditional expression .. see ksh(1)
test : evaluate conditional expression .. see sh-posix(1)
test(1): test .. condition evaluation command
tftp(1): tftp .. trivial file transfer program
time , times : print summary of time used by processes ... see ksh(1)
time : print accumulated shell and children process times .. see sh-bourne(1)
time : print summary of time used by shell and children .. see csh(1)
time(1): time .. time a command
time, times : print summary of time used by processes ... see sh-posix(1)
times : print accumulated user and system process times .. see sh-bourne(1)
timex(1): timex ... time a command; report process data and system activity
top(1): top .. display and update information about top processes on system
touch(1): touch ... update access, modification, and/or change times of file
tput(1): tput .. query terminfo database
tr(1): tr ... translate characters
trap : execute command upon receipt of signal ... see sh-bourne(1)
trap : trap specified signal ... see ksh(1)
trap : trap specified signal ... see sh-posix(1)
true(1): true , false ... return zero or non-zero exit status
tset(1): tset .. terminal-dependent initialization
tsm(1): tsm .. Terminal Session Manager
tsm.command(1): tsm.command ... send commands to Terminal Session Manager
tsm.info(1): tsm.info ... get Terminal Session Manager state information
tsort(1): tsort .. topological sort
tty(1): tty , pty .. get the name of the terminal
ttytype(1): ttytype .. terminal identification program
type : show interpretation of name as if a command ... see sh-bourne(1)
typeset : control leading blanks and parameter handling ... see ksh(1)
typeset : control leading blanks and parameter handling ... see sh-posix(1)
u370 : provide truth value about processor type ... see machid(1)
u3b : provide truth value about processor type ... see machid(1)
u3b10 : provide truth value about processor type ... see machid(1)
u3b2 : provide truth value about processor type ... see machid(1)
u3b5 : provide truth value about processor type ... see machid(1)
ul(1): ul ... do underlining
ulimit : impose file size limit for child processes .. see sh-bourne(1)
ulimit : set size or time limits ... see ksh(1)
ulimit : set size or time limits ... see sh-posix(1)
umask: set permissions mask for creating new files .. see csh(1)
umask: set permissions mask for creating new files ... see ksh(1)
umask: set permissions mask for creating new files .. see sh-bourne(1)
umask: set permissions mask for creating new files ... see sh-posix(1)
umask(1): umask .. set file-creation mode mask
umodem(1): umodem .. XMODEM-protocol file transfer program
unalias : discard specified alias ... see csh(1)
unalias : discard specified alias .. see ksh(1)
unalias : discard specified alias .. see sh-posix(1)
uname(1): uname display information about computer system; set node name (system name)
uncompact : uncompact files .. see compact(1)
uncompress : expand compressed data .. see compress(1)
uncompressdir : expand compressed files in a directory ... see compress(1)
unexpand : convert spaces to tabs ... see expand(1)
unget(1): unget .. undo a previous get of an SCCS file
unhash : disable use of internal hash tables .. see csh(1)
unifdef(1): unifdef ... remove preprocessor lines
uniq(1): uniq ... report repeated lines in a file
units(1): units .. conversion program
unpack : compress and expand files .. see pack(1)

HP-UX Release 11i: December 2000 Hewlett-Packard Company xv

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/FLIT/FOUT.man1.tocprintL__L

___ L L___
Table of Contents
Volumes One and Two

Entry Name(Section): name Description
unset : remove definition/setting of flags and arguments .. see csh(1)
unset : remove definition/setting of options and arguments ... see ksh(1)
unset : remove definition/setting of options and arguments .. see sh-bourne(1)
unset : remove definition/setting of options and arguments ... see sh-posix(1)
unsetenv : remove variable from environment .. see csh(1)
until : execute commands until expression is non-zero ... see ksh(1)
until : execute commands until expression is nonzero .. see sh-posix(1)
uptime(1): uptime , w ... show how long system has been up
users(1): users ... compact list of users who are on the system
uucp(1): uucp , uulog , uuname, uutry .. UNIX system to UNIX system copy
uudecode : decode a file encoded by uuencode ... see uuencode(1)
uuencode(1): uuencode , uudecode encode/decode a binary file for transmission by mailer
uulog : access UUCP summary logs .. see uucp(1)
uuname: list known UUCP systems ... see uucp(1)
uupath(1): uupath , mkuupath .. access and manage the pathalias database
uupick : accept or reject incoming UUCP messages .. see uuto(1)
uustat(1): uustat .. uucp status inquiry and job control
uuto(1): uuto , uupick ... public UNIX system to UNIX system file copy
uutry : test for successful login to remote system .. see uucp(1)
uux(1): uux ... UNIX system to UNIX system command execution
ux2dos : convert ASCII file format .. see dos2ux(1)
vacation(1): vacation .. return ‘‘I am not here’’ indication
val(1): val .. validate SCCS file
vax : provide truth value about processor type ... see machid(1)
vc(1): vc ... version control
vedit : beginner’s screen-oriented text editor ... see vi(1)
vi(1): vedit , vi , view .. extended screen-oriented text editor
view : read-only screen-oriented text editor .. see vi(1)
vis(1): vis , inv make unprintable and non-ASCII characters in a file visible or invisible
vmstat(1): vmstat .. report virtual memory statistics
vt(1): vt .. log in on another system over lan
wait : wait for background processes .. see csh(1)
wait : wait for child process ... see ksh(1)
wait : wait for child process ... see sh-posix(1)
wait : wait for process and report termination status ... see sh-bourne(1)
wait(1): wait ... await completion of process
wc(1): wc .. count words, lines, and bytes or characters in a file
what(1): what ... get SCCS identification information
whence : define interpretation of name as a command .. see ksh(1)
whence : define interpretation of name as a command .. see sh-posix(1)
whereis(1): whereis .. locate source, binary, and/or manual for program
which(1): which .. locate a program file including aliases and paths
while : execute commands while expression is non-zero ... see csh(1)
while : execute commands while expression is non-zero .. see ksh(1)
while : execute commands while expression is nonzero ... see sh-posix(1)
who(1): who .. who is currently logged in on the system
whoami(1): whoami .. print effective current user id
whois(1): whois .. Internet user name directory service
write(1): write .. interactively write (talk) to another user
xargs(1): xargs ... construct argument list(s) and execute command
xd : hexadecimal dump ... see od(1)
xstr(1): xstr .. extract strings from C programs to implement shared strings
yes(1): yes .. be repetitively affirmative
ypcat(1): ypcat ... print all Network Information Service map values
ypmatch(1): ypmatch print values of selected keys in Network Information Service map
yppasswd(1): yppasswd change login password in Network Information System (NIS)
ypwhich(1): ypwhich ... list Network Information System server or map master
zcat : expand and cat data ... see compress(1)

xvi Hewlett-Packard Company HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/ROSE/BRICK/Checkout/FATBRAIN/TABS/tab1b.inL__________________________________ L

___ L L ___

LL LL

Introduction
to

HP-UX Reference

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/ROSE/BRICK/Checkout/FATBRAIN/TABS/tab1b.inL__________________________________ L

___ L L ___

LL LL

Introduction
to
HP-UX Reference

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/introduction.9L__________________________________ L

___ L L ___

introduction(9) introduction(9)

NAME
Introduction - an introduction to the HP-UX operating system and the HP-UX Reference

INTRODUCTION
HP-UX is the Hewlett-Packard Company’s implementation of an operating system that is compatible with
various industry standards. It is based on the UNIX System V Release 4 operating system and includes
important features from the Fourth Berkeley Software Distribution.

Improvements include enhanced capabilities and other features, developed by HP to make HP-UX a very
powerful, useful, and reliable operating system, capable of supporting a wide range of applications ranging
from simple text processing to sophisticated engineering graphics and design. It can readily be used to con-
trol instruments and other peripheral devices. Real-time capabilities further expand the flexibility of HP-
UX as a powerful tool for solving tough problems in design, manufacturing, business, and other areas where
responsiveness and performance are important.

Extensive international language support enables HP-UX to interact with users in any of dozens of human
languages. HP-UX interfaces easily with local area networks and resource-sharing facilities. By using
industry-standard protocols, HP-UX provides flexible interaction with other computers and operating sys-
tems. Optional software products extend HP-UX capabilities into a broad range of specialized needs.

The HP-UX Reference is not a learning tool for beginners. It is primarily a reference tool that is most use-
ful for experienced users of UNIX or UNIX-like systems. If you are not already familiar with UNIX or HP-
UX, refer to the series of Beginner’s Guides, tutorial manuals, and other learning documents supplied with
your system or available separately. System implementation and maintenance details are explained in the
Managing Systems and Workgroups manual.

MANPAGE ORGANIZATION
The contents of the HP-UX Reference and its on-line counterpart are a number of independent entries
called manpages. These are also called manual entries or reference pages.

For convenient reference, the manpages are divided into eight specialized sections. The printed manual
also has a table of contents for each volume and a composite index.

Each manpage consists of one or more printed pages, with the manpage name and section number printed
in the upper corners. Manpages are arranged alphabetically within each section of the reference, except for
the intro page at the beginning of each section. Manpages are referred to by name and section number, in
the form pagename(section).

The manpages are available on-line through the man command if the manpages are present on the system.
Refer to the man(1) manpage in Section 1 for more information.

Each page in the printed manual has two page numbers, printed at the bottom of the page. The center
page number starts over with page 1 at the beginning of each new manpage; it is placed between two
dashes in normal typeface. The number printed at the outside corner on each page sequences the printed
pages within a section. Users usually locate manpages by the alphabetic headings at the top of the page as
when reading a dictionary.

Some manpages describe two or more commands or routines. In such cases, the manpage is usually named
for the first command or function that appears in the NAME section. Occasionally, a manpage name
appears as a prefix to the NAME section. In such instances, the name describes the commands or functions
in more general terms. For example, the acct(1M) manpage describes the acctdisk , acctdusg , acc-
ton , and acctwtmp commands, while the string(3C) manpage describes many character string functions.

The various sections are described as follows:

Volume Table of Contents (Printed Manual)

A complete listing of all manpages in the order they appear in each section, as well as alphabetically
intermixed lists of all command, function, and feature names that are the different from the manpage
where they appear

Section 1: User Commands

Programs that are usually invoked directly by users or from command language procedures (scripts).

Section 1M: System Administration Commands

Commands used for system installation and maintenance, including boot processes, crash recovery,
system integrity testing, and other needs. Most commands in this section require the superuser
privilege.

HP-UX Release 11i: December 2000 − 1 − Introduction−−1

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/introduction.9L__L

___ L L ___

introduction(9) introduction(9)

Section 2: System Calls

Entries into the HP-UX kernel, including the C-language interface. These topics are primarily of
interest to programmers.

Section 3: Library Functions

Available subroutines that reside (in binary form) in various system libraries. These topics are pri-
marily of interest to programmers.

Section 4: File Formats

The structure of various types of files, primarily of interest to administrators and programmers. For
example, the link editor output file format is described in a.out(4). Files that are used only by a single
command (such as intermediate files used by assemblers) are not described. C-language declarations
corresponding to the formats in Section 4 can be found in the directories /usr/include and
/usr/include/sys .

Section 5: Miscellaneous

A variety of information, such as descriptions of header files, character sets, macro packages, and
other topics.

Section 7: Device Special Files

The characteristics of special (device) files that provide the link between HP-UX and system I/O dev-
ices. The names for each topic usually refer to the type of I/O device rather than to the names of indi-
vidual special files.

Section 9: Introduction and Glossary

A general introduction (this one) and definitions of terms used in the HP-UX environment.

Composite Index (Printed Manual)

An alphabetical listing of keywords and topics based on the NAME section near the beginning of each
manpage as well as other information, cross-referenced to manpage names and sections. The index
also contains references to built-in features in the various command interpreters ("shells").

MANPAGE FORMATS
All manpages follow an established section heading format, but not all section headings are included in each
manpage. A few manpages have self-explanatory specialized headings.

NAME
Gives the names of the commands, functions, or features and briefly states the purpose.

SYNOPSIS
Summarizes the syntax of the command or program entity. A few conventions are used:

Constant-width characters indicate literal characters that should be entered exactly as they
appear. These characters appear in bold in the online manpages.

Italic strings represent variable elements that should be replaced with appropriate values.

Roman square brackets ([]) indicate that the contents are optional.

Roman braces ({ }) indicate a required element, usually in a choice.

Ellipses (...) indicate that the previous element can be repeated.

Note: An argument beginning with a dash (-), a plus sign (+), or an equal sign (=) is often defined as
a command option, even if it appears in a position where a file name could appear. Therefore, it is
unwise to have files names that begin with - , +, or =.

DESCRIPTION
Discusses the function and behavior of each entry.

EXTERNAL INFLUENCES
Information under this heading pertains to programming for various spoken languages. Typical
entries indicate support for single- or multibyte characters, the effect of language-related environment
variables on system behavior, and other related information.

NETWORKING FEATURES
Information under this heading is applicable only if you are using the network feature described there

Introduction−−2 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/introduction.9L__L

___ L L ___

introduction(9) introduction(9)

(such as NFS).

RETURN VALUE
Describes the values returned by function calls or in the return code by commands.

DIAGNOSTICS
Describes diagnostic information that may be produced. Self-explanatory messages are not listed.

ERRORS
Lists function error conditions (set in errno) and their corresponding error messages.

EXAMPLES
Provides examples of typical usage.

WARNINGS
Describes potential problems and deficiencies.

DEPENDENCIES
Describes variations in HP-UX operation that are related to the use of specific hardware or combina-
tions of hardware.

AUTHOR
Indicates the origin of the software documented by the manpage. Unless noted otherwise, the source
of an entry is System V.

FILES
Lists file names that are used or affected by the program or command.

SEE ALSO
Provides pointers to related manpages and other documentation.

STANDARDS CONFORMANCE
For each command or subroutine entry point addressed by one or more of the following industry stan-
dards, this section lists the standard specifications to which that HP-UX component conforms.

The various standards are:

AES OSF Application Environment Specification

ANSI C ANSI X3.159-1989

POSIX.1 IEEE Standard 1003.1-1988 (IEEE Computer Society) (Portable Operating System Inter-
face for Computer Environments)

POSIX.2 IEEE Standard 1003.2-1990 (IEEE Computer Society) (Portable Operating System Inter-
face for Computer Environments)

POSIX.4 IEEE Standard 1003.1b-1993 (IEEE Computer Society) (Portable Operating System
Interface for Computer Environments)

FIPS 151-1 Federal Information Processing Standard 151-1 (National Institute of Standards and
Technology)

FIPS 151-2 Federal Information Processing Standard 151-2 (National Institute of Standards and
Technology)

SVID2 System V Interface Definition Issue 2

SVID3 System V Interface Definition Issue 3

XPG2 X/Open Portability Guide Issue 2 (X/Open, Ltd.)

XPG3 X/Open Portability Guide Issue 3 (X/Open, Ltd.)

XPG4 X/Open Portability Guide Issue 4 (X/Open, Ltd.)

XPG4.2 X/Open Portability Guide Issue 4 (X/Open, Ltd.) Version 2

GETTING STARTED WITH HP-UX
This is a very brief overview of how to use the HP-UX system: how to log in and log out, how to communi-
cate through your machine, and how to run a program.

HP-UX uses control characters to perform certain functions. Control characters are generally shown in
the form ˆ x, such as ˆD for Control-D. Hold down the Control (Ctrl) key while you press the character
key.

HP-UX Release 11i: December 2000 − 3 − Introduction−−3

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/introduction.9L__L

___ L L ___

introduction(9) introduction(9)

Logging In
To log in you must have a valid user name and password, which can be obtained from your system adminis-
trator.

When a connection has been established, the system displays login: on your terminal. Type your user
name and press the Return key. Enter your password (it is not echoed by the system) and press Return.

A list of copyright notices and a message-of-the-day may greet you before the first prompt.

It is important that you type your login name with lowercase letters, if possible. If you type uppercase
letters, HP-UX assumes that your terminal cannot generate lowercase letters, and treats subsequent
uppercase input as lowercase.

When you log in successfully, the system starts your login shell. The default is the POSIX shell,
/usr/bin/sh . The POSIX shell (and its predecessors, the Korn and Bourne shells) use $ as the default
prompt. The C shell uses %.

See login(1) for more on login, passwd(1) to change your password, chsh(1) to change your login shell.

Logging Out
You can log out of the shells by typing an exit command or the eof (end-of-file) character (see the Spe-
cial Interactive Characters subsection below). The shell terminates and the login: prompt appears
again. (If you are using the C, Korn, or POSIX shells, respectively, see csh(1), ksh(1), or sh-posix(1) for
information about the ignoreeof special command.)

How to Communicate Through Your Terminal
HP-UX gathers keyboard input characters and saves them in a buffer. The accumulated characters are not
passed to the shell or other program until you type Return.

HP-UX terminal input/output is full-duplex. It has full read-ahead, which means that you can type at any
time, even while a program is printing on your display or terminal. Of course, if you type during output,
the output display will have the input characters interspersed in it. However, whatever you type will be
saved and interpreted in the correct sequence. There is a limit to the amount of read-ahead, but it is gen-
erous and not likely to be exceeded unless the system is severely overloaded or operating abnormally.
When the read-ahead limit is exceeded, the system throws away all the saved characters.

stty(1) tells you how to describe the characteristics of your terminal to the system. profile(4) explains how
to accomplish this task automatically every time you log in.

Special Interactive Characters
A number of special characters are used to control the input and output of your terminal. These characters
have defaults and can be redefined with the stty command (see stty(1)).

stty Default At Login Common
Name Character (ASCII Name; Key Names) Redefinition
eof ^D (EOT)

erase # ^H (BS; Backspace)
kill @ ^U (NAK), ˆX (CAN)

intr ˆ? (DEL; Delete, Rub, Rubout) ^C (ETX)
quit ˆ\ (FS)

start ˆQ (DC1; X-ON)
stop ˆS (DC3; X-OFF)

The eof character terminates "file" input from the terminal, as read by programs and scripts. By exten-
sion, eof can also terminate the shell (see the Logging Out subsection above).

The kill character deletes all characters typed before it on a terminal input line. The erase character
erases the last character typed. Successive uses of erase will erase characters back to, but not beyond,
the beginning of the input line.

The intr character generates an interrupt signal that bypasses the input buffer. This signal generally
causes whatever program you are running to terminate. It can be used to stop a long printout that you
don’t want. However, programs can arrange either to ignore this signal altogether, or to be notified when it
happens (instead of being terminated). For example, the vi editor catches interrupts and stops what it is
doing, instead of terminating, so that an interrupt can be used to halt an editing operation without losing

Introduction−−4 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/introduction.9L__L

___ L L ___

introduction(9) introduction(9)

the file being edited.

The quit character generates a quit signal that bypasses the input buffer and most program traps and
causes a running program to terminate. It can cause a core dump in the current directory.

The stop character can be used to pause output to the terminal. It is commonly used on video terminals
to suspend output to the display while you read what is already being displayed. You can then resume out-
put by typing the start character. When stop and start are used to suspend or resume output, they
bypass the keyboard command-line buffer and are not passed to the program. However, any other charac-
ters typed on the keyboard are saved and used as input later in the program.

The eof , erase , and kill characters can be used as normal text characters if you escape them with a
preceding \ , as in \ˆD . Therefore, to erase a \ , you need two erase s.

The intr , quit , start , and stop characters cannot be escaped on the input line.

End-of-Line and Tab Characters
Besides adapting to the speed of the terminal, HP-UX tries to be intelligent as to whether you have a termi-
nal with a newline (line-feed) key, or whether it must be simulated with a return/line-feed character pair.
In the latter case, all incoming return characters are changed to line-feed characters (the standard line del-
imiter), and a return/line-feed pair is echoed to the terminal. If you get into the wrong mode, use the
stty command to correct it (see stty(1)).

Tab characters are used freely in HP-UX source programs. If your terminal does not have the tab function,
you can arrange to have tab characters changed into spaces during output, and echoed as spaces during
input. The stty command sets or resets this mode. By default, the system assumes that tabs are set
every eight character positions. The tabs command (see tabs(1)) can set tab stops on your terminal, if the
terminal supports tabs.

How to Run a Program
When you have successfully logged into HP-UX, the shell monitors input from your terminal. The shell
accepts typed lines from the terminal, splits them into command names and arguments, then executes the
command. The command can be the name of a shell built-in, an executable script of commands, or an exe-
cutable program. There is nothing special about system-provided commands, except that they are kept in
directories where the shell can find them. You can also keep commands in your own directories and
arrange for the shell to find them there.

The command name is the first word on an input line to the shell; the command and its arguments are
separated from one another by blanks (one or more space and/or tab characters).

When a program terminates, the shell ordinarily regains control and prompts you to indicate that it is
ready for another command. The shell has many other capabilities, which are described in detail in the
appropriate manpages: sh-posix(1) for the POSIX shell, ksh(1) for the Korn shell, sh-bourne(1) for the
Bourne shell, or csh(1) for the C shell.

The Current Directory
HP-UX has a file system arranged in a hierarchy of directories. When the system administrator gave you a
user name, he or she also created a directory for you (ordinarily with the same name as your user name,
and known as your login or home directory). When you log in, that directory becomes your current or work-
ing directory, and any file name you type is assumed to be in that directory by default. Because you are the
owner of this directory, you have full permission to read, write, alter, or destroy its contents. The permis-
sions you have for other directories and files will have been granted or denied to you by their respective
owners, or by the system administrator. To change the current working directory use cd(1).

Path Names
To refer to files not in the current directory, you must use a path name. Full (absolute) path names begin
with / , which is the name of the root directory of the whole file system. After the slash comes the name of
each directory containing the next subdirectory (followed by a /), until finally the file name is reached (for
example, /usr/ae/filex refers to file filex in directory ae , while ae is itself a subdirectory of usr ;
usr is a subdirectory of the root directory). See glossary(9) for a formal definition of path name.

If your current directory contains subdirectories, the path names of files in them begin with the name of
the corresponding subdirectory (without a prefixed /). Generally, a path name can be used anywhere a file
name is required.

Important commands that modify the contents of directories are cp , mv, and rm which respectively copy,
move (that is, rename, relocate, or both), and remove files. To determine the status of files or the contents

HP-UX Release 11i: December 2000 − 5 − Introduction−−5

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/introduction.9L__L

___ L L ___

introduction(9) introduction(9)

of directories, use the ls command. Use mkdir to make directories, rmdir to destroy them, and mv to
rename them (see cp(1), ls(1), mkdir(1), mv(1), rm(1), and rmdir(1)).

Writing a Program
To enter the text of a source program into an HP-UX file, use a text editing program such as vi , ex , or ed
(see vi(1), ex(1), and ed(1)). The three principal languages available under HP-UX are C (see cc_bundled(1)
and cc(1)), FORTRAN (see f77(1)), and Pascal (see pc(1)). After the program text has been entered with the
editor and written into a file (whose name has the appropriate suffix), you can give the name of that file to
the appropriate language processor as an argument. Normally, the output of the language processor will be
left in a file named a.out in the current directory. Since the results of a subsequent compilation may also
be placed in a.out , thus overwriting the current output, you may want to use mv to give the output a
unique name. If the program is written in assembly language, you will probably need to link library sub-
routines with it (see ld(1)). FORTRAN, C, and Pascal call the linker automatically.

When you have gone through this entire process without encountering any diagnostics, the resulting pro-
gram can be run by giving its name to the shell in response to the prompt.

Your programs can receive arguments from the command line just as system programs do by using the argc
and argv parameters. See the supplied C tutorial for details.

Text Processing
Almost all text is entered through a text editor. The editor preferred above all others provided with HP-UX
is the vi editor. For batch-processing text files, the sed editor is very efficient. Other editors are used
much less frequently. The ex editor is useful for handling certain situations while using vi but most other
editors are rarely used except in various scripts.

The following editors are the same program masquerading under various names: vi , view , and vedit
(see vi(1)) and ex and edit (see ex(1)). For information about the sed stream editor, see sed(1). The ed
line editor is described in ed(1).

The commands most often used to display text on a terminal are cat , more , and pr (see cat(1), more(1),
and pr(1)). The cat command simply copies ASCII text to the terminal, with no processing at all. The
more command displays text on the terminal a screenful at a time, pausing for an acknowledgement from
the user before continuing. The pr command paginates text, supplies headings, and has a facility for mul-
ticolumn output. pr is most commonly used in conjunction with the lp command (see lp(1)) to pipe for-
matted text to a line printer.

Interuser Communication
Certain commands provide interuser communication. Even if you do not plan to use them, it could be
beneficial to learn about them, because someone else may direct them toward you. To communicate with
another user that is currently logged in, you can use write to transfer text directly to that user’s terminal
display (if permission to do so has been granted by the other user). Otherwise, elm , mailx , or mail (in
order of ease of use) can send a message to another user’s mailbox. The user is then informed by HP-UX
that mail has arrived (if currently logged in) or mail is present (when the user next logs in). Refer to
elm(1), mail(1), mailx(1), and write(1) for explanations of how these commands are used.

ACKNOWLEDGEMENTS
UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Limited.

SEE ALSO
cat(1), cc_bundled(1), cd(1), chsh(1), cp(1), csh(1), ed(1), ex(1), ksh(1), ld(1), login(1), lp(1), ls(1), mail(1),
mailx(1), man(1), mkdir(1), more(1), mv(1), passwd(1), pr(1), rm(1), rmdir(1), sed(1), sh(1), sh-bourne(1),
sh-posix(1), stty(1), tabs(1), vi(1), write(1), a.out(4), profile(4), glossary(9).

Web access to HP-UX documentation at http://docs.hp.com .

Introduction−−6 − 6 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/TABS/tab1c.inL__________________________________ L

___ L L ___

LL LL

Section 1
Part 1

User Commands
(A-M)

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/TABS/tab1c.inL__________________________________ L

___ L L ___

LL LL

Section 1
Part 1

User Commands
(A-M)

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__________________________________ L

___ L L ___

intro(1) intro(1)

NAME
intro - introduction to command utilities and application programs

DESCRIPTION
This section describes commands accessible by users, as opposed to system calls in Section (2) or library
routines in Section (3), which are accessible by user programs.

Command Syntax
Unless otherwise noted, commands described in this section accept options and other arguments according
to the following syntax:

name [option (s)] [cmd_arg (s)]

where the elements are defined as follows:

name Name of an executable file.

option One or more options can appear on a command line. Each takes one of the following forms:

- no_arg_letter
A single letter representing an option without an argument.

- no_arg_letters
Two or more single-letter options combined into a single command-line argu-
ment.

- arg_letter<>opt_arg
A single-letter option followed by a required argument where:

arg_letter
is the single letter representing an option that requires an argument,

opt_arg
is an argument (character string) satisfying the preceding arg_letter ,

<> represents optional white space.

cmd_arg Path name (or other command argument) not beginning with - , or - by itself indicating
the standard input. If two or more cmd_args appear, they must be separated by white
space.

Manual Entry Formats
All manual entries follow an established topic format, but not all topics are included in each entry.

NAME Gives the name(s) of the entry and briefly states its purpose.

SYNOPSIS Summarizes the use of the entry or program entity being described. A few conven-
tions are used:

Computer font strings are literals, and are to be typed exactly as they appear in
the manual (except for parameters in the SYNOPSIS section of entries in Sections 2
and 3).

Italic strings represent substitutable argument names and names of manual entries
found elsewhere in the manual.

Square brackets [] around an argument name indicate that the argument is optional.

Ellipses (...) are used to show that the previous argument can be repeated.

A final convention is used by the commands themselves. An argument beginning with
a dash (-), a plus sign (+), or an equal sign (=) is often taken to be some sort of option
argument, even if it appears in a postion where a file name could appear. Therefore it
is unwise to have file names that begin with -, +, or =.

DESCRIPTION Discusses the function and behavior of each entry.

EXTERNAL INFLUENCES
Information under this heading pertains to programming for various spoken
languages. Typical entries indicate support for single- and/or multi-byte characters,
the effect of language-related environment variables on system behavior, and other
related information.

HP-UX Release 11i: December 2000 − 1 − Section 1−−1

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

intro(1) intro(1)

NETWORKINGFEATURES
Information under this heading is applicable only if you are using the networking
feature described there (such as NFS).

RETURN VALUE Discusses various values returned upon completion of program calls.

DIAGNOSTICS Discusses diagnostics indications that may be produced. Self-explanatory messages
are not listed.

ERRORS Lists error conditions and their corresponding error message or return value.

EXAMPLES Provides examples of typical usage, where appropriate.

WARNINGS Points out potential pitfalls.

DEPENDENCIES Points out variations in HP-UX operation that are related to the user or specific
hardware or hardware combinations.

AUTHOR Indicate the origin of the software documented by the manual entry.

FILES Lists file names that are built into the program or command.

SEE ALSO Provides pointers to related topics.

BUGS Discusses known bugs and deficiencies, occasionally suggesting fixes.

STANDARDSCONFORMANCE
This section lists the standard specifications to which the HP-UX component con-
forms.

RETURN VALUE
Upon termination, each command returns two bytes of status, one supplied by the system giving the cause
for termination, and (in the case of ‘‘normal’’ termination) one supplied by the program (for descriptions,
see wait(2) and exit(2)). The system-supplied byte is 0 for normal termination. The byte provided by the
program is customarily 0 for successful execution and non-zero to indicate errors or failure such as
incorrect parameters in the command line, or bad or inaccessible data. Values returned are usually called
variously ‘‘exit code’’, ‘‘exit status’’, ‘‘return code’’, or ‘‘return value’’, and are described only where special
conventions are involved.

WARNINGS
Some commands produce unexpected results when processing files containing null characters. These com-
mands often treat text input lines as strings, and therefore become confused when they encounter a null
character (the string terminator) within a line.

SEE ALSO
getopt(1), exit(2), wait(2), getopt(3C), hier(5), introduction(9).

Web access to HP-UX documentation at http://docs.hp.com .

Section 1−−2 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

adb(1) adb(1)

NAME
adb, adb64 - absolute debugger

SYNOPSIS
adb [-w] [-I dir] [-k] [-m] [-P pid] objfil [corfil]

adb64 [-w] [-I dir] [-k] [-m] [-P pid] objfil [corfil]

DESCRIPTION
The adb command executes a general-purpose debugging program that is sensitive to the underlying archi-
tecture of the processor and operating system on which it runs. It can be used to examine files and provide
a controlled environment for executing HP-UX programs.

adb calls adb64 to process 64 bit files.

objfil is normally an executable program file, or an HP-UX kernel (vmunix), preferably containing a symbol
table; if not, the symbolic features of adb cannot be used, although the file can still be examined. The
default for objfil is a.out .

corfil is assumed to be a core image file produced after executing objfil or an HP-UX crash file produced
from the objfil. The default for corfil is core .

Requests to adb are read from standard input and adb responds on standard output. If the -w flag is
present, objfil is created (if necessary) and opened for reading and writing, to be modified using adb . The
-I option specifies a directory where files read with $< or $<< (see below) are sought; the default is
/usr/lib/adb . adb ignores QUIT; INTERRUPT causes return to the next adb command.

The following options are also supported:

-k Allows adb to read objfil as an HP-UX kernel file and corfil as an HP-UX crash dump. This also
allows virtual-to-physical address translation, useful for kernel debugging. In this case, corfil
should be an HP-UX crash dump or /dev/mem . Without -k or -m, adb treats objfil as an
application program file and corfil as an application core file.

When adb is invoked with this option, it sets up the context of the currently running process
using space registers four through seven. A user specified address is dereferenced by combining
it with the appropriate space register, depending on the quadrant in which the 32-bit address
lies.

When the current radix is not (decimal) ten, the -k option allows adb to support the notion of
long pointers or addresses in the form space. offset. Once a space is specified, all subsequent
addresses are dereferenced using that space until the user enters another long address. If a
space equal to (hexadecimal) 0xffffffff is used, adb reverts to the previous context and uses space
registers four through seven to dereference 32-bit addresses.

-m Must be specified instead of -k when a core dump is written to multiple files.

When -m is used, corfil must be specified as the path name of the directory that contains system
core dump files. A command line using -m might look similar to the following:

adb -m /var/adm/crash/core.1/vmunix /var/adm/crash/core.1

Notice that when -m is specified on the command line, -k is not necessary.

-P pid Causes adb to adopt process pid as a "traced" process (see ptrace(2)). This option is helpful for
debugging processes that were not originally run under the control of adb .

Requests to adb follow the form:

[address] [, count] [command] [;]

If address is present, dot is set to address. Initially dot is set to 0. For most commands, count specifies the
number of times the command is to be executed. The default count is 1. address and count are expres-
sions.

The interpretation of an address depends on the context in which it is used. If a subprocess is being
debugged, addresses are interpreted in the address space of the subprocess. (For further details of address
mapping see Addresses below.)

HP-UX Release 11i: December 2000 − 1 − Section 1−−3

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

adb(1) adb(1)

Expressions
Expressions are interpreted as follows:

. The value of dot.

+ The value of dot increased by the current increment.

^ The value of dot decreased by the current decrement.

" The last address typed.

integer A number. The prefix 0 (zero) forces interpretation in octal radix; the prefixes 0d and
0D force interpretation in decimal radix; the prefixes 0x and 0X force interpretation in
hexadecimal radix. Thus 020 = 0d16 = 0x10 = sixteen. If no prefix appears, the
default radix is used; see the $d command. The radix is initialized to the base used in
the assembly language for the processor involved. Note that a hexadecimal number
whose most significant digit would otherwise be an alphabetic character must have a 0x
(or 0X) prefix.

integer. fraction
A 32-bit floating-point number.

’ cccc ’ The ASCII value of up to 4 characters. A backslash (\) can be used to escape a single
quote (’).

< name name can have the value of either a variable or a register. adb maintains a number of
variables named by single letters or digits; see Variables below. If name is a register, the
value of the register is obtained from the CORE_PROC segment in corfil (before the sub-
process is initiated) or from the user area of the subprocess. Register names are imple-
mentation dependent; see the $r command.

symbol A symbol is a sequence of uppercase or lowercase letters, underscores, or digits, not start-
ing with a digit. A backslash (\) can be used to escape other characters. The value of the
symbol is taken from the symbol table in objfil. An initial underscore (_) is prefixed to
symbol, if needed.

_ symbol If the compiler prefixes _ to an external symbol, it may be necessary to cite this name to
distinguish it from a symbol generated in assembly language.

(exp) The value of the expression exp.

The following are monadic operators:

* exp The contents of the location addressed by exp in corfil.

@ exp The contents of the location addressed by exp in objfil.

- exp Integer negation.

~exp Bitwise complement.

The following dyadic operators are left associative and are less binding than monadic operators:

e1+e2 Integer addition.

e1- e2 Integer subtraction.

e1* e2 Integer multiplication.

e1%e2 Integer division.

e1&e2 Bitwise conjunction.

e1| e2 Bitwise disjunction.

e1#e2 e1 rounded up to the next multiple of e2.

Commands
Most commands consist of an action character followed by a modifier or list of modifiers. The following
action characters can take format specifiers. (The action characters ? and / can be followed by * ; see
Addresses for further details.)

?f Locations starting at address in objfil are printed according to the format f. dot is incre-
mented by the sum of the increments for each format letter. If a subprocess has been ini-
tiated, address references a location in the address space of the subprocess instead of

Section 1−−4 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

adb(1) adb(1)

objfil.

/ f Locations starting at address in corfil are printed according to the format f and dot is
increased like ?. If a subprocess has been initiated, address refers to a location in the
address space of the subprocess instead of corfil.

=f The value of address is printed in the styles indicated by the format f. (For i format ?
is printed for the parts of the instruction that refer to subsequent words.)

A format consists of one or more characters that specify a style of printing. Each format character can be
preceded by an integer that indicates how many times the format is repeated. While stepping through a
format, dot is increased by the amount given for each format character. If no format is given then the last
format is used.

The following format characters are available:

a 0 Print the value of dot in symbolic form.

b 1 Print the addressed byte in hexadecimal.

B 1 Print the addressed byte in octal.

c 1 Print the addressed character (the sign bit is ignored).

C 1 Print the addressed character using the following escape convention. First, the sign bit is
discarded, then character values 000 to 040 are printed as @ followed by the
corresponding character in the range 0100 to 0140 . The character @ is printed as @@.

d 2 Print 2 bytes in decimal.

D 4 Print 4 bytes in decimal.

f 4 Print the 32 bit value as a floating point number.

F 8 Print double floating point.

i n Print as machine instructions. The value of n is the number of bytes occupied by the
instruction.

n 0 Print a new-line character.

o 2 Print 2 bytes in octal. All octal numbers output by adb are preceded by 0.

O 4 Print 4 bytes in octal.

p n Print the addressed value in symbolic form. The value of n is a machine-dependent con-
stant.

q 2 Print 2 bytes in signed octal.

Q 4 Print 4 bytes in signed octal.

r 0 Print a space.

s n Print the addressed characters until a zero character is reached.

S n Print a string using the @ escape convention. The value n is the length of the string
including its zero terminator.

t 0 When preceded by an integer, moves to the next appropriate tab stop. For example, 8t
moves to the next 8-space tab stop.

u 2 Print 2 bytes as an unsigned decimal number.

U 4 Print 4 bytes as an unsigned decimal number.

x 2 Print 2 bytes in hexadecimal.

X 4 Print 4 bytes in hexadecimal.

Y 4 Print 4 bytes in date format (see ctime(3C)).

"..." 0 Print the enclosed string.

^ dot is decreased by the current increment. Nothing is printed.

+ dot is increased by 1. Nothing is printed.

HP-UX Release 11i: December 2000 − 3 − Section 1−−5

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

adb(1) adb(1)

- dot is decreased by 1. Nothing is printed.

new-line
Repeat the previous command with a count of 1. The value of dot continues from the end of the
previous format, unlike a [?/] command with no address, which repeats the previous address
value. New-line can also be used to repeat a :s or :c command; however, any arguments to the
previous command are lost.

[?/]l value mask
Words starting at dot are masked with mask and compared with value until a match is found. If
L is used, adb looks to match 4 bytes at a time instead of 2. If no match is found, dot is left
unchanged; otherwise dot is set to the matched location. If mask is omitted -1 is used.

[?/]w value ...
Write the 2-byte value into the addressed location. If the command is W, write 4 bytes. Odd
addresses are not allowed when writing to the subprocess address space.

=m Toggle the address mapping of corfil between the initial map set up for a valid core file and the
default mapping pair which the user can modify with /m . If the corfil was invalid, only the
default mapping is available.

[?/]mb1 e1 f1[?/]
Record new values for (b1, e1, f1). If fewer than three expressions are given, the remaining map
parameters are left unchanged. If the ? or / is followed by * , the second segment (b2, e2, f2) of
the mapping is changed. If the list is terminated by ? or / , the file (objfil or corfil, respectively)
is used for subsequent requests. (For example, /m? causes / to refer to objfil.) A /m command
switches the corfil mapping to the default mapping pair. For a valid core file, the =m command
can be used to switch back to the initial mapping.

>name
Assign dot to the variable or register named.

! Call a shell to read the remainder of the line following ! .

The following $ commands take the form $modifier:

$<f Read commands from the file f. If this command is executed in a file, further commands
in the file are not seen. If a count is given, and is zero, the command is ignored. The
value of the count is placed in variable 9 before the first command in f is executed.

$<< f Similar to $< except it can be used in a file of commands without causing the file to be
closed. Variable 9 is saved when the command executes and is restored when it com-
pletes. Only five $<< files can be open at once.

$>f Send output to the file f, which is created if it does not already exist.

$new-line Print the process id and register values.

$b Print all breakpoints and their associated counts and commands.

$c C stack backtrace. If address is given, it is taken as the address of the current frame
(instead of the normal stack frame pointer). If count is given, only the first count frames
are printed.

$d Set the default radix to address and report the new value. Note that address is inter-
preted in the (old) current radix. Thus 10$d never changes the default radix. To make
decimal the default radix, use 0d10$d .

$e The names and values of external variables are printed.

$f Print the floating-point registers.

$m Print the address map. This includes both the initial and default maps for a valid corfil
with an indication of which is currently active.

$N [nodenumber]
Print the number of nodes on V-class multinode machines and the current node number.
To switch to another node, enter $N nodenumber.

$o The default for all integers input is octal.

$q Exit from adb .

Section 1−−6 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

adb(1) adb(1)

$r Print the general registers and the instruction addressed by the process counter. dot is
set to the process counter contents.

$s Set the limit for symbol matches to address. The default is system dependent.

$v Print all non-zero variables in the current radix.

$w Set the page width for output to address (default 80).

$x The default for all integers input is hexadecimal.

$z Print a list of signals and how they are handled. See :z for information on changing sig-
nal handling.

The available : commands manage subprocesses, and take the form : modifier:

:b c Set breakpoint at address. The breakpoint is executed count−1 times before causing a
stop. Each time the breakpoint is encountered, the command c is executed. If this com-
mand sets dot to zero, the breakpoint causes a stop.

:c s Continue the subprocess with signal s (see signal(5)). If address is given, the subprocess
continues at this address. If no signal is specified, the signal that caused the subprocess
to stop is sent. Breakpoint skipping is the same as for :r .

:d Delete breakpoint at address. :d* deletes all breakpoints.

:e Set up a subprocess as in :r ; no instructions are executed.

:k Terminate the current subprocess, if any.

:r Run objfil as a subprocess. If address is given explicitly, the program is entered at this
point; otherwise the program is entered at its standard entry point. The value count
specifies how many breakpoints are ignored before stopping. Arguments to the subpro-
cess may be supplied on the same line as the command. An argument starting with < or
> causes the standard input or output to be established for the command. All signals are
turned on when entering the subprocess.

:s s As for c except that the subprocess is single stepped count times. If there is no current
subprocess, objfil is run as a subprocess as for :r . In this case no signal can be sent; the
remainder of the line is treated as arguments to the subprocess.

:S s Same as :c except that a temporary breakpoint is set at the next instruction. Useful for
stepping across subroutines.

:x a [b]... Execute subroutine a with parameters [b]...

:z d Change signal handling for a specified signal. Disposition d can be specified as:

+s Stop process when signal is received.

-s Do not stop process when signal is received.

+r Report when signal is received.

-r Do not report when signal is received.

+d Deliver signal to the target process.

-d Do not deliver signal to the target process.

For example, 0x10:z+d enables delivering of signal number 0x10 to the target pro-
cess. Use $z to display existing settings.

Variables
adb provides named and numbered variables. Named variables are set initially by adb but are not used
subsequently. Numbered variables are reserved for communication as follows:

0 The last value printed.

1 The last offset part of an instruction source.

2 The previous value of variable 1.

9 The count on the last $< command.

HP-UX Release 11i: December 2000 − 5 − Section 1−−7

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

adb(1) adb(1)

On entry, the following named variables are set from the coreheaders in the corfil. If corfil does not appear
to be a core file, these values are set from objfil.

b The base address of the data segment.

d The data segment size.

s The stack segment size.

t The text segment size.

The following variables are set from objfil.

e The entry point.

m The "magic" number as defined in <magic.h> .

Addresses
The file address associated with a written address is determined by a mapping described below; see $m.
Both the objfil mapping and the default corfil mapping are represented by two triples (b1, e1, f1) and (b2,
e2, f2). The initial mapping for a valid corfil contains a triple for each segment (coreheader).

The file address corresponding to a written address is calculated as follows:

If

b1 <= address < e1, then file address = address + f1 − b1.

Otherwise, if

b2 <= address < e2, then file address = address + f2 − b2.

Otherwise, the requested address is not valid. For a valid corfil, this pattern repeats as many times as
there are segments (coreheaders) in the corfil, rather than twice. If ? or / is followed by * , only the
second triple is used, or (when using the initial mapping of a valid corfil) only segments with a
CORE_STACKcoreheader.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is not of the
kind expected, adb sets b1 to 0, e1 to the maximum file size, and f1 to 0; in this way the entire file can be
examined with no address translation.

adb keeps all appropriate values as signed 32-bit integers so that it can be used on large files.

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

RETURN VALUE
adb comments about inaccessible files, syntax errors, abnormal termination of commands, etc. It echoes
adb when there is no current command or format. Exit status is 0, unless the last command failed or

Section 1−−8 − 6 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

adb(1) adb(1)

returned non-zero status.

DEPENDENCIES
• Setting breakpoints in shared libraries is not supported.

adb does not read the linker symbol table for shared libraries, and cannot access locations in shared
libraries by name. In a stack backtrace ($c), adb does not know the names of shared library pro-
cedures.

If the core file was created when the program was in a shared library function, the $c command does
not work. When a stack backtrace for the core file encounters a shared library procedure on the stack it
aborts at that point.

• A leading zero by itself is not recognized as a radix indicator. Use the prefixes 0o or 0O (zero-oh) to
force interpretation in octal radix. The prefixes 0t and 0T are also accepted to force interpretation in
decimal radix. Thus 0o20 = 0t16 = sixteen. A hexadecimal number whose most significant digit
would otherwise be an alphabetic character may begin with a leading zero instead of 0x (or 0X), if the
default radix is hexadecimal.

• The $f command prints floating point registers as 32-bit single precision and $F prints these registers
as 64-bit doubles.

• $R prints all registers available to adb users.

• The :x and :S commands are not currently supported.

• adb can be used to inspect relocatable object files; it reads the symbol table and sets up the appropriate
mappings for text and data. Note that relocatable object files do not necessarily contain an exact image
of the initialized data; however, if this is the case, the data mapping is not set.

AUTHOR
adb was developed by AT&T and HP.

FILES
a.out
core
/dev/mem
/dev/kmem
/dev/swap

SEE ALSO
ptrace(2), crt0(3), ctime(3C), end(3C), a.out(4), core(4), signal(5).

ADB Tutorial

HP-UX Release 11i: December 2000 − 7 − Section 1−−9

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

adjust(1) adjust(1)

NAME
adjust - simple text formatter

SYNOPSIS
adjust [-b] [-c |-j |-r] [-m column] [-t tabsize] [files ...]

DESCRIPTION
The adjust command is a simple text formatter for filling, centering, left and right justifying, or only
right justifying text paragraphs, and is designed for interactive use. It reads the concatenation of input
files (or standard input if none are given) and produces on standard output a formatted version of its input,
with each paragraph formatted separately. If - is given as an input filename, adjust reads standard
input at that point (use - - as an argument to separate - from options.)

adjust reads text from input lines as a series of words separated by space characters, tabs, or newlines.
Text lines are grouped into paragraphs separated by blank lines. By default, text is copied directly to the
output, subject only to simple filling (see below) with a right margin of 72, and leading spaces are converted
to tabs where possible.

Options
The adjust command recognizes the following command-line options:

-b Do not convert leading space characters to tabs on output; (output contains no tabs, even if
there were tabs in input).

-c Center text on each line. Lines are pre- and post-processed, but no filling is performed.

-j Justify text. After filling, insert spaces in each line as needed to right justify it (except in
the last line of each paragraph) while keeping the justified left margin.

-r After filling text, adjust the indentation of each line for a smooth right margin (ragged left
margin).

-mcolumn
Set the right fill margin to the given column number, instead of 72. Text is filled, and
optionally right justified, so that no output line extends beyond this column (if possible). If
-m0 is given, the current right margin of the first line of each paragraph is used for that
and all subsequent lines in the paragraph.

By default, text is centered on column 40. With -c , the -m option sets the middle column
of the centering ‘‘window’’, but -m0 auto-sets the right side as before (which then deter-
mines the center of the ‘‘window’’).

-t tabsize Set the tab size to other than the default (eight columns).

Only one of the -c , -j , and -r options is allowed in a single command line.

Details
Before doing anything else to a line of input text, adjust first handles backspaces, rubbing out preceding
characters in the usual way. Next, it ignores all non-printable characters except tab. It then expands all
tabs to spaces.

For simple text filling, the first word of the first line of each paragraph is indented the same amount as in
the input line. Each word is then carried to the output followed by one space. ‘‘Words’’ ending in
terminal_character[quote][closing_character] are followed by two spaces, where terminal_character is any
of . , : , ?, or ! ; quote is a single closing quote (’) character or double-quote character ("), and close is
any of) ,] , or } . Here are some examples:

end. of? sentence.’ sorts!" of.) words?"]

(adjust does not place two spaces after a pair of single closing quotes (’’) following a
terminal_character).

adjust starts a new output line whenever adding a word (other than the first one) to the current line
would exceed the right margin.

adjust understands indented first lines of paragraphs (such as this one) when filling. The
second and subsequent lines of each paragraph are indented the same amount as the second line of the
input paragraph if there is a second line, else the same as the first line.

Section 1−−10 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

adjust(1) adjust(1)

* adjust also has a rudimentary understanding of tagged paragraphs (such as this one) when
filling. If the second line of a paragraph is indented more than the first, and the first line has a
word beginning at the same indentation as the second line, the input column position of the tag
word or words (prior to the one matching the second line indentation) is preserved.

Tag words are passed through without change of column position, even if they extend beyond the right mar-
gin. The rest of the line is filled or right justified from the position of the first non-tag word.

When -j is given, adjust uses an intelligent algorithm to insert spaces in output lines where they are
most needed, until the lines extend to the right margin. First, all one space word separators are examined.
One space is added to each separator, starting with the one having the most letters between it and the
preceding and following separators, until the modified line reaches the right margin. If all one space
separators are increased to two spaces and more spaces must be inserted, the algorithm is repeated with
two space separators, and so on.

Output line indentation is held to one less than the right margin. If a single word is larger than the line
size (right margin minus indentation), that word appears on a line by itself, properly indented, and extends
beyond the right margin. However, if -r is used, such words are still right justified, if possible.

If the current locale defines class names ekinsoku and bkinsoku (see iswctype(3C)), adjust formats
the text in accordance with the ekinsoku /bkinsoku character classification and margin settings (see -
r , -j , and -m options).

EXTERNAL INFLUENCES
Environment Variables

LANGprovides a default value for the internationalization variables that are unset or null. If LANG is
unset or null, the default value of "C" (see lang(5)) is used. If any of the internationalization variables con-
tains an invalid setting, adjust will behave as if all internationalization variables are set to "C". See
environ(5).

LC_ALL If set to a non-empty string value, overrides the values of all the other internationalization vari-
ables.

LC_CTYPEdetermines the interpretation of text as single and/or multi-byte characters, the classification
of characters as printable, and the characters matched by character class expressions in regular expres-
sions.

LC_MESSAGESdetermines the locale that should be used to affect the format and contents of diagnostic
messages written to standard error and informative messages written to standard output.

NLSPATHdetermines the location of message catalogs for the processing of LC_MESSAGES.

International Code Set Support
Single- and multi-byte character code sets are supported.

DIAGNOSTICS
adjust complains to standard error and later returns a nonzero value if any input file cannot be opened
(it skips the file). It does the same (but quits immediately) if the argument to -m or -t is out of range, or if
the program is improperly invoked.

Input lines longer than BUFSIZ are silently split (before tab expansion) or truncated (afterwards). Lines
that are too wide to center begin in column 1 (no leading spaces).

EXAMPLES
This command is useful for filtering text while in vi(1). For example,

!}adjust

reformats the rest of the current paragraph (from the current line down), evening the lines.

The vi command:

:map ˆX {!}adjust -jˆVˆM

(where ˆ denotes control characters) sets up a useful ‘‘finger macro’’. Typing ˆX (Ctrl-X) reformats the
entire current paragraph.

adjust -m1 is a simple way to break text into separate words without white space, except for tagged-
paragraph tags.

HP-UX Release 11i: December 2000 − 2 − Section 1−−11

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

adjust(1) adjust(1)

WARNINGS
This program is designed to be simple and fast. It does not recognize backslash to escape white space or
other characters. It does not recognize tagged paragraphs where the tag is on a line by itself. It knows
that lines end in newline or null, and how to deal with tabs and backspaces, but it does not do anything spe-
cial with other characters such as form feed (they are simply ignored). For complex operations, standard
text processors are likely to be more appropriate.

This program could be implemented instead as a set of independent programs, fill, center, and justify (with
the -r option). However, this would be much less efficient in actual use, especially given the program’s
special knowledge of tagged paragraphs and last lines of paragraphs.

AUTHOR
adjust was developed by HP.

SEE ALSO
nroff(1).

Section 1−−12 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

admin(1) admin(1)

NAME
admin - create and administer SCCS files

SYNOPSIS
admin -i [name] [-n] [-b] [-a login] ... [-d flag[flag-val]] ... [-f flag[flag-val]] ...

[-m mrlist] ... [-r rel] [-t [name]] [-y [comment]] file ...

admin -n [-a login] ... [-d flag[flag-val]] ... [-f flag[flag-val]] ... [-m mrlist] ...
[-t [name]] [-y [comment]] file ...

admin [-a login] ... [-e login] ... [-d flag[flag-val]] ... [-m mrlist] ...
[-r rel] [-t [name]] file ...

admin -h file ...

admin -z file ...

DESCRIPTION
The admin command is used to create new SCCS files and change the parameters of existing ones. Argu-
ments to admin , which may appear in any order, (unless -- is specified as an argument, in which case all
arguments after -- are treated as files) consist of option arguments, beginning with - , and named files
(note that SCCS file names must begin with the characters s.). If a named file does not exist, it is created
and its parameters are initialized according to the specified option arguments. Parameters not initialized
by an option argument are assigned a default value. If a named file does exist, parameters corresponding
to specified option arguments are changed, and other parameters are left unaltered.

If directory is named instead of file, admin acts on each file in directory , except that non-SCCS files (the
last component of the path name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read, and each line of the standard input is assumed to be the
name of an SCCS file to be processed. Again, non-SCCS files and unreadable files are silently ignored.

The admin option arguments apply independently to all named files, whether one file or many. In the fol-
lowing discussion, each option is explained as if only one file is specified, although they affect single or mul-
tiple files identically.

Options
The admin command supports the following options and command-line arguments:

-n This option indicates that a new SCCS file is to be created.

-i [name] The name of a file from which the contents for a new SCCS file is to be taken. (if name
is a binary file, then you must specify the -b option) The contents constitutes the first
delta of the file (see the -r option for the delta numbering scheme). If the -i option
is used but the file name is omitted, the text is obtained by reading the standard input
until an end-of-file is encountered. If this option is omitted, the SCCS file is created
with an empty initial delta. Only one SCCS file can be created by an admin com-
mand on which the -i option is supplied. Using a single admin to create two or
more SCCS files requires that they be created empty (no -i option). Note that the -
i option implies the -n option.

-b Encode the contents of name, specified to the -i option. This keyletter must be used
if name is a binary file; otherwise, a binary file will not be handled properly by SCCS
commands.

-r rel The release (rel) into which the initial delta is inserted. This option can be used only
if the -i option is also used. If the -r option is not used, the initial delta is inserted
into release 1. The level of the initial delta is always 1 (by default initial deltas are
named 1.1).

-t [name] The name of a file from which descriptive text for the SCCS file is to be taken. If the
-t option is used and admin is creating a new SCCS file (the -n and/or -i options
are also used), the descriptive text file name must also be supplied. In the case of
existing SCCS files:

• A -t option without a file name causes removal of descriptive text (if any)
currently in the SCCS file.

• A -t option with a file name causes text (if any) in the named file to replace
the descriptive text (if any) currently in the SCCS file.

HP-UX Release 11i: December 2000 − 1 − Section 1−−13

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

admin(1) admin(1)

-f flag This option specifies a flag, and possibly a value for the flag, to be placed in the SCCS
file. Several -f options can be supplied on a single admin command line. The allow-
able flags and their values are:

b Allows use of the -b option on a get command (see get(1)) to create
branch deltas.

cceil The highest release (i.e., "ceiling"), a number less than or equal to
9999, which can be retrieved by a get command for editing. The
default value for an unspecified c flag is 9999.

f floor The lowest release (i.e., "floor"), a number greater than 0 but less than
9999, which may be retrieved by a get command for editing. The
default value for an unspecified f flag is 1.

dSID The default delta number SID to be used by a get command (see
get(1)).

i str Causes the message:

No id keywords (cm7)

issued by get or delta to be treated as a fatal error (see delta(1)).
In the absence of this flag, the message is only a warning. The mes-
sage is issued if no SCCS identification keywords (see get(1)) are
found in the text retrieved or stored in the SCCS file. If a value is
supplied, the keywords must exactly match the given string. How-
ever, the string must contain a keyword, but must not contain embed-
ded newlines.

j Allows concurrent get commands for editing on the same SID of an
SCCS file. This allows multiple concurrent updates to the same ver-
sion of the SCCS file.

Only one user can perform concurrent edits. Access by multiple users
is usually accomplished by using a common login or a set user ID pro-
gram (see chmod(1) and exec(2)).

l list A list of releases to which deltas can no longer be made. (A get -e
against one of these locked releases fails). The list has the following
syntax:

list ::= range | list , range
range ::= RELEASE NUMBER | a

The character a in the list is equivalent to specifying all releases for
the named SCCS file. Omitting any list is equivalent to a.

n Causes delta to create a null delta in each of those releases being
skipped (if any) when a delta is made in a new release (such as when
making delta 5.1 after delta 2.7, release 3 and release 4 are skipped).
These null deltas serve as anchor points so that branch deltas can be
created from them later. The absence of this flag causes skipped
releases to be nonexistent in the SCCS file, preventing branch deltas
from being created from them in the future.

qtext User-definable text substituted for all occurrences of the %Q%keyword
in SCCS file text retrieved by get .

mmod The module name of the SCCS file substituted for all occurrences of
the %M%keyword in SCCS file text retrieved by get . If the mflag is
not specified, the value assigned is the name of the SCCS file with the
leading s. removed.

t type The type of module in the SCCS file substituted for all occurrences of
%Y%keyword in SCCS file text retrieved by get .

Section 1−−14 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

admin(1) admin(1)

v [pgm] Causes delta to prompt for Modification Request (MR) numbers as
the reason for creating a delta. The optional value specifies the name
of a (MR) number validity checking program (see delta(1)). (If this
flag is set when creating an SCCS file, the moption must also be used
even if its value is null).

x Causes get to create files with execute permissions.

-d flag Causes removal (deletion) of the specified flag from an SCCS file. The -d option can
be specified only when processing existing SCCS files. Several -d options can be sup-
plied on a single admin command line. See the -f option for allowable flag names.

l list A list of releases to be unlocked. See the -f option for a description
of the l flag and the syntax of a list.

-a login A login name, or numerical HP-UX group ID, to be added to the list of users allowed
to make deltas (changes) to the SCCS file. A group ID is equivalent to specifying all
login names common to that group ID. Several a options can be used on a single
admin command line. As many logins or numerical group IDs as desired can be on
the list simultaneously. If the list of users is empty, anyone can add deltas. A login
or group ID preceded by a ! denies permission to make deltas.

-e login A login name or numerical group ID to be erased from the list of users allowed to
make deltas (changes) to the SCCS file. Specifying a group ID is equivalent to specify-
ing all login names common to that group ID. Several e options can be used on a sin-
gle admin command line.

-y [comment] The comment text is inserted into the SCCS file as a comment for the initial delta in a
manner identical to that of delta(1). Omission of the -y option results in a default
comment line being inserted in the form:

date and time created YY / MM / DD / HH / MM / SS by login

The -y option is valid only if the -i and/or -n options are specified (i.e., a new SCCS
file is being created).

-m mrlist The list of Modification Request (MR) numbers is inserted into the SCCS file as the
reason for creating the initial delta, in a manner identical to delta(1). The v flag must
be set and the (MR) numbers are validated if the v flag has a value (the name of an
(MR) number validation program). Diagnostic messages occur if the v flag is not set
or (MR) validation fails.

-h Causes admin to check the structure of the SCCS file (see sccsfile(4)), and to compare
a newly computed checksum (the sum of all of the characters in the SCCS file except
those in the first line) with the checksum that is stored in the first line of the SCCS
file. Appropriate error diagnostics are produced.

This option inhibits writing on the file, thus canceling the effect of any other options
supplied, and therefore is only meaningful when processing existing files.

-z The SCCS file checksum is recomputed and stored in the first line of the SCCS file
(see -h , above).

Note that use of this option on a truly corrupted file can prevent future detection of
the corruption.

Access Control Lists (ACLs)
Do not add optional ACL entries to SCCS files. SCCS removes them, possibly causing unexpected and
undesirable access modes.

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of text as single- and/or multi-byte characters.

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_CTYPE or LC_MESSAGESis not specified in the environment or is set to the empty string, the
value of LANGis used as a default for each unspecified or empty variable. If LANGis not specified or is set
to the empty string, a default of C (see lang(5)) is used instead of LANG. If any internationalization vari-
able contains an invalid setting, admin behaves as if all internationalization variables are set to C. See

HP-UX Release 11i: December 2000 − 3 − Section 1−−15

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

admin(1) admin(1)

environ(5).

International Code Set Support
Single-byte and multi-byte character code sets are supported.

DIAGNOSTICS
Use sccshelp(1) for explanations.

WARNINGS
SCCS files can be any length, but the number of lines in the text file itself cannot exceed 99999 lines.

FILES
The last component of all SCCS file names must be of the form s. filename. New SCCS files are given
mode 444 (see chmod(1)). Write permission in the pertinent directory is required to create a file. All writ-
ing done by admin is to a temporary x-file, called x. filename, (see get(1)), created with mode 444 if the
admin command is creating a new SCCS file, or with the same mode as the SCCS file if it exists. After
successful execution of admin , the SCCS file is removed (if it exists), and the x-file is renamed to the name
of the SCCS file. This ensures that changes are made to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and that SCCS files themselves be
mode 444. The mode of any given directory allows only the owner to modify SCCS files contained in that
directory. The mode of the SCCS files prevents any modification at all except by SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the mode can be changed to 644 by the
owner, thus allowing the use of vi or any other suitable editor. Care must be taken! The edited file should
always be processed by an admin -h to check for corruption followed by an admin -z to generate a
proper checksum. Another admin -h is recommended to ensure the SCCS file is valid.

admin also makes use of a transient lock file called z. filename), which is used to prevent simultaneous
updates to the SCCS file by different users. See get(1) for further information.

SEE ALSO
delta(1), ed(1), get(1), sccshelp(1), prs(1), what(1), sccsfile(4), acl(5).

STANDARDS CONFORMANCE
admin : SVID2, SVID3, XPG2, XPG3, XPG4

Section 1−−16 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

answer(1) answer(1)

NAME
answer - phone message transcription system

SYNOPSIS
answer [-pu]

DESCRIPTION
The answer interactive program helps you to transcribe telephone (and other) messages into electronic
mail.

The program uses your personal elm alias database and the system elm alias database, allowing you to
use aliases to address the messages.

Options
answer supports the following options:

-p Prompt for phone-slip-type message fields.

-u Allow addresses that are not aliases.

Operation
answer begins with the Message to: prompt. Enter a one-word alias or a two-word user name
("Words" are separated by spaces.) The user name is converted to an alias in the form f_lastword, where f
is the first character of the first word, lastword is the second word, and all letters are shifted to lowercase.
For example, Dave Smith is converted to the alias d_smith .

Without the -u option, the specified or converted alias must exist in the alias databases. With the -u
option, if the processed "alias" is not in the alias databases, it is used for the address as is.

The fully expanded address is displayed.

With the -p option, you are asked for typical message slip data:

Caller:
of:
Phone:

TELEPHONED -
CALLED TO SEE YOU -
WANTS TO SEE YOU -
RETURNED YOUR CALL -
PLEASE CALL -
WILL CALL AGAIN -
*****URGENT****** -

Enter the appropriate data. You can put just an X or nothing after the pertinent dash prompts, or you can
type longer comments. Whatever you enter becomes part of the message. Lines with no added text are
omitted from the message.

Finally, you are prompted for a message. Enter a message, if any, ending with a blank line. The message
is sent and the Message to: prompt is repeated.

To end the program, enter any one of bye , done , exit , or quit , at the Message to: prompt.

EXAMPLES
User input is in normal type.

With No Options
This example shows a valid alias, an invalid user name, and a valid user name. In the invalid case, the con-
verted alias is displayed in square brackets.

Message to: oswald
address ’oswaldr@mycompany.com (Oswald Rarebit)’

Enter message for oswald ending with a blank line.

HP-UX Release 11i: December 2000 − 1 − Section 1−−17

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

answer(1) answer(1)

> And here is the message.
>

Message to: albert einstein
Sorry, could not find ’albert einstein’ [a_einstein] in list!

Message to: john jones
address ’mrjones@companybee.com (John P. Jones)’

Enter message for john jones ending with a blank line.

> A nice message
>

Message to: quit

With the -u Option
If you enter answer -u , the previous error is treated differently.

Message to: albert einstein
address ’a_einstein’

Enter message for albert einstein ending with a blank line.

> About your theory ...
>

With the -p Option
If you enter answer -p , the phone-slip prompts are added. The three lines with no added text are
deleted from the message.

Message to: George Dancer
address ’g_dancer@cup.hp.com (George B. Dancer)’

Caller: Harold Maudlin
of: Terpsichore Inc.
Phone: 123 456 7890

TELEPHONED -at 4:30pm
CALLED TO SEE YOU -
WANTS TO SEE YOU -X
RETURNED YOUR CALL -
PLEASE CALL - X
WILL CALL AGAIN -
*****URGENT****** - very very!

Enter message for George Dancer ending with a blank line.

> He said that you would ...
>

FILES
$HOME/.elm/aliases User alias database data table
$HOME/.elm/aliases.dir User alias database directory table

Section 1−−18 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

answer(1) answer(1)

$HOME/.elm/aliases.pag User alias database hash table
$HOME/.elm/aliases.text User alias source text
/var/mail/.elm/aliases System alias database data table
/var/mail/.elm/aliases.dir System alias database directory table
/var/mail/.elm/aliases.pag System alias database hash table
/var/mail/.elm/aliases.text System alias source text
/tmp/snd. pid Outbound mail message edit buffer

AUTHOR
answer was developed by HP.

SEE ALSO
elm(1), newalias(1).

HP-UX Release 11i: December 2000 − 3 − Section 1−−19

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

ar(1) ar(1)

NAME
ar - create and maintain portable archives and libraries

SYNOPSIS
ar [-]key [-][modifier ...] [posname] afile [name ...]

DESCRIPTION
The ar command maintains groups of files combined into a single archive file. Its main use is to create and
update library files as used by the link editor (see ld(1)). It can be used, however, for any similar purpose.
The magic string and file headers used by ar consist of printable ASCII characters. If an archive is com-
posed of printable files, the entire archive is printable.

Individual files are inserted without conversion into the archive file. When ar creates an archive, it
creates headers in a format that is portable across all machines. See ar(4) for a detailed description of the
portable archive format and structure. The archive symbol table (described in ar(4)) is used by the link edi-
tor to search repeatedly and efficiently through libraries of object files. An archive symbol table is created
and maintained by ar only when the archive contains at least one object file. The archive symbol table is
in a specially named file that is always the first file in the archive. This file is never mentioned or accessi-
ble to the user. Whenever ar is used to create or update the contents of an archive, the symbol table is
rebuilt (unless the z modifier is used). The s modifier described below forces the symbol table to be rebuilt.

One key operation character from the set, drqtpmx , is required and can be optionally preceded by a
hyphen (-). The required key operation character can be specified with one or more modifier characters
from the set abcfFilsuvzACT . posname is used with the r and mkey operations and the a, b, and i
modifiers to specify a position in the archive. afile is the archive file. Constituent files in the archive file
are specified by name arguments.

The following list describes the key operation characters:

d Delete the named files from the archive file.

r Replace the named files, or add a new file to the archive:

• If the u modifier is used with the operation character r , only those files with modification
dates later than those of the corresponding member files are replaced.

• If an optional positioning character from the set abi is used, the posname argument must be
present and specifies that new files are to be placed after (a) or before (b or i) posname. In
the absence of a positioning character, new files are placed at the end.

• ar creates afile if it does not already exist.

• If no name is specified and:

• the specified archive file does not exist, ar creates an empty archive file containing only
the archive header (see ar(4)).

• the archive contains one or more files whose names match names in the current directory,
each matching archive file is replaced by the corresponding local file without considering
which file may be newer unless the u modifier is also specified.

q Quickly append the named files to the end of the archive file. Positioning characters are invalid.
The operation does not check to determine whether the added members are already in the
archive. ar creates afile if it does not already exist.

t Print a table of contents of the archive file to the standard output. If no names are given, all
files in the archive are described. If names are given, information about only those files appears.

p Print the named files in the archive to the standard output. If no names are specified, the con-
tents of all files are printed in the order that they appear in the archive.

m Move the named files. By default, the files are moved to the end of the archive. If a positioning
character is present, the posname argument must be present and, as in the r operation,
posname specifies where the files are to be moved. Note that, when used with a positioning char-
acter, the files are moved in the same order that they currently appear in the archive, not in the
order specified on the command line. See EXAMPLES.

x Extract the named files. If no names are given, all files in the archive are extracted. In neither
case does x alter entries from the archive file.

Section 1−−20 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

ar(1) ar(1)

The following list describes the optional modifier characters:

a Position the files after the existing positioning file specified by posname .

b Place the new files before the existing positioning file specified by posname .

c Suppress the message normally produced when afile is created. For r and q operations, ar nor-
mally creates afile if it does not already exist.

f Truncate the named file names to 14 bytes before performing operations on an archive. This
modifier has been provided for compatibility with previous releases where file names up to a
maximum of 14 bytes were supported. Longer file names were truncated. When used with the r
operation, the first existing file that matches the truncated file name is replaced. The f modifier
can also be used with other operations to allow the full file names to be specified, rather than the
truncated file names. Also see the description of the F modifier.

i Place the new files before the existing positioning file specified by posname . Identical to the b
modifier.

l Place temporary files in the local current working directory rather than in the directory specified
by the environment variable TMPDIR or in the default directory /var/tmp . Only the d, m, q,
and r operations and the s and F modifiers use temporary files.

s Regenerate the archive symbol table even if ar is not invoked with an operation that modifies
the archive contents. This modifier is useful for restoring the archive symbol table after the
strip command has been used on the archive (see strip(1)) or after the archive has been
modified using the z modifier.

u Update the archive. (r operations only) Do not copy the local file to the archive unless the local
file is newer than the corresponding existing file in the archive.

v Give a verbose file-by-file description of the creation or modification of an archive file to the stan-
dard output. When used with t , v gives a long listing of all information about the files. When
used with the d, m, p, q, or x operations, the verbose modifier causes ar to print each key opera-
tion character and the file name associated with that operation. For the r operation, ar shows
an a if it adds a new file or an r if it replaces an existing one. For the p operation, ar prints the
name of the file to the standard output before the contents of the file are printed.

z Suppress the rebuilding of the symbol table when the archive is modified. This modifier is useful
only to avoid long build times when creating a large archive piece-by-piece. If an existing archive
contains a symbol table, the z modifier will cause it to be invalidated. If a file name longer than
15 bytes is given the entire archive is rewritten. To rebuild the symbol table, either use the
ranlib command (see ranlib(1)), or invoke ar again with the s modifier.

A Suppress warning messages regarding optional access control list entries. ar does not archive
optional access control list entries in a file’s access control list (see acl(5)). Normally, a warning
message is printed for each file having optional access control list entries.

C Prevent extracted files from replacing files with the same name. The C modifier can only be
used with the x operation.

F Truncate the entire archive. The F modifier causes the entire archive to be rewritten such that
all file names within the archive are truncated to 14 bytes, even when ar does not modify the
archive contents. The long name table will be removed (see ar(4)). This modifier has been pro-
vided for compatibility with previous releases where file names up to a maximum of 14 bytes
were supported. Also see the description of the f modifier.

T Truncate file names whose archive names are longer than those supported by the file system. By
default, files with names longer than those supported by the file system will not be extracted and
will cause an error. The T modifier can only be used with the x operation.

Only the following combinations are meaningful; no other combination of modifiers with operations have
any effect on the operation:

d: v , f , F, l
m: v , f , F, l , and a | b | i
r : v , f , F, l , c , A, u, and a | b | i
q: v , f , F, l , c , A, z , s
t : v , f , F, s

HP-UX Release 11i: December 2000 − 2 − Section 1−−21

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

ar(1) ar(1)

p: v , f , F, s
x : v , f , F, s , C, T

EXTERNAL INFLUENCES
Environment Variables

The following internationalization variables affect the execution of ar :

LANG
Determines the locale category for native language, local customs and coded character set in the
absence of LC_ALL and other LC_* environment variables. If LANGis not specified or is set to the
empty string, a default of C (see lang(5)) is used instead of LANG.

LC_ALL
Determines the values for all locale categories and has precedence over LANG and other LC_*
environment variables.

LC_CTYPE
Determines the locale category for character handling functions.

LC_MESSAGES
Determines the locale that should be used to affect the format and contents of diagnostic messages
written to standard error.

LC_NUMERIC
Determines the locale category for numeric formatting.

LC_TIME
Determines the format and contents of date and time formatting.

NLSPATH
Determines the location of message catalogues for the processing of LC_MESSAGES.

If any internationalization variable contains an invalid setting, ar behaves as if all internationalization
variables are set to C. See environ(5).

In addition, the following environment variable affects ar :

TMPDIR
Specifies a directory for temporary files (see tmpnam(3S)). The l modifier overrides the TMPDIR
variable, and TMPDIRoverrides /var/tmp , the default directory.

DIAGNOSTICS
phase error on file name

The named file was modified by another process while ar was copying it into the archive.
When this happens, ar exits and the original archive is left untouched.

ar write error: file system error message
ar could not write to a temporary file or the final output file. If ar was trying to write the
final output file, the original archive is lost.

ar reports cannot create file.a , where file.a is an ar -format archive file, even if file.a already
exists. This message is triggered when file.a is write-protected or inaccessible.

EXAMPLES
Create a new file (if one does not already exist) in archive format with its constituents entered in the order
indicated:

ar r newlib.a f3 f2 f1 f4

Replace files f2 and f3 such that the new copies follow file f1 , and f3 follows f2 :

ar ma f1 newlib.a f2 f3
ar ma f2 newlib.a f3
ar r newlib.a f2 f3

The archive is then ordered:

newlib.a: f1 f2’ f3’ f4

where the single quote marks indicate updated files. The first command says "move f2 and f3 after f1 in
newlib.a", thus creating the order:

Section 1−−22 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

ar(1) ar(1)

f1 f3 f2 f4

Note that the relative order of f2 and f3 has not changed. The second command says "move f3 after f2
in newlib.a", creating the order:

f1 f2 f3 f4

The third command then replaces files f2 and f3 . Since files f2 and f3 both already existed in the
archive, this sequence of commands could not be simply replaced by:

ar ra f1 newlib.a f2 f3

because the previous position and relative order of f2 and f3 in the archive are preserved (no matter how
the files are specified on the command line), producing the following archive:

newlib.a: f3’ f2’ f1 f4

WARNINGS
If you are a user who has appropriate privileges, ar can alter any archive file, even if it is write-protected.

If the same file is mentioned twice in an argument list, it might be put in the archive twice.

If multiple copies of a file exist in an archive, ar matches the first occurrence of the file in the archive.

ar automatically creates an archive symbol table, a task performed in early HP-UX versions by ranlib .
Use of the z modifier either suppresses generation of the symbol table, or invalidates it if it exists. The
ranlib command can be used to rebuild the symbol table if an archive was built with the z modifier.

FILES
/var/tmp/ar* Temporary files

SEE ALSO
System Tools:

ld(1) Invoke the link editor

Miscellaneous:
acl(5) Access control lists
a.out(4) Assembler, compiler, and linker output
ar(4) Archive format
lorder(1) Find the ordering relation for object files or archive libraries
ranlib(1) Regenerate an archive symbol table
strip(1) Strip symbol and line number information from an object file
tmpnam(3S) Create a name for a temporary file

Texts and Tutorials:
HP-UX Linker and Libraries Online User Guide

(See the +help option)
HP-UX Linker and Libraries User’s Guide

(See manuals(5) for ordering information)

STANDARDS CONFORMANCE
ar : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 4 − Section 1−−23

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

as(1) as(1)

NAME
as - assembler (Precision Architecture)

SYNOPSIS
as [[option]... [file] ...]...

DESCRIPTION
The as command assembles source text from files or standard input and produces a relocatable object file
suitable for the link editor, ld (see ld(1).

Source text is read from standard input only if no file argument is given. Standard input cannot be a device
file, such as a terminal. The option and file arguments can be intermingled on the command line. Every
specified option applies to every specified file, or standard input. The source files are concatenated to form
a single input stream.

If the -o objfile option is not specified, the .s suffix (if any) is stripped from the end of the last source file
name and .o is appended to the name to form the name of the default object code output file.

as output is not optimized. as creates a relocatable object file that must be processed by ld before it can
be successfully executed (see ld(1)).

The cc compiler normally runs the C preprocessor cpp (see cpp(1)), then invokes as to assemble the .s
files together with /usr/lib/pcc_prefix.s , and subsequently invokes ld .

Arguments
as recognizes the following arguments.

file A text file contain assembler source code.

option An option described below in Options.

Options
as recognizes the following values for the option argument.

-e Permit an unlimited number of errors to be tolerated before the assembly process is
abandoned. By default, one hundred errors are allowed before the assembler
aborts.

-f Set the default value for the .CALLINFO directive to CALLS, The normal default
value for a .CALLINFO that omits the CALLER, CALLS or NO_CALLSparameter
is NO_CALLS.

-l Write a listing of the program to standard output after assembly. This listing shows
the offsets of instructions and actual values for fields.

-o objfile Name the output object file objfile instead of using the default .o suffix on the file
name of the last file specified.

-p number Set the default privilege level for an .EXPORT directive to number. By default, all
user-level procedures are exported at privilege level 3.

-s Set the output file suffix to .ss instead of .o . The file will have a format suitable
for conversion to the ROM burning programs.

-u Do not create unwind descriptors. To avoid the need for the .CALLINFO directive,
the .ENTER and .LEAVE directives must not have been used.

-v xrfile Write cross-reference data to the file named xrfile.

-V Print the version number of the assembler program to standard error before assem-
bling the source text.

-w [number] Either suppress all warning messages if no number is supplied or suppress just the
warning number provided. Multiple -w number options can be used to suppress
additional warning messages.

+DAarchitecture Assemble code for the architecture specified. The use of this option is discouraged.
The preferred method for selecting the architecture is to have a .LEVEL directive
contained within the assembly source file.

Section 1−−24 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

as(1) as(1)

The assembler uses the following precedence to determine the target architecture.

1. Use the .LEVEL directive within the assembly source file.
2. Use the +DA command-line specification.
3. Use the default architecture of PA_RISC_1.0 .

+z,+Z Both of these options are used in the building of shared libraries. For a more com-
plete discussion regarding these options, see the manual HP-UX Linker and
Libraries User’s Guide.

EXTERNAL INFLUENCES
International Code Set Support

Single- and multibyte character code sets are supported.

DIAGNOSTICS
When syntactic or semantic errors occur, a single-line diagnostic is written to standard error, that includes
the file name and the line number where it occurred. The format is as follows:

as: " filename",line line: error error: message
source = source-line

WARNINGS
as does not invoke cpp(1) or m4(1) to perform macro processing.

FILES
/usr/include/hard_reg.hr Hardware register definitions
/usr/include/soft_reg.h Software calling convention register definitions
/usr/include/std_space.h Standard space and subspace definition
/usr/lib/nls/msg/C/as.cat Assembler error message catalog
/usr/lib/pcc_prefix.s Space, subspace and register definitions
file.o Object file

SEE ALSO
adb(1), cc_bundled(1), ld(1), nm(1), crt0(3).

Assembly Language Reference Manual,
Precision Architecture and Instruction Reference Manual,
Procedure Calling Conventions Reference Manual.

HP-UX Release 11i: December 2000 − 2 − Section 1−−25

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

asa(1) asa(1)

NAME
asa - interpret ASA carriage control characters

SYNOPSIS
asa [files]

DESCRIPTION
asa interprets the output of FORTRAN programs that utilize ASA carriage control characters. It
processes either the files whose names are given as arguments, or the standard input if - is specified or if
no file names are given. The first character of each line is assumed to be a control character. The following
control characters are interpreted as indicated:

(blank) Output a single new-line character before printing.

(space) (XPG4 only.) The rest of the line will be output without change.

0 Output two new-line characters before printing.

0 (XPG4 only.) A <newline> shall be output, then the rest of the input line.

1 Output a new-page character before printing.

+ Overprint previous line.

+ (XPG4 only.) The <newline> of the previous line shall be replaced with one or more
implementaions-defined characters that causes printing to return to column position 1, fol-
lowed by the rest of the input line. If the + is the first character in the input, it shall have the
same effect as <space>.

Lines beginning with other than the above characters are treated the same as lines beginning with a blank.
The first character of a line is not printed. If any such lines appear, an appropriate diagnostic is sent to
standard error. This program forces the first line of each input file to start on a new page.

(XPG4 only.) The action of the asa utility is unspecified upon encountering any character other than those
listed above as the first character in a line.

To view the output of FORTRAN programs which use ASA carriage control characters and have them
appear in normal form, asa can be used as a filter:

a.out | asa | lp

The output, properly formatted and paginated, is then directed to the line printer. FORTRAN output pre-
viously sent to a file can be viewed on a user terminal screen by using:

asa file

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of text within file as single- and/or multi-byte characters.

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_CTYPEor LC_MESSAGESis not specified in the environment or is set to the empty string, the
value of LANGis used as a default for each unspecified or empty variable. If LANGis not specified or is
set to the empty string, a default of "C" (see lang(5)) is used instead of LANG.

If any internationalization variable contains an invalid setting, asa behaves as if all internationalization
variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

SEE ALSO
efl(1), f77(1), fsplit(1), ratfor(1).

STANDARDS CONFORMANCE
asa : XPG4, POSIX.2

Section 1−−26 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

at(1) at(1)

NAME
at, batch - execute batched commands immediately or at a later time

SYNOPSIS
Enter commands from standard input to run at a specified time:

at [-m] [-q queue] -t spectime
commands
eof

at [-m] [-q queue] time [date] [next timeunit +count timeunit]
commands
eof

Enter commands from a file to run at a specified time:
at -f job-file [-m] [-q queue] -t spectime

at -f job-file [-m] [-q queue] time [date] [next timeunit +count timeunit]

List scheduled jobs:
at -d job-id ...

at -l [job-id ...]

at -l -q queue

Cancel (remove) a scheduled job:
at -r job-id ...

Enter commands from standard input to run as a batch process:
batch
commands
eof

Enter commands from a file to run as a batch process:
batch < job-file

DESCRIPTION
The at and batch commands schedule jobs for execution by the cron daemon (see cron(1M)).

at schedules a job for execution at a specified time. at can also list (-l) or remove (-r) existing
scheduled at and batch jobs.

batch schedules a job for execution immediately, or as soon as system load levels permit.

You can enter commands into a job in one of the following ways:

• From the keyboard on separate lines immediately after the at or batch command line, followed by
the currently defined eof (end-of-file) character to end the input. The default eof is Ctrl-D. It can be
redefined in your environment (see stty(1)).

• With the -f option of the at command to read input from a script file.

• From output piped from a preceding command.

Options and Arguments
at recognizes the following options and arguments.

commands One or more HP-UX commands that can be executed as a shell script by at or
batch .

eof End-of-file character. The default is Ctrl-D unless defined otherwise in your
environment.

job-file The path name of an existing file.

job-id The job identifier reported by at or batch when the job was originally
scheduled.

-d job-id ... Displays the contents of the specified job. An unprivileged user is restricted to
display information only on jobs that the user owns. A user with the appropriate

HP-UX Release 11i: December 2000 − 1 − Section 1−−27

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

at(1) at(1)

privileges is able to display information about all jobs.

-f job-file Read in the commands contained in job-file instead of using standard input.

-l [job-id ...] List the jobs specified. If no job-ids are given, all jobs are listed.

-m Send mail to the invoking user after the job has run, announcing its completion.
Unless redirected elsewhere within the job, standard output and standard error
produced by the job are automatically mailed to the user as well.

-q queue Submit the specified job to the queue indicated (see queuedefs(4)). Queues a, b,
and d through y can be used. at uses queue a by default. batch always uses
queue b. All queues except b require a time or a -t specification. at -qb is
equivalent to batch .

-r job-id ... Remove the jobs specified by each job-id.

-t spectime Define the absolute time to start the job.

spectime A date and time in the format:

[[CC]YY]MMDDhhmm [. ss]

where the decimal digit pairs are as follows:

CC The first two digits of the year (19 , 20).
YY The second two digits of the year (69−99 , 00−68). See WARN-

INGS.
MM The month of the year (01−12).
DD The day of the month (01−31).
hh The hour of the day (00−23).
mm The minute of the hour (00−59).
ss The second of the minute (00−61).

If both CC and YY are omitted, the default is the current year.

If CC is omitted and YY is in the range 69−99 , CC defaults to 19 .
Otherwise, CCdefaults to 20 .

The range for ss provides for two leap seconds. If ss is 60 or 61 , and
the resulting time, as affected by the TZ environment variable, does
not refer to a leap second, the time is set to the whole minute follow-
ing mm.

If ss is omitted, it defaults to 00 .

time [date] Define the base time for starting the job.

time A time specified as one, two, or four digits. One- and two-digit
numbers represent hours; four digits represent hours and minutes.

Alternately, time can be specified as two numbers separated by a
colon (:), a single quote (’), the letter h (h), a period (.), or a comma
(,). Spaces may be present between the separator and digits
representing minutes. If defined in langinfo(5), special time unit
characters can be used.

am or pm can be appended to indicate morning or afternoon. Other-
wise, a 24-hour clock is understood. For example, 0815 , 8:15 ,
8’15 , 8h15 , 8.15 , and 8,15 are read as 15 minutes after eight in
the morning. The suffixes zulu and utc can be used to specify Coor-
dinated Universal Time (UTC), equivalent to Greenwich Mean Time
(GMT).

The special names midnight , noon , and now are also recognized.

date A day of the week (fully spelled out or abbreviated) or a date consist-
ing of a day, a month, and optionally a year. The day and year fields
must be numeric, and the month can be either fully spelled out, abbre-
viated, or numeric. The fields in the date string are separated by
punctuation marks such as slash (/), hyphen (-), period (.), and
comma (,). If defined in langinfo(5), special date unit characters can

Section 1−−28 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

at(1) at(1)

be present. A field having a value greater than 31 is treated as the
year field and the remaining two fields in the date string are treated
as month and day fields. Otherwise, if a given date is ambiguous (such
as 2/5 or 2/5/10), the D_T_FMTstring (if defined in langinfo(5)) is
used to resolve the ambiguity.

Two special days, today and tomorrow , are also recognized. If no
date is given, today is assumed if the given time is greater than the
current time; tomorrow is assumed if it is less.

If the given month is less than the current month (and no year is
given), next year is assumed. Two-digit years in the range 69 to 99
are expanded to 1969 to 1999; in the range 00 to 68, to 2000 to 2068.

next timeunit + count timeunit

Delay the execution date and time by a specific number of time units after the
base time specified by time [date].

count A decimal number. next is equivalent to +1 .

timeunit A time unit, one of the following: minutes , hours , days , weeks ,
months , or years , or their singular forms.

How Jobs Are Processed
When a job is accepted, at and batch print a message to standard error in the form:

job job-id at execution-date

where job-id is the job identifier in the form jobnumber. queue, such as 756284400.a , and execution-date
is the date and time when the job will be released for execution.

If your login shell is not the POSIX shell (/usr/bin/sh), the commands also print a warning message:

warning: commands will be executed using /usr/bin/sh

at jobs default to queue a. batch jobs always go in queue b. See the -q option.

An at or batch job consists of a two-part script stored in /var/spool/cron/atjobs that can be
executed by the POSIX shell.

The first part sets up the environment to match the environment when the at or batch command was
issued. This includes the current shell environment variables, current directory, umask , and ulimit (see
ulimit(2), umask(1), and proto(4)). Open file descriptors, traps, and priority are lost.

The second part consists of the commands that you entered.

When cron dispatches the job, it starts a POSIX shell to execute the script.

The number of jobs executing from a queue at any time is controlled by parameters in the file
/var/adm/cron/queuedefs (see queuedefs(4)).

Standard output and standard error from the job are mailed to the user unless they are redirected else-
where within the job.

Scheduled jobs are immune to the SIGHUPhangup signal, and remain scheduled if the user logs off.

Users are permitted to use the at and batch commands if their user names appear in the file
/usr/lib/cron/at.allow . If that file does not exist, users can use at and batch if their names do
not appear in the file /usr/lib/cron/at.deny . If neither file exists, only superuser is allowed to
submit jobs. If only at.deny exists but is empty, all users can use at and batch . The allow /deny
files consist of one user name per line.

All users can list and remove their own jobs. Users with appropriate privileges can list and remove jobs
other than their own.

EXTERNAL INFLUENCES
Environment Variables

LC_TIME determines the format and contents of date and time strings.

LC_MESSAGESdetermines the language in which messages are displayed.

HP-UX Release 11i: December 2000 − 3 − Section 1−−29

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

at(1) at(1)

LC_MESSAGESalso determines the language in which the words days , hours , midnight , minutes ,
months , next , noon , now, today , tomorrow , weeks , years , and their singular forms can also be
specified.

IF LC_TIME or LC_MESSAGESis not specified in the environment or is set to the empty string, the
value of LANGis used as a default for each unspecified or empty variable. If LANGis not specified or is set
to the empty string, a default of "C" (see lang(5)) is used instead of LANG.

If any internationalization variable contains an invalid setting, all internationalization variables default to
"C" (see environ(5)).

International Code Set Support
Single- and multi-byte character code sets are supported.

RETURN VALUE
The exit code is set to one of the following:

0 Successful completion
1 Failure

DIAGNOSTICS
at produces self-explanatory messages for syntax errors and out-of-range times.

warning: commands will be executed using /usr/bin/sh

If your login shell is not the POSIX shell (/usr/bin/sh), at and batch produce a warning mes-
sage as a reminder that at and batch jobs are executed using /usr/bin/sh .

EXAMPLES
The following commands show three different ways to run a POSIX shell script file named delayed-job
five minutes from now:

at -f delayed-job now + 5 minutes
cat delayed-job | at now + 5 minutes
at now + 5 minutes <delayed-job

Run a typical HP-UX command (nroff in this case) when system load levels permit, and redirect standard
output and standard error to files:

batch
nroff source-file >output-file 2>error-file
eof (the default is Ctrl-D)

Run a job contained in future in the home directory at 12:20 a.m. on December 27, 2013:

at -f $HOME/future -t201312271220.00

Redirect standard error to a pipe (useful in a shell procedure). Note that the sequence of the output
redirection specifications is significant. Standard error is redirected to where standard output is going;
standard output is redirected to a file; the original "standard output" (which now consists of the former
standard error) is piped to the mail program.

batch <<!! (sets eof temporarily to !!)
nroff input-file 2>&1 1> output-file | mail loginid
!!

Run a job contained in jobfile in the home directory at 5:00 a.m. next Tuesday:

at -f $HOME/jobfile 5am tuesday next week

Run the same job at 5:00 a.m. one week from next Tuesday (i.e., 2 Tuesdays in advance):

at -f $HOME/jobfile 5am tuesday + 2 weeks

Add a command to the file named weekly-run in directory jobs in the home directory so that it
automatically reschedules itself every time it runs. This example reschedules itself every Thursday at 1900
(7:00 p.m.):

echo "sh $HOME/jobs/weekly-run" | at 1900 thursday next week

The following commands show several forms recognized by at and include native language usage:

Section 1−−30 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

at(1) at(1)

at 0815 Jan 24
at 8:15 Jan 24
at 9:30am tomorrow
at now + 1 day
at -f job 5 pm Friday
at 17:40 Tor. # in Danish
at 17h46 demain # in French
at 5:30 26. Feb. 1988 # in German
at 12:00 26-02 # in Finnish

WARNINGS
If the date argument begins with a number and the time argument is also numeric without a suffix, the
time argument should be a four-digit number that can be correctly interpreted as hours and minutes.

If you use both next and +count within a single at command, the first operator is accepted and the trail-
ing operator is silently ignored.

If you use both -t and time ... in the same command, the first specified is accepted and the second is
silently ignored.

If the FIFO used to communicate with cron fills up, at is suspended until cron has read sufficient mes-
sages from the FIFO to make room for the message at is trying to write. This condition can occur if at is
writing messages faster than cron can process them or if cron is not executing.

Scheduled processes are run in the background. Any script file that calls itself will cause the user or the
system to run out of available processes.

If the execution-time request for a job duplicates the execution time of a currently scheduled job, the new
job time is set to the next available second.

at will not schedule jobs whose start time precedes the current Epoch (00:00:00 January 1, 1970 UTC).

at will not schedule jobs beyond the year 2037.

DEPENDENCIES
HP Process Resource Manager

If the optional HP Process Resource Management (PRM) software is installed and configured, jobs are
launched in the initial process resource group of the user that scheduled the job. The user’s initial group is
determined at the time the job is started, not when the job is scheduled. If the user’s initial group is not
defined, the job runs in the user default group (PRMID=1). See prmconfig(1) for a description of how to
configure HP PRM, and prmconf(4) for a description of how the user’s initial process resource group is
determined.

AUTHOR
at was developed by AT&T and HP.

FILES
/usr/bin/sh POSIX shell
/var/adm/cron Main cron directory
/var/adm/cron/.proto This file contains a set of shell commands which are added to the at

job file to make the environment for the at job same as the current
environment. See proto(4).

/usr/lib/cron/at.allow List of allowed users
/usr/lib/cron/at.deny List of denied users
/var/adm/cron/queuedefs Scheduling information
/var/spool/cron/atjobs Spool area

SEE ALSO
crontab(1), kill(1), mail(1), nice(1), ps(1), sh(1), stty(1), cron(1M), proto(4), queuedefs(4).

HP Process Resource Manager:
prmconfig(1), prmconf(4) in HP Process Resource Manager User’s Guide.

HP-UX Release 11i: December 2000 − 5 − Section 1−−31

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

at(1) at(1)

STANDARDS CONFORMANCE
at : SVID2, SVID3, XPG2, XPG3, XPG4

batch : SVID2, SVID3, XPG2, XPG3, XPG4

Section 1−−32 − 6 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

attributes(1) attributes(1)

NAME
attributes - describe an audio file

SYNOPSIS
/opt/audio/bin/attributes filename

DESCRIPTION
This command provides information about an audio file, including file format, data format, sampling rate,
number of channels, data length and header length.

EXAMPLE
The following is an example of using attributes on an audio file supplied with HP-UX.

$ /opt/audio/bin/attributes /opt/audio/sounds/welcome.au

File Name: /opt/audio/sounds/welcome.au
File Type: NeXT/Sun
Data Format: Mu-law
Sampling Rate: 22050
Channels: Mono
Duration: 1.972 seconds
Bits per Sample: 8
Header Length: 40 bytes
Data Length: 43492 bytes

AUTHOR
attributes was developed by HP.

Sun is a trademark of Sun MicroSystems, Inc.

NeXT is a trademark of NeXT Computers, Inc.

SEE ALSO
audio(5), asecure(1M), aserver(1M), convert(1), send_sound(1).

Using the Audio Developer’s Kit

HP-UX Release 11i: December 2000 − 1 − Section 1−−33

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

awk(1) awk(1)

NAME
awk - pattern-directed scanning and processing language

SYNOPSIS
awk [-F fs] [-v var=value] [program -f progfile ...] [file ...]

DESCRIPTION
awk scans each input file for lines that match any of a set of patterns specified literally in program or in
one or more files specified as -f progfile. With each pattern there can be an associated action that is to be
performed when a line in a file matches the pattern. Each line is matched against the pattern portion of
every pattern-action statement, and the associated action is performed for each matched pattern. The file
name - means the standard input. Any file of the form var=value is treated as an assignment, not a
filename. An assignment is evaluated at the time it would have been opened if it were a filename, unless
the -v option is used.

An input line is made up of fields separated by white space, or by regular expression FS. The fields are
denoted $1 , $2 , ...; $0 refers to the entire line.

Options
awk recognizes the following options and arguments:

-F fs Specify regular expression used to separate fields. The default is to recognize space
and tab characters, and to discard leading spaces and tabs. If the -F option is used,
leading input field separators are no longer discarded.

-f progfile Specify an awk program file. Up to 100 program files can be specified. The pattern-
action statements in these files are executed in the same order as the files were
specified.

-v var=value Cause var=value assignment to occur before the BEGIN action (if it exists) is exe-
cuted.

Statements
A pattern-action statement has the form:

pattern { action }

A missing { action } means print the line; a missing pattern always matches. Pattern-action statements
are separated by new-lines or semicolons.

An action is a sequence of statements. A statement can be one of the following:

if(expression) statement [else statement]
while(expression) statement
for(expression ; expression ; expression) statement
for(var in array) statement
do statement while(expression)
break
continue
{ [statement ...] }
expression # commonly var = expression
print [expression-list] [> expression]
printf format [, expression-list] [> expression]
return [expression]
next # skip remaining patterns on this input line.
delete array [expression] # delete an array element.
exit [expression] # exit immediately; status is expression.

Statements are terminated by semicolons, newlines or right braces. An empty expression-list stands for
$0 . String constants are quoted (" "), with the usual C escapes recognized within. Expressions take on
string or numeric values as appropriate, and are built using the operators +, - , * , / , %, ˆ (exponentiation),
and concatenation (indicated by a blank). The operators ++, - - , +=, -= , *= , /= , %=, ˆ= , **= , >, >=, <,
<=, ==, != , and ?: are also available in expressions. Variables can be scalars, array elements (denoted
x[i]) or fields. Variables are initialized to the null string. Array subscripts can be any string, not neces-
sarily numeric (this allows for a form of associative memory). Multiple subscripts such as [i, j, k] are
permitted. The constituents are concatenated, separated by the value of SUBSEP.

Section 1−−34 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

awk(1) awk(1)

The print statement prints its arguments on the standard output (or on a file if >file or >>file is present
or on a pipe if | cmd is present), separated by the current output field separator, and terminated by the out-
put record separator. file and cmd can be literal names or parenthesized expressions. Identical string
values in different statements denote the same open file. The printf statement formats its expression
list according to the format (see printf(3)).

Built-In Functions
The built-in function close(expr) closes the file or pipe expr opened by a print or printf state-
ment or a call to getline with the same string-valued expr. This function returns zero if successful, oth-
erwise, it returns non-zero.

The customary functions exp , log , sqrt , sin , cos , atan2 are built in. Other built-in functions are:

blength [([s])]
Length of its associated argument (in bytes) taken as a string, or of $0 if no argu-
ment.

length [([s])] Length of its associated argument (in characters) taken as a string, or of $0 if no
argument.

rand() Returns a random number between zero and one.

srand([expr]) Sets the seed value for rand, and returns the previous seed value. If no argument is
given, the time of day is used as the seed value; otherwise, expr is used.

int(x) Truncates to an integer value

substr(s, m [, n])
Return the at most n-character substring of s that begins at position m, numbering
from 1. If n is omitted, the substring is limited by the length of string s.

index(s, t) Return the position, in characters, numbering from 1, in string s where string t first
occurs, or zero if it does not occur at all.

match(s, ere) Return the position, in characters, numbering from 1, in string s where the extended
regular expression ere occurs, or 0 if it does not. The variables RSTART and
RLENGTHare set to the position and length of the matched string.

split(s, a[, fs])
Splits the string s into array elements a[1] , a[2] , ..., a[n] , and returns n. The
separation is done with the regular expression fs, or with the field separator FS if fs
is not given.

sub(ere, repl [, in])
Substitutes repl for the first occurrence of the extended regular expression ere in the
string in. If in is not given, $0 is used.

gsub Same as sub except that all occurrences of the regular expression are replaced;
sub and gsub return the number of replacements.

sprintf(fmt, expr, ...)
String resulting from formatting expr ... according to the printf(3S) format fmt

system(cmd) Executes cmd and returns its exit status

toupper(s) Converts the argument string s to uppercase and returns the result.

tolower(s) Converts the argument string s to lowercase and returns the result.

The built-in function getline sets $0 to the next input record from the current input file; getline <
file sets $0 to the next record from file. getline x sets variable x instead. Finally, cmd | getline
pipes the output of cmd into getline ; each call of getline returns the next line of output from cmd.
In all cases, getline returns 1 for a successful input, 0 for end of file, and −1 for an error.

Patterns
Patterns are arbitrary Boolean combinations (with ! || &&) of regular expressions and relational expres-
sions. awk supports Extended Regular Expressions as described in regexp(5). Isolated regular expres-
sions in a pattern apply to the entire line. Regular expressions can also occur in relational expressions,
using the operators ˜ and !˜ . / re/ is a constant regular expression; any string (constant or variable) can
be used as a regular expression, except in the position of an isolated regular expression in a pattern.

HP-UX Release 11i: December 2000 − 2 − Section 1−−35

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

awk(1) awk(1)

A pattern can consist of two patterns separated by a comma; in this case, the action is performed for all
lines from an occurrence of the first pattern though an occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression
expression in array-name
(expr,expr,...) in array-name

where a relop is any of the six relational operators in C, and a matchop is either ˜ (matches) or !˜ (does
not match). A conditional is an arithmetic expression, a relational expression, or a Boolean combination of
the two.

The special patterns BEGIN and ENDcan be used to capture control before the first input line is read and
after the last. BEGIN and ENDdo not combine with other patterns.

Special Characters
The following special escape sequences are recognized by awk in both regular expressions and strings:

Escape Meaning
\a alert character
\b backspace character
\f form-feed character
\n new-line character
\r carriage-return character
\t tab character
\v vertical-tab character
\ nnn 1- to 3-digit octal value nnn
\x hhh 1- to n-digit hexadecimal number

Variable Names
Variable names with special meanings are:

FS Input field separator regular expression; a space character by default; also settable
by option -F fs.

NF The number of fields in the current record.

NR The ordinal number of the current record from the start of input. Inside a BEGIN
action the value is zero. Inside an ENDaction the value is the number of the last
record processed.

FNR The ordinal number of the current record in the current file. Inside a BEGIN
action the value is zero. Inside an ENDaction the value is the number of the last
record processed in the last file processed.

FILENAME A pathname of the current input file.

RS The input record separator; a newline character by default.

OFS The print statement output field separator; a space character by default.

ORS The print statement output record separator; a newline character by default.

OFMT Output format for numbers (default %.6g). If the value of OFMT is not a
floating-point format specification, the results are unspecified.

CONVFMT Internal conversion format for numbers (default %.6g). If the value of CONVFMT
is not a floating-point format specification, the results are unspecified.

SUBSEP The subscript separator string for multi-dimensional arrays; the default value is
"\034"

ARGC The number of elements in the ARGVarray.

ARGV An array of command line arguments, excluding options and the program argu-
ment numbered from zero to ARGC-1.

The arguments in ARGVcan be modified or added to; ARGCcan be altered. As
each input file ends, awk will treat the next non-null element of ARGV, up to the
current value of ARGC-1, inclusive, as the name of the next input file. Thus, setting

Section 1−−36 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

awk(1) awk(1)

an element of ARGVto null means that it will not be treated as an input file. The
name - indicates the standard input. If an argument matches the format of an
assignment operand, this argument will be treated as an assignment rather than a
file argument.

ENVIRON Array of environment variables; subscripts are names. For example, if environ-
ment variable V=thing , ENVIRON["V"] produces thing .

RSTART The starting position of the string matched by the match function, numbering
from 1. This is always equivalent to the return value of the match function.

RLENGTH The length of the string matched by the match function.

Functions can be defined (at the position of a pattern-action statement) as follows:

function foo(a, b, c) { ...; return x }

Parameters are passed by value if scalar, and by reference if array name. Functions can be called recur-
sively. Parameters are local to the function; all other variables are global.

Note that if pattern-action statements are used in an HP-UX command line as an argument to the awk
command, the pattern-action statement must be enclosed in single quotes to protect it from the shell. For
example, to print lines longer than 72 characters, the pattern-action statement as used in a script (-f
progfile command form) is:

length > 72

The same pattern action statement used as an argument to the awk command is quoted in this manner:

awk ’length > 72’

EXTERNAL INFLUENCES
Environment Variables

LANG Provides a default value for the internationalization variables that are unset or null. If
LANGis unset or null, the default value of "C" (see lang(5)) is used. If any of the interna-
tionalization variables contains an invalid setting, awk will behave as if all internationali-
zation variables are set to "C". See environ(5).

LC_ALL If set to a non-empty string value, overrides the values of all the other internationalization
variables.

LC_CTYPE Determines the interpretation of text as single and/or multi-byte characters, the
classification of characters as printable, and the characters matched by character class
expressions in regular expressions.

LC_NUMERICDetermines the radix character used when interpreting numeric input, performing conver-
sion between numeric and string values and formatting numeric output. Regardless of
locale, the period character (the decimal-point character of the POSIX locale) is the
decimal-point character recognized in processing awk programs (including assignments in
command-line arguments).

LC_COLLATE Determines the locale for the behavior of ranges, equivalence classes and multi-character
collating elements within regular expressions.

LC_MESSAGES
Determines the locale that should be used to affect the format and contents of diagnostic
messages written to standard error and informative messages written to standard output.

NLSPATH Determines the location of message catalogues for the processing of LC_MESSAGES.

PATH Determines the search path when looking for commands executed by system(cmd) , or
input and output pipes.

In addition, all environment variables will be visible via the awk variable ENVIRON.

International Code Set Support
Single- and multi-byte character code sets are supported except that variable names must contain only
ASCII characters and regular expressions must contain only valid characters.

HP-UX Release 11i: December 2000 − 4 − Section 1−−37

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

a

awk(1) awk(1)

DIAGNOSTICS
awk supports up to 199 fields ($1 , $2 , ..., $199) per record.

EXAMPLES
Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

{ print $2, $1 }

Same, with input fields separated by comma and/or blanks and tabs:

BEGIN { FS = ",[\t]*|[\t]+" }
{ print $2, $1 }

Add up first column, print sum and average:

{ s += $1 }"
END { print "sum is", s, " average is", s/NR }

Print all lines between start/stop pairs:

/start/, /stop/

Simulate echo command (see echo(1)):

BEGIN { # Simulate echo(1)
for (i = 1; i < ARGC; i++) printf "%s ", ARGV[i]
printf "\n"
exit }

AUTHOR
awk was developed by AT&T, IBM, OSF, and HP.

SEE ALSO
lex(1), sed(1).

A. V. Aho, B. W. Kernighan, P. J. Weinberger: The AWK Programming Language, Addison-Wesley, 1988.

STANDARDS CONFORMANCE
awk: SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

Section 1−−38 − 5 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

b

banner(1) banner(1)

NAME
banner - make posters in large letters

SYNOPSIS
banner strings

DESCRIPTION
banner prints its arguments (each up to 10 characters long) in large letters on the standard output.

Each argument is printed on a separate line. Note that multiple-word arguments must be enclosed in
quotes in order to be printed on the same line.

EXAMPLES
Print the message ‘‘Good luck Susan’’ in large letters on the screen:

banner "Good luck" Susan

The words Good luck are displayed on one line, and Susan is displayed on a second line.

WARNINGS
This command is likely to be withdrawn from X/Open standards. Applications using this command might
not be portable to other vendors’ platforms.

SEE ALSO
echo(1).

STANDARDS CONFORMANCE
banner : SVID2, SVID3, XPG2, XPG3

HP-UX Release 11i: December 2000 − 1 − Section 1−−39

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

b

basename(1) basename(1)

NAME
basename, dirname - extract portions of path names

SYNOPSIS
basename string [suffix]

dirname [string]

DESCRIPTION
basename deletes any prefix ending in / and the suffix (if present in string) from string, and prints the
result on the standard output. If string consists entirely of slash characters, string is set to a single slash
character. If there are any trailing slash characters in string, they are removed. If the suffix operand is
present but not identical to the characters remaining in string, but it is identical to a suffix of the charac-
ters remaining in string, the suffix is removed from string. basename is normally used inside command
substitution marks (` ...`) within shell procedures.

dirname delivers all but the last level of the path name in string. If string does not contain a directory
component, dirname returns . , indicating the current working directory.

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of string and, in the case of basename, suffix as single and/or
multi-byte characters.

If LC_CTYPEis not specified in the environment or is set to the empty string, the value of LANGis used
as a default for each unspecified or empty variable. If LANGis not specified or is set to the empty string, a
default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable contains an invalid
setting, basename and dirname behave as if all internationalization variables are set to "C". See
environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

EXAMPLES
The following shell script, invoked with the argument /usr/src/cmd/cat.c , compiles the named file
and moves the output to a file named cat in the current directory:

cc $1
mv a.out ‘basename $1 .c‘

The following example sets the shell variable NAMEto /usr/src/cmd :

NAME=‘dirname /usr/src/cmd/cat.c‘

RETURNS
basename and dirname return one of the following values:

0 Successful completion.

1 Incorrect number of command-line arguments.

SEE ALSO
expr(1), sh(1).

STANDARDS CONFORMANCE
basename : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

dirname : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

Section 1−−40 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

b

bc(1) bc(1)

NAME
bc - arbitrary-precision arithmetic language

SYNOPSIS
bc [-c] [-l] [file ...]

DESCRIPTION
bc is an interactive processor for a language that resembles C but provides unlimited-precision arithmetic.
It takes input from any files given, then reads the standard input.

Options:
bc recognizes the following command-line options:

-c Compile only. bc is actually a preprocessor for dc which bc invokes automatically (see
dc(1)). Specifying -c prevents invoking dc, and sends the dc input to standard output.

-l causes an arbitrary-precision math library to be predefined. As a side effect, the scale fac-
tor is set.

Program Syntax:
L a single letter in the range a through z ;
E expression;
S statement;
R relational expression.

Comments:
Comments are enclosed in /* and */ .

Names:
Names include:

simple variables: L
array elements: L [E]
The words ibase ,obase , and scale
stacks: L

Other Operands
Other operands include:

Arbitrarily long numbers with optional sign and decimal point.

(E)

sqrt (E)

length (E) number of significant decimal digits

scale (E) number of digits right of decimal point

L (E , ... , E)

Strings of ASCII characters enclosed in quotes (").

Arithmetic Operators:
Arithmetic operators yield an E as a result and include:

+ - * / % ˆ (%is remainder (not mod, see below); ˆ is power).

++ - - (prefix and append; apply to names)

= += -= *= /= %= ˆ=

Relational Operators
Relational operators yield an R when used as E op E:

== <= >= != < >

HP-UX Release 11i: December 2000 − 1 − Section 1−−41

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

b

bc(1) bc(1)

Statements
E
{ S ; ... ; S }
if (R) S
while (R) S
for (E ; R ; E) S
null statement
break
quit

Function Definitions:
define L (L ,..., L) {

auto L, ... , L
S; ... S
return (E)

}

Functions in −−l Math Library:
Functions in the -l math library include:

s(x) sine
c(x) cosine
e(x) exponential
l(x) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value. Trigonometric angles are in radians where 2 pi radians = 360
degrees.

The value of a statement that is an expression is printed unless the main operator is an assignment. No
operators are defined for strings, but the string is printed if it appears in a context where an expression
result would be printed. Either semicolons or new-lines can separate statements. Assignment to scale
influences the number of digits to be retained on arithmetic operations in the manner of dc(1). Assign-
ments to ibase or obase set the input and output number radix respectively, again as defined by dc(1).

The same letter can be used simultaneously as an array, a function, and a simple variable. All variables
are global to the program. ‘‘Auto’’ variables are pushed down during function calls. When using arrays as
function arguments or defining them as automatic variables, empty square brackets must follow the array
name.

The %operator yields the remainder at the current scale, not the integer modulus. Thus, at scale 1, 7 %
3 is .1 (one tenth), not 1. This is because (at scale 1) 7 / 3 is 2.3 with .1 as the remainder.

EXAMPLES
Define a function to compute an approximate value of the exponential function:

scale = 20
define e(x){

auto a, b, c, i, s
a = 1
b = 1
s = 1
for(i=1; 1==1; i++){

a = a*x
b = b*i
c = a/b
if(c == 0) return(s)
s = s+c

}
}

Print approximate values of the exponential function of the first ten integers.

for(i=1; i<=10; i++) e(i)

Section 1−−42 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

b

bc(1) bc(1)

WARNINGS
There are currently no && (AND) or || (OR) comparisons.

The for statement must have all three expressions.

quit is interpreted when read, not when executed.

bc ’s parser is not robust in the face of input errors. Some simple expression such as 2+2 helps get it back
into phase.

The assignment operators: =+ =- =* =/ =% and =ˆ are obsolete. Any occurences of these
operators cause a syntax error with the exception of =- which is interpreted as = followed by a unary
minus.

Neither entire arrays nor functions can be passed as function parameters.

FILES
/usr/bin/dc desk calculator executable program
/usr/lib/lib.b mathematical library

SEE ALSO
bs(1), dc(1).

bc tutorial in Number Processing Users Guide

STANDARDS CONFORMANCE
bc : XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 3 − Section 1−−43

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

b

bdiff(1) bdiff(1)

NAME
bdiff - diff for large files

SYNOPSIS
bdiff file1 file2 [n] [-s]

DESCRIPTION
bdiff compares two files and produces output identical to what would be produced by diff (see diff(1)),
specifying changes that must be made to make the files identical. bdiff is designed for handling files
that are too large for diff , but it can be used on files of any length.

bdiff processes files as follows:

• Ignore lines common to the beginning of both files.

• Split the remainder of each file into n-line segments, then execute diff on corresponding seg-
ments. The default value of n is 3500.

Command-Line Arguments
bdiff recognizes the following command-line arguments:

file1
file2 Names of two files to be compared by bdiff . If file1 or file2 (but not both) is - , stan-

dard input is used instead.

n If a numeric value is present as the third argument, the files are divided into n-line seg-
ments before processing by diff . Default value for n is 3500. This option is useful
when 3500-line segments are too large for processing by diff .

-s Silent option suppresses diagnostic printing by bdiff , but does not suppress possible
error messages from diff). If the n and -s arguments are both used, the n argument
must precede the -s option on the command line or it will not be properly recognized.

EXTERNAL INFLUENCES
Environment Variables

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_MESSAGESis not specified in the environment or is set to the empty string, the value of LANGis
used as a default for each unspecified or empty variable. If LANGis not specified or is set to the empty
string, a default of "C" (see lang(5)) is used instead of LANG.

If any internationalization variable contains an invalid setting, bdiff behaves as if all internationaliza-
tion variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

DIAGNOSTICS
both files standard input (bd2)

Standard input was specified for both files. Only one file can be specified as standard input.

non-numeric limit (bd4)
A non-numeric value was specified for the n (third) argument.

EXAMPLES
Find differences between two large files: file1 and file2 , and place the result in a new file named
diffs_1.2 .

bdiff file1 file2 >diffs_1.2

Do the same, but limit file length to 1400 lines; suppress error messages:

bdiff file1 file2 1400 -s >diffs_1.2

WARNINGS
bdiff produces output identical to output from diff , and makes the necessary line-number corrections
so that the output looks like it was processed by diff . However, depending on where the files are split,
bdiff may or may not find a fully minimized set of file differences.

Section 1−−44 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

b

bdiff(1) bdiff(1)

FILES
/tmp/bd??????

SEE ALSO
diff(1).

HP-UX Release 11i: December 2000 − 2 − Section 1−−45

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

b

bfs(1) bfs(1)

NAME
bfs - big file scanner

SYNOPSIS
bfs [-] name

DESCRIPTION
bfs is similar to ed except that it is read-only (see ed(1)) bfs can handle files with up to 32K − 1 lines;
each line can contain up to 512 characters, including the new-line character. bfs is usually more efficient
than ed for scanning a file, since the file is not copied to a buffer. Historically, this command was most
useful for identifying sections of a large file where csplit could be used to divide it into more manage-
able pieces for editing (see csplit(1)). However, most editors now support files larger than the above-
mentioned limits.

Normally, the size of the file being scanned is printed, as is the size of any file written with the w com-
mand. The optional - suppresses printing of sizes. Input is prompted with * if P and a carriage-return
are typed, as in ed . Prompting can be turned off again by inputting another P and pressing Return. Note
that messages are given in response to errors if prompting is turned on.

bfs supports the Basic Regular Expression (RE) syntax (see regexp(5)) with the addition that a null RE
(e.g., //) is equivalent to the last RE encountered. All address expressions described under ed are sup-
ported. In addition, regular expressions can be surrounded with two symbols besides / and ?: > indi-
cates downward search without wrap-around, and < indicates upward search without wrap-around. There
is a slight difference in mark names: only the letters a through z can be used, and all 26 marks are
remembered.

The e, g, v , k , n, p, q, w, =, ! and null commands operate as described under ed . Commands such as -
-- , +++- , +++= , -12 , and +4p are accepted. Note that 1,10p and 1,10 both print the first ten
lines. The f command only prints the name of the file being scanned; there is no remembered file name.
The w command is independent of output diversion, truncation, or crunching (see the xo , xt , and xc
commands, below). The following additional commands are available:

xf file Further commands are taken from the named file. When an end-of-file is reached, an inter-
rupt signal is received or an error occurs, reading resumes with the file containing the xf .
Xf commands may be nested to a depth of 10.

xo [file] Further output from the p and null commands is diverted to the named file, which, if
necessary, is created mode 666. If file is missing, output is diverted to the standard output.
Note that each diversion causes truncation or creation of the file.

: label This positions a label in a command file. label is terminated by a new-line, and blanks
between the : and the start of label are ignored. This command can also be used to insert
comments into a command file, since labels need not be referenced.

(.,.)xb/ regular expression/ label
A jump (either upward or downward) is made to label if the command succeeds. It fails
under any of the following conditions:

1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression does not match at least one line in the specified range,

including the first and last lines.

On success, . is set to the line matched and a jump is made to label. This command is the
only one that does not issue an error message on bad addresses. Thus it can be used to test
whether addresses are bad before other commands are executed. Note that the command

xb/ label

is an unconditional jump.

The xb command is allowed only if it is read from someplace other than a terminal. If it is
read from a pipe only a downward jump is possible.

xn List the marks currently in use (marks are set by the k command).

xt number Output from the p and null commands is truncated to at most number characters. The ini-
tial number is 255.

Section 1−−46 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

b

bfs(1) bfs(1)

xv [digit] [spaces] [value]
The variable name is the specified digit following the xv . xv5100 or xv5 100 both
assign the value 100 to the variable 5. Xv61,100p assigns the value 1,100p to the
variable 6. To reference a variable, put a %in front of the variable name. For example,
using the above assignments for variables 5 and 6:

1,%5p
1,%5
%6

all print the first 100 lines.

g/%5/p

globally searches for the characters 100 and prints each line containing a match. To
escape the special meaning of %, a \ must precede it. For example, to match and list lines
in a program file that contain printf() format strings specifying characters, decimal
integers, or strings, the following could be used:

g/".*\%[cds]/p

Another feature of the xv command is that the first line of output from an HP-UX com-
mand can be stored into a variable. The only requirement is that the first character of
value be an ! . For example:

.w junk
xv5!cat junk
!rm junk
!echo "%5"
xv6!expr %6 + 1

each put the current line into variable 5, print it, and increment the variable 6 by one. To
escape the special meaning of ! as the first character of value, precede it with a \ .

xv7\!date

stores the value !date into variable 7.

xbz label
xbn label These two commands test the last saved return code from the execution of an HP-UX system

command (! command) for a zero or non-zero value, respectively, and cause a branch to the
specified label. The two examples below both search for the next five lines containing the
string size .

First example:

xv55
: l
/size/
xv5!expr %5 - 1
!if [%5 != 0] ; then exit 2 ; fi
xbn l

Second Example:

xv45
: l
/size/
xv4!expr %4 - 1
!if [%4 = 0] ; then exit 2 ; fi
xbz l

xc [switch] If switch is 1, output from the p and null commands is crunched; if switch is 0 it isn’t.
Without an argument, xc reverses switch. Initially switch is set for no crunching.
Crunched output has strings of tabs and blanks reduced to one blank, and blank lines
suppressed.

EXTERNAL INFLUENCES

HP-UX Release 11i: December 2000 − 2 − Section 1−−47

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

b

bfs(1) bfs(1)

Environment Variables
LC_COLLATEdetermines the collating sequence used in evaluating regular expressions.

LC_CTYPEdetermines the classification of characters as letters, and the characters matched by character
class expressions in regular expressions.

If LC_COLLATE or LC_CTYPE is not specified in the environment or is set to the empty string, the
value of LANGis used as a default for each unspecified or empty variable. If LANGis not specified or is
set to the empty string, a default of "C" (see lang(5)) is used instead of LANG. If any internationalization
variable contains an invalid setting, bfs behaves as if all internationalization variables are set to "C". See
environ(5).

International Code Set Support
Single-byte character code sets are supported.

DIAGNOSTICS
? for errors in commands, if prompting is turned off. Self-explanatory error messages when prompting is
on.

SEE ALSO
csplit(1), ed(1), lang(5), regexp(5).

Section 1−−48 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

b

bs(1) bs(1)

NAME
bs - a compiler/interpreter for modest-sized programs

SYNOPSIS
bs [file [args]]

DESCRIPTION
bs is a remote descendant of BASIC and SNOBOL4 with some C language added. bs is designed for pro-
gramming tasks where program development time is as important as the resulting speed of execution. For-
malities of data declaration and file/process manipulation are minimized. Line-at-a-time debugging, the
trace and dump statements, and useful run-time error messages all simplify program testing. Further-
more, incomplete programs can be debugged; inner functions can be tested before outer functions have been
written, and vice versa.

If file is specified on the command-line, it is used for input before any input is taken from the keyboard. By
default, statements read from file are compiled for later execution. Likewise, statements entered from the
keyboard are normally executed immediately (see compile and execute below). Unless the final
operation is assignment, the result of an immediate expression statement is printed.

bs programs are made up of input lines. If the last character on a line is a \ , the line is continued. bs
accepts lines of the following form:

statement
label statement

A label is a name (see below) followed by a colon. A label and a variable can have the same name.

A bs statement is either an expression or a keyword followed by zero or more expressions. Some key-
words (clear , compile , ! , execute , include , ibase , obase , and run) are always executed as
they are compiled.

Statement Syntax:
expression The expression is executed for its side effects (value, assignment, or function call). The

details of expressions follow the description of statement types below.

break break exits from the innermost for /while loop.

clear Clears the symbol table and compiled statements. clear is executed immediately.

compile [expression]
Succeeding statements are compiled (overrides the immediate execution default). The
optional expression is evaluated and used as a file name for further input. A clear is
associated with this latter case. compile is executed immediately.

continue continue transfers to the loop-continuation of the current for /while loop.

dump [name] The name and current value of every non-local variable is printed. Optionally, only the
named variable is reported. After an error or interrupt, the number of the last statement
is displayed. The user-function trace is displayed after an error or stop that occurred in
a function.

edit A call is made to the editor selected by the EDITOR environment variable if it is present,
or ed(1) if EDITOR is undefined or null. If the file argument is present on the command
line, file is passed to the editor as the file to edit (otherwise no file name is used). Upon
exiting the editor, a compile statement (and associated clear) is executed giving that
file name as its argument.

exit [expression]
Return to system level. The expression is returned as process status.

execute Change to immediate execution mode (an interrupt has a similar effect). This statement

HP-UX Release 11i: December 2000 − 1 − Section 1−−49

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

b

bs(1) bs(1)

does not cause stored statements to execute (see run below).

for name = expression expression statement
for name = expression expression

...
next

for expression , expression , expression statement
for expression , expression , expression

...
next The for statement repetitively executes a statement (first form) or a group of statements

(second form) under control of a named variable. The variable takes on the value of the
first expression, then is incremented by one on each loop, not to exceed the value of the
second expression. The third and fourth forms require three expressions separated by com-
mas. The first of these is the initialization, the second is the test (true to continue), and the
third is the loop-continuation action (normally an increment).

fun f ([a, ...]) [v, ...]
...

nuf fun defines the function name, arguments, and local variables for a user-written function.
Up to ten arguments and local variables are allowed. Such names cannot be arrays, nor
can they be I/O associated. Function definitions cannot be nested. Calling an undefined
function is permissible; see function calls below.

freturn A way to signal the failure of a user-written function. See the interrogation operator (?)
below. If interrogation is not present, freturn merely returns zero. When interrogation
is active, freturn transfers to that expression (possibly by-passing intermediate function
returns).

goto name Control is passed to the internally stored statement with the matching label.

ibase n ibase sets the input base (radix) to n. The only supported values for n are the constants
8, 10 (the default), and 16 . Hexadecimal values 10-15 are entered as a-f . A leading digit
is required (i.e., f0a must be entered as 0f0a). ibase (and obase discussed below)
are executed immediately.

if expression statement
if expression

...
[else ...]
fi The statement (first form) or group of statements (second form) is executed if the expres-

sion evaluates to non-zero. The strings 0 and " " (null) evaluate as zero. In the second
form, an optional else provides for a second group of statements to be executed when the
first group is not. The only statement permitted on the same line with an else is an if ;
only other fi s can be on the same line with a fi . The concatenation of else and if
into an elif is supported. Only a single fi is required to close an if ... elif ...
[else ...] sequence.

include expression
expression must evaluate to a file name. The file must contain bs source statements.
Such statements become part of the program being compiled. include statements can-
not be nested.

obase n obase sets the output base to n (see ibase above).

onintr label
onintr onintr provides program control of interrupts. In the first form, control passes to the

label given, just as if a goto had been executed at the time onintr was executed. The
effect of the statement is cleared after each interrupt. In the second form, an interrupt
causes bs to terminate.

return [expression]
The expression is evaluated and the result is passed back as the value of a function call. If
no expression is given, zero is returned.

run The random number generator is reset. Control is passed to the first internal statement.
If the run statement is contained in a file, it should be the last statement.

Section 1−−50 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

b

bs(1) bs(1)

stop Execution of internal statements is stopped. bs reverts to immediate mode.

trace [expression]
The trace statement controls function tracing. If the expression is null (or evaluates to
zero), tracing is turned off. Otherwise, a record of user-function calls/returns is printed.
Each return decrements the trace expression value.

while expression statement
while expression

...
next while is similar to for except that only the conditional expression for loop-continuation

is given.

! shell command
An immediate escape to the shell.

... This statement is ignored (treated as a comment).

Expression Syntax:
name A name is used to specify a variable. Names are composed of a letter (uppercase or lower-

case) optionally followed by letters and digits. Only the first six characters of a name are
significant. Except for names declared in fun statements, all names are global to the pro-
gram. Names can take on numeric (double float) values, string values, or can be associated
with input/output (see the built-in function open() below).

name ([expression [, expression] ...])
Functions can be called by a name followed by the arguments in parentheses separated by
commas. Except for built-in functions (listed below), the name must be defined with a fun
statement. Arguments to functions are passed by value. If the function is undefined, the
call history to the call of that function is printed, and a request for a return value (as an
expression) is made. The result of that expression is taken to be the result of the undefined
function. This permits debugging programs where not all the functions are yet defined.
The value is read from the current input file.

name [expression [, expression] ...]
This syntax is used to reference either arrays or tables (see built-in table functions below).
For arrays, each expression is truncated to an integer and used as a specifier for the name.
The resulting array reference is syntactically identical to a name; a[1,2] is the same as
a[1][2] . The truncated expressions are restricted to values between 0 and 32767.

number A number is used to represent a constant value. A number is written in Fortran style, and
contains digits, an optional decimal point, and possibly a scale factor consisting of an e fol-
lowed by a possibly signed exponent.

string Character strings are delimited by " characters. The \ escape character allows the double
quote (\ "), new-line (\n), carriage return (\r), backspace (\b), and tab (\t) characters to
appear in a string. Otherwise, \ stands for itself.

(expression) Parentheses are used to alter the normal order of evaluation.

(expression , expression [, expression ...]) [expression]
The bracketed expression is used as a subscript to select a comma-separated expression
from the parenthesized list. List elements are numbered from the left, starting at zero.

The expression:

(False, True)[a == b]

has the value True if the comparison is true.

? expression The interrogation operator tests for the success of the expression rather than its value. At
the moment, it is useful for testing end-of-file (see examples in the Programming Tips sec-
tion below), the result of the eval built-in function, and for checking the return from
user-written functions (see freturn). An interrogation ‘‘trap’’ (end-of-file, etc.) causes an
immediate transfer to the most recent interrogation, possibly skipping assignment state-
ments or intervening function levels.

- expression The result is the negation of the expression.

HP-UX Release 11i: December 2000 − 3 − Section 1−−51

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

b

bs(1) bs(1)

++ name Increments the value of the variable (or array reference). The result is the new value.

- - name Decrements the value of the variable. The result is the new value.

! expression The logical negation of the expression. Watch out for the shell escape command.

expression operator expression Common functions of two arguments are abbreviated by the two argu-
ments separated by an operator denoting the function. Except for the assignment, concate-
nation, and relational operators, both operands are converted to numeric form before the
function is applied.

Binary Operators (in increasing precedence):
= = is the assignment operator. The left operand must be a name or an array element. The

result is the right operand. Assignment binds right to left, all other operators bind left to
right.

_ _ (underscore) is the concatenation operator.

& | & (logical AND) has result zero if either of its arguments are zero. It has result one if both
of its arguments are non-zero; | (logical OR) has result zero if both of its arguments are
zero. It has result one if either of its arguments is non-zero. Both operators treat a null
string as a zero.

< <= > >= == !=
The relational operators (<: less than, <=: less than or equal, >: greater than, >=:
greater than or equal, ==: equal to, != : not equal to) return one if their arguments are in
the specified relation, or return zero otherwise. Relational operators at the same level
extend as follows: a>b>c is equivalent to a>b & b>c. A string comparison is made if
both operands are strings.

+ - Add and subtract.

* / % Multiply, divide, and remainder.

ˆ Exponentiation.

Built-in Functions:
Dealing with arguments

arg(i) is the value of the i-th actual parameter on the current level of function call. At level zero,
arg returns the i-th command-line argument (arg(0) returns bs).

narg() returns the number of arguments passed. At level zero, the command argument count is
returned.

Mathematical

abs(x) is the absolute value of x.

atan(x) is the arctangent of x. Its value is between −π/2 and π/2.

ceil(x) returns the smallest integer not less than x.

cos(x) is the cosine of x (radians).

exp(x) is the exponential function of x.

floor(x) returns the largest integer not greater than x.

log(x) is the natural logarithm of x.

rand() is a uniformly distributed random number between zero and one.

sin(x) is the sine of x (radians).

sqrt(x) is the square root of x.

String operations

size(s) the size (length in bytes) of s is returned.

format(f, a)
returns the formatted value of a. f is assumed to be a format specification in the style of
printf(3S). Only the % ... f , % ... e , and % ... s types are safe. Since it is not always

Section 1−−52 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

b

bs(1) bs(1)

possible to know whether a is a number or a string when the format call is coded, coerc-
ing a to the type required by f by either adding zero (for e or f format) or concatenating
(_) the null string (for s format) should be considered.

index(x, y)
returns the number of the first position in x that any of the characters from y matches. No
match yields zero.

trans(s, f, t)
Translates characters of the source s from matching characters in f to a character in the
same position in t. Source characters that do not appear in f are copied to the result. If the
string f is longer than t, source characters that match in the excess portion of f do not
appear in the result.

substr(s, start, width)
returns the sub-string of s defined by the starting position and width.

match(string, pattern)

mstring(n) The pattern is a regular expression according to the Basic Regular Expression definition
(see regexp(5)). mstring returns the n-th (1 <= n <= 10) substring of the subject that
occurred between pairs of the pattern symbols \(and \) for the most recent call to
match. To succeed, patterns must match the beginning of the string (as if all patterns
began with ˆ). The function returns the number of characters matched. For example:

match("a123ab123", ".*\([a-z]\)") == 6
mstring(1) == "b"

File handling

open(name, file, function)
close(name)

name argument must be a bs variable name (passed as a string). For the open , the file
argument can be:

1. a 0 (zero), 1, or 2 representing standard input, output, or error output, respec-
tively;

2. a string representing a file name; or
3. a string beginning with an ! representing a command to be executed (via sh

-c). The function argument must be either r (read), w (write), W (write
without new-line), or a (append). After a close , name reverts to being an ordi-
nary variable. If name was a pipe, a wait() is executed before the close com-
pletes (see wait(2)). The bs exit command does not do such a wait. The ini-
tial associations are:

open("get", 0, "r")
open("put", 1, "w")
open("puterr", 2, "w")

Examples are given in the following section.

access(s, m)
executes access() (see access(2)).

ftype(s) returns a single character file type indication: f for regular file, p for FIFO (i.e., named
pipe), d for directory, b for block special, or c for character special.

Tables
table(name, size)

A table in bs is an associatively accessed, single-dimension array. ‘‘Subscripts’’ (called
keys) are strings (numbers are converted). The name argument must be a bs variable
name (passed as a string). The size argument sets the minimum number of elements to be
allocated. bs prints an error message and stops on table overflow. The result of table is
name.

item(name, i)
key() The item function accesses table elements sequentially (in normal use, there is no orderly

progression of key values). Where the item function accesses values, the key function
accesses the ‘‘subscript’’ of the previous item call. It fails (or in the absence of an

HP-UX Release 11i: December 2000 − 5 − Section 1−−53

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

b

bs(1) bs(1)

interrogate operator, returns null) if there was no valid subscript for the previous
item call. The name argument should not be quoted. Since exact table sizes are not
defined, the interrogation operator should be used to detect end-of-table; for example:

table("t", 100)
...

If word contains "party", the following expression adds one
to the count of that word:
++t[word]

...
To print out the the key/value pairs:
for i = 0, ?(s = item(t, i)), ++i if key() put = key()_":"_s

If the interrogation operator is not used, the result of item is null if there are no further
elements in the table. Null is, however, a legal ‘‘subscript’’.

iskey(name, word)
iskey tests whether the key word exists in the table name and returns one for true, zero
for false.

Odds and ends

eval(s) The string argument is evaluated as a bs expression. The function is handy for converting
numeric strings to numeric internal form. eval can also be used as a crude form of
indirection, as in:

name = "xyz" eval("++"_ name)

which increments the variable xyz. In addition, eval preceded by the interrogation
operator permits the user to control bs error conditions. For example:

?eval("open(\" X\", \"XXX\", \"r\")")

returns the value zero if there is no file named XXX (instead of halting the user’s program).
The following executes a goto to the label L (if it exists):

label="L"
if !(?eval("goto " _ label)) puterr = "no label"

plot(request, args)
If the tplot command is available, the plot function produces output on devices recog-
nized by tplot . The requests are as follows:

Call Function

plot(0, term) causes further plot output to be piped into tplot
with an argument of -T term. term can be up to
40 characters in length.

plot(1) ‘‘erases’’ the plotter.

plot(2, string) labels the current point with string.

plot(3, x1, y1, x2, y2) draws the line between (x1,y1) and (x2,y2).

plot(4, x, y, r) draws a circle with center (x,y) and radius r.

plot(5, x1, y1, x2, y2, x3, y3) draws an arc (counterclockwise) with center
(x1,y1) and endpoints (x2,y2) and (x3,y3).

plot(6) is not implemented.

plot(7, x, y) makes the current point (x,y).

plot(8, x, y) draws a line from the current point to (x,y).

plot(9, x, y) draws a point at (x,y).

plot(10, string) sets the line mode to string.

plot(11, x1, y1, x2, y2) makes (x1,y1) the lower left corner of the plot-
ting area and (x2,y2) the upper right corner of
the plotting area.

Section 1−−54 − 6 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

b

bs(1) bs(1)

plot(12, x1, y1, x2, y2) causes subsequent x (y) coordinates to be multi-
plied by x1 (y1) and then added to x2 (y2) before
they are plotted. The initial scaling is
plot(12, 1.0, 1.0, 0.0, 0.0) .

Some requests do not apply to all plotters. All requests except zero and twelve are imple-
mented by piping characters to tplot.

Each statement executed from the keyboard re-invokes tplot , making the results
unpredictable if a complete picture is not done in a single operation. Plotting should thus
be done either in a function or a complete program, so all the output can be directed to
tplot in a single stream.

last() in immediate mode, last returns the most recently computed value.

EXTERNAL INFLUENCES
Environment Variables

LC_COLLATEdetermines the collating sequence used in evaluating regular expressions.

LC_CTYPEdetermines the characters matched by character class expressions in regular expressions.

If LC_COLLATE or LC_CTYPE is not specified in the environment or is set to the empty string, the
value of LANGis used as a default for each unspecified or empty variable. If LANGis not specified or is
set to the empty string, a default of "C" (see lang(5)) is used instead of LANG. If any internationalization
variable contains an invalid setting, bs behaves as if all internationalization variables are set to "C". See
environ(5).

International Code Set Support
Single-byte character code sets are supported.

EXAMPLES
Using bs as a calculator ($ is the shell prompt):

$ bs
Distance (inches) light travels in a nanosecond.
186000 * 5280 * 12 / 1e9
11.78496

...

Compound interest (6% for 5 years on $1,000).
int = .06 / 4
bal = 1000
for i = 1 5*4 bal = bal + bal*int
bal - 1000
346.855007

...
exit

The outline of a typical bs program:

initialize things:
var1 = 1
open("read", "infile", "r")

...
compute:
while ?(str = read)

...
next
clean up:
close("read")

...
last statement executed (exit or stop):
exit
last input line:
run

HP-UX Release 11i: December 2000 − 7 − Section 1−−55

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

b

bs(1) bs(1)

Input/Output examples:

Copy file oldfile to file newfile.
open("read", "oldfile", "r")
open("write", "newfile", "w")

...
while ?(write = read)

...
close "read" and "write":
close("read")
close("write")

Pipe between commands.
open("ls", "!ls *", "r")
open("pr", "!pr -2 -h ’List’", "w")
while ?(pr = ls) ...

...
be sure to close (wait for) these:
close("ls")
close("pr")

WARNINGS
The graphics mode (plot ...) is not particularly useful unless the tplot command is available on your
system.

bs is not tolerant of some errors. For example, mistyping a fun declaration is difficult to correct because
a new definition cannot be made without doing a clear . The best solution in such a case is to start by
using the edit command.

SEE ALSO
ed(1), sh(1), access(2), printf(3S), stdio(3S), lang(5), regexp(5).

See Section (3M) for a further description of the mathematical functions.

pow() is used for exponentiation — see exp(3M));

bs uses the Standard I/O package.

Section 1−−56 − 8 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cal(1) cal(1)

NAME
cal - print calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION
cal prints a calendar for the specified year. If a month is also specified, a calendar just for that month is
printed. If neither is specified, a calendar for the present month is printed. year can be between 1 and
9999. month is a decimal number between 1 and 12. The calendar produced is a Gregorian calendar.

EXTERNAL INFLUENCES
Environment Variables

LANGdetermines the locale to use for the locale categories when both LC_ALL and the corresponding
environment variable (beginning with LC_) do not specify a locale. If LANG is not set or is set to the
empty string, a default of "C" (see lang(5)) is used.

LC_CTYPEdetermines the locale for interpretation of sequences of bytes of text data as characters (e.g.,
single- verses multibyte characters in arguments and input files).

LC_TIME determines the format and contents of the calendar.

TZ determines the timezone used to calculate the value of the current month.

If any internationalization variable contains an invalid setting, cal behaves as if all internationalization
variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

EXAMPLES
The command:

cal 9 1850

prints the calendar for September, 1850 on the screen as follows:

September 1850
S M Tu W Th F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30

However, for XPG4 the output looks like below:

Sep 1850
Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30

WARNINGS
The year is always considered to start in January even though this is historically naive.

Beware that cal 83 refers to the early Christian era, not the 20th century.

STANDARDS CONFORMANCE
cal : SVID2, SVID3, XPG2, XPG3, XPG4

HP-UX Release 11i: December 2000 − 1 − Section 1−−57

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

calendar(1) calendar(1)

NAME
calendar - reminder service

SYNOPSIS
calendar [-]

DESCRIPTION
calendar consults the file calendar in the current directory and prints out lines containing today’s or
tomorrow’s date anywhere in the line. On weekends, ‘‘tomorrow’’ extends through Monday.

When a - command-line argument is present, calendar searches for the file calendar in each user’s
home directory, and sends any positive results to the user by mail (see mail(1)). Normally this is done
daily in the early morning hours under the control of cron (see cron(1M)). When invoked by cron ,
calendar reads the first line in the calendar file to determine the user’s environment.

Language-dependent information such as spelling and date format (described below) are determined by the
user-specified LANG statement in the calendar file. This statement should be of the form
LANG=language where language is a valid language name (see lang(5)). If this line is not in the calen-
dar file, the action described in the EXTERNAL INFLUENCES Environment Variable section is taken.

calendar is concerned with two fields: month and day. A month field can be expressed in three different
formats: a string representing the name of the month (either fully spelled out or abbreviated), a numeric
month, or an asterisk (representing any month). If the month is expressed as a string representing the
name of the month, the first character can be either upper-case or lower-case; other characters must be
lower-case. The spelling of a month name should match the string returned by calling nl_langinfo()
(see nl_langinfo(3C)). The day field is a numeric value for the day of the month.

Month-Day Formats
If the month field is a string, it can be followed by zero or more blanks. If the month field is numeric, it
must be followed by either a slash (/) or a hyphen (-). If the month field is an asterisk (*), it must be fol-
lowed by a slash (/). The day field can be followed immediately by a blank or non-digit character.

Day-Month Formats
The day field is expressed as a numeral. What follows the day field is determined by the format of the
month. If the month field is a string, the day field must be followed by zero or one dot (.) followed by zero
or more blanks. If the month field is a numeral, the day field must be followed by either a slash (/) or a
hyphen (-). If the month field is an asterisk, the day field must be followed by a slash (/).

EXTERNAL INFLUENCES
Environment Variables

LC_TIME determines the format and contents of date and time strings when no LANG statement is
specified in the calendar file.

LANGdetermines the language in which messages are displayed.

If LC_TIME is not specified in the environment or is set to the empty string, the value of LANGis used as
a default for each unspecified or empty variable. If LANGis not specified or is set to the empty string, a
default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable contains an invalid
setting, calendar behaves as if all internationalization variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

EXAMPLES
The following calendar file illustrates several formats recognized by calendar:

LANG=en_US.roman8
Friday, May 29th: group coffee meeting
meeting with Boss on June 3.
3/30/87 - quarter end review
4-26 Management council meeting at 1:00 pm
It is first of the month (*/1); status report due.

In the following calendar file, dates are expressed according to European English usage:

LANG=en_GB.roman8
On 20 Jan. code review

Section 1−−58 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

calendar(1) calendar(1)

Jim’s birthday is on the 3. February
30/3/87 - quarter end review
26-4 Management council meeting at 1:00 pm
It is first of the month (1/*); status report due.

WARNINGS
To get reminder service, either your calendar must be public information or you must run calendar
from your personal crontab file, independent of any calendar - run systemwide. Note that if you
run calendar yourself, the calendar file need not reside in your home directory.

calendar ’s extended idea of ‘‘tomorrow’’ does not account for holidays.

This command is likely to be withdrawn from X/Open standards. Applications using this command might
not be portable to other vendors’ platforms.

AUTHOR
calendar was developed by AT&T and HP.

FILES
calendar
/tmp/cal*
/usr/lbin/calprog to figure out today’s and tomorrow’s dates
/usr/bin/crontab
/etc/passwd

SEE ALSO
cron(1M), nl_langinfo(3C), mail(1), environ(5).

STANDARDS CONFORMANCE
calendar : SVID2, SVID3, XPG2, XPG3

HP-UX Release 11i: December 2000 − 2 − Section 1−−59

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cat(1) cat(1)

NAME
cat - concatenate, copy, and print files

SYNOPSIS
cat [-benrstuv] file ...

DESCRIPTION
cat reads each file in sequence and writes it on the standard output. Thus:

cat file

prints file on the default standard output device;

cat file1 file2 > file3

concatenates file1 and file2, and places the result in file3.

If - is appears as a file argument, cat uses standard input. To combine standard input and other files,
use a combination of - and file arguments.

Options
cat recognizes the following options:

-b Omit line numbers from blank lines when -n option is specified. If this option is specified, the
-n option is automatically selected.

-e Print a $ character at the end of each line (prior to the new-line). If this option is specified, the
-v option is automatically selected.

-n Display output lines preceded by line numbers, numbered sequentially from 1.

-r Replace multiple consecutive empty lines with one empty line, so that there is never more than
one empty line between lines containing characters.

-s Silent option. cat suppresses error messages about non-existent files, identical input and out-
put, and write errors. Normally, input and output files cannot have identical names unless the
file is a special file.

-t Print each tab character as ˆI and form feed character as ˆL . If this option is specified, the -v
option is automatically selected.

-u Do not buffer output (handle character-by-character). Normally, output is buffered.

-v Cause non-printing characters (with the exception of tabs, new-lines and form-feeds) to be
printed visibly. Control characters are printed using the form ˆ X (Ctrl-X), and the DEL charac-
ter (octal 0177) is printed as ˆ? (see ascii(5)). Single-byte control characters whose most
significant bit is set, are printed using the form M-ˆ x, where x is the character specified by the
seven low order bits. All other non-printing characters are printed as M-x, where x is the char-
acter specified by the seven low order bits. This option is influenced by the LC_CTYPEenviron-
ment variable and its corresponding code set.

EXTERNAL INFLUENCES
Environment Variables

LANGprovides a default value for the internationalization variables that are unset or null. If LANG is
unset or null, the default value of "C" (see lang(5)) is used. If any of the internationalization variables con-
tains an invalid setting, cat will behave as if all internationalization variables are set to "C". See
environ(5).

LC_ALL If set to a non-empty string value, overrides the values of all the other internationalization vari-
ables.

LC_CTYPEdetermines the interpretation of text as single and/or multi-byte characters, the classification
of characters as printable, and the characters matched by character class expressions in regular expres-
sions.

LC_MESSAGESdetermines the locale that should be used to affect the format and contents of diagnostic
messages written to standard error and informative messages written to standard output.

NLSPATHdetermines the location of message catalogues for the processing of LC_MESSAGES.

Section 1−−60 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cat(1) cat(1)

International Code Set Support
Single- and multi-byte character code sets are supported.

RETURN VALUE
Exit values are:

0 Successful completion.
>0 Error condition occurred.

EXAMPLES
To create a zero-length file, use any of the following:

cat /dev/null > file
cp /dev/null file
touch file

The following prints ˆI for all the occurrences of tab character in file1

cat -t file1

To suppress error messages about files that do not exist, use:

cat -s file1 file2 file3 > file

If file2 does not exist, the above command concatenates file1 and file3 without reporting the error on file2.
The result is the same if -s option is not used, except that cat displays the error message.

To view non-printable characters in file2, use:

cat -v file2

WARNINGS
Command formats such as

cat file1 file2 > file1

overwrites the data in file1 before the concatenation begins, thus destroying the file. Therefore, be careful
when using shell special characters.

SEE ALSO
cp(1), more(1), pg(1), pr(1), rmnl(1), ssp(1).

STANDARDS CONFORMANCE
cat : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 2 − Section 1−−61

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cc_bundled(1) cc_bundled(1)
(Bundled C Compiler - Limited Functionality)

NAME
cc - bundled C compiler

SYNOPSIS
cc [options] files

DESCRIPTION
This manual page describes the Bundled C compiler. See cc(1), online only, for a description of the ANSI-
compliant HP-UX manual page.

This cc accepts several types of arguments as files:

.c Suffix
Arguments whose names end with .c are understood to be C source files. Each is compiled and
the resulting object file is left in a file having the corresponding base name, .o instead of .c .
However, if a single C file is compiled and linked, all in one step, the .o file is deleted.

.s Suffix
Arguments whose names end with .s are understood to be assembly source files and are assem-
bled, producing a .o file for each .s file.

.i Suffix
Arguments whose names end with .i are assumed to be the output of cpp (see the -P option
below). They are compiled without invoking cpp (see cpp(1)). Each object file is left in a file
having the corresponding base name, but suffixed with .o instead of .i .

-l x Form
Arguments of the form -l x cause the linker to search the library lib x.sl or lib x.a in an
attempt to resolve currently unresolved external references. Because a library is searched when
its name is encountered, placement of a -l is significant. If a file contains an unresolved exter-
nal reference, the library containing the definition must be placed after the file on the command
line. See ld(1) for further details.

-l:lib x. suffix Form
Arguments of the form -l:lib x. suffix cause the linker to search the library lib x.sl or
lib x.a (depending on suffix) in an attempt to resolve currently unresolved external references.
It is similar to the -l option except the current state of the -Wl,-a option is not important.

Other Suffixes
All other arguments, such as those whose names end with .o or .a , are taken to be relocatable
object files that are to be included in the link operation.

Arguments and options can be passed to the compiler through the CCOPTSenvironment variable as well as
on the command line. The compiler reads the value of CCOPTSand divides these options into two sets;
options that appear before a vertical bar (|), and options that appear after the vertical bar. The first set of
options are placed before any of the command-line parameters to cc ; the second set of options are placed
after the command-line parameters to cc . If the vertical bar is not present, all options are placed before
the command-line parameters. For example (in sh(1) notation),

CCOPTS="-v -lmalloc"
export CCOPTS
cc -w prog.c

is equivalent to

cc -v -w prog.c -lmalloc

When set, the TMPDIRenvironment variable specifies a directory to be used by the compiler for temporary
files, overriding the default directory /var/tmp .

Options
The following options are the only options which are recognized by the bundled C compiler.

-c Suppress the link edit phase of the compilation, and force an object (.o) file to be pro-
duced for each .c file, even if only one program is compiled. Object files produced
from C programs must be linked before being executed.

-C Prevent the preprocessor from stripping C-style comments. See cpp(1) for details.

Section 1−−62 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cc_bundled(1) cc_bundled(1)
(Bundled C Compiler - Limited Functionality)

-D name=def Define name to the preprocessor, as if by ’#define’. See cpp(1) for details.
-D name

-E Run only cpp on the named C or assembly files, and send the result to the standard
output.

-I dir Change the algorithm used by the preprocessor for finding include files to also search
in directory dir. See cpp(1) for details.

-l x Refer to the DESCRIPTION section.

-L dir Change the algorithm used by the linker to search for lib x.sl or lib x.a . The -L
option causes cc to search in dir before searching in the default locations. See ld(1)
for details.

-o outfile Name the output file from the linker outfile. The default name is a.out .

-P Run only cpp on the named C files and leave the result on corresponding files suffixed
.i . The -P option is also passed along to cpp .

+Rnum Allow only the first num register variables to actually have the register class.
Use this option when the register allocator issues the message:

out of general registers

-s Cause the output of the linker to be stripped of symbol table information. See strip(1)
for more details. The use of this option prevents the use of a symbolic debugger on
the resulting program. See ld(1) for more details.

-S Compile the named C files, and leave the assembly language output on corresponding
files suffixed .s .

-t x, name Substitute subprocess x with name where x is one or more of a set of identifiers indi-
cating the subprocess(es). This option works in two modes: 1) if x is a single
identifier, name represents the full path name of the new subprocess; 2) if x is a set of
identifiers, name represents a prefix to which the standard suffixes are concatenated
to construct the full path names of the new subprocesses.

The x can take one or more of the values:

p Preprocessor (standard suffix is cpp)
c Compiler (standard suffix is ccom)
a Assembler (standard suffix is as)
l Linker (standard suffix is ld)

-U name Remove any initial definition of name in the preprocessor. See cpp(1) for details.

-v Enable verbose mode, which produces a step-by-step description of the compilation
process on the standard error.

-V Cause each invoked subprocess to print its version information to stdout.

-w Suppress warning messages.

-Wx, arglist Pass the comma-separated argument(s) in arglist to subprocess x. The -W option
specification allows additional, implementation-specific options to be recognized by the
compiler driver. For example,

-Wl,-a,archive

causes the linker to link with archive libraries instead of with shared libraries. See
ld(1) for details.

The x can assume one of the following values:

p Preprocessor
a Assembler
l Linker

Any other options encountered generate a warning to standard error.

Other arguments are assumed to be C-compatible object programs, typically produced by an earlier
cc run, or perhaps libraries of C-compatible routines. These programs, together with the results of
any compilations specified, are linked (in the order given) to produce an executable program with the

HP-UX Release 11i: December 2000 − 2 − Section 1−−63

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cc_bundled(1) cc_bundled(1)
(Bundled C Compiler - Limited Functionality)

name a.out .

EXTERNAL INFLUENCES
Environment Variables

LANGdetermines the language in which messages are displayed.

If LC_CTYPEis not specified in the environment or is set to the empty string, the value of LANGis used as
a default for each unspecified or empty variable. If LANGis not specified or is set to the empty string, a
default of C (see lang(5)) is used. If any internationalization variable contains an invalid setting, cc
behaves as if all internationalization variables are set to C. See environ(5).

International Code Set Support
Single byte and multibyte character code sets are supported.

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasionally, messages may be
produced by the preprocessor, assembler, or the link editor.

If any errors occur before cc is completed, a nonzero value is returned. Otherwise, zero is returned.

EXAMPLES
The example below compiles the C file prog.c to create a prog.o file, then invokes the ld link editor to
link prog.o and procedure.o with all of the C startup routines in /usr/ccs/lib/crt0.o and
library routines from the C library libc.sl or libc.a . The resulting executable program is placed in
file prog :

cc prog.c procedure.o -o prog

WARNINGS
Options not recognized by cc are not passed on to the link editor. The option -Wl, arg can be used to pass
any such option to the link editor.

By default, the return value from a C program is completely random. The only two guaranteed ways to
return a specific value are to explicitly call exit() (see exit(2)) or leave the function main() with a
return expression; construct.

FILES
file.c Input file
file.o Object file
a.out Linked executable output file
/var/tmp/ctm* Temporary files used by the compiler
/usr/ccs/bin/as Assembler (see as(1))
/usr/ccs/bin/ld Link editor (see ld(1))
/usr/ccs/lib/crt0.o Runtime startup
/usr/lib/libc.a Standard C library (archive version), see HP-UX Reference

Section (3)
/usr/lib/libc.sl Standard C library (shared version), see HP-UX Reference

Section (3)
/usr/include Standard directory for #include files

Bundled C Compiler Files
/usr/ccs/bin/cc C driver
/usr/ccs/lbin/ccom C compiler
/usr/lib/nls/msg/$LANG/cc.cat C compiler message catalog
/usr/ccs/lbin/cpp C preprocessor

SEE ALSO
System Tools

as(1) Translate assembly code to machine code.
cpp(1) Invoke the C language preprocessor.
ld(1) Invoke the link editor.
cc(1) The ANSI-compliant C compiler on HP-UX.

Section 1−−64 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cc_bundled(1) cc_bundled(1)
(Bundled C Compiler - Limited Functionality)

Miscellaneous
matherr(3M) Trap math errors.
fpgetround(3M) Floating-point mode control functions.
strip(1) Strip symbol and line number information from an object file.
crt0(3) Execution startup routine.
end(3C) Symbol of the last locations in program.
exit(2) Termination of a process.

Tutorials and Standards Documents
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

HP-UX Release 11i: December 2000 − 4 − Section 1−−65

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cd(1) cd(1)

NAME
cd - change working directory

SYNOPSIS
cd [directory]

DESCRIPTION
If directory is not specified, the value of shell parameter HOMEis used as the new working directory. If
directory specifies a complete path starting with / , . , or .. , directory becomes the new working directory.
If neither case applies, cd tries to find the designated directory relative to one of the paths specified by the
CDPATHshell variable. CDPATHhas the same syntax as, and similar semantics to, the PATHshell vari-
able. cd must have execute (search) permission in directory .

cd exists only as a shell built-in command because a new process is created whenever a command is exe-
cuted, making cd useless if written and processed as a normal system command. Moreover, different
shells provide different implementations of cd as a built-in utility. Features of cd as described here may
not be supported by all the shells. Refer to individual shell manual entries for differences.

If cd is called in a subshell or a separate utility execution environment such as:

find . -type d -exec cd {}; -exec foo {};

(which invokes foo on accessible directories) cd does not affect the current directory of the caller’s
environment. Another usage of cd as a stand-alone command is to obtain the exit status of the command.

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

EXAMPLES
Change the current working directory to the HOMEdirectory from any location in the file system:

cd

Change to new current working directory foo residing in the current directory:

cd foo
or

cd ./foo

Change to directory foobar residing in the current directory’s parent directory:

cd ../foobar

Change to the directory whose absolute pathname is /usr/local/lib/work.files :

cd /usr/local/lib/work.files

Change to the directory proj1/schedule/staffing/proposals relative to home directory:

cd $HOME/proj1/schedule/staffing/proposals

VARIABLES
The following environment variables affect the execution of cd:

HOME The name of the home directory, used when no directory operand is specified.

CDPATH A colon-separated list of pathnames that refer to directories. If the directory operand
does not begin with a slash (/) character, and the first component is not dot or dot-
dot, cd searches for directory relative to each directory named in the CDPATHvari-
able, in the order listed. The new working directory is set to the first matching direc-
tory found. An empty string in place of a directory pathname represents the current
directory. If CDPATHis not set, it is treated as if it was an empty string.

RETURN VALUE
Upon completion, cd exits with one of the following values:

Section 1−−66 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cd(1) cd(1)

0 The directory was successfully changed.
>0 An error occurred. The working directory remains unchanged.

SEE ALSO
csh(1), pwd(1), ksh(1), sh-posix(1), sh(1), chdir(2).

STANDARDS CONFORMANCE
cd : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 2 − Section 1−−67

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cdc(1) cdc(1)

NAME
cdc - change the delta commentary of an SCCS delta

SYNOPSIS
cdc -r SID [-m[mrlist]] [-y [comment]] files

DESCRIPTION
The cdc command changes the delta commentary, for the SID specified by the -r option, of each named
SCCS file.

Delta commentary is defined to be the Modification Request (MR) and comment information normally
specified via the delta(1) command (-m and -y options).

If a directory is named, cdc behaves as if each file in the directory were specified as a named file, except
that non-SCCS files (last component of the path name does not begin with s.) and unreadable files are
silently ignored. If a name of - is given, the standard input is read (see WARNINGS); each line of the stan-
dard input is taken to be the name of an SCCS file to be processed.

Options
Arguments to cdc , which can appear in any order, consist of option arguments and file names.

All of the described option arguments apply independently to each named file:

-r SID Used to specify the SCCS IDentification (SID) string of a delta for which the delta com-
mentary is to be changed.

-m[mrlist] If the SCCS file has the v option set (see admin(1)), a list of MR numbers to be added
and/or deleted in the delta commentary of the SID specified by the -r option may be
supplied. A null MR list has no effect.

MR entries are added to the list of MRs in the same manner as that of delta(1). To
delete an MR, precede the MR number with the character ! (see EXAMPLES). If the
MR to be deleted is currently in the list of MRs, it is removed and changed into a ‘‘com-
ment’’ line. A list of all deleted MRs is placed in the comment section of the delta com-
mentary and preceded by a comment line stating that they were deleted.

If -m is not used and the standard input is a terminal, the prompt MRs? is issued on
the standard output before the standard input is read; if the standard input is not a
terminal, no prompt is issued. The MRs? prompt always precedes the comments?
prompt (see -y option).

MRs in a list are separated by blanks and/or tab characters. An unescaped new-line
character terminates the MRs list.

Note that if the v option has a value (see admin(1)), it is treated as the name of a pro-
gram (or shell procedure) that validates the correctness of the MR numbers. If a non-
zero exit status is returned from the MR number validation program, cdc terminates
and the delta commentary remains unchanged.

-y [comment] Arbitrary text used to replace the comment or comments already existing for the delta
specified by the -r option. Previous comments are kept and preceded by a comment
line stating that they were changed. A null comment has no effect.

If -y is not specified and the standard input is a terminal, the prompt comments?
is issued on the standard output before standard input is read; if standard input is not
a terminal, no prompt is issued. An unescaped new-line character terminates the
comment text.

The exact permissions necessary to modify the SCCS file are documented in get(1). Simply stated, they are
either:

• If you made the delta, you can change its delta commentary, or

• If you own the file and directory, you can modify the delta commentary.

EXTERNAL INFLUENCES
Environment Variables

LANGdetermines the language in which messages are displayed.

Section 1−−68 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cdc(1) cdc(1)

International Code Set Support
Single- and multi-byte character code sets are supported.

DIAGNOSTICS
Use sccshelp(1) for explanations.

EXAMPLES
Add bl78-12345 and bl79-00001 to the MR list, remove bl77-54321 from the MR list, and add the
comment trouble to delta 1.6 of s.file :

cdc -r1.6 -m"bl78-12345 !bl77-54321 bl79-00001" -ytrouble s.file

The following does the same thing:

cdc -r1.6 s.file
MRs? !bl77-54321 bl78-12345 bl79-00001
comments? trouble

WARNINGS
If SCCS file names are supplied to the cdc command via the standard input (- on the command line), the
-m and -y options must also be used.

FILES
x-file See delta(1).
z-file See delta(1).

SEE ALSO
admin(1), delta(1), get(1), sccshelp(1), prs(1), sccsfile(4), rcsfile(4), acl(5), rcsintro(5).

HP-UX Release 11i: December 2000 − 2 − Section 1−−69

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chacl(1) chacl(1)

NAME
chacl - add, modify, delete, copy, or summarize access control lists (ACLs) of files

SYNOPSIS
/usr/bin/chacl acl file ...

chacl -r acl file ...

chacl -d aclpatt file ...

chacl -f fromfile tofile ...

chacl - [z Z F] file...

DESCRIPTION
chacl extends the capabilities of chmod(1), by enabling the user to grant or restrict file access to addi-
tional specific users and/or groups. Traditional file access permissions, set when a file is created, grant or
restrict access to the file’s owner, group, and other users. These file access permissions (eg., rwxrw-r--)
are mapped into three base access control list entries: one entry for the file’s owner (u.%, mode), one for
the file’s group (%.g, mode), and one for other users (%.%, mode).

chacl enables a user to designate up to thirteen additional sets of permissions (called optional access con-
trol list (ACL) entries) which are stored in the access control list of the file.

To use chacl, the owner (or superuser) constructs an acl, a set of (user.group, mode) mappings to associate
with one or more files. A specific user and group can be referred to by either name or number; any user
(u), group (g), or both can be referred to with a %symbol, representing any user or group. The @ symbol
specifies the file’s owner or group.

Read, write, and execute/search (rwx) modes are identical to those used by chmod; symbolic operators (op)
add (+), remove (-), or set (=) access rights. The entire acl should be quoted if it contains whitespace or
special characters. Although two variants for constructing the acl are available (and fully explained in
acl(5)), the following syntax is suggested:

entry [, entry] ...

where the syntax for an entry is

u.g op mode[op mode] ...

By default, chacl modifies existing ACLs. It adds ACL entries or modifies access rights in existing ACL
entries. If acl contains an ACL entry already associated with a file, the entry’s mode bits are changed to the
new value given, or are modified by the specified operators. If the file’s ACL does not already contain the
specified entry, that ACL entry is added. chacl can also remove all access to files. Giving it a null acl
argument means either ‘‘no access’’ (when using the -r option) or ‘‘no changes.’’

For a summary of the syntax, run chacl without arguments.

If file is specified as - , chacl reads from standard input.

Options
chacl recognizes the following options:

-r Replace old ACLs with the given ACL. All optional ACL entries are first deleted from the
specified files’s ACLs, their base permissions are set to zero, and the new ACL is applied. If
acl does not contain an entry for the owner (u.%), the group (%.g), or other (%.%) users of
a file, that base ACL entry’s mode is set to zero (no access). The command affects all of the
file’s ACL entries, but does not change the file’s owner or group ID.

In chmod(1), the ‘‘modify’’ and ‘‘replace’’ operations are distinguished by the syntax (string
or octal value). There is no corollary for ACLs because they have a variable number of
entries. Hence chacl modifies specific entries by default, and optionally replaces all
entries.

-d Delete the specified entries from the ACLs on all specified files. The aclpatt argument can
be an exact ACL or an ACL pattern (see acl(5)). chacl -d updates each file’s ACL only if
entries are deleted from it.

If you attempt to delete a base ACL entry from any file, the entry remains but its access
mode is set to zero (no access). If you attempt to delete a non-existent ACL entry from a file
(that is, if an ACL entry pattern matches no ACL entry), chacl informs you of the error,

Section 1−−70 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chacl(1) chacl(1)

continues, and eventually returns non-zero.

-f fromfile tofile
Copy the ACL from fromfile to the specified tofile, transferring ownership, if necessary (see
acl(5), chown(2), or chownacl(3C)). fromfile can be - to represent standard input.

This option implies the -r option. If the owner and group of fromfile are identical to those
of tofile, chacl -f is identical to:

chacl -r ‘lsacl fromfile‘ tofile ...

To copy an ACL without transferring ownership, the above command is suggested instead of
chacl -f .

-z Delete (‘‘zap’’) all optional entries in the specified file’s ACLs, leaving only base entries.

-Z Delete (‘‘zap’’) all optional entries in the specified file’s ACLs, and set the access modes in all
base entries to zero (no access). This is identical to replacing the old ACL with a null ACL:

chacl -r ’’ file ...

or using chmod(1), which deletes optional entries as a side effect:

chmod 0 file ...

-F Incorporate (‘‘fold’’) optional ACL entries into base ACL entries. The base ACL entry’s per-
mission bits are altered, if necessary, to reflect the caller’s effective access rights to the file;
all optional entries, if any, are deleted.

For ordinary users, only the access mode of the owner base ACL entry can be altered.
Unlike getaccess , the write bit is not turned off for a file on a read-only file system or a
shared-text program being executed (see getaccess (1)).

For super-users, only the execute mode bit in the owner base ACL entry might be changed,
only if the file is not an regular file or if an execute bit is not already set in a base ACL entry
mode, but is set in an optional ACL entry mode.

acl also can be obtained from a string in a file:

chacl ‘cat file‘ files ...

Using @ in acl to represent ‘‘file owner or group’’ can cause chacl to run more slowly because it must
reparse the ACL for each file (except with the -d option).

EXTERNAL INFLUENCES
Environment Variables

LANGdetermines the language in which messages are displayed.

If LANGis not specified or is set to the empty string, a default of "C" (see lang(5)) is used instead of LANG.
If any internationalization variable contains an invalid setting, chacl behaves as if all internationaliza-
tion variables are set to "C". See environ(5).

RETURN VALUE
If chacl succeeds, it returns a value of zero.

If chacl encounters an error before it changes any file’s ACL, it prints an error message to standard error
and returns 1. Such errors include invalid invocation, invalid syntax of acl (aclpatt), a given user name or
group name is unknown, or inability to get an ACL from fromfile with the -f option.

If chacl cannot execute the requested operation, it prints an error message to standard error, continues,
and later returns 2. This includes cases when a file does not exist, a file’s ACL cannot be altered, more ACL
entries would result than are allowed, or an attempt is made to delete a non-existing ACL entry.

EXAMPLES
The following command adds read access for user jpc in any group, and removes write access for any user
in the files’s groups, for files x and y .

chacl "jpc.%+r, %.@-w" x y

This command replaces the ACL on the file open as standard input and on file test with one which only
allows the file owner read and write access.

HP-UX Release 11i: December 2000 − 2 − Section 1−−71

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chacl(1) chacl(1)

chacl -r ’(@.%,rw-)’ - test

Delete from file myfile the specific access rights, if any, for user 165 in group 13. Note that this is
different from adding an ACL entry that restricts access for that user and group. The user’s resulting access
rights depend on the entries remaining in the ACL. The command also deletes all entries for user jpc that
have a read bit turned on (the asterisk can be used as a wildcard in the ACL pattern for user, group, or
access mode):

chacl -d ’165.13, jpc.*+r’ myfile

Copy the ACL from oldfile to slow/hare and fast/tortoise .

chacl -f oldfile slow/hare fast/tortoise

Delete the optional ACL entries, if any, on the file open as standard input.

chacl -z -

Deny all access to all files in the current directory whose names start with a, b, or c :

chacl -Z [a-c]*

Incorporate the optional ACL entries of a file (fun.stuff) into the base ACL entries:

chacl -F fun.stuff

WARNINGS
An ACL string cannot contain more than 16 unique entries, even though converting @ symbols to user or
group names and combining redundant entries might result in fewer than 16 entries for some files.

DEPENDENCIES
chacl will fail when the target file resides on a file system which does not support ACLs.

NFS
Only the -F option is supported on remote files.

AUTHOR
chacl was developed by HP.

SEE ALSO
chmod(1), getaccess(1), lsacl(1), getacl(2), setacl(2), acl(5), glossary(9).

Section 1−−72 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chatr(1) chatr(1)

NAME
chatr - change program’s internal attributes

SYNOPSIS
PA32 SOM chatr

chatr [-nqsMN] [-l library] [-B mode] [+b flag] [+es flag] [+gst flag] [+gstbuckets size]
[+gstsize size] [+k flag] [+l library] [+pd size] [+pi size] [+plabel_cache flag]
[+q3p flag] [+q4p flag] [+r flag] [+s flag] [+z flag] file ...

PA64 ELF chatr
There are two possible syntactic forms that can be used to invoke PA64 chatr .

FORMAT 1: The first syntactic form, which is compatible with the SOM chatr , is used for back-
ward compatibility, and for easy manipulation of ordinary files that only have a single text and a
single data segment:

chatr [-nqs] [-l library] [-B mode] [+b flag] [+cd flag] [+ci flag] [+es flag] [+gst flag]
[+gstsize size] [+k flag] [+l library] [+md flag] [+mi flag] [+pd size] [+pi size] [+s
flag] [+z flag] file ...

FORMAT 2: The second syntactic form provides the ability to explicitly specify segments to be
modified:

chatr [-s] [-B mode] [+c flag] [+dz flag] [+k flag] [+m flag] [+p size] [+r flag] [+s flag]
[+si index | +sa address | +sall] [+z flag] file ...

DESCRIPTION
chatr allows you to change a program’s internal attributes for 32-bit mode SOM and 64-bit mode ELF
files.

Upon completion, chatr prints the file’s old and new values to standard output unless -s is specified.

The +pd and +pi options only provide a hint for the virtual memory page size. The actual page sizes
may vary. Under certain conditions, page size hints of L may result in better performance, depending on
the specific memory requirements of the application.

The performance of some applications may benefit from static branch prediction, others may not. The +r
option provides a hint for using or avoiding this feature.

The +gst and related options provide performance enhancements through use of global symbol table
which improves searching for exported symbols. See dld.sl(5) and the HP-UX Linker and Libraries Online
User Guide for more information.

COMMON OPTIONS FOR PA32 SOM AND PA64 ELF (FORMAT 1) chatr
chatr , by default, prints each file ’s magic number and file attributes to the standard output.

-l library Indicate that the specified shared library is subject to run-time path lookup if directory
path lists are provided (see +s and +b).

-n Change file from demand-loaded (DEMAND_MAGIC) to shared (SHARE_MAGIC) (Ignored
in PA64 FORMAT 1.)

-q Change file from shared (SHARE_MAGIC) to demand-loaded (DEMAND_MAGIC). (Ignored
in PA64 FORMAT 1.)

-s Perform its operation silently. (Available with the PA64 FORMAT 2 command.)

-B mode Select run-time binding behavior mode of a program using shared libraries. You must
specify one of the major binding modes immediate or deferred . One or more of the
binding modifiers nonfatal , verbose , or restricted can also be specified, each
with a separate option. See the HP-UX Linker and Libraries User’s Guide manual for a
description of binding modes. (Available with the PA64 FORMAT 2 command.)

+b flag Control whether the embedded path list stored when the program (if any) was built can be
used to locate shared libraries needed by the program. The two flag values, enable and
disable , respectively enable and disable use of the embedded path list. See the +s
option. You can use the +b option to enable the embedded path for filter libraries.

+es flag Control the ability of user code to execute from stack with the flag values, enable and
disable . See the Restricting Execute Permission on Stacks section below for additional

HP-UX Release 11i: December 2000 − 1 − Section 1−−73

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chatr(1) chatr(1)

information related to security issues.

+gst flag Control whether the global symbol table hash mechanism is used to look up values of sym-
bol import/export entries. The two flag values, enable and disable , respectively
enable and disable use of the global symbol table hash mechanism. The default is dis-
able .

+gstsize size
Request a particular hash array size using the global symbol table hash mechanism. The
value can vary between 1 and MAXINT. The default value is 1103. Use this option with
+gst enable .

+k flag Request kernel assisted branch prediction. The flags enable and disable turn this
request on and off, respectively. (Available with the PA64 FORMAT 2 command.)

+l library Indicate that the specified shared library is not subject to run-time path lookup if directory
path lists are provided (see +s and +b).

+pd size Request a particular virtual memory page size that should be used for data. Sizes of 4K,
16K, 64K, 256K , 1M, 4M, 16M, 64M, 256M, and L are supported. A size of L will result
in using the largest page size available. The actual page size may vary if the requested size
cannot be fulfilled.

+pi size Request a particular virtual memory page size that should be used for instructions. See the
+pd option for additional information.

+r flag Request static branch prediction when executing this program. The flags enable and
disable turn this request on and off, respectively. (Available with the PA64 FORMAT 2
command.)

+s flag Control whether the directory path list specified with the SHLIB_PATH environment
variable can be used to locate shared libraries needed by the program. The two flag values,
enable and disable , respectively enable and disable use of the environment variable.
If both +s and +b are used, their relative order on the command line indicates which path
list will be searched first. See the +b option. (Available with the PA64 FORMAT 2 com-
mand.)

+z Enable lazy swap on all data segments (using PA32 chatr or PA64 chatr FORMAT 1) or on a
specific segment (using PA64 ELF chatr FORMAT 2). May not be used with non-data seg-
ments.

OPTIONS FOR PA32 SOM chatr ONLY
-M Change file from EXEC_MAGICto SHMEM_MAGIC. (This option is an interim solution

until 64-bit addressability is available with a true 64-bit kernel. See the "chatr and MAGIC
Numbers" and "Using SHMEM_MAGIC" sections below.)

-N Change file from SHMEM_MAGICto EXEC_MAGIC. (This option is an interim solution
until 64-bit addressability is available with a true 64-bit kernel. See the "chatr and MAGIC
Numbers" and "Using SHMEM_MAGIC" sections below.)

+gstbuckets size
Request a particular number of buckets per entry using the global symbol table hash
mechanism. The value can vary between 1 and MAXINT. The default value is 3. Use this
option with +gst enable .

+plabel_cache flag
Control the use of the plabel caching mechanism. The flags enable and disable turn
this request on and off, respectively. The default is disable . Use this option with +gst
enable .

This option is effective with C++. In C++ applications, the dynamic loader needs to repeti-
tively access PLABEL information (import stub). In order to make this access faster, the
dynamic loader uses the global symbol table structure to also contain PLABEL entries. This
behavior is enabled when the PLABEL_CACHE flag is set in the dl_header structure
(enabled ld +plabel_cache enable a.out or chatr +plabel_cache
enable a.out).

+q3p flag Control the flag bit setting to indicate how 32-bit processes use the third quadrant as data
space.

Section 1−−74 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chatr(1) chatr(1)

The enable flag sets the flag bit to indicate that 32-bit processes use the third quadrant
as a private data space. By setting the bit, the private data space increases from 1.9GB to
2.85GB for 32-bit processes.

The disable flag unsets the bit, which returns the third quadrant to the default state, in
which it is used for shared memory.

This flag mechanism differs from how to set usage for the first and second quadrants. Set
these values by using the magic number of the executable. (See the -M and -N options.)

+q4p flag Control the flag bit setting to indicate how 32-bit processes use the third and fourth qua-
drant as data space.

The enable flag sets the flag bit to indicate that 32-bit processes use the fourth quadrant
as a private data space. By setting the +q4p flag bit, the private data space increases from
1.9GB to 3.8GB for 32-bit processes. When you set the fourth quadrant for private data
space, the third quadrant is automatically set for use as private data space, ignoring the
current +q3p value.

The disable flag unsets the flag bit, which returns the fourth quadrant to the default
state, in which it is used for shared memory. With +q4p disable , the value of the
+q3p flag controls whether the third quadrant is used as a private data space or for shared
memory.

This flag mechanism differs from how to set usage for the first and second quadrants. Set
these values by using the magic number of the executable. (See the -M and -N options.)

OPTIONS FOR PA64 ELF chatr
PA64 ELF chatr is similar to SOM chatr but supports new options (and obsoletes others).

New options:

OPTIONS FOR PA64 ELF chatr (FORMAT 1)

+cd Set the code bit for the file’s data segment(s).

+ci Set the code bit for the file’s text segments(s).

+md Set the modification bit for the file’s data segment(s).

+mi Set the modification bit for the file’s text segment(s).

OPTIONS FOR PA64 ELF chatr (FORMAT 2)

With common options: -s , -B mode, +k flag, +r flag, +s flag, +z flag.

+c Set the code bit for a specified segment.

+dz Enable or disable lazy swap allocation for dynamically allocated segments (such as the stack
or heap).

+m Set the modification bit for a specified segment.

+p Set the page size for a specified segment.

+sa Specify a segment using an address for a set of attribute modifications.

+sall Use all segments in the file for a set of attribute modifications.

+si Specify a segment using a segment index number for a set of attribute modifications.

chatr and MAGIC Numbers
The term shared applies to the magic number SHARE_MAGICwhile the term demand-loaded applies to
the magic number DEMAND_MAGIC. See magic(4) and the HP-UX Linker and Libraries Online User
Guide for more information.

chatr labels the following type of executables in output.

SHARE_MAGIC: shared executable

DEMAND_MAGIC: demand load executable

EXEC_MAGIC: normal executable

HP-UX Release 11i: December 2000 − 3 − Section 1−−75

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chatr(1) chatr(1)

SHMEM_MAGIC: normal SHMEM_MAGICexecutable

The linker produces SHARE_MAGICexecutables by default.

Using SHMEM_MAGIC
SHMEM_MAGICis an interim solution until 64-bit addressability is available with a true 64-bit kernel.

SHMEM_MAGICwill not be supported on future HP implementations of 64-bit architectures (beyond
PA2.0). Programs that need larger than 1.75 GB of shared memory on those architectures will have to be
recompiled (as 64-bit executables) for those architectures.

Programs that are compiled as 64-bit executables on any 64-bit HP implementation (including PA 2.0) can-
not be marked as SHMEM_MAGICnor do they need to be as they will already have access to more than
1.75 GB of shared memory.

The additional 1 GB of shared memory that is available over other types of executables can be availed of
only for system V shared memory and not other forms of shared memory (like memory mapped files).

Restricting Execute Permission on Stacks
A frequent or common method of breaking into systems is by maliciously overflowing buffers on a program’s
stack, such as passing unusually long, carefully chosen command line arguments to a privileged program
that does not expect them. Malicious unprivileged users can use this technique to trick a privileged pro-
gram into starting a superuser shell for them, or to perform similar unauthorized actions.

One simple yet highly effective way to reduce the risk from this type of attack is to remove the execute per-
mission from a program’s stack pages. This improves system security without sacrificing performance and
has no negative effects on the vast majority of legitimate applications. The changes described in this sec-
tion only affect the very small number of programs that try to execute (or are tricked into executing)
instructions located on the program’s stack(s).

If the stack protection feature described in this section is enabled for a program and that program attempts
to execute code from its stack(s), the HP-UX kernel will terminate the program with a SIGKILL signal,
display a message referring to this manual page section, and log an error message to the system message
log (use dmesg to view the error message). The message logged by the kernel is:

WARNING: UID # may have attempted a buffer overflow attack. PID #
(program_name) has been terminated. See the ’+es enable’ option of
chatr(1).

If you see one of these messages, check with the program’s owner to determine whether this program is leg-
itimately executing code from its stack. If it is, you can use one or both of the methods described below to
make the program functional again. If the program is not legitimately executing code from its stack, you
should suspect malicious activity and take appropriate action.

HP-UX provides two options to permit legitimate execution from a program’s stack(s). Combinations of
these two options help make site-specific tradeoffs between security and compatibility.

The first method is the use of the +es option of chatr and affects individual programs. It is typically
used to specify that a particular binary must be able to execute from its stack, regardless of the system
default setting. This allows a restrictive system default while not preventing legitimate programs from
executing code on their stack(s). Ideally this option should be set (if needed) by the program’s provider, to
minimize the need for manual intervention by whomever installs the program.

An alternate method is setting the kernel tunable parameter, executable_stack , to set a system-wide
default for whether stacks are executable. Setting the executable_stack parameter to 1 (one) with
sam (see sam(1M)) tells the HP-UX kernel to allow programs to execute on the program stack(s). Use this
setting if compatibility with older releases is more important than security. Setting the
executable_stack parameter to 0 (zero), the recommended setting, is appropriate if security is more
important than compatibility. This setting significantly improves system security with minimal, if any,
negative effects on legitimate applications.

Combinations of these settings may be appropriate for many applications. For example, after setting
executable_stack to 0, you may find that one or two critical applications no longer work because they
have a legitimate need to execute from their stack(s). Programs such as simulators or interpreters that use
self-modifying code are examples you might encounter. To obtain the security benefits of a restrictive sys-
tem default while still letting these specific applications run correctly, set executable_stack to 0, and
run chatr +es enable on the specific binaries that need to execute code from their stack(s). These
binaries can be easily identified when they are executed, because they will print error messages referring to

Section 1−−76 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chatr(1) chatr(1)

this manual page.

The possible settings for executable_stack are as follows:

executable_stack = 0
A setting of 0 causes stacks to be non-executable and is strongly preferred from a security per-
spective.

executable_stack = 1 (default)
A setting of 1 (the default value) causes all program stacks to be executable, and is safest from a
compatibility perspective but is the least secure setting for this parameter.

executable_stack = 2
A setting of 2 is equivalent to a setting of 0, except that it gives non-fatal warnings instead of ter-
minating a process that is trying to execute from its stack. Using this setting is helpful for users
to gain confidence that using a value of 0 will not hurt their legitimate applications. Again, there
is less security protection.

The table below summarizes the results from using the possible combinations of chatr +es and
executable_stack when executing from the program’s stack. Running chatr +es disable
relies solely on the setting of the executable_stack kernel tunable parameter when deciding whether
or not to grant execute permission for stacks and is equivalent to not having run chatr +es on the
binary.

chatr +es executable_stack ACTION
enable 1 program runs normally
disable or chatr is not run 1 program runs normally
enable 0 program runs normally
disable or chatr is not run 0 program is killed
enable 2 program runs normally
disable or chatr is not run 2 program runs normally

with warning displayed

RETURN VALUE
chatr returns zero on success. If the command line contents is syntactically incorrect, or one or more of
the specified files cannot be acted upon, chatr returns information about the files whose attributes could
not be modified. If no files are specified, chatr returns decimal 255.

Illegal options
For PA32 chatr , if you use an illegal option, chatr returns the number of words in the command line.
For example,

chatr +b enable +xyz enable returns 5 (because of illegal option +xyz).

chatr +b enable +xyz enable +mno file1 file2 returns 8.

For PA64 chatr, if you use an illegal option, chatr returns the number of non-option words present
after the first illegal option.

chatr +b enable +xyz enable +mno enable +pqr enable file returns 4.

Invalid arguments
If you use an invalid argument with a valid option and you do not specify a filename, both PA32 and PA64
chatr return 0.

chatr +b <no argument> returns 0.

For PA32 chatr , if you specify a file name (regardless of whether or not the file exists), chatr returns
number of words in the command line.

chatr +b <no argument> file returns 4.

For PA64 chatr , if you specify a file name (regardless of whether or not the file exists), chatr returns
the number of files specified.

chatr +b <no argument> file1 file2 file3 returns 3.

HP-UX Release 11i: December 2000 − 5 − Section 1−−77

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chatr(1) chatr(1)

Invalid files
For both PA32 and PA64 chatr , if the command cannot act on any of the files given, it returns the total
number of files specified (if some option is specified). Otherwise it returns the number of files upon which it
could not act.

chatr +b enable a1 a2 a3 a4 (where a2 does not have read/write permission) returns 4.

chatr a1 a2 a3 a4 returns 1.

EXTERNAL INFLUENCES
Environment Variables

The following internationalization variables affect the execution of chatr :

LANG Determines the locale category for native language, local customs and coded character
set in the absence of LC_ALL and other LC_* environment variables. If LANGis not
specified or is set to the empty string, a default of C (see lang(5)) is used instead of
LANG.

LC_ALL Determines the values for all locale categories and has precedence over LANGand other
LC_* environment variables.

LC_CTYPE Determines the locale category for character handling functions.

LC_MESSAGES Determines the locale that should be used to affect the format and contents of diagnostic
messages written to standard error.

LC_NUMERIC Determines the locale category for numeric formatting.

NLSPATH Determines the location of message catalogues for the processing of LC_MESSAGES.

If any internationalization variable contains an invalid setting, chatr behaves as if all internationaliza-
tion variables are set to C. See environ(5).

In addition, the following environment variable affects chatr :

TMPDIR Specifies a directory for temporary files (see tmpnam(3S)).

EXAMPLES
Change a.out to demand-loaded

chatr -q a.out

Change binding mode of program file that uses shared libraries to immediate and nonfatal. Also enable
usage of SHLIB_PATH environment variable:

chatr -B immediate -B nonfatal +s enable a.out

Disallow run-time path lookup for the shared library /usr/lib/libc.sl that the shared library
libfoo.sl depends on:

chatr +l /usr/lib/libc.sl libfoo.sl

Given segment index number 5 from a previous run of chatr , change the page size to 4 kilobytes:

chatr +si 5 +p 4K average64

AUTHOR
chatr was developed by HP.

SEE ALSO
System Tools:

ld(1) invoke the link editor
Miscellaneous:

a.out(4) assembler, compiler, and linker output
magic(4) magic number for HP-UX implementations
sam(1M) system administration manager

Section 1−−78 − 6 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chatr(1) chatr(1)

Texts and Tutorials:
HP-UX Linker and Libraries Online User Guide

(See the +help option)
HP-UX Linker and Libraries User’s Guide

(See manuals(5) for ordering information)

HP-UX Release 11i: December 2000 − 7 − Section 1−−79

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

checknr(1) checknr(1)

NAME
checknr - check nroff/troff files

SYNOPSIS
checknr [-s] [-f] [-a. x1. y1. x2. y2 xn. yn] [-c. x1. x2. x3 ...c . xn] [file ...]

DESCRIPTION
checknr searches a list of nroff or troff input files for certain kinds of errors involving mismatched
opening and closing delimiters and unknown commands. If no files are specified, checknr searches the
standard input. checknr looks for the following:

• Font changes using \fx ... \fP .

• Size changes using \sx ... \s0 .

• Macros that come in open ... close forms, such as the .TS and .TE macros, which must appear
in matched pairs.

checknr knows about the ms and memacro packages.

Options
checknr recognizes the following options:

-a Define additional macro pairs in the list. -a is followed by groups of six characters, each
group defining a pair of macros. Each six characters consist of a period, the first macro name,
another period, and the second macro name. For example, to define the pairs .BS and .ES ,
and .XS and .XE , use:

-a.BS.ES.XS.XE

No spaces are allowed between the option and its arguments.

-c Define commands that checknr would otherwise interpret as undefined.

-f Ignore \f x font changes.

-s Ignore \s x size changes.

EXTERNAL INFLUENCES
International Code Set Support

Single-byte character code sets are supported.

DIAGNOSTICS
checknr complains about unmatched delimiters, unrecognized commands, and bad command syntax.

EXAMPLES
Check file sorting for errors that involve mismatched opening and closing delimiters and unknown com-
mands, but disregard errors caused by font changes:

checknr -f sorting

WARNINGS
checknr is designed for use on documents prepared with the intent of using checknr , much the same
as lint is used. It expects a certain document writing style for \f ... and \s ... commands, in which
each \f x is terminated with \fP and each \s x is terminated with \s0 . Although text files format prop-
erly when the next font or point size is coded directly instead of using \fP or \s0 , such techniques pro-
duce complaints from checknr. If files are to be examined by checknr, the \fP and \s0 delimiting con-
ventions should be used.

-a cannot be used to define single-character macro names.

checknr does not recognize certain reasonable constructs such as conditionals.

AUTHOR
checknr was developed by the University of California, Berkeley.

SEE ALSO
checkeq(1), lint(1), nroff(1).

Section 1−−80 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chfn(1) chfn(1)

NAME
chfn - change user information; used by finger

SYNOPSIS
chfn [login-name]

chfn -r files [login-name]

chfn -r nis [login-name]

chfn -r nisplus [login-name]

chfn -r dce [login-name]

DESCRIPTION
The chfn command changes the user information that is stored in the repository for the current
logged-in user or for the user specified by login-name (see passwd(1)).

The information is organized as four comma-separated subfields within the reserved (5th) field of the pass-
word file entry. It consists of the user’s full name, location code, office phone number, and home phone
number, in that order. This information is used by the finger command and other programs (see
finger(1)).

chfn prompts you for each subfield. The prompt includes a default value, which is enclosed in brackets.
Accept the default value by pressing the Return key. To enter a blank subfield, type the word none .

The DCE repository (-r dce) is only available if Integrated Login has been configured, see auth.adm(1M).
If Integrated Login has been configured, other considerations apply. A user with appropriate DCE
privileges is capable of modifying a user’s finger (gecos) information; this is not dependent upon superuser
privileges.

If the repository is not specified; i.e., chfn [login-name], the finger information is changed in the passwd
file only.

Run finger after running chfn to make sure the information was processed correctly.

Options
The following option is recognized:

-r Specify the repository to which the operation is to be applied. Supported repositories
include files , nis , nisplus , and dce .

Subfield Values
Name Up to 1022 printing characters.

The finger command and other utilities expand an & found anywhere in this
subfield by substituting the login name for it and shifting the first letter of the
login name to uppercase. (chfn does not alter the input &.)

Location Up to 1022 printing characters.

Office Phone Up to 25 printing characters.

finger inserts appropriate hyphens if the value is all digits.

Home Phone Up to 25 printing characters.

finger inserts appropriate hyphens if the value is all digits.

Security Restrictions
You must have appropriate privileges to use the optional login-name argument to change another user’s
information.

EXAMPLES
The following is a sample run. The user’s input is shown in regular type.

Name [Tracy Simmons]:
Location (Ex: 47U-P5) []: 42L-P1
Office Phone (Ex: 1632) [77777]: 71863
Home Phone (Ex: 9875432) [4085551546]: none

HP-UX Release 11i: December 2000 − 1 − Section 1−−81

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chfn(1) chfn(1)

WARNINGS
The encoding of office and extension information is installation-dependent.

For historical reasons, the user’s name, etc., are stored in the /etc/passwd file. This is an inappropriate
place to store the information.

Because two users may try to write the passwd file at once, a synchronization method was developed. On
rare occasions, chfn prints a message that the password file is busy. When this occurs, chfn sleeps for a
short time, then tries to write to the passwd file again.

AUTHOR
chfn was developed by the University of California, Berkeley.

FILES
/etc/passwd
/etc/ptmp

NOTES
The chfn command is a hard link to passwd command. When chfn is executed, actually the passwd
command gets executed with appropriate arguments to change the user gecos information in the repository
specified in command line. If no repository is specified the gecos information is changed in /etc/passwd
file.

SEE ALSO
chsh(1), finger(1), passwd(1), passwd(4).

Section 1−−82 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chkey(1) chkey(1)

NAME
chkey - change user’s secure RPC key pair

SYNOPSIS
chkey [-p] [-s nisplus | nis | files]

DESCRIPTION
chkey is used to change a user’s secure RPC public key and secret key pair. chkey prompts for the old
secure-rpc password and verifies that it is correct by decrypting the secret key. If the user has not already
keylogged in, chkey registers the secret key with the local keyserv(1M) daemon. If the secure-rpc pass-
word does not match the login password, chkey prompts for the login password. chkey uses the login
password to encrypt the user’s secret Diffie-Hellman (192 bit) cryptographic key.

chkey ensures that the login password and the secure-rpc password are kept the same.

The key pair can be stored in the /etc/publickey file, (see publickey(4)), NIS publickey map or
NIS+ cred.org_dir table. If a new secret key is generated, it will be registered with the local
keyserv(1M) daemon.

If the source of the publickey is not specified with the -s option, chkey consults the publickey
entry in the name service switch configuration file (see nsswitch.conf(4)). If the publickey entry
specifies one and only one source, then chkey will change the key in the specified name service. However,
if multiple name services are listed, chkey can not decide which source to update and will display an error
message. The user should specify the source explicitly with the -s option.

Non root users are not allowed to change their key pair in the /etc/publickey file.

Options
-p Re-encrypt the existing secret key with the user’s login password.

-s nisplus Update the NIS+ database.

-s nis Update the NIS database.

-s files Update the files database.

AUTHOR
chkey was developed by Sun Microsystems, Inc.

FILES
/etc/nsswitch.conf
/etc/publickey

SEE ALSO
keylogin(1), keylogout(1), keyserv(1M), newkey(1M), nisaddcred(1M), nsswitch.conf(4), publickey(4).

HP-UX Release 11i: December 2000 − 1 − Section 1−−83

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chmod(1) chmod(1)

NAME
chmod - change file mode access permissions

SYNOPSIS
/usr/bin/chmod [-A] [-R] symbolic_mode_list file ...

Obsolescent form:
/usr/bin/chmod [-A] [-R] numeric_mode file ...

DESCRIPTION
The chmod command changes the permissions of one or more files according to the value of
symbolic_mode_list or numeric_mode . You can display the current permissions for a file with the ls -l
command (see ls(1)).

Symbolic Mode List
A symbolic_mode_list is a comma-separated list of operations in the following form. Whitespace is not per-
mitted.

[who]op[permission] [, ...]

The variable fields can have the following values:

who One or more of the following letters:

u Modify permissions for user (owner).
g Modify permissions for group.
o Modify permissions for others.
a Modify permissions for all users (a is equivalent to ugo).

op Required; one of the following symbols:

+ Add permission to the existing file mode bits of who.
- Delete permission from the existing file mode bits of who.
= Replace the existing mode bits of who with permission .

permission One or more of the following letters:

r Add or delete the read permission for who.
w Add or delete the write permission for who.
x Add or delete the execute file (search directory) permission for who.
s Add or delete the set-owner-ID-on-file-execution or set-group-ID-on-file-

execution permission for who. Useful only if u or g is expressed or implied in
who.

t Add or delete the save-text-image-on-file-execution (sticky bit) permission.
Useful only if u is expressed or implied in who. See chmod(2).

X Conditionally add or delete the execute/search permission as follows:
• If file is a directory, add or delete the search permission to the existing file

mode for who. (Same as x .)
• If file is not a directory, and the current file permissions include the execute

permission (ls -l displays an x or an s) for at least one of user, group, or
other, then add or delete the execute file permission for who.

• If file is not a directory, and no execute permissions are set in the current
file mode, then do not change any execute permission.

Or one only of the following letters:

u Copy the current user permissions to who.
g Copy the current group permissions to who.
o Copy the current other permissions to who.

The operations are performed in the order specified, and can override preceding operations specified in the
same command line.

If who is omitted, the r , w, x , and X permissions are changed for all users if the changes are permitted by
the current file mode creation mask (see umask(1)). The s and t permissions are changed as if a was
specified in who.

Omitting permission is useful only when used with = to delete all permissions.

Section 1−−84 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chmod(1) chmod(1)

Numeric Mode (Obsolescent)
Absolute permissions can be set by specifying a numeric_mode , an octal number constructed from the logi-
cal OR (sum) of the following mode bits:

Miscellaneous mode bits:

4000 (= u=s) Set user ID on file execution (file only)
2000 (= g=s) Set group ID on file execution (file only)
1000 (= u=t) Set sticky bit; see below and chmod(2)

Permission mode bits:

0400 (= u=r) Read by owner
0200 (= u=w) Write by owner
0100 (= u=x) Execute (search in directory) by owner
0040 (= g=r) Read by group
0020 (= g=w) Write by group
0010 (= g=x) Execute/search by group
0004 (= o=r) Read by others
0002 (= o=w) Write by others
0001 (= o=x) Execute/search by others

Options
-A Preserve any optional access control list (ACL) entries associated with the file (HFS file systems

only). By default, in conformance with the IEEE Standard POSIX 1003.1-1988, optional HFS
ACL entries are deleted. For JFS ACLs, this option has no effect, because optional JFS ACL
entries are always preserved. For information about access control lists, see acl(5) and aclv(5).

-R Recursively change the file mode bits. For each file operand that names a directory, chmod
alters the file mode bits of the named directory and all files and subdirectories in the file hierar-
chy below it.

Only the owner of a file, or a user with appropriate privileges, can change its mode.

Only a user having appropriate privileges can set (or retain, if previously set) the sticky bit of a regular file.

If the sticky bit is set on a directory, files inside the directory may be renamed or removed only by the
owner of the file, the owner of the directory, or the superuser (even if the modes of the directory would oth-
erwise allow such an operation).

In order to set the set-group-ID bit, the group of the file must correspond to your current group ID.

If chmod is used on a symbolic link, the mode of the file referred to by the link is changed.

EXTERNAL INFLUENCES
Environment Variables

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_MESSAGESis not specified or is null, it defaults to the value of LANG. If LANGis not specified or is
null, it defaults to C (see lang(5)).

If any internationalization variable contains an invalid setting, all internationalization variables default to
C. See environ(5).

International Code Set Support
Single- and multibyte character code sets are supported.

RETURN VALUE
Upon completion, chmod returns one of the following values:

0 Successful completion.
>0 An error condition occurred.

EXAMPLES
Deny write permission to others:

chmod o-w file

Make a file executable by everybody:

HP-UX Release 11i: December 2000 − 2 − Section 1−−85

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chmod(1) chmod(1)

chmod a+x file

Assign read and execute permission to everybody, and set the set-user-ID bit:

chmod a=rx,u+s file

Assign read and write permission to the file owner, and read permission to everybody else:

chmod u=rw,go=r file

or the obsolescent form:

chmod 644 file

Traverse a directory subtree making all regular files readable by user and group only, and all executables
and directories executable (searchable) by everyone:

chmod -R ug+r,o-r,a+X pathname

If the current value of umask is 020 (umask -S displays u=rwx,g=rx,o=rwx ; do not change write
permission for group) and the current permissions for file mytest are 444 (a=r), displayed by ls -l as
-r--r--r-- , then the command

chmod +w mytest

sets the permissions to 646 (uo=rw,g=r), displayed by ls -l as -rw-r--rw- .

If the current value of umask is 020 (umask -S displays u=rwx,g=rx,o=rwx ; do not change write
permission for group) and the current permissions for file mytest are 666 (a=rw), displayed by ls -l as
-rw-rw-rw- , then the command

chmod -w mytest

sets the permissions to 464 (uo=r,g=rw), displayed by ls -l as -r--rw-r-- .

DEPENDENCIES
The -A option causes chmod to fail on file systems that do not support ACLs.

AUTHOR
chmod was developed by AT&T and HP.

SEE ALSO
chacl(1), ls(1), umask(1), chmod(2), acl(5), aclv(5).

STANDARDS CONFORMANCE
chmod: SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

Section 1−−86 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chown(1) chown(1)

NAME
chown, chgrp - change file owner or group

SYNOPSIS
chown [-h] [-R] owner[: group] file ...

chgrp [-h] [-R] group file ...

DESCRIPTION
The chown command changes the owner ID of each specified file to owner and optionally the group ID of
each specified file to group.

The chgrp command changes the group ID of each specified file to group.

owner can be either a decimal user ID or a login name found in the /etc/passwd file.

group can be either a decimal group ID or a group name found in the /etc/group file.

In order to change the owner or group, you must own the file and have the CHOWN privilege (see
setprivgrp (1M)). If either command is invoked on a regular file by other than the superuser, the set-user-
ID and set-group-ID bits of the file mode (04000 and 02000 respectively) are cleared. Note that a given
user’s or group’s ability to use this command can be restricted by setprivgrp (see setprivgrp (1M)).

Access Control Lists −− HFS File Systems Only
Users can permit or deny specific individuals and groups to access a file by setting optional ACL entries in
the file’s access control list (see acl(5)). When using chown in conjunction with HFS ACLs, if the new
owner and/or group of a file does not have an optional ACL entry corresponding to user.% and/or %.group
in the file’s access control list, the file’s access permission bits remain unchanged. However, if the new
owner and/or group is already designated by an optional ACL entry of user.% and/or %.group in the file’s
ACL, chown sets the corresponding file access permission bits (and the corresponding base ACL entries) to
the permissions contained in that entry.

Access Control Lists −− JFS File Systems Only
Users can permit or deny specific individuals and groups to access a file by setting optional ACL entries in
the file’s access control list (see aclv(5)). When using chown in conjunction with JFS ACLs, if the new
owner and/or group of a file have optional ACL entries corresponding to user: uid: perm and/or
group: gid: perm in the file’s access control list, those entries remain in the ACL but no longer have any
effect, being superseded by the file’s user:: perm and/or group:: perm entries.

Options
chown and chgrp recognize the following options:

-h Change the owner or group of a symbolic link.

By default, the owner or group of the target file that a symbolic link points to is changed. With
-h , the target file that the symbolic link points to is not affected. If the target file is a directory,
and you specify -h and -R , recursion does not take place.

-R Recursively change the owner or group. For each file operand that names a directory, the owner
or group of the directory and all files and subdirectories in the file hierarchy below it are
changed.

EXTERNAL INFLUENCES
Environment Variables

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_MESSAGESis not specified in the environment or is set to the empty string, the value of LANGis
used as a default for each unspecified or empty variable. If LANGis not specified or is set to the empty
string, a default of "C" (see lang(5)) is used instead of LANG.

If any internationalization variable contains an invalid setting, chown behaves as if all internationaliza-
tion variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

HP-UX Release 11i: December 2000 − 1 − Section 1−−87

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chown(1) chown(1)

RETURN VALUE
chown and chgrp return the following values:

0 Successful completion.
>0 An error condition occurred.

EXAMPLES
The following command changes the owner of the file jokes to sandi :

chown sandi jokes

The following command searches the directory design_notes and changes each file in that directory to
owner mark and group users :

chown -R mark:users design_notes

WARNINGS
The default operation of chown and chgrp for symbolic links has changed as of HP-UX release 10.0. Use
the -h option to get the former default operation.

FILES
/etc/group
/etc/passwd

SEE ALSO
chmod(1), setprivgrp(1M), chown(2), group(4), passwd(4), acl(5), aclv(5).

STANDARDS CONFORMANCE
chown : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

chgrp : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

Section 1−−88 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chsh(1) chsh(1)

NAME
chsh - change default login shell

SYNOPSIS
chsh login-name [shell]

chsh -r files login-name [shell]

chsh -r nisplus login-name [shell]

chsh -r nis login-name [shell]

chsh -r dce login-name [shell]

DESCRIPTION
The chsh command changes the login-shell for a user’s login name in the repository (see passwd(1)).

The DCE repository (-r dce) is only available if Integrated Login has been configured, see auth.adm(1M).
If Integrated Login has been configured, other considerations apply. A user with appropriate DCE
privileges is capable of modifying a user’s shell; this is not dependent upon superuser privileges.

If the repository is not specified; i.e., chsh [login-name], the login shell is changed in passwd file only.

Run finger after running chsh to make sure the information was processed correctly.

Arguments
login-name A login name of a user.

shell The absolute path name of a shell. If the file /etc/shells exists, the new login shell
must be listed in that file. Otherwise, you can specify one of the standard shells listed in
the getusershell(3C) manual entry. If shell is omitted, it defaults to the POSIX shell,
/usr/bin/sh .

Options
The following option is recognized:

-r Specify the repository to which the operation is to be applied. Supported repositories
include files , nis , nisplus , and dce .

Security Restrictions
You must have the syslog sensitivity label to execute chsh . You must have the owner kernel authori-
zation to change another user’s login shell.

NETWORKING FEATURES
NFS

File /etc/passwd can be implemented as a Network Information Service (NIS) database.

EXAMPLES
To change the login shell for user voltaire to the default:

chsh voltaire

To change the login shell for user descartes to the C shell:

chsh descartes /usr/bin/csh

To change the login shell for user aristotle to the Korn shell in the DCE registry:

chsh -r dce aristotle /usr/bin/ksh

WARNINGS
As many users may try to write the /etc/passwd file simultaneously, a passwd locking mechanism was
deviced. If this locking fails after subsequent retrying, chsh terminates.

AUTHOR
chsh was developed by HP and the University of California, Berkeley.

HP-UX Release 11i: December 2000 − 1 − Section 1−−89

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

chsh(1) chsh(1)

NOTES
The chsh command is a hard link to passwd command. When chsh is executed actually the passwd
command gets executed with appropriate arguments to change the user login shell in the repository
specified in command line. If no repository is specified the login shell is changed in /etc/passwd file.

FILES
/etc/shells
/etc/ptmp

SEE ALSO
chfn(1), csh(1), ksh(1), passwd(1), sh(1), sh-bourne(1), sh-posix(1), getusershell(3C), pam(3), passwd(4),
shells(4).

Section 1−−90 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

ci(1) ci(1)

NAME
ci - check in RCS revisions

SYNOPSIS
ci [options] file...

DESCRIPTION
ci stores new revisions into RCS files. Each file name ending in ,v is treated as an RCS file; all others
are assumed to be working files. ci deposits the contents of each working file into the corresponding RCS
file (see rcsintro(5)).

If the RCS file does not exist, ci creates it and deposits the contents of the working file as the initial revi-
sion. The default number is "1.1". The access list is initialized to empty. Instead of the log message, ci
requests descriptive text (see the -t option below).

An RCS file created by ci inherits the read and execute permissions from the working file. If the RCS file
exists, ci preserves its read and execute permissions. ci always turns off all write permissions of RCS
files.

The caller of the command must have read/write permission for the directories containing the RCS file and
the working file, and read permission for the RCS file itself. A number of temporary files are created. A
semaphore file is created in the directory containing the RCS file. ci always creates a new RCS file and
unlinks the old one; therefore links to RCS files are useless.

For ci to work, the user’s login must be in the access list unless the access list is empty, the user is the
owner of the file, or the user is super-user.

Normally, ci checks whether the revision to be deposited is different from the preceding one. If it is not
different, ci either aborts the deposit (if -q is given) or asks whether to abort (if -q is omitted). A depo-
sit can be forced with the -f option.

If sufficient memory is not available for checking the difference between the revision to be deposited and
the preceding one, then either swap or maxdsiz values can be increased.

For each revision deposited, ci prompts for a log message. The log message should summarize the change
and must be terminated with a line containing a single "." or a control-D. If several files are being checked
in, ci asks whether or not to reuse the log message from the previous file. If the standard input is not a
terminal, ci suppresses the prompt and uses the same log message for all files (see -m option below.

The number of the deposited revision can be given with any of the options -r , -f , -k , -l , -u , or -q (see
-r option below).

To add a new revision to an existing branch, the head revision on that branch must be locked by the caller.
Otherwise, only a new branch can be created. This restriction is not enforced for the owner of the file,
unless locking is set to strict (see rcs(1)). A lock held by someone else can be broken with the rcs
command (see rcs(1)).

Options
-f [rev] Forces a deposit. The new revision is deposited even if it is not different from the preceding

one.

-k [rev] Searches the working file for keyword values to determine its revision number, creation
date, author, and state (see co(1)), and assigns these values to the deposited revision,
rather than computing them locally. A revision number given with a command option over-
rides the number in the working file. This option is useful for software distribution. A revi-
sion that is sent to several sites should be checked in with the -k option at these sites to
preserve its original number, date, author, and state.

-l [rev] Works like -r , except it performs an additional co -l for the deposited revision. Thus,
the deposited revision is immediately checked out again and locked. This is useful for sav-
ing a revision although one wants to continue editing it after the check-in.

-m" msg" Uses the string msg as the log message for all revisions checked in.

-n" name" Assigns the symbolic name name to the checked-in revision. ci prints an error message
if name is already assigned to another number.

-N" name" Same as -n , except that it overrides a previous assignment of name.

HP-UX Release 11i: December 2000 − 1 − Section 1−−91

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

ci(1) ci(1)

-q [rev] Quiet mode; diagnostic output is not printed. A revision that is not different from the
preceding one is not deposited unless -f is given.

-r [rev] Assigns the revision number rev to the checked-in revision, releases the corresponding lock,
and deletes the working file. This is the default.

If rev is omitted, ci derives the new revision number from the caller’s last lock. If the
caller has locked the head revision of a branch, the new revision is added to the head of
that branch and a new revision number is assigned to the new revision. The new revision
number is obtained by incrementing the head revision number. If the caller locked a non-
head revision, a new branch is started at the locked revision, and the number of the locked
revision is incremented. The default initial branch and level numbers are 1. If the caller
holds no lock, but is the owner of the file and locking is not set to strict , the revision is
added to the head of the trunk.

If rev indicates a revision number, it must be higher than the latest one on the branch to
which rev belongs, or must start a new branch.

If rev indicates a branch instead of a revision, the new revision is added to the head of that
branch. The level number is obtained by incrementing the head revision number of that
branch. If rev indicates a non-existing branch, that branch is created with the initial revi-
sion numbered rev.1 .
NOTE: On the trunk, revisions can be added to the head, but not inserted.

-s" state" Sets the state of the checked-in revision to the identifier state . The default is Exp .

-t [txtfile] Writes descriptive text into the RCS file (deletes the existing text). If txtfile is omitted, ci
prompts the user for text from standard input that is terminated with a line containing a
single . or Ctrl-D. Otherwise, the descriptive text is copied from the file txtfile. During
initialization, descriptive text is requested even if -t is not given. The prompt is
suppressed if standard input is not a terminal.

-u [rev] Similar to -l , except that the deposited revision is not locked. This is useful if one wants
to process (e.g., compile) the revision immediately after check in.

Access Control Lists (ACLs)
Optional ACL entries should not be added to RCS files, because they might be deleted.

DIAGNOSTICS
For each revision, ci prints the RCS file, the working file, and the number of both the deposited and the
preceding revision. The exit status always refers to the last file checked in, and is 0 if the operation was
successful, 1 if unsuccessful.

EXAMPLES
If the current directory contains a subdirectory RCSwith an RCS file io.c,v , all of the following com-
mands deposit the latest revision from io.c into RCS/io.c,v :

ci io.c
ci RCS/io.c,v
ci io.c,v
ci io.c RCS/io.c,v
ci io.c io.c,v
ci RCS/io.c,v io.c
ci io.c,v io.c

Check in version 1.2 of RCS file foo.c,v , with the message Bug fix :

ci -r1.2 -m"Bug Fix" foo.c,v

WARNINGS
The names of RCS files are generated by appending ,v to the end of the working file name. If the result-
ing RCS file name is too long for the file system on which the RCS file should reside, ci terminates with
an error message.

The log message cannot exceed 2046 bytes.

A file with approximately 240 revisions may cause a hash table overflow. ci cannot add another revision
to the file until some of the old revisions have been removed. Use the rcs -o (obsolete) command option

Section 1−−92 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

ci(1) ci(1)

to remove old revisions.

RCS is designed to be used with TEXT files only. Attempting to use RCS with non-text (binary) files results
in data corruption.

AUTHOR
ci was developed by Walter F. Tichy.

SEE ALSO
co(1), ident(1), rcs(1), rcsdiff(1), rcsmerge(1), rlog(1), rcsfile(4), acl(5), rcsintro(5).

HP-UX Release 11i: December 2000 − 3 − Section 1−−93

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

ckconfig(1) ckconfig(1)

NAME
ckconfig - verify the path names of all the FTP configuration files.

SYNOPSIS
/usr/bin/ckconfig

DESCRIPTION
The ckconfig utility is used to verify the path names of the FTP configuration files,
/etc/ftpd/ftpusers , /etc/ftpd/ftpaccess , /etc/ftpd/ftpconversions ,
/etc/ftpd/ftpgroups , /etc/ftpd/ftphosts , /var/adm/syslog/xferlog , and
/etc/ftpd/pids/* .

This utility checks to see that all the FTP configuration files are in the path specified. If it is not able to find
the configuration files in the path, it will give out an error message to the system administrator about the
same.

FILES
/usr/bin/ckconfig

AUTHOR
ckconfig was developed by the Washington University, St. Louis, Missouri.

SEE ALSO
ftpusers(4), ftpconversions(4), ftpaccess(4), ftphosts(4), ftpgroups(4), xferlog(5).

Section 1−−94 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cksum(1) cksum(1)

NAME
cksum - print file checksum and sizes

SYNOPSIS
cksum [file ...]

DESCRIPTION
The cksum command calculates and prints to standard output a checksum for each named file, the number
of octets in the file and the filename.

cksum uses a portable algorithm based on a 32-bit Cyclic Redundancy Check. This algorithm finds a
broader spectrum of errors than the 16-bit algorithms used by sum (see sum(1)). The CRC is the sum of
the following expressions, where x is each byte of the file.

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x7 + x5 + x4 + x2 + x1 + x0

The results of the calculation are truncated to a 32-bit value. The number of bytes in the file is also
printed.

Standard input is used if no file names are given.

cksum is typically used to verify data integrity when copying files between systems.

EXTERNAL INFLUENCES
Environment Variables

LANGdetermines the locale to use for the locale categories when both LC_ALL and the corresponding
environment variable (beginning with LC_) do not specify a locale. If LANG is not set or is set to the
empty string, a default of "C" (see lang(5)) is used.

LC_CTYPEdetermines the locale for interpretation of sequences of bytes of text data as characters (e.g.,
single- verses multibyte characters in arguments and input files).

LC_MESSAGESdetermines the language in which messages are displayed.

If any internationalization variable contains an invalid setting, cksum behaves as if all internationaliza-
tion variables are set to "C". See environ(5).

RETURN VALUE
Upon completion, cksum returns one of the following values:

0 All files were processed successfully.

>0 One or more files could not be read or another error occurred.

If an inaccessible file is encountered, cksum continues processing any remaining files, but the final exit
status is affected.

SEE ALSO
sum(1), wc(1), pdf(4).

STANDARDS CONFORMANCE
cksum : XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 1 − Section 1−−95

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

clear(1) clear(1)

NAME
clear - clear terminal screen

SYNOPSIS
clear

DESCRIPTION
clear clears the terminal screen if it is possible to do so. It reads the TERMenvironment variable for the
terminal type, then reads the appropriate terminfo database to determine how to clear the screen.

FILES
/usr/share/lib/terminfo/?/* terminal database files

AUTHOR
clear was developed by the University of California, Berkeley.

SEE ALSO
terminfo(4).

Section 1−−96 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cmp(1) cmp(1)

NAME
cmp - compare two files

SYNOPSIS
cmp [-l] [-s] file1 file2 [skip1 [skip2]]

DESCRIPTION
cmp compares two files (if file1 or file2 is - , the standard input is used). Under default options, cmp
makes no comment if the files are the same; if they differ, it announces the byte and line number at which
the difference occurred. If one file is an initial subsequence of the other, that fact is noted. skip1 and skip2
are initial byte offsets into file1 and file2, respectively; and maybe octal or decimal; the form of the number
is determined by the environment variable LC_NUMERIC(in the C locale, a leading 0 denotes an octal
number. See LANGon environ(5) and strtol(3C)).

cmp recognizes the following options:

-l Print the byte number (decimal) and the differing bytes (octal) for each difference (byte
numbering begins at 1 rather than 0).

-s Print nothing for differing files; return codes only.

EXTERNAL INFLUENCES
Environment Variables

LANGdetermines the language in which messages are displayed. If LANGis not specified or is set to the
empty string, a default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable
contains an invalid setting, cmp behaves as if all internationalization variables are set to "C". See
environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

DIAGNOSTICS
cmp returns the following exit values:

0 Files are identical.
1 Files are not identical.
2 Inaccessible or missing argument.

cmp prints the following warning if the comparison succeeds till the end of file of file1(file2) is reached.

cmp: EOF on file1(file2)

SEE ALSO
comm(1), diff(1).

STANDARDS CONFORMANCE
cmp: SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 1 − Section 1−−97

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

co(1) co(1)

NAME
co - check out RCS revisions

SYNOPSIS
co [options] file ...

DESCRIPTION
co retrieves revisions from RCS files. Each file name ending in ,v is taken to be an RCS file. All other
files are assumed to be working files. co retrieves a revision from each RCS file and stores it in the
corresponding working file (see also rcsintro(5)).

Revisions of an RCS file can be checked out locked or unlocked. Locking a revision prevents overlapping
updates. A revision checked out for reading or processing (e.g., compiling) need not be locked. A revision
checked out for editing and later checked in must normally be locked. Locking a revision currently locked
by another user fails (a lock can be broken with the rcs command, but poses inherent risks when indepen-
dent changes are being made simultaneously (see rcs(1)). co with locking requires the caller to be on the
access list of the RCS file unless: he is the owner of the file, a user with appropriate privileges, or the access
list is empty. co without locking is not subject to access list restrictions.

A revision is selected by number, check-in date/time, author, or state. If none of these options are
specified, the latest revision on the trunk is retrieved. When the options are applied in combination, the
latest revision that satisfies all of them is retrieved. The options for date/time, author, and state retrieve a
revision on the selected branch. The selected branch is either derived from the revision number (if given),
or is the highest branch on the trunk. A revision number can be attached to the options -l , -p , -q , or -r .

The caller of the command must have write permission in the working directory, read permission for the
RCS file, and either read permission (for reading) or read/write permission (for locking) in the directory that
contains the RCS file.

The working file inherits the read and execute permissions from the RCS file. In addition, the owner write
permission is turned on, unless the file is checked out unlocked and locking is set to strict (see rcs(1)).

If a file with the name of the working file exists already and has write permission, co aborts the check out
if -q is given, or asks whether to abort if -q is not given. If the existing working file is not writable, it is
deleted before the check out.

A number of temporary files are created. A semaphore file is created in the directory of the RCS file to
prevent simultaneous update.

A co command applied to an RCS file with no revisions creates a zero-length file. co always performs
keyword substitution (see below).

Options
-l [rev] Locks the checked out revision for the caller. If omitted, the checked out revision is not

locked. See option -r for handling of the revision number rev .

-p [rev] Prints the retrieved revision on the standard output rather than storing it in the working
file. This option is useful when co is part of a pipe.

-q [rev] Quiet mode; diagnostics are not printed.

-d date Retrieves the latest revision on the selected branch whose check in date/time is less than or
equal to date. The date and time may be given in free format and are converted to local
time. Examples of formats for date:

Tue-PDT, 1981, 4pm Jul 21 (free format)
Fri April 16 15:52:25 EST 1982 (output of ctime(3C))
4/21/86 10:30am (format: mm/ dd/ yy hh: mm: ss)

Most fields in the date and time can be defaulted. co determines the defaults in the order
year, month, day, hour, minute, and second (from most- to least-significant). At least one
of these fields must be provided. For omitted fields that are of higher significance than the
highest provided field, the current values are assumed. For all other omitted fields, the
lowest possible values are assumed. For example, the date 20, 10:30 defaults to
10:30:00 of the 20th of the current month and current year. Date/time fields can be delim-
ited by spaces or commas. If spaces are used, the string must be surrounded by double
quotes.

Section 1−−98 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

co(1) co(1)

For 2-digit year input (yy) without the presence of the century field, the following interpre-
tation is taken: [70 -99 , 00 -69 (1970-1999, 2000-2069)].

-r [rev] Retrieves the latest revision whose number is less than or equal to rev . If rev indicates a
branch rather than a revision, the latest revision on that branch is retrieved. rev is com-
posed of one or more numeric or symbolic fields separated by . . The numeric equivalent of
a symbolic field is specified with the ci -n and rcs -n commands (see ci(1) and rcs(1)).

-s state Retrieves the latest revision on the selected branch whose state is set to state .

-w [login] Retrieves the latest revision on the selected branch that was checked in by the user with
login name login. If the argument login is omitted, the caller’s login is assumed.

-j joinlist Generates a new revision that is the result of the joining of the revisions on joinlist. join-
list is a comma-separated list of pairs of the form rev2: rev3, where rev2 and rev3 are (sym-
bolic or numeric) revision numbers. For the initial pair, rev1 denotes the revision selected
by the options -l , ..., -w . For all other pairs, rev1 denotes the revision generated by the
previous pair. (Thus, the output of one join becomes the input to the next.)

For each pair, co joins revisions rev1 and rev3 with respect to rev2. This means that all
changes that transform rev2 into rev1 are applied to a copy of rev3. This is particularly
useful if rev1 and rev3 are the ends of two branches that have rev2 as a common ancestor.
If rev1 < rev2 < rev3 on the same branch, joining generates a new revision that is similar
to rev3, but with all changes that lead from rev1 to rev2 undone. If changes from rev2 to
rev1 overlap with changes from rev2 to rev3, co prints a warning and includes the overlap-
ping sections, delimited as follows:

<<<<<<<
rev1
=======
rev3
>>>>>>>

For the initial pair, rev2 can be omitted. The default is the common ancestor. If any of the
arguments indicate branches, the latest revisions on those branches are assumed. If the
-l option is present, the initial rev1 is locked.

Keyword Substitution
Strings of the form $keyword$ and $keyword: ...$ embedded in the text are replaced with strings of the
form $keyword: value $, where keyword and value are pairs listed below. Keywords may be embedded in
literal strings or comments to identify a revision.

Initially, the user enters strings of the form $keyword$. On check out, co replaces these strings with
strings of the form $keyword: value $. If a revision containing strings of the latter form is checked back
in, the value fields are replaced during the next checkout. Thus, the keyword values are automatically
updated on checkout.

Keywords and their corresponding values:

$Author$ The login name of the user who checked in the revision.

$Date$ The date and time the revision was checked in.

$Header$ A standard header containing the RCS file name, the revision number, the date, the author,
and the state.

$Locker$ The login name of the user who locked the revision (empty if not locked).

Log The log message supplied during checkin, preceded by a header containing the RCS file
name, the revision number, the author, and the date. Existing log messages are not
replaced. Instead, the new log message is inserted after $Log: ...$. This is useful for
accumulating a complete change log in a source file.

$Revision$ The revision number assigned to the revision.

$Source$ The full pathname of the RCS file.

$State$ The state assigned to the revision with rcs -s or ci -s .

HP-UX Release 11i: December 2000 − 2 − Section 1−−99

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

co(1) co(1)

Access Control Lists (ACLs)
Optional ACL entries should not be added to RCS files because they might be deleted.

DIAGNOSTICS
The RCS file name, the working file name, and the revision number retrieved are written to the diagnostic
output. The exit status always refers to the last file checked out, and is 0 if the operation was successful, 1
if unsuccessful.

EXAMPLES
Assume the current directory contains a subdirectory named RCSwith an RCS file named io.c,v . Each
of the following commands retrieves the latest revision from RCS/io.c,v and stores it into io.c :

co io.c
co RCS/io.c,v
co io.c,v
co io.c RCS/io.c,v
co io.c io.c,v
co RCS/io.c,v io.c
co io.c,v io.c

Check out version 1.1 of RCS file foo.c,v :

co -r1.1 foo.c,v

Check out version 1.1 of RCS file foo.c,v to the standard output:

co -p1.1 foo.c,v

Check out the version of file foo.c,v that existed on September 18, 1992:

co -d"09/18/92" foo.c,v

WARNINGS
The co command generates the working file name by removing the ,v from the end of the RCS file name.
If the given RCS file name is too long for the file system on which the RCS file should reside, co terminates
with an error message.

There is no way to suppress the expansion of keywords, except by writing them differently. In nroff and
troff , this is done by embedding the null-character \& into the keyword.

The -d option gets confused in some circumstances, and accepts no date before 1970.

The -j option does not work for files containing lines consisting of a single . .

RCS is designed to be used with text files only. Attempting to use RCS with non-text (binary) files results in
data corruption.

AUTHOR
co was developed by Walter F. Tichy.

SEE ALSO
ci(1), ident(1), rcs(1), rcsdiff(1), rcsmerge(1), rlog(1), rcsfile(4), acl(5), rcsintro(5).

Section 1−−100 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

col(1) col(1)

NAME
col - filter reverse line-feeds and backspaces

SYNOPSIS
col [-blfxp]

DESCRIPTION
col reads from the standard input and writes onto the standard output. It performs the line overlays
implied by reverse line feeds (ASCII code ESC-7), and by forward and reverse half-line feeds (ESC-9 and
ESC-8). col is particularly useful for filtering multi-column output made with the nroff .rt com-
mand, and output resulting from use of the tbl preprocessor (see nroff(1) and tbl(1)).

If the -b option is given, col assumes that the output device in use is not capable of backspacing. In this
case, if two or more characters are to appear in the same place, only the last one read is output.

If the -l option is given, col assumes the output device is a line printer (rather than a character printer)
and removes backspaces in favor of multiply overstruck full lines. It generates the minimum number of
print operations necessary to generate the required number of overstrikes. (All but the last print operation
on a line are separated by carriage returns (\r); the last print operation is terminated by a newline (\n).)

Although col accepts half-line motions in its input, it normally does not emit them on output. Instead,
text that would appear between lines is moved to the next lower full-line boundary. This treatment can be
suppressed by the -f (fine) option; in this case, the output from col may contain forward half-line feeds
(ESC-9), but will still never contain either kind of reverse line motion.

Unless the -x option is given, col converts white space to tabs on output wherever possible to shorten
printing time.

The ASCII control characters SO (\016) and SI (\017) are assumed by col to start and end text in an alter-
nate character set. The character set to which each input character belongs is remembered, and on output
SI and SO characters are generated as appropriate to ensure that each character is printed in the correct
character set.

On input, the only control characters accepted are space, backspace, tab, return, new-line, SI , SO , and VT ,
(\013), and ESC followed by 7, 8, or 9. The VT character is an alternate form of full reverse line-feed,
included for compatibility with some earlier programs of this type. All other non-printing characters are
ignored.

Normally, col ignores any unrecognized escape sequences found in its input; the -p option can be used
to cause col to output these sequences as regular characters, subject to overprinting from reverse line
motions. The use of this option is highly discouraged unless the user is fully aware of the textual position of
the escape sequences.

EXTERNAL INFLUENCES
Environment Variables

LANGprovides a default value for the internationalization variables that are unset or null. If LANG is
unset or null, the default value of "C" (see lang(5)) is used. If any of the internationalization variables con-
tains an invalid setting, col will behave as if all internationalization variables are set to "C". See
environ(5).

LC_ALL If set to a non-empty string value, overrides the values of all the other internationalization vari-
ables.

LC_CTYPEdetermines the interpretation of text as single and/or multi-byte characters, the classification
of characters as printable, and the characters matched by character class expressions in regular expres-
sions.

LC_MESSAGESdetermines the locale that should be used to affect the format and contents of diagnostic
messages written to standard error and informative messages written to standard output.

NLSPATHdetermines the location of message catalogues for the processing of LC_MESSAGES.

International Code Set Support
Single- and multi-byte character code sets are supported.

EXAMPLES
col is used most often with nroff and tbl . A common usage is:

HP-UX Release 11i: December 2000 − 1 − Section 1−−101

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

col(1) col(1)

tbl filename | nroff -man | col | more -s

(very similar to the usual man(1) command). This command allows vertical bars and outer boxes to be
printed for tables. The file is run through the tbl preprocessor, and the output is then piped through
nroff , formatting the output using the -man macros. The formatted output is then piped through col ,
which sets up the vertical bars and aligns the columns in the file. The file is finally piped through the
more command, which prints the output to the screen with underlining and highlighting substituted for
italic and bold typefaces. The -s option deletes excess space from the output so that multiple blank lines
are not printed to the screen.

SEE ALSO
nroff(1), tbl(1), ul(1), man(5).

NOTES
The input format accepted by col matches the output produced by nroff with either the -T37 or -
Tlp options. Use -T37 (and the -f option of col) if the ultimate disposition of the output of col is a
device that can interpret half-line motions, and -Tlp otherwise.

BUGS
Cannot back up more than 128 lines. Cannot back up across page boundaries.

There is a maximum limit for the number of characters, including backspaces and overstrikes, on a line.
The maximum limit is at least 800 characters.

Local vertical motions that would result in backing up over the first line of the document are ignored. As a
result, the first line must not have any superscripts.

WARNINGS
This command is likely to be withdrawn from X/Open standards. Applications using this command might
not be portable to other vendors’ systems.

STANDARDS CONFORMANCE
col : SVID2, SVID3, XPG2, XPG3

Section 1−−102 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

comb(1) comb(1)

NAME
comb - combine SCCS deltas

SYNOPSIS
comb [-p SID] [-c list] [-o] [-s] file ...

DESCRIPTION
The comb command generates a shell procedure (see sh(1)) which, when run, reconstructs the given SCCS
files. The reconstructed files are usually smaller than the original files. Arguments can be specified in any
order, but all options apply to all named SCCS files. If a directory is named, comb behaves as though each
file in the directory were specified as a named file, except that non-SCCS files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a name of - is given, the stan-
dard input is read; each line of the standard input is taken to be the name of an SCCS file to be processed;
non-SCCS files and unreadable files are silently ignored. The generated shell procedure is written on the
standard output.

Options
comb recognizes the following options. Each is explained as if only one named file is to be processed, but
the effects of any option apply independently to each named file.

-p SID The SCCS IDentification string (SID) of the oldest delta to be preserved. All older del-
tas are discarded in the reconstructed file.

-c list A list of deltas to be preserved (see get(1) for the syntax of a list). All other deltas are
discarded.

-o For each get -e generated, this option causes the reconstructed file to be accessed
at the release of the delta to be created, otherwise the reconstructed file would be
accessed at the most recent ancestor. Use of the -o option can decrease the size of
the reconstructed SCCS file. It can also alter the shape of the delta tree of the original
file.

-s This option causes comb to generate a shell procedure which, when run, produces a
report giving, for each file: the file name, size (in blocks) after combining, original size
(also in blocks), and percentage change computed by:

100 × (original − combined) / original

It is recommended that this option be used before any SCCS files are actually com-
bined to determine exactly how much space is saved by the combining process.

If no options are specified, comb preserves only leaf deltas and the minimal number of ancestors needed to
preserve the tree.

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

DIAGNOSTICS
Use sccshelp(1) for explanations.

EXAMPLES
The command:

comb -c1.1,1.3,1.6 s.document > save_file

creates a shell script named save_file , which if executed, creates a new s.document using only the
deltas 1.1 , 1.3 ,and 1.6 from the old s.document . The script overwrites the old s.document ;
thus, it might be wise to copy the original elsewhere. Here is an example of typical technique:

cp s.document s.save
comb -c1.1,1.3,1.6 s.document > save_file
sh save_file

WARNINGS
comb may rearrange the shape of the tree of deltas. Combining files may or may not save space; in fact, it
is possible for the reconstructed file to actually be larger than the original.

HP-UX Release 11i: December 2000 − 1 − Section 1−−103

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

comb(1) comb(1)

FILES
s.COMB????? Temporary file

comb????? Temporary file

SEE ALSO
admin(1), delta(1), get(1), sccshelp(1), prs(1), sh(1), sccsfile(4).

Section 1−−104 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

comm(1) comm(1)

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [- [123]] file1 file2

DESCRIPTION
comm reads file1 and file2, which should be ordered in increasing collating sequence (see sort(1) and
Environment Variables below), and produces a three-column output:

Column 1: Lines that appear only in file1,
Column 2: Lines that appear only in file2,
Column 3: Lines that appear in both files.

If - is used for file1 or file2, the standard input is used.

Options 1, 2, or 3 suppress printing of the corresponding column. Thus comm -12 prints only the lines
common to the two files; comm -23 prints only lines in the first file but not in the second; comm -123
does nothing useful.

EXTERNAL INFLUENCES
Environment Variables

LC_COLLATEdetermines the collating sequence commexpects from the input files.

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_MESSAGESis not specified in the environment or is set to the empty string, the value of LANG
determines the language in which messages are displayed. If LC_COLLATE is not specified in the
environment or is set to the empty string, the value of LANGis used as a default. If LANGis not specified
or is set to the empty string, a default of ‘‘C’’ (see lang(5)) is used instead of LANG. If any internationaliza-
tion variable contains an invalid setting, commbehaves as if all internationalization variables are set to
‘‘C’’. See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

EXAMPLES
The following examples assume that file1 and file2 have been ordered in the collating sequence
defined by the LC_COLLATEor LANGenvironment variable.

Print all lines common to file1 and file2 (in other words, print column 3):

comm -12 file1 file2

Print all lines that appear in file1 but not in file2 (in other words, print column 1):

comm -23 file1 file2

Print all lines that appear in file2 but not in file1 (in other words, print column 2):

comm -13 file1 file2

SEE ALSO
cmp(1), diff(1), sdiff(1), sort(1), uniq(1).

STANDARDS CONFORMANCE
comm: SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 1 − Section 1−−105

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

command(1) command(1)

NAME
command - execute a simple command

SYNOPSIS
command command_name [argument ...]

DESCRIPTION
command enables the shell to treat the arguments as a simple command, suppressing the shell function
lookup.

If command_name is not the name of the function, the effect of command is the same as omitting com-
mand.

OPERANDS
command recognizes the following operands:

command_name The name of a HP-UX command or a shell built-in command.

argument One or more strings to be interpreted as arguments to command_name .

The command command is necessary to allow functions that have the same name as a command to call
the command (instead of a recursive call to the function).

Nothing in the description of command is intended to imply that the command line is parsed any
differently than any other simple command. For example,

command a | b ; c

is not parsed in any special way that causes | or ; to be treated other than a pipe operator or semicolon
or that prevents function lookup on b or c.

EXTERNAL INFLUENCE
Environment Variables

PATHdetermines the search path used during the command search.

RETURN VALUE
command exits with one of the following values:

• If command fails:

126 The utility specified by the command_name is found but not executable.

127 An error occurred in the command utility or the utility specified by command_name
is not found.

• If command does not fail:

The exit status of command is the same as that of the simple command specified by the
arguments:

command_name[argument ...]

EXAMPLES
Create a version of the cd command that always prints the name of the new working directory whenever
it is used:

cd() {
command "$@" >/dev/null
pwd

}

Circumvent the redefined cd command above, and change directories without printing the name of the
new working directory:

command cd

SEE ALSO
getconf(1), sh-posix(1), confstr(3C).

Section 1−−106 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

command(1) command(1)

STANDARDS CONFORMANCE
command: XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 2 − Section 1−−107

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

compact(1) compact(1)

NAME
compact, uncompact, ccat - compact and uncompact files, and cat them

SYNOPSIS
compact [name ...]

uncompact [name ...]

ccat [file ...]

DESCRIPTION
compact compresses the named files using an adaptive Huffman code. If no file names are given, stan-
dard input is compacted and sent to the standard output. compact operates as an on-line algorithm.
Each time a byte is read, it is encoded immediately according to the current prefix code. This code is an
optimal Huffman code for the set of frequencies seen so far. It is unnecessary to attach a decoding tree in
front of the compressed file because the encoder and the decoder start in the same state and stay synchron-
ized. Furthermore, compact and uncompact can operate as filters. In particular,

... | compact | uncompact | ...

operates as a (very slow) no-op.

When an argument file is given, it is compacted, the resulting file is placed in file.C , and file is unlinked.
The first two bytes of the compacted file code the fact that the file is compacted. These bytes are used to
prohibit recompaction.

The amount of compression to be expected depends on the type of file being compressed. Typical file size
reduction (in percent) through compression are: Text, 38%; Pascal Source, 43%; C Source, 36%; and
Binary, 19%.

uncompact restores the original file from a file compressed by compact. If no file names are specified,
standard input is uncompacted and sent to the standard output.

ccat cats the original file from a file compressed by compact, without uncompressing the file.

Access Control Lists (ACLs)
On systems that implement access control lists, when a new file is created with the effective user and group
ID of the caller, the original file’s ACL is copied to the new file after being altered to reflect any change in
ownership (see acl(5) and aclv(5)). In JFS file systems, files created by compact , uncompact or ccat
do not inherit their parent directory’s default ACL entries (if any), but instead retain their original ACLs.
When a file being compacted or uncompacted resides on a JFS file system, and the compacted or uncom-
pacted file resides on an HFS file system (or vice versa), as the result of ccat or the use of compact or
uncompact as a filter, optional ACL entries are lost.

WARNINGS
On short-filename systems, the last segment of the file name must contain 12 or fewer characters to allow
space for the appended .C .

DEPENDENCIES
NFS

Access control list entries of networked files are summarized (as returned in st_mode by stat()), but
not copied to the new file (see stat(2)).

FILES
*.C compacted file created by compact, removed by uncompact

SEE ALSO
compress(1), pack(1), acl(5), aclv(5).

Gallager, Robert G., ‘‘Variations on a Theme of Huffman,’’ I.E.E.E. Transactions on Information Theory,
vol. IT-24, no. 6, November 1978, pp. 668 - 674.

AUTHOR
compact was developed by Colin L. Mc Master.

Section 1−−108 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

compress(1) compress(1)

NAME
compress, uncompress, zcat, compressdir, uncompressdir - compress and expand data

SYNOPSIS
Compress Files

compress [-d] [-f|-z] [-z] [-v] [-c] [-V] [-b maxbits] [file ...]

uncompress [-f] [-v] [-c] [-V] [file ...]

zcat [-V] [file ...]

Compress Entire Directory Subtrees
compressdir [options] [directory ...]

uncompressdir [options] [directory ...]

DESCRIPTION
The following commands compress and uncompress files and directory subtrees as indicated:

compress Reduce the size of the named files using adaptive Lempel-Ziv coding. If reduc-
tion is possible, each file is replaced by a new file of the same name with the
suffix .Z added to indicate that it is a compressed file. Original ownership,
modes, access, and modification times are preserved. If no file is specified, or if
- is specified, standard input is compressed to the standard output.

uncompress Restore the compressed files to original form. Resulting files have the original
filename, ownership, and permissions, and the .Z filename suffix is removed. If
no file is specified, or if - is specified, standard input is uncompressed to the
standard output.

zcat Restore the compressed files to original form and send the result to standard
output. If no file is specified, or if - is specified, standard input is uncompressed
to the standard output.

compressdir Front-end processor. Recursively descend each specified directory subtree and
use compress to compress each file in directory . Existing files are replaced by
a compressed file having the same name plus the suffix .Z , provided the result-
ing file is smaller than the original. If no directories are specified, compression
is applied to all files starting with the current directory.

options may include any valid compress command options (they are passed
through to compress). To force compression of all files, even when the result
is larger than the original file, use the -f option.

uncompressdir Opposite of compressdir . Restore compressed files to their original form.
options may include any valid uncompress command options (they are passed
through to uncompress).

The amount of compression obtained depends on the size of the input, the maximum number of bits (max-
bits) per code, and the distribution of common substrings. Typically, text such as source code or English is
reduced by 50-60 percent. Compression is generally much better than that achieved by Huffman coding (as
used in pack), or adaptive Huffman coding (compact), and takes less time to compute.

Options
These commands recognize the following options in the combinations shown above in SYNOPSIS:

-d Decompress file. compress -d is equivalent to uncompress .

-f Force compression of file. This is useful for compressing an entire directory,
even if some of the files do not actually shrink. If -f is not given and
compress is run in the foreground, the user is prompted as to whether an
existing file should be overwritten.

-z This is the same as the -f option except that it does not force compression
when there is null compression.

-v Print a message describing the percentage of reduction for each file compressed.

-c Force compress and uncompress to write to the standard output; no files
are changed. The nondestructive behavior of zcat is identical to that of

HP-UX Release 11i: December 2000 − 1 − Section 1−−109

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

compress(1) compress(1)

uncompress -c .

-V Print the current version and compile options onto the standard error.

-b maxbits Specify the maximum number of bits the compress algorithm will use. The
default is 16 and the range can be any integer between 9 and 16.

compress uses the modified Lempel-Ziv algorithm popularized in A Technique for High Performance Data
Compression , Terry A. Welch, IEEE Computer, vol. 17, no. 6 (June 1984), pages 8-19. Common substrings
in the file are first replaced by 9-bit codes 257 and up. When code 512 is reached, the algorithm switches to
10-bit codes and continues to use more bits until the limit specified by the -b flag is reached (default 16).

After the maxbits limit is attained, compress periodically checks the compression ratio. If it is increas-
ing, compress continues to use the existing code dictionary. However, if the compression ratio is
decreasing, compress discards the table of substrings and rebuilds it from scratch. This allows the algo-
rithm to adapt to the next "block" of the file.

Note that the -b flag is omitted for uncompress since the maxbits parameter specified during compres-
sion is encoded within the output, along with a magic number to ensure that neither decompression of ran-
dom data nor recompression of compressed data is attempted.

Access Control Lists
compress retains a file’s access control list when compressing and expanding data.

EXTERNAL INFLUENCES
Environment Variables

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_MESSAGESis not specified in the environment or is set to the empty string, the value of LANGis
used as a default for each unspecified or empty variable. If LANGis not specified or is set to the empty
string, a default of "C" (see lang(5)) is used instead of LANG.

If any internationalization variable contains an invalid setting, compress , uncompress , and zcat
behave as if all internationalization variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

RETURN VALUE
These commands return the following values upon completion:

0 Completed successfully.
2 Last file is larger after (attempted) compression.
1 An error occurred.

DIAGNOSTICS
Usage: compress [-f|-z] [-dvcV] [-b maxbits] [file ...]

Invalid options were specified on the command line.

Missing maxbits
maxbits must follow -b .

file: not in compressed format
The file specified to uncompress has not been compressed.

file: compressed with xxbits, can only handle yybits
file was compressed by a program that could deal with a higher value of maxbits than the compress
code on this machine. Recompress the file with a lower value of maxbits.

file: already has .Z suffix -- no change
The file is assumed to be already compressed. Rename the file and try again.

file: filename too long to tack on .Z
The output file name, which is the source file name with a .Z extension, is too long for the file system
on which the source file resides. Make the source file name shorter and try again.

file already exists; do you wish to overwrite (y or n)?
Respond y if you want the output to replace the existing file; otherwise, respond n.

Section 1−−110 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

compress(1) compress(1)

uncompress: corrupt input
A SIGSEGVviolation was detected which usually means that the input file has been corrupted.

Compression: xx. xx%
Percentage of the input saved by compression. (Relevant only for -v .)

-- not a regular file: unchanged
When the input file is not a regular file (a directory for example), it is left unaltered.

-- has xxother links: unchanged
The input file has links which are not symbolic links and has been left unchanged. See ln(1) for more
information.

-- has symbolic links: unchanged
The input file has symbolic links and has been left unchanged. See ln(1) for more information.

-- file unchanged
No savings is achieved by compression. The input remains unaltered.

EXAMPLES
Compress the file named zenith and print compression information to the terminal:

compress -v zenith

The terminal display shows either a line resembling

zenith: Compression: 23.55% -- replaced with zenith.Z

indicating that the compressed file is 23.55% smaller than the original, or a line resembling

zenith: Compression: -12.04% -- file unchanged

indicating that an additional 12.04% space must be used to compress the file.

Undo the compression by typing either of the following commands:

uncompress zenith.Z
compress -d zenith.Z

This restores file zenith.Z to its original uncompressed form and name.

uncompress will perform on standard input if no files are specified. For example, to list a compressed
tar file:

uncompress -c arch.tar.Z | tar -tvf -

WARNINGS
Although compressed files are compatible between machines with large memory, -b 12 should be used for
file transfer to architectures with a small process data space (64K bytes or less).

NFS
Access control lists of networked files are summarized (as returned in st_mode by stat() , but not
copied to the new file (see stat(2)).

AUTHOR
compress was developed by Joseph M. Orost, Kenneth E. Turkowski, Spencer W. Thomas, and James A.
Woods.

FILES
*.Z Compressed file created by compress and removed by uncompress .

SEE ALSO
compact(1), pack(1), acl(5).

STANDARDS CONFORMANCE
compress : XPG4

HP-UX Release 11i: December 2000 − 3 − Section 1−−111

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

convert(1) convert(1)

NAME
convert - convert an audio file

SYNOPSIS
/opt/audio/bin/convert [source_file] [target_file] [-sfmt format] [-dfmt format]

[-ddata data_type] [-srate rate] [-drate rate]
[-schannels number] [-dchannels number]

DESCRIPTION
This command converts audio files from one supported file format, data format, sampling rate, and number
of channels to another. The unconverted file is retained as a source file.

-sfmt format -dfmt format
are the file formats for the source and destination files. Each format can be one of these:

au Sun file format

snd NeXT file format

wav Microsoft RIFF Waveform file format

u MuLaw format

al ALaw

l16 linear 16-bit format

lo8 offset (unsigned) linear 8-bit format

l8 linear 8-bit format

If you omit -sfmt , convert uses the header or filename extension in the source file. You can omit
-dfmt if you supply a filename extension for the destination file.

-ddata data_type
is the data type for the destination files. data_type can be one of these:

u MuLaw

al ALaw

l16 linear 16-bit

lo8 offset (unsigned) linear 8-bit data

l8 linear 8-bit data

If you omit -ddata , convert uses an appropriate data type, normally the data type of the source
file.

-srate rate -drate rate
are the number of samples per second for the source and destination file. Typical sampling rates
range from 8 to 11k (for voice quality) to 44,100 (for CD quality). You can use k to indicate
thousands. For example, 8k means 8,000 samples per second.

If you omit -srate , convert uses a rate defined by the source file header or its filename exten-
sion. For a raw file with no extension, 8,000 is used. By playing the file, you can determine if 8,000
samples is too fast or too slow.

If you omit -drate , convert uses a sampling rate appropriate for the destination file format; if
possible, it matches the sampling rate of the source file.

-schannels number -dchannels number
are the number of channels in the source and destination files. Use 1 for mono; 2 for stereo. If -
schannels is omitted, convert uses the information in the header; for raw data files, it uses
mono.

If -dchannels is omitted, convert matches what was used for the source file (through the
header or -schannels option); for raw data files, it uses mono.

EXAMPLES
Convert a raw data file to a headered file.

Section 1−−112 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

convert(1) convert(1)

cd /opt/audio/bin
convert beep.l16 beep.au

Convert a raw data file to a headered file when the source has no extension, was sampled at 11,025 per
second, and has stereo data.

cd /opt/audio/bin
convert beep beep.au -sfmt l16 -srate 11025 -schannels 2

To save disk space, convert an audio file with CD quality sound to voice quality sound.

cd /opt/audio/bin
convert idea.au idea2.au -ddata u -drate 8k -dchannels 1

AUTHOR
convert was developed by HP.

Sun is a trademark of Sun MicroSystems, Inc.

NeXT is a trademark of NeXT Computers, Inc.

Microsoft is a trademark of Microsoft Corporation.

SEE ALSO
audio(5), asecure(1M), aserver(1M), attributes(1), send_sound(1).

Using the Audio Developer’s Kit

HP-UX Release 11i: December 2000 − 2 − Section 1−−113

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cp(1) cp(1)

NAME
cp - copy files and directory subtrees

SYNOPSIS
cp [-f -i] [-p] [-e extarg] file1 new_file

cp [-f -i] [-p] [-e extarg] file1 [file2 ...] dest_directory

cp [-f -i] [-p] [-R -r] [-e extarg] directory1 [directory2 ...] dest_directory

DESCRIPTION
cp copies:

• file1 to new or existing new_file,
• file1 to existing dest_directory,
• file1, file2, ... to existing dest_directory,
• directory subtree directory1, to new or existing dest_directory. or
• multiple directory subtrees directory1, directory2, ... to new or existing dest_directory.

cp fails if file1 and new_file are the same (be cautious when using shell metacharacters). When destination
is a directory, one or more files are copied into that directory. If two or more files are copied, the destina-
tion must be a directory. When copying a single file to a new file, if new_file exists, its contents are des-
troyed.

If the access permissions of the destination dest_directory or existing destination file new_file forbid writing,
cp aborts and produces an error message ‘‘cannot create file ’’.

To copy one or more directory subtrees to another directory, the -r option is required. The -r option is
ignored if used when copying a file to another file or files to a directory.

If new_file is a link to an existing file with other links, cp overwrites the existing file and retains all links.
If copying a file to an existing file, cp does not change existing file access permission bits, owner, or group.

When copying files to a directory or to a new file that does not already exist, cp creates a new file with the
same file permission bits as file1, modified by the file creation mask of the user if the -p option was not
specified, and then bitwise inclusively ORed with S_IRWXU. The owner and group of the new file or files
are those of the user. The last modification time of new_file (and last access time, if new_file did not exist)
and the last access time of the source file1 are set to the time the copy was made.

Options
-i (interactive copy) Cause cp to write a prompt to standard error and wait for a response before

copying a file that would overwrite an existing file. If the response from the standard input is
affirmative, the file is copied if permissions allow the copy. If the -i (interactive) and -f
(forced-copy) options are both specified, the -i option is ignored.

-f Force existing destination pathnames to be removed before copying, without prompting for
confirmation. This option has the effect of destroying and replacing any existing file whose name
and directory location conflicts with the name and location of the new file created by the copy
operation.

-p (preserve permissions) Causes cp to preserve in the copy as many of the modification time, access
time, file mode, user ID, and group ID as allowed by permissions.

-r (recursive subtree copy) Cause cp to copy the subtree rooted at each source directory to
dest_directory. If dest_directory exists, it must be a directory, in which case cp creates a direc-
tory within dest_directory with the same name as file1 and copies the subtree rooted at file1 to
dest_directory/file1. An error occurs if dest_directory/file1 already exists. If dest_directory does
not exist, cp creates it and copies the subtree rooted at file1 to dest_directory. Note that cp -r
cannot merge subtrees.

Usually normal files and directories are copied. Character special devices, block special devices,
network special files, named pipes, symbolic links, and sockets are copied, if the user has access to
the file; otherwise, a warning is printed stating that the file cannot be created, and the file is
skipped.

dest_directory should not reside within directory1, nor should directory1 have a cyclic directory
structure, since in both cases cp attempts to copy an infinite amount of data.

Section 1−−114 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cp(1) cp(1)

-R (recursive subtree copy) The -R option is identical to the -r option with the exception that direc-
tories copied by the -R option are created with read, write, and search permission for the owner.
User and group permissions remain unchanged.

With the -R and -r options, in addition to regular files and directories, cp also copies FIFOs,
character and block device files and symbolic links. Only superusers can copy device files. All
other users get an error. Symbolic links are copied so the target points to the same location that
the source did.

Warning: While copying a directory tree that has device special files, use the -r option; otherwise,
an infinite amount of data is read from the device special file and is duplicated as a special file in
the destination directory occupying large file system space.

-e extarg
Specifies the handling of any extent attributes of the file[s] to be copied. extarg takes one of the
following values.

warn Issues a warning message if extent attributes cannot be copied, but copies the file
anyway.

ignore Does not copy the extent attributes.
force Fails to copy the file if the extent attribute can not be copied.

Extent attributes can not be copied if the files are being copied to a file system which does not sup-
port extent attributes or if that file system has a different block size than the original. If -e is not
specified, the default value for extarg is warn.

Access Control Lists (ACLs)
If new_file is a new file, or if a new file is created in dest_directory, it inherits the access control list of the
original file1, file2, etc., altered to reflect any difference in ownership between the two files (see acl(5) and
aclv(5)). In JFS file systems, new files created by cp do not inherit their parent directory’s default ACL
entries (if any), but instead retain the ACLs of the files being copied. When copying files from a JFS file
system to an HFS file system or vice versa, optional ACL entries are lost.

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of text as single and/or multi-byte characters.

LANGand LC_CTYPEdetermine the local language equivalent of y (for yes/no queries).

LANGdetermines the language in which messages are displayed.

If LC_CTYPEis not specified in the environment or is set to the empty string, the value of LANGis used
as a default for each unspecified or empty variable. If LANGis not specified or is set to the empty string, a
default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable contains an
invalid setting, cp behaves as if all internationalization variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

EXAMPLES
The following command moves the directory sourcedir and its contents to a new location (targetdir) in the
file system. Since cp creates the new directory, the destination directory targetdir should not already
exist.

cp -r sourcedir targetdir && rm -rf sourcedir

The -r option copies the subtree (files and subdirectories) in directory sourcedir to directory targetdir.
The double ampersand (&&) causes a conditional action. If the operation on the left side of the && is suc-
cessful, the right side is executed (and removes the old directory). If the operation on the left of the && is
not successful, the old directory is not removed.

This example is equivalent to:

mv sourcedir targetdir

To copy all files and directory subtrees in the current directory to an existing targetdir, use:

cp -r * targetdir

HP-UX Release 11i: December 2000 − 2 − Section 1−−115

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cp(1) cp(1)

To copy all files and directory subtrees in sourcedir to targetdir, use:

cp -r sourcedir/* targetdir

Note that directory pathnames can precede both sourcedir and targetdir.

To create a zero-length file, use any of the following:

cat /dev/null > file
cp /dev/null file
touch file

DEPENDENCIES
NFS

Access control lists of networked files are summarized (as returned in st_mode by stat()), but not
copied to the new file. When using mv or ln on such files, a + is not printed after the mode value when
asking for permission to overwrite a file.

AUTHOR
cp was developed by AT&T, the University of California, Berkeley, and HP.

SEE ALSO
cpio(1), ln(1), mv(1), rm(1), link(1M), lstat(2), readlink(2), stat(2), symlink(2), symlink(4), acl(5), aclv(5).

STANDARDS CONFORMANCE
cp : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

Section 1−−116 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cpio(1) cpio(1)

NAME
cpio - copy file archives in and out; duplicate directory trees

SYNOPSIS
cpio -o [-e extarg] [achvxABC]

cpio -i [bcdfmrstuvxBPRSU6] [pattern...]

cpio -p [-e extarg] [adlmruvxU] directory

DESCRIPTION
The cpio command saves and restores archives of files on magnetic tape, other devices, or a regular file,
and copies files from one directory to another while replicating the directory tree structure. When cpio
completes processing the files, it reports the number of blocks written.

cpio -o (copy out, export) Read standard input to obtain a list of path names, and copy those files to
standard output together with path name and status information. The output is padded to a
512-byte boundary.

cpio -i (copy in, import) Extract files from standard input, which is assumed to be the result of a pre-
vious cpio -o .

If pattern..., is specified, only the files with names that match a pattern according to the rules
of Pattern Matching Notation (see regexp(5)) are selected. A leading ! on a pattern indicates
that only those names that do not match the remainder of the pattern should be selected.
Multiple patterns can be specified. The patterns are additive. If no pattern is specified, the
default is * (select all files). See the f option, as well.

Extracted files are conditionally created and copied into the current directory tree, as deter-
mined by the options described below. The permissions of the files match the permissions of
the original files when the archive was created by cpio -o unless the U option is used. File
owner and group are that of the current user unless the user has appropriate privileges, in
which case cpio retains the owner and group of the files of the previous cpio -o .

cpio -p (passthrough) Read standard input to obtain a list of path names of files which are then con-
ditionally created and copied into the destination directory tree as determined by the options
described below. directory must exist. Destination path names are interpreted relative to
directory .

With the -p option, when handling a link, only the link is passed and no data blocks are actu-
ally read or written. This is especially noteworthy with cpio -pl , where it is very possible
that all the files are created as links, such that no blocks are written and "0 blocks" is reported
by cpio . (See below for a description of the -l option.)

Options
cpio recognizes the following options, which can be appended as appropriate to -i , -o , and -p . Whi-
tespace and hyphens are not permitted between these options and -i , -o , or -p .

a Reset access times of input files after they are copied.

b Swap both bytes and half-words. Use only with -i . See the P option for details; see also the
s and S options.

c Write or read header information in ASCII character form for portability.

d Create directories as needed.

-e extarg
Specifies the handling of any extent attributes of the file(s) to be archived or copied. extarg
takes one of the following values.

warn Archive or copy the file and issue a warning message if extent attributes cannot
be preserved.

ignore Do not issue a warning message even if extent attributes cannot be preserved.
force Any file(s) with extent attributes will not be archived and a warning message

will be issued.

When using the -o option, extent attributes are not preserved in the archive. Furthermore,
the -p option will not preserve extent attributes if the files are being copied to a file system
that does not support extent attributes. If -e is not specified, the default value for extarg is

HP-UX Release 11i: December 2000 − 1 − Section 1−−117

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cpio(1) cpio(1)

warn.

f Copy in all files except those selected by pattern....

h Follow symbolic links as though they were normal files or directories. Normally, cpio
archives the link.

l Whenever possible, link files rather than copying them. This option does not destroy existing
files. Use only with -p .

m Retain previous file modification time. This option does not affect directories that are being
copied.

r Rename files interactively. If the user types a null line, the file is skipped.

s Swap all bytes of the file. Use only with -i . See the P option for details; see also the s and
S options.

t Print only a table of contents of the input. No files are created, read, or copied.

u Copy unconditionally (normally, an older file does not replace a newer file with the same
name).

v Print a list of file names as they are processed. When used with the t option, the table of
contents has the format:

numeric-mode owner-name blocks date-time filename

where numeric-mode is the file privileges in numeric format, owner-name is the name of the
file owner, blocks is the size of the file in 512-byte blocks, date-time is the date and time the
file was last modified, and filename is the path name of the file as recorded in the archive.

x Save or restore device special files. Since mknod() is used to recreate these files on a
restore, -ix and -px can be used only by users with appropriate privileges (see mknod(2)).
This option is intended for intrasystem (backup) use only. Restoring device files from previ-
ous versions of the OS, or from different systems can be very dangerous. cpio may prevent
the restoration of certain device files from the archive.

A Suppress warning messages regarding optional access control list entries. cpio does not
back up optional access control list entries in a file’s access control list (see acl(5)). Normally,
a warning message is printed for each file that has optional access control list entries.

B Block input/output at 5120 bytes to the record (does not apply to cpio -p). This option is
meaningful only with data directed to or from devices that support variable-length records
such as magnetic tape.

C Have cpio checkpoint itself at the start of each volume. If cpio is writing to a streaming
tape drive with immediate-report mode enabled and a write error occurs, it normally aborts
and exits with return code 2. With this option specified, cpio instead automatically restarts
itself from the checkpoint and rewrites the current volume. Alternatively, if cpio is not
writing to such a device and a write error occurs, cpio normally continues with the next
volume. With this option specified, however, the user can choose to either ignore the error or
rewrite the current volume.

P Read a file written on a PDP-11 or VAX system (with byte-swapping) that did not use the c
option. Use only with -i . Files copied in this mode are not changed. Non-ASCII files are
likely to need further processing to be readable. This processing often requires knowledge of
file contents, and thus cannot always be done by this program. The b, s , and S options can
be used when swapping all the bytes on the tape (rather than just in the headers) is appropri-
ate. In general, text is best processed with P and binary data with one of the other options.

(PDP-11 and VAX are registered trademarks of Digital Equipment Corporation.)

R Resynchronize automatically when cpio goes "out of phase", (see DIAGNOSTICS).

S Swap all half-words in the file. Use only with -i . See the P option for details; see also the b
and s options.

U Use the process’s file-mode creation mask (see umask(2)) to modify the mode of files created,
in the same manner as creat(2).

6 Process a UNIX Sixth-Edition-format file. Use only with -i .

Section 1−−118 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cpio(1) cpio(1)

Note that cpio archives created using a raw device file must be read using a raw device file.

When the end of the tape is reached, cpio prompts the user for a new special file and continues.

If you want to pass one or more metacharacters to cpio without the shell expanding them, be sure to pre-
cede each of them with a backslash (\).

Device files written with the -ox option (such as /dev/tty03) do not transport to other implementa-
tions of HP-UX.

EXTERNAL INFLUENCES
Environment Variables

LC_COLLATE determines the collating sequence used in evaluating pattern matching notation for file
name generation.

LC_CTYPEdetermines the interpretation of text as single and/or multi-byte characters, and the characters
matched by character class expressions in pattern matching notation.

LC_TIME determines the format and content of date and time strings output when listing the contents of
an archive with the v option.

LANGdetermines the language in which messages are displayed.

If LC_COLLATE, LC_CTYPE, or LC_TIME is not specified in the environment or is set to the empty
string, the value of LANG is used as a default for each unspecified or empty variable. If LANG is not
specified or is set to the empty string, a default of "C" (see lang(5)) is used instead of LANG. If any interna-
tionalization variable contains an invalid setting, cpio behaves as if all internationalization variables are
set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

RETURN VALUE
cpio returns the following exit codes:

0 Successful completion. Review standard error for files that could not be transferred.

1 Error during resynchronization. Some files may not have been recovered.

2 Out-of-phase error. A file header is corrupt or in the wrong format.

DIAGNOSTICS
Out of phase--get help
Perhaps the "c" option should[n’t] be used

cpio -i could not read the header of an archived file. The header is corrupt or it was written in a
different format. Without the R option, cpio returns an exit code of 2.

If no file name has been displayed yet, the problem may be the format. Try specifying a different
header format option: null for standard format; c for ASCII; b, s , P, or S, for one of the byte-
swapping formats; or 6 for UNIX Sixth Edition.

Otherwise, a header may be corrupt. Use the R option to have cpio attempt to resynchronize the
file automatically. Resynchronizing means that cpio tries to find the next good header in the archive
file and continues processing from there. If cpio tries to resynchronize from being out of phase, it
returns an exit code of 1.

Other diagnostic messages are self-explanatory.

EXAMPLES
Copy the contents of a directory into a tape archive:

ls | cpio -o > /dev/rmt/c0t0d0BEST

Duplicate a directory hierarchy:

cd olddir
find . -depth -print | cpio -pd newdir

The trivial case

HP-UX Release 11i: December 2000 − 3 − Section 1−−119

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cpio(1) cpio(1)

find . -depth -print | cpio -oB >/dev/rmt/c0t0d0BEST

can be handled more efficiently by:

find . -cpio /dev/rmt/c0t0d0BEST

WARNINGS
Because of industry standards and interoperability goals, cpio does not support the archival of files larger
than 2GB or files that have user/group IDs greater than 60K. Files with user/group IDs greater than 60K
are archived and restored under the user/group ID of the current process.

Do not redirect the output of cpio to a named cpio archive file residing in the same directory as the ori-
ginal files belonging to that cpio archive. This can cause loss of data.

cpio strips any leading ./ characters in the list of filenames piped to it.

Path names are restricted to PATH_MAXcharacters (see <limits.h> and limits(5)). If there are too
many unique linked files, the program runs out of memory to keep track of them. Thereafter, linking infor-
mation is lost. Only users with appropriate privileges can copy special files.

cpio tapes written on HP machines with the -ox [c] options can sometimes mislead (non-HP) versions of
cpio that do not support the x option. If a non-HP (or non-AT&T) version of cpio happens to be modified
so that the (HP) cpio recognizes it as a device special file, a spurious device file might be created.

If /dev/tty is not accessible, cpio issues a complaint and exits.

The -pd option does not create the directory typed on the command line.

The -idr option does not make empty directories.

The -plu option does not link files to existing files.

POSIX defines a file named TRAILER!!! as an end-of-archive marker. Consequently, if a file of that
name is contained in a group of files being written by cpio -o , the file is interpreted as end-of-archive,
and no remaining files are copied. The recommended practice is to avoid naming files anything that resem-
bles an end-of-archive file name.

To create a POSIX-conforming cpio archive, the c option must be used. To read a POSIX-conforming cpio
archive, the c option must be used and the b, s , S, and 6 options should not be used. If the user does not
have appropriate privileges, the U option must also be used to get POSIX-conforming behavior when reading
an archive. Users with appropriate privileges should not use this option to get POSIX-conforming behavior.

DEPENDENCIES
If the path given to cpio contains a symbolic link as the last element, this link is traversed and pathname
resolution continues. cpio uses the symbolic link’s target, rather than that of the link.

SEE ALSO
ar(1), find(1), tar(1), cpio(4), acl(5), environ(5), lang(5), regexp(5).

STANDARDS CONFORMANCE
cpio : SVID2, SVID3, XPG2, XPG3

Section 1−−120 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cpp(1) cpp(1)

NAME
cpp - the C language preprocessor

SYNOPSIS
/usr/ccs/lbin/cpp [option ...] [ifile [ofile]]

DESCRIPTION
cpp is the C language preprocessor which is invoked as the first pass of any C compilation using the cc
command (see cc(1)). Its purpose is to process #include and conditional compilation instructions and
macros. Thus the output of cpp is designed to be in a form acceptable as input to the next pass of the C
compiler. As the C language evolves, cpp and the rest of the C compilation package will be modified to fol-
low these changes. Therefore, the use of cpp in other than this framework is not suggested. The pre-
ferred way to invoke cpp is through the cc command, since the functionality of cpp may someday be
moved elsewhere. See m4(1) for a general macro processor.

cpp optionally accepts two file names as arguments. ifile and ofile are respectively the input and output
for the preprocessor. They default to standard input and standard output if not specified.

Options
The following options are recognized by cpp :

-A Remove all predefined symbols that begin with a letter and _HPUX_SOURCE. The user is
expected to define _POSIX_SOURCEor _XOPEN_SOURCEwhen using this option.

-C By default, cpp strips C-style comments. If the -C option is specified, all comments
(except those found on cpp directive lines) are passed along.

-D name
-D name=def Define name as if by a #define directive. If no =def is given, name is defined as 1. The

-D option has lower precedence than the -U option. Thus, if the same name is used in
both a -U option and a -D option, the name is undefined regardless of the order of the
options.

-H nnn Change the internal macro definition table to be nnn bytes in size. The default buffer size
is at least 8188 bytes. This option serves to eliminate ‘‘Macro param too large’’, ‘‘Macro
invocation too large’’, ‘‘Macro param too large after substitution’’, ‘‘Quoted macro param too
large’’, ‘‘Macro buffer too small’’, ‘‘Input line too long’’, and ‘‘Catenated input line too long’’
errors.

-h [inclfile] Generates included files and sents the results to the file inclfile. If the argument inclfile is
omitted, the result is sent to the standard error.

-I dir Change the algorithm for searching for #include files whose names do not begin with /
to look in dir before looking in the directories on the standard list. Thus, #include files
whose names are enclosed in double quotes (" ") are searched for first in the directory of
the file containing the #include line, then in directories named in -I options in left-to-
right order, and last in directories on a standard list. For #include files whose names
are enclosed in angle brackets (<>), the directory of the file containing the #include line
is not searched. However, directory dir is still searched.

-M[makefile] Generates makefile dependencies and sends the results to the file makefile. If the argu-
ment makefile is omitted, the result is sent to the standard error.

-P Preprocess the input without producing the line-control information used by the next pass
of the C compiler.

-T HP-UX no longer restricts preprocessor symbols to eight characters. The -T option forces
cpp to use only the first eight characters for distinguishing different preprocessor names.
This behavior is the same as preprocessors on some other systems with respect to the
length of names, and is included for backward compatibility.

-U name Remove any initial definition of name, where name is a reserved symbol that is predefined
by the particular preprocessor. The current list of these symbols includes:

Operating system: unix _ _unix

Hardware: hp9000s200 hp9000s300 _ _hp9000s300
hp9000s500 hp9000s800 _ _hp9000s800
hp9000ipc hppa _ _hppa

HP-UX Release 11i: December 2000 − 1 − Section 1−−121

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cpp(1) cpp(1)

_PA_RISC1_0 _PA_RISC1_1 _SIO _WSIO

UNIX systems variant: hpux _ _hpux _HPUX_SOURCE
PWB _PWB

lint(1): lint _ _lint

In addition, all symbols that begin with an underscore and either an upper-case letter or
another underscore are reserved. Other symbols may be defined by the CCOPTSvariable
or other command-line options to the C compiler at compile time (see cc(1)). All HP-UX sys-
tems have the symbols PWB, hpux , unix , _PWB, __hpux , and _ _unix defined. Each
system defines at least one hardware variant, as appropriate. The lint symbols are defined
when lint(1) is running. See DEPENDENCIES.

Two special names are understood by cpp . _ _LINE_ _ is defined as the current line number (as a
decimal integer) as counted by cpp . _ _FILE_ _ is defined as the current file name (as a C string) as
known by cpp . They can be used anywhere (including in macros) just as any other defined names.

Directives
All cpp directives start with lines begun by #. Any number of blanks and tabs are allowed between the #
and the directive. The directives are:

#define name token-string

Replace subsequent instances of name with token-string. token-string can be null.

#define name(arg, ... , arg) token-string

Replace subsequent instances of name followed by a (, a list of comma-separated set of
arguments, and a) by token-string, where each occurrence of an arg in the token-string is
replaced by the corresponding set of tokens in the comma-separated list. When a macro
with arguments is expanded, the arguments are placed into the expanded token-string
unchanged. After the entire token-string has been expanded, cpp restarts its scan for
names to expand at the beginning of the newly created token-string.

Notice that there can be no space between name and the (.

#endif [text]

Ends a section of lines begun by a test directive (#if , #ifdef , or #ifndef). Each test
directive must have a matching #endif . Any text occurring on the same line as the
#endif is ignored and thus may be used to mark matching #if −#endif pairs. This
makes it easier, when reading the source, to match #if , #ifdef , and #ifndef direc-
tives with their associated #endif directive.

#elif constant-expression

Equivalent to:

#else
#if constant-expression

#else

Reverses the notion of the test directive that matches this directive. Thus, if lines previous
to this directive are ignored, the following lines appear in the output, and vice versa.

#if constant-expression

The lines following appear in the output if and only if the constant-expression evaluates to
nonzero. All binary nonassignment C operators, the ?: operator, the unary - , ! , and ˜
operators are all legal in constant-expression. The precedence of the operators is the same
as defined by the C language.

There is also a unary operator, defined , which can be used in constant-expression in
these two forms: defined(name) or defined name. This allows the use of #ifdef
and #ifndef in an #if directive.

Only these operators, integer constants, and names that are known by cpp should be used
in constant-expression. In particular, the sizeof operator is not available.

#ifdef name

Section 1−−122 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cpp(1) cpp(1)

The lines following appear in the output if and only if name has been the subject of a previ-
ous #define without being the subject of an intervening #undef .

#ifndef name

The lines following do not appear in the output if and only if name has been the subject of a
previous #define without being the subject of an intervening #undef .

#include " filename"
#include < filename>

Include at this point the contents of filename (which are then run through cpp). See the
-I option above for more detail.

#line integer-constant " filename"

Causes cpp to generate line-control information for the next pass of the C compiler.
integer-constant is the line number of the next line and filename is the file where it comes
from. If filename and the quotation marks are omitted, the current file name is unchanged.

#undef name

Cause the definition of name (if any) to be forgotten from now on.

The test directives and the possible #else directives can be nested. cpp supports names up to 255 char-
acters in length.

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of comments and string literals as single- or multibyte charac-
ters.

LANGdetermines the language in which messages are displayed.

If LC_CTYPEis not specified in the environment or is set to the empty string, the value of LANGis used as
a default for each unspecified or empty variable. If LANGis not specified or is set to the empty string, it
defaults to "C" (see lang(5)). If any internationalization variable contains an invalid setting, cpp behaves
as if all internationalization variables are set to "C". See environ(5).

International Code Set Support
Single- and multibyte character code sets are supported.

DIAGNOSTICS
Error messages produced by cpp are intended to be self-explanatory. The line number and filename where
the error occurred are printed along with the diagnostic.

WARNINGS
When newline characters were found in argument lists for macros to be expanded, previous versions of cpp
put out the newlines as they were found and expanded. The current version of cpp replaces these new-
lines with blanks to alleviate problems that the previous versions had when this occurred.

DEPENDENCIES
Series 700

The symbols hp9000s700 and _ _hp9000s700 are not reserved symbols recognized by the -U option.
They are supplied to cpp either automatically by the compiler, or by the use of a compiler option. For
example, on a Series 700 system, the command:

cc -v t.c

produces:

/usr/ccs/lbin/cpp t.c /var/tmp/ctmAAAa29220 -D__hp9000s700
-D__hp9000s800 ...

(Also see the -D option of the cc command.)

FILES
/usr/include Standard directory for #include files

HP-UX Release 11i: December 2000 − 3 − Section 1−−123

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cpp(1) cpp(1)

SEE ALSO
m4(1).

NOTES
The macro substitution scheme has been changed. Previous versions of cpp saved macros in a macro
definition table whose table size is 128000 bytes by default. The current version of cpp replaces this
macro definition table with several small buffers. The default size of the small buffers is 8188 bytes.

STANDARDS CONFORMANCE
cpp : SVID2, SVID3, XPG2

Section 1−−124 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

crontab(1) crontab(1)

NAME
crontab - user job file scheduler

SYNOPSIS
crontab [file]

crontab -e [username]

crontab -l [username]

crontab -r [username]

DESCRIPTION
The crontab command manages a crontab file for the user. You can use a crontab file to schedule jobs
that are executed automatically by cron (see cron(1M)) on a regular basis. The command has four forms:

crontab [file] Create or replace your crontab file by copying the specified file, or standard
input if file is omitted or - is specified as file , into the crontab directory,
/var/spool/cron/crontabs . The name of your crontab file in the
crontab directory is the same as your effective user name.

crontab -e [username]
Edit a copy of the user’s crontab file, or create an empty file to edit if the
crontab file does not exist. When editing is complete, the file will be copied
into the crontab directory as the user’s crontab file.

crontab -l [username]
Lists the user’s crontab file.

crontab -r [username]
Remove the user’s crontab file from the crontab directory.

Only a privileged user can use username following the -e, -l, or -r options, to edit, list, or remove the cron-
tab file of the specified user.

The entries in a crontab file are lines of six fields each. The fields are separated by spaces or tabs. The
lines have the following format:

minute hour monthday month weekday command

The first five are integer patterns that specify when the sixth field, command, should be executed. They
can have the following ranges of values:

minute The minute of the hour, 0−59

hour The hour of the day, 0−23

monthday The day of the month, 1−31

month The month of the year, 1−12

weekday The day of the week, 0−6, 0=Sunday

Each pattern can be either an asterisk (*), meaning all legal values, or a list of elements separated by com-
mas. An element is either a number in the ranges shown above, or two numbers in the range separated by
a hyphen (meaning an inclusive range). Note that the specification of days can be made in two fields:
monthday and weekday. If both are specified in an entry, they are cumulative. For example,

0 0 1,15 * 1 command

runs command at midnight on the first and fifteenth of each month, as well as every Monday. To specify
days in only one field, set the other field to asterisk (*). For example,

0 0 * * 1 command

runs command only on Mondays.

The sixth field, command (the balance of a line including blanks in a crontab file), is a string that is exe-
cuted by the shell at the specified times. A percent character (%) in this field (unless escaped by a backslash
(\)) is translated to a newline character, dividing the field into "lines". Only the first "line" (up to a %or
end-of-line) of the command field is executed by the shell. Any other "lines" are made available to the com-
mand as standard input.

HP-UX Release 11i: December 2000 − 1 − Section 1−−125

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

crontab(1) crontab(1)

Blank lines and those whose first non-blank character is # will be ignored.

cron invokes the command from the user’s HOMEdirectory with the POSIX shell, (/usr/bin/sh). It
runs in the c queue (see queuedefs(4)).

cron supplies a default environment for every shell, defining:

HOME=user’s-home-directory
LOGNAME=user’s-login-id
PATH=/usr/bin:/usr/sbin:.
SHELL=/usr/bin/sh

Users who desire to have their .profile executed must explicitly do so in the crontab entry or in a script
called by the entry.

You can execute crontab if your name appears in the file /usr/lib/cron/cron.allow . If that file
does not exist, you can use crontab if your name does not appear in the file
/usr/lib/cron/cron.deny . If only cron.deny exists and is empty, all users can use crontab .
If neither file exists, only the root user can use crontab . The allow /deny files consist of one user
name per line.

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of text within file as single- and/or multi-byte characters.

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_CTYPEor LC_MESSAGESis not specified in the environment or is set to the empty string, the
value of LANGis used as a default for each unspecified or empty variable. If LANGis not specified or is
set to the empty string, a default of "C" (see lang(5)) is used instead of LANG.

If any internationalization variable contains an invalid setting, crontab behaves as if all internationali-
zation variables are set to "C". See environ(5). EDITOR determines the editor to be invoked when -e
option is specified. The default editor is vi.

International Code Set Support
Single-byte and multi-byte character code sets are supported.

WARNINGS
Be sure to redirect the standard output and standard error from commands. If this is not done, any gen-
erated standard output or standard error is mailed to the user.

FILES
/var/adm/cron Main cron directory
/var/adm/cron/cron.allow List of allowed users
/var/adm/cron/cron.deny List of denied users
/var/adm/cron/log Accounting information
/var/spool/cron/crontabs Directory containing the crontab files

SEE ALSO
sh(1), cron(1M), queuedefs(4).

STANDARDS CONFORMANCE
crontab : SVID2, SVID3, XPG2, XPG3, XPG4

Section 1−−126 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

crypt(1) crypt(1)

NAME
crypt - encode/decode files

SYNOPSIS
crypt [password]

DESCRIPTION
crypt reads from the standard input and writes on the standard output. password is a key that selects a
particular transformation. If no password is given, crypt demands a key from the terminal and turns off
printing while the key is being typed in. crypt encrypts and decrypts with the same key:

crypt key <clear >cypher
crypt key <cypher|pr

The latter command decrypts the file and prints the clear version.

Files encrypted by crypt are compatible with those treated by the ed editor in encryption mode (see
ed(1)).

Security of encrypted files depends on three factors: the fundamental method must be hard to solve; direct
search of the key space must be infeasible; ‘‘sneak paths’’ by which keys or clear text can become visible
must be minimized.

crypt implements a one-rotor machine designed along the lines of the German Enigma, but with a 256-
element rotor. Methods of attack on such machines are widely known; thus crypt provides minimal secu-
rity.

The transformation of a key into the internal settings of the machine is deliberately designed to be expen-
sive; i.e., to take a substantial fraction of a second to compute. However, if keys are restricted to, for exam-
ple, three lowercase letters, then encrypted files can be read by expending only a substantial fraction of five
minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to users executing the ps or
a derivative (see ps(1)). The choice of keys and key security are the most vulnerable aspect of crypt .

EXAMPLES
The following example demonstrates the use of crypt to edit a file that the user wants to keep strictly
confidential:

$ crypt <plans >plans.x
key: violet
$ rm plans

...
$ vi -x plans.x
key: violet

...
:wq
$

...
$ crypt <plans.x | pr
key: violet

Note that the -x option is the encryption mode of vi , and prompts the user for the same key with which
the file was encrypted.

WARNINGS
If output is piped to nroff and the encryption key is not given on the command line, crypt can leave
terminal modes in a strange state (see nroff(1) and stty(1)).

If two or more files encrypted with the same key are concatenated and an attempt is made to decrypt the
result, only the the first of the original files is decrypted correctly.

FILES
/dev/tty for typed key

HP-UX Release 11i: December 2000 − 1 − Section 1−−127

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

crypt(1) crypt(1)

SEE ALSO
ed(1), makekey(1), stty(1).

Section 1−−128 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csh(1) csh(1)

NAME
csh - a shell (command interpreter) with C-like syntax

SYNOPSIS
csh [-cefinstvxTVX] [command_file] [argument_list ...]

DESCRIPTION
csh is a command language interpreter that incorporates a command history buffer, C-like syntax, and job
control facilities.

Command Options
Command options are interpreted as follows:

-c Read commands from the (single) following argument which must be present. Any remain-
ing arguments are placed in argv .

-e C shell exits if any invoked command terminates abnormally or yields a non-zero exit
status.

-f Suppress execution of the .cshrc file in your home directory, thus speeding up shell
start-up time.

-i Force csh to respond interactively when called from a device other than a computer ter-
minal (such as another computer). csh normally responds non-interactively. If csh is
called from a computer terminal, it always responds interactively, regardless of which
options are selected.

-n Parse but do not execute commands. This is useful for checking syntax in shell scripts. All
substitutions are performed (history, command, alias, etc.).

-s Take command input from the standard input.

-t Read and execute a single line of input.

-v Set the verbose shell variable, causing command input to be echoed to the standard out-
put device after history substitutions are made.

-x Set the echo shell variable, causing all commands to be echoed to the standard error
immediately before execution.

-T Disable the tenex features which use the ESC key for command/file name completion and
CTRL-D for listing available files (see the CSH UTILITIES section below)

-V Set the verbose variable before .cshrc is executed so that all .cshrc commands
are also echoed to the standard output.

-X Set the echo variable before .cshrc is executed so that all .cshrc commands are
also echoed to the standard output.

After processing the command options, if arguments remain in the argument list, and the -c , -i , -s , or
-t options were not specified, the first remaining argument is taken as the name of a file of commands to
be executed.

COMMANDS
A simple command is a sequence of words, the first of which specifies the command to be executed. A
sequence of simple commands separated by vertical bar (|) characters forms a pipeline. The output of each
command in a pipeline becomes the input for the next command in the pipeline. Sequences of pipelines can
be separated by semicolons (;) which causes them to be executed sequentially. A sequence of pipelines can
be executed in background mode by adding an ampersand character (&) after the last entry.

Any pipeline can be placed in parentheses to form a simple command which, in turn, can be a component of
another pipeline. Pipelines can also be separated by | | or && indicating, as in the C language, that the
second pipeline is to be executed only if the first fails or succeeds, respectively.

Jobs
csh associates a job with each pipeline and keeps a table of current jobs (printed by the jobs command)
and assigns them small integer numbers. When a job is started asynchronously using &, the shell prints a
line resembling:

HP-UX Release 11i: December 2000 − 1 − Section 1−−129

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csh(1) csh(1)

[1] 1234

indicating that the job which was started asynchronously was job number 1 and had one (top-level) process,
whose process id was 1234.

If you are running a job and want to do something else, you can type the currently defined suspend charac-
ter (see termio(7)) which sends a stop signal to the current job. csh then normally indicates that the job
has been ‘Stopped’, and prints another prompt. You can then manipulate the state of this job, putting it in
the background with the bg command, run some other commands, and then eventually bring the job back
into the foreground with the foreground command fg . A suspend takes effect immediately and is like an
interrupt in that pending output and unread input are discarded when it is typed. There is a delayed
suspend character which does not generate a stop signal until a program attempts to read(2) it. This can
usefully be typed ahead when you have prepared some commands for a job which you want to stop after it
has read them.

A job being run in the background stops if it tries to read from the terminal. Background jobs are normally
allowed to produce output, but this can be disabled by giving the command stty tostop (see stty(1)).
If you set this tty option, background jobs stop when they try to produce output, just as they do when they
try to read input. Keyboard signals and line-hangup signals from the terminal interface are not sent to
background jobs on such systems. This means that background jobs are immune to the effects of logging
out or typing the interrupt, quit, suspend, and delayed suspend characters (see termio(7)).

There are several ways to refer to jobs in the shell. The character %introduces a job name. If you wish to
refer to job number 1, you can name it as %1. Just naming a job brings it to the foreground; thus %1is a
synonym for fg %1 , bringing job 1 back into the foreground. Similarly, typing %1 &resumes job 1 in
the background. Jobs can also be named by prefixes of the string typed in to start them if these prefixes
are unambiguous; thus %ex normally restarts a suspended ex(1) job, if there is only one suspended job
whose name begins with the string ex . It is also possible to say %?string which specifies a job whose
text contains string, if there is only one such job.

csh maintains a notion of the current and previous jobs. In output pertaining to jobs, the current job is
marked with a + and the previous job with a - . The abbreviation %+refers to the current job and %-
refers to the previous job. For close analogy with the syntax of the history mechanism (described below),
%%is also a synonym for the current job.

csh learns immediately whenever a process changes state. It normally informs you whenever a job
becomes blocked so that no further progress is possible, but only just before printing a prompt. This is done
so that it does not otherwise disturb your work. If, however, you set the shell variable notify , csh
notifies you immediately of changes in status of background jobs. There is also a csh built-in command
called notify which marks a single process so that any status change is immediately reported. By
default, notify marks the current process. Simply type notify after starting a background job to
mark it.

If you try to leave the shell while jobs are stopped, csh sends the warning message: You have
stopped jobs. Use the jobs command to see what they are. If you do this or immediately try to exit
again, csh does not warn you a second time, and the suspended jobs are terminated (see exit(2)).

Built-In Commands
Built-in commands are executed within the shell without spawning a new process. If a built-in command
occurs as any component of a pipeline except the last, it is executed in a subshell. The built-in commands
are:

alias
alias name
alias name wordlist

The first form prints all aliases. The second form prints the alias for name. The third form
assigns the specified wordlist as the alias of name. Command and file name substitution are
performed on wordlist. name cannot be alias or unalias .

bg [%job ...]
Put the current (job not specified) or specified jobs into the background, continuing them if
they were stopped.

break Causes execution to resume after the end of the nearest enclosing foreach or while .
The remaining commands on the current line are executed. Multi-level breaks are thus possi-
ble by writing them all on one line.

Section 1−−130 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csh(1) csh(1)

breaksw
Causes a break from a switch , resuming after the endsw .

case label:
A label in a switch statement as discussed below.

cd
cd directory_name
chdir
chdir directory_name

Change the shell’s current working directory to directory_name. If not specified,
directory_name defaults to your home directory.
If directory_name is not found as a subdirectory of the current working directory (and does
not begin with / , ./ , or ../), each component of the variable cdpath is checked to see if it
has a subdirectory directory_name. Finally, if all else fails, csh treats directory_name as a
shell variable. If its value begins with / , this is tried to see if it is a directory. See also cd(1).

continue
Continue execution of the nearest enclosing while or foreach . The rest of the commands
on the current line are executed.

default:
Labels the default case in a switch statement. The default should come after all other
case labels.

dirs Prints the directory stack; the top of the stack is at the left; the first directory in the stack is
the current directory.

echo wordlist
echo -n wordlist

The specified words are written to the shell’s standard output, separated by spaces, and ter-
minated with a new-line unless the -n option is specified. See also echo(1).

else
end
endif
endsw See the descriptions of the foreach , if , switch , and while statements below.

eval arguments ...
(Same behavior as sh(1).) arguments are read as input to the shell and the resulting
command(s) executed. This is usually used to execute commands generated as the result of
command or variable substitution, since parsing occurs before these substitutions.

exec command
The specified command is executed in place of the current shell.

exit
exit (expression)

csh exits either with the value of the status variable (first form) or with the value of the
specified expression (second form).

fg [%job ...]
Brings the current (job not specified) or specified jobs into the foreground, continuing them if
they were stopped.

foreach name (wordlist)
. . .

end The variable name is successively set to each member of wordlist and the sequence of com-
mands between this command and the matching end are executed. (Both foreach and
end must appear alone on separate lines.)

The built-in command continue can be used to continue the loop prematurely; the built-in
command break to terminate it prematurely. When this command is read from the termi-
nal, the loop is read once, prompting with ? before any statements in the loop are executed.
If you make a mistake while typing in a loop at the terminal, use the erase or line-kill charac-
ter as appropriate to recover.

glob wordlist
Like echo but no \ escapes are recognized and words are delimited by null characters in

HP-UX Release 11i: December 2000 − 3 − Section 1−−131

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csh(1) csh(1)

the output. Useful in programs that use the shell to perform file name expansion on a list of
words.

goto word
The specified word is file name and command expanded to yield a string of the form label .
The shell rewinds its input as much as possible and searches for a line of the form label:
possibly preceded by blanks or tabs. Execution continues after the specified line.

hashstat
Print a statistics line indicating how effective the internal hash table has been at locating
commands (and avoiding exec s). An exec is attempted for each component of the path
where the hash function indicates a possible hit, and in each component that does not begin
with a / .

history [-h] [-r] [n]
Displays the history event list. If n is given, only the n most recent events are printed. The
-r option reverses the order of printout to be most recent first rather than oldest first. The
-h option prints the history list without leading numbers for producing files suitable for the
source command.

if (expression) command
If expression evaluates true, the single command with arguments is executed. Variable sub-
stitution on command happens early, at the same time it does for the rest of the if com-
mand. command must be a simple command; not a pipeline, a command list, a parenthesized
command list, or an aliased command. Input/output redirection occurs even if expression is
false, meaning that command is not executed (this is a bug).

if (expression1) then
. . .

else if (expression2) then
. . .

else
. . .

endif If expression1 is true, all commands down to the first else are executed; otherwise if
expression2 is true, all commands from the first else down to the second else are exe-
cuted, etc. Any number of else -if pairs are possible, but only one endif is needed. The
else part is likewise optional. (The words else and endif must appear at the beginning
of input lines. The if must appear alone on its input line or after an else .)

jobs [-l]
Lists active jobs. The -l option lists process IDs in addition to the usual information.

kill % job
kill - sig %job ...
kill pid
kill - sig pid...
kill -l

Sends either the TERM (terminate) signal or the specified signal to the specified jobs or
processes. Signals are either given by number or by names (as given in
/usr/include/signal.h , stripped of the SIG prefix (see signal(2)). The signal names
are listed by kill -l . There is no default, so kill used alone does not send a signal to
the current job. If the signal being sent is TERM (terminate) or HUP (hangup), the job or pro-
cess is sent a CONT (continue) signal as well. See also kill(1).

limit [-h][resource][maximum_use]
Limits the usage by the current process and each process it creates not to (individually)
exceed maximum_use on the specified resource. If maximum_use is not specified, then the
current limit is displayed; if resource is not specified, then all limitations are given.

If the -h flag is specified, the hard limits are used instead of the current limits. The hard
limits impose a ceiling on the values of the current limits. Only the superuser can raise the
hard limits, but a user can lower or raise the current limits within the legal range.

Controllable resources currently include:

addresspace Maximum address space in bytes for a process

Section 1−−132 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csh(1) csh(1)

coredumpsize Size of the largest core dump that is created

cputime Maximum number of CPU seconds to be used by each process

datasize Maximum growth of the data region allowed beyond the end of the
program text

descriptors Maximum number of open files for each process

filesize Largest single file that can be created

memoryuse Maximum size to which a process’s resident set size can grow

stacksize Maximum size of the automatically extended stack region

The maximum_use argument can be specified as a floating-point or integer number followed
by a scale factor: k or kilobytes (1024 bytes), m or megabytes, or b or blocks (the units used by
the ulimit system call). For both resource names and scale factors, unambiguous prefixes of
the names can be used. filesize can be lowered by an instance of csh, but can only be raised
by an instance whose effective user ID is root . For more information, refer to the documenta-
tion for the ulimit system call.

login Terminates a login shell, replacing it with an instance of /usr/bin/login . This is one
way to log off, included for compatibility with sh(1).

logout
Terminates a login shell. Especially useful if ignoreeof is set. A similar function, bye , which
works for sessions that are not login shells, is provided for historical reasons. Its use is not
recommended because it is not part of the standard BSD csh and may not be supported in
future releases.

newgrp
Changes the group identification of the caller; for details see newgrp(1). A new shell is exe-
cuted by newgrp so that the current shell environment is lost.

nice
nice + number
nice command
nice + number command

The first form sets the nice (run command priority) for this shell to 4 (the default). The
second form sets the priority to the given number. The final two forms run command at
priority 4 and number respectively. The user with appropriate privileges can raise the prior-
ity by specifying negative niceness using nice - number ... command is always executed in
a sub-shell, and restrictions placed on commands in simple if statements apply. See also
nice(1).

nohup [command]
Without an argument, nohup can be used in shell scripts to cause hangups to be ignored for
the remainder of the script. With an argument, causes the specified command to be run with
hangups ignored. All processes executed in the background with & are effectively nohup ed
as described under Jobs in the COMMANDS section.

notify [job ...]
Causes the shell to notify the user asynchronously when the status of the current (job not
specified) or specified jobs changes; normally notification is presented before a prompt. This
is automatic if the shell variable notify is set.

onintr [-] [label]
Controls the action of the shell on interrupts. With no arguments, onintr restores the default
action of the shell on interrupts, which action is to terminate shell scripts or return to the ter-
minal command input level. If - is specified, all interrupts are ignored. If a label is given,
the shell executes a goto label when an interrupt is received or a child process terminates
because it was interrupted.

If the shell is running in the background and interrupts are being ignored, onintr has no
effect; interrupts continue to be ignored by the shell and all invoked commands.

popd [+n]
Pops the directory stack, returning to the new top directory. With an argument, discards the
n th entry in the stack. The elements of the directory stack are numbered from 0 starting at

HP-UX Release 11i: December 2000 − 5 − Section 1−−133

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csh(1) csh(1)

the top. A synonym for popd , called rd , is provided for historical reasons. Its use is not
recommended because it is not part of the standard BSD csh and may not be supported in
future releases.

pushd [name] [+n]
With no arguments, pushd exchanges the top two elements of the directory stack. Given a
name argument, pushd changes to the new directory (using cd) and pushes the old current
working directory (as in csw) onto the directory stack. With a numeric argument, pushd
rotates the n th argument of the directory stack around to be the top element and changes to
that directory. The members of the directory stack are numbered from the top starting at 0.
A synonym for pushd, called gd, is provided for historical reasons. Its use is not recom-
mended since it is not part of the standard BSD csh and may not be supported in future
releases.

rehash
Causes the internal hash table of the contents of the directories in the path variable to be
recomputed. This is needed if new commands are added to directories in the path while you
are logged in. This should only be necessary if you add commands to one of your own direc-
tories or if a systems programmer changes the contents of one of the system directories.

repeat count command
The specified command (which is subject to the same restrictions as the command in the one-
line if statement above) is executed count times. I/O redirections occur exactly once, even if
count is 0.

set
set name
set name=word
set name[index]= word
set name=(wordlist)

The first form of set shows the value of all shell variables. Variables whose value is other
than a single word print as a parenthesized word list. The second form sets name to the null
string. The third form sets name to the single word. The fourth form sets the indexth com-
ponent of name to word; this component must already exist. The final form sets name to the
list of words in wordlist. In all cases the value is command and file-name expanded.

These arguments can be repeated to set multiple values in a single set command. Note, how-
ever, that variable expansion happens for all arguments before any setting occurs.

setenv name value
Sets the value of environment variable name to be value, a single string. The most commonly
used environment variables, USER, TERM, and PATH, are automatically imported to and
exported from the csh variables user, term , and path; there is no need to use setenv for
these.

shift [variable]
If no argument is given, the members of argv are shifted to the left, discarding argv[1] .
An error occurs if argv is not set or has less than two strings assigned to it. When variable
is specified, shift performs the same function on the specified variable.

source [-h] name
csh reads commands from name. source commands can be nested, but if nested too dee-
ply the shell may run out of file descriptors. An error in a source at any level terminates
all nested source commands. Normally, input during source commands is not placed on
the history list. The -h option can be used to place commands in the history list without
being executing them.

stop [%job ...]
Stops the current (no argument) or specified jobs executing in the background.

suspend
Causes csh to stop as if it had been sent a suspend signal. Since csh normally ignores
suspend signals, this is the only way to suspend the shell. This command gives an error mes-
sage if attempted from a login shell.

switch (string)
case str1:

Section 1−−134 − 6 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csh(1) csh(1)

. . .
breaksw

. . .
default:

. . .
breaksw
endsw Each case label (str1) is successively matched against the specified string which is first

command and file name expanded. The form of the case labels is the Pattern Matching
Notation with the exception that non-matching lists in bracket expressions are not supported
(see regexp(5)). If none of the labels match before a default label is found, the execution
begins after the default label. Each case label and the default label must appear at
the beginning of a line. The breaksw command causes execution to continue after the
endsw. Otherwise, control may fall through case labels and default labels as in C. If
no label matches and there is no default, execution continues after the endsw .

time [command]
When command is not specified, a summary of time used by this shell and its children is
printed. If specified, the simple command is timed and a time summary as described under
the time variable is printed. If necessary, an extra shell is created to print the time statis-
tic when the command completes.

umask [value]
The current file creation mask is displayed (value not specified) or set to the specified value.
The mask is given in octal. Common values for the mask are 002 , which gives all permis-
sions to the owner and group and read and execute permissions to all others, or 022 , which
gives all permissions to the owner, and only read and execute permission to the group and all
others. See also umask(1).

unalias pattern
All aliases whose names match the specified pattern are discarded. Thus, all aliases are
removed by unalias * . No error occurs if pattern does not match an existing alias.

unhash
Use of the internal hash table to speed location of executed programs is disabled.

unset pattern
All variables whose names match the specified pattern are removed. Thus, all variables are
removed by unset * ; this has noticeably undesirable side-effects. No error occurs if pattern
matches nothing.

unsetenv pattern
Removes all variables whose names match the specified pattern from the environment. See
also the setenv command above and printenv(1).

wait Waits for all background jobs to terminate. If the shell is interactive, an interrupt can dis-
rupt the wait, at which time the shell prints names and job numbers of all jobs known to be
outstanding.

while (expression)
. . .

end While the specified expression evaluates non-zero, the commands between the while and
the matching end are evaluated. break and continue can be used to terminate or
continue the loop prematurely. (The while and end must appear alone on their input
lines.) If the input is a terminal (i.e., not a script), prompting occurs the first time through
the loop as for the foreach statement.

%job Brings the specified job into the foreground.

%job & Continues the specified job in the background.

@
@name=expression
@name[index]= expression

The first form prints the values of all the shell variables. The second form sets the specified
name to the value of expression . If the expression contains <, >, &, or | , at least this part of
the expression must be placed within parentheses. The third form assigns the value of
expression to the indexth argument of name. Both name and its indexth component must
already exist.

HP-UX Release 11i: December 2000 − 7 − Section 1−−135

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csh(1) csh(1)

The operators *= , +=, etc., are available as in C. White space can optionally separate the
name from the assignment operator. However, spaces are mandatory in separating com-
ponents of expression which would otherwise be single words.

Special postfix ++ and - - operators increment and decrement name, respectively (e.g.,
@ i++).

Non-Built-In Command Execution
When a command to be executed is not a built-in command, csh attempts to execute the command via
exec(2). Each word in the variable path names a directory in which the shell attempts to find the command
(if the command does not begin with /). If neither -c nor -t is given, the shell hashes the names in
these directories into an internal table so that an exec is attempted only in those directories where the com-
mand might possibly reside. This greatly speeds command location when a large number of directories are
present in the search path. If this mechanism has been turned off (via unhash), or if -c or -t was
given, or if any directory component of path does not begin with a / , the shell concatenates the directory
name and the given command name to form a path name of a file which it then attempts to execute.

Commands placed inside parentheses are always executed in a subshell. Thus

(cd ; pwd)

prints the home directory then returns to the current directory upon completion, whereas:

cd ; pwd

remains in the home directory upon completion.

When commands are placed inside parentheses, it is usually to prevent chdir from affecting the current
shell.

If the file has execute permissions but is not an executable binary file, it is assumed to be a script file,
which is a file of data for an interpreter that is executed as a separate process.

csh first attempts to load and execute the script file (see exec(2)). If the first two characters of the script
file are #! , exec(2) expects an interpreter path name to follow and attempts to execute the specified inter-
preter as a separate process to read the entire script file.

If no #! interpreter is named, and there is an alias for the shell, the words of the alias are inserted
at the beginning of the argument list to form the shell command. The first word of the alias should be the
full path name of the command to be used. Note that this is a special, late-occurring case of alias substitu-
tion, which inserts words into the argument list without modification.

If no #! interpreter is named and there is no shell alias, but the first character of the file is #, the
interpreter named by the $shell variable is executed (note that this normally would be
/usr/bin/csh , unless the user has reset $shell). If $shell is not set, /usr/bin/csh is exe-
cuted.

If no !# interpreter is named, and there is no shell alias, and the first character of the file is not #,
/usr/bin/sh is executed to interpret the script file.

History Substitutions
History substitutions enable you to repeat commands, use words from previous commands as portions of
new commands, repeat arguments of a previous command in the current command, and fix spelling or typ-
ing mistakes in an earlier command.

History substitutions begin with an exclamation point (!). Substitutions can begin anywhere in the input
stream, but cannot be nested. The exclamation point can be preceded by a backslash to cancel its special
meaning. For convenience, an exclamation point is passed to the parser unchanged when it is followed by a
blank, tab, newline, equal sign, or left parenthesis. Any input line that contains history substitution is
echoed on the terminal before it is executed for verification.

Commands input from the terminal that consist of one or more words are saved on the history list. The
history substitutions reintroduce sequences of words from these saved commands into the input stream.
The number of previous commands saved is controlled by the history variable. The previous command
is always saved, regardless of its value. Commands are numbered sequentially from 1.

You can refer to previous events by event number (such as !10 for event 10), relative event location (such
as !-2 for the second previous event), full or partial command name (such as !d for the last event using
a command with initial character d), and string expression (such as !?mic? referring to an event contain-
ing the characters mic).

Section 1−−136 − 8 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csh(1) csh(1)

These forms, without further modification, simply reintroduce the words of the specified events, each
separated by a single blank. As a special case, !! is a re-do; it refers to the previous command.

To select words from a command, use a colon (:) and a designator for the desired words after the event
specification. The words of an input line are numbered from zero. The basic word designators are:

0 First word (i.e., the command name itself).

n nth word.

^ First argument. (This is equivalent to 1.)

$ Last word.

a- b Range of words from a through b. Special cases are - y, an abbreviation for ‘‘word 0 through
word y ’’; and x- , which means ‘‘word x up to, but not including, word $ ’’.

* Range from the second word through the last word.

% Used with a search sequence to substitute the immediately preceding matching word.

The colon separating the command specification from the word designator can be omitted if the argument
selector begins with a ˆ , $, * , - , or %.

After word designator can be followed by a sequence of modifiers, each preceded by a colon. The following
modifiers are defined:

h Use only the first component of a path name by removing all following components.

r Use the root file name by removing any trailing suffix (.xxx).

e Use the file name’s trailing suffix (. xxx) by removing the root name.

s / l/ r
substitute the value of r for the value l in the indicated command.

t Use only the final file name of a path name by removing all leading path name components.

& Repeat the previous substitution.

p Print the new command but do not execute it.

q Quote the substituted words, preventing further substitutions.

x Like q, but break into words at blanks, tabs and newlines.

g Use a global command as a prefix to another modifier to cause the specified change to be made
globally. All words in the command are changed, one change per word, and each string enclosed
in single quotes (’) or double quotes (") is treated as a single word.

Unless preceded by a g, the modification is applied only to the first modifiable word. An error results if a
substitution is attempted and cannot be completed (i.e., if you ask for a substitution of !11 on a history
buffer containing only 10 commands).

The left hand side of substitutions are strings; not regular expressions in the sense of HP-UX editors. Any
character can be used as the delimiter in place of a slash (/). Use a backslash to quote a delimiter character
if it is used in the l or r string. The character & in the right-hand side is replaced by the text from the left.
A \ also quotes &. A null l string uses the previous string either from an l or from a contextual scan string
s in !? s?. The trailing delimiter in the substitution can be omitted if a new-line character follows immedi-
ately, as may the trailing ? in a contextual scan.

A history reference can be given without an event specification (as in !$). In this case, the reference is to
the previous command unless a previous history reference occurred on the same line, in which case this
form repeats the previous reference. Thus

!?foo?ˆ !$

gives the first and last arguments from the command matching ?foo? .

A special abbreviation of a history reference occurs when the first non-blank character of an input line is a
circumflex (ˆ). This is equivalent to !:sˆ , providing a convenient shorthand for substitutions on the text of
the previous line. Thus ˆlbˆlib fixes the spelling of lib in the previous command.

Finally, a history substitution can be enclosed within curly braces { } if necessary to insulate it from the
characters which follow. Thus, after

HP-UX Release 11i: December 2000 − 9 − Section 1−−137

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csh(1) csh(1)

ls -ld ˜paul

one could execute !{l}a to do

ls -ld ˜paula

while !la would look for a command starting with la .

Quoting with Single and Double Quotes
The quotation of strings by single quotes (’) and double quotes (") can be used to prevent all or some of the
remaining substitutions. Strings enclosed in single quotes are protected from any further interpretation.
Strings enclosed in double quotes are still variable- and command-expanded as described below.

In both cases the resulting text becomes (all or part of) a single word. Only in one special case (see Com-
mand Substitution below) does a double-quoted string yield parts of more than one word; single-quoted
strings never do.

Alias Substitution
csh maintains a list of aliases that can be established, displayed, and modified by the alias and
unalias commands. After a command line is scanned, it is parsed into distinct commands and the first
word of each command, left-to-right, is checked to see if it has an alias. If it does, the text which is the
alias for that command is reread with the history mechanism available as if that command was the previ-
ous input line. The resulting words replace the command and argument list. If no reference is made to the
history list, the argument list is left unchanged.

Thus, if the alias for ls is ls -l , the command ls /usr maps to ls -l /usr , leaving the argu-
ment list undisturbed. Similarly, if the alias for lookup was grep !ˆ /etc/passwd , lookup
bill maps to grep bill /etc/passwd .

If an alias is found, the word transformation of the input text is performed and the aliasing process begins
again on the re-formed input line. Looping is prevented if the first word of the new text is the same as the
old by flagging it to prevent further aliasing. Other loops are detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus:

alias print ’pr \!* | lp’

makes a command that uses pr(1) to print its arguments on the line printer.

Expressions
Some of the built-in commands take expressions in which the operators are similar to those of C, with the
same precedence. These expressions appear in the @, exit , if , and while commands. The following
operators are available (shown in order of increasing precedence):

|| && | ˆ & == != =˜ !˜ <= >= < > << >> + - * / % ! ˜ ()

The following list shows the grouping of these operators. The precedence decreases from top to bottom in
the list:

* / %
+ -
<< >>
<= >= < >
== != =˜ !˜

The operators ==, != , =˜ , and !˜ compare their arguments as strings; all others operate on numbers.
The operators =˜ and !˜ are similar to != and ==, except that the right-hand side is a pattern (contain-
ing * s, ?s, and instances of [...]) against which the left hand operand is matched. This reduces the need
for use of the switch statement in shell scripts when all that is really needed is pattern matching.

Strings beginning with 0 are considered octal numbers. Null or missing arguments are considered 0. The
result of all expressions are strings that represent decimal numbers. It is important to note that no two
components of an expression can appear in the same word. These components should be surrounded by
spaces except when adjacent to components of expressions that are syntactically significant to the parser:
- , &, | , <, >, (, and) .

Also available in expressions as primitive operands are command executions enclosed in curly braces ({ })
and file enquiries of the form - l filename, where l is one of:

Section 1−−138 − 10 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csh(1) csh(1)

r read access
w write access
x execute access
e existence
o ownership
z zero size
f plain file
d directory

The specified filename is command- and file-name expanded then tested to see if it has the specified rela-
tionship to the real user. If the file does not exist or is inaccessible, all inquiries return false (0). Command
executions succeed, returning true, if the command exits with status 0; otherwise they fail, returning false.
If more detailed status information is required, the command should be executed outside of an expression
and the status variable examined.

Control of the Flow
csh contains a number of commands that can be used to regulate the flow of control in command files
(shell scripts) and (in limited but useful ways) from terminal input. These commands all operate by forcing
the shell to reread or skip parts of its input and, due to the implementation, restrict the placement of some
of the commands.

The foreach , switch , and while statements, as well as the if -then -else form of the if state-
ment require that the major keywords appear in a single simple command on an input line as shown below.

If the shell’s input is not seekable, the shell buffers input whenever a loop is being read and performs seeks
in this internal buffer to accomplish the rereading implied by the loop. (To the extent that this allows,
backward goto s succeed on non-seekable inputs.)

Signal Handling
csh normally ignores quit signals. Jobs running in background mode are immune to signals generated
from the keyboard, including hangups. Other signals have the values which the shell inherited from its
parent. csh ’s handling of interrupts and terminate signals in shell scripts can be controlled by onintr.
Login shells catch the terminate signal; otherwise this signal is passed on to children from the state in the
shell’s parent. In no case are interrupts allowed when a login shell is reading the file .logout .

Command Line Parsing
csh splits input lines into words at blanks and tabs. The following exceptions (parser metacharacters) are
considered separate words:

& ampersand;
| vertical bar;
; semicolon;
< less-than sign;
> greater-than sign;
(left parenthesis;
) right parenthesis;
&& double ampersand;
|| double vertical bar;
<< double less-than sign;
>> double greater-than sign;
comment delimiter

The backslash (\) removes the special meaning of these parser metacharacters. A parser metacharacter
preceded by a backslash is interpreted as its ASCII value. A newline character (ASCII 10) preceded by a
backslash is equivalent to a blank.

Strings enclosed in single or double quotes form parts of a word. Metacharacters in these strings, including
blanks and tabs, do not form separate words. Within pairs of backslashes or quotes, a newline preceded by
a backslash gives a true newline character.

When csh ’s input is not a terminal, the # character introduces a comment terminated by a newline.

CSH VARIABLES
csh maintains a set of variables. Each variable has a value equal to zero or more strings (words). Vari-
ables have names consisting of up to 80 letters and digits starting with a letter. The underscore character
is considered a letter. The value of a variable may be displayed and changed by using the set and

HP-UX Release 11i: December 2000 − 11 − Section 1−−139

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csh(1) csh(1)

unset commands. Some of the variables are Boolean, that is, the shell does not care what their value is,
only whether they are set or not.

Some operations treat variables numerically. The at sign (@) command permits numeric calculations to be
performed and the result assigned to a variable. The null string is considered to be zero, and any subse-
quent words of multi-word values are ignored.

After the input line is aliased and parsed, and before each command is executed, variable expansion is per-
formed keyed by the dollar sign ($)character. Variable expansion can be prevented by preceding the
dollar sign with a backslash character (\) except within double quotes (") where substitution always
occurs. Variables are never expanded if enclosed in single quotes. Strings quoted by single quotes are
interpreted later (see Command Substitution) so variable substitution does not occur there until later, if at
all. A dollar sign is passed unchanged if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are variable expanded separately.
Otherwise, the command name and entire argument list are expanded together.

Unless enclosed in double quotes or given the :q modifier, the results of variable substitution may eventu-
ally be command and file name substituted. Within double quotes, a variable whose value consists of multi-
ple words expands to a portion of a single word, with the words of the variable’s value separated by blanks.
When the :q modifier is applied to a substitution, the variable expands to multiple words with each word
separated by a blank and quoted to prevent later command or file name substitution.

The following metasequences are provided for introducing variable values into the shell input. Except as
noted, it is an error to reference a variable that is not set.

$variable_name
${ variable_name}

When interpreted, this sequence is replaced by the words of the value of the variable
variable_name, each separated by a blank. Braces insulate variable_name from subsequent
characters that would otherwise be interpreted to be part of the variable name itself.
If variable_name is not a csh variable, but is set in the environment, that value is used.
Non-csh variables cannot be modified as shown below.

$variable_name[selector]
${ variable_name[selector]}

This modification selects only some of the words from the value of variable_name. The
selector is subjected to variable substitution, and can consist of a single number or two
numbers separated by a dash. The first word of a variable’s value is numbered 1. If the first
number of a range is omitted it defaults to 1. If the last member of a range is omitted it
defaults to the total number of words in the variable ($#variable_name). An asterisk meta-
character used as a selector selects all words.

$#variable_name
${# variable_name}

This form gives the number of words in the variable, and is useful for forms using a [selec-
tor] option.

$0 This form substitutes the name of the file from which command input is being read. An
error occurs if the file name is not known.

$number
${ number}

This form is equivalent to an indexed selection from the variable argv ($argv[number]).

$* This is equivalent to selecting all of argv ($argv[*]).

The modifiers :h , :t , :r , :q , and :x can be applied to the substitutions above, as can CR :gh , CR :gt ,
and CR :gr . If curly braces ({ }) appear in the command form, the modifiers must appear within the
braces. The current implementation allows only one : modifier on each $d expansion.

The following substitutions cannot be modified with : modifiers:

$?variable_name
${? variable_name}

Substitutes the string 1 if variable_name is set, 0 if it is not.

$?0 Substitutes 1 if the current input file name is known, 0 if it is not.

$$ Substitutes the (decimal) process number of the (parent) shell.

Section 1−−140 − 12 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csh(1) csh(1)

$< Substitutes a line from the standard input, with no further interpretation thereafter. It can
be used to read from the keyboard in a shell script.

Pre-Defined and Environment Variables
The following variables have special meaning to the shell. Of these autologout , argv , cwd, home,
path , prompt , shell , and status are always set by the shell. Except for cwd and status , this
setting occurs only at initialization (initial execution of csh). These variables are not modified unless
modified explicitly by the user.

csh copies the HP-UX environment variable USER into the shell variable user , the environment variable
TERMinto term , the environment variable HOMEinto home, and PATH into path . csh copies these
values back into the environment whenever the csh variables are reset.

In a windowed environment, if csh detects that the window has changed size, csh sets the environment
variables LINES and COLUMNSto match the new window size.

argv This variable is set to the arguments of the csh command statement. It is from this
variable that positional parameters are substituted; i.e., $1 is replaced by
$argv[1] , etc.

cdpath This variable gives a list of alternate directories searched to find subdirectories in
chdir commands.

cwd This variable contains the absolute path name of the current working directory.
Whenever changing directories (using cd), this variable is updated.

echo This variable is set by the -x command line option. If set, all built-in commands and
their arguments are echoed to the standard output device just before being executed.
Built-in commands are echoed before command and file name substitution, since these
substitutions are then done selectively. For non-built-in commands, all expansions
occur before echoing.

history This variable is used to create the command history buffer and to set its size. If this
variable is not set, no command history is maintained and history substitutions cannot
be made. Very large values of history can cause shell memory overflow. Values of
10 or 20 are normal. All commands, executable or not, are saved in the command his-
tory buffer.

home This variable contains the absolute path name to your home directory. The variable
home is initialized from the HP-UX environment. File name expansion of tilde (˜)
refers to this variable.

ignoreeof If set, csh ignores end-of-file characters from input devices that are terminals.
csh exits normally when it encounters the end-of-file condition (CTRL-D typed as the
first character on a command line). Setting ignoreeof prevents the current shell from
being killed by an accidental (CTRL-D. However, to prevent an infinite loop of EOF
input, csh terminates if it receives 26 consecutive EOFs.

mail This variable contains a list of the files where csh checks for your mail. csh
periodically (default is 10 minutes) checks this variable before producing a prompt
upon command completion. If the variable contains a file name that has been
modified since the last check (resulting from mail being put in the file), csh prints
You have new mail .

If the first word of the value of mail is numeric, that number specifies a different
mail checking interval in seconds.

If multiple mail files are specified, the shell says New mail in file_name, where
file_name is the file containing the mail.

noclobber This variable places restrictions on output redirection to ensure that files are not
accidentally destroyed, and that commands using append redirection (>>) refer to
existing files.

noglob If set, file name expansion is inhibited. This is most useful in shell scripts that are not
dealing with file names, or after a list of file names has been obtained and further
expansions are not desirable.

nonomatch If set, it is no longer an error for a file name expansion to not match any existing files.
If there is no match, the primitive pattern is returned. It is still an error for the

HP-UX Release 11i: December 2000 − 13 − Section 1−−141

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csh(1) csh(1)

primitive pattern to be malformed. For example, ’echo [’ still gives an error.

notify If set, csh notifies you immediately (through your standard output device) of back-
ground job completions. The default is unset (indicate job completions just before
printing a prompt).

path Each word of the path variable specifies a directory in which commands are to be
sought for execution. A null word specifies your current working directory. If there is
no path variable, only full path names can be executed. When path is not set and
when users do not specify full path names, csh searches for the command through
the directories . (current directory) and /usr/bin . A csh which is given neither
the -c nor the -t option normally hashes the contents of the directories in the
path variable after reading .cshrc , and each time the path variable is reset. If
new commands are added to these directories while the shell is active, it is necessary
to execute rehash for csh to access these new commands.

prompt This variable lets you select your own prompt character string. The prompt is printed
before each command is read from an interactive terminal input. If a ! appears in
the string, it is replaced by the current command history buffer event number unless a
preceding \ is given. The default prompt is the percent sign (%) for users and the #
character for the super-user.

savehist The number of lines from the history list that are saved in ˜/.history when the
user logs out. Large values for savehist slow down the csh during startup.

shell This variable contains the name of the file in which the csh program resides. This
variable is used in forking shells to interpret files that have their execute bits set but
which are not executable by the system. (See the description of Non-Built-In Com-
mand Execution).

status This variable contains the status value returned by the last command. If the com-
mand terminated abnormally, 0200 is added to the status variable’s value. Built-in
commands which terminated abnormally return exit status 1, and all other built-in
commands set status to 0.

time This variable contains a numeric value that controls the automatic timing of com-
mands. If set, csh prints, for any command taking more than the specified number
of cpu seconds, a line of information to the standard output device giving user, system,
and real execution times plus a utilization percentage. The utilization percentage is
the ratio of user plus system times to real time. This message is printed after the
command finishes execution.

verbose This variable is set by the -v command line option. If set, the words of each com-
mand are printed on the standard output device after history substitutions have been
made.

Command and File name Substitution
The remaining substitutions, command and file name substitution, are applied selectively to the arguments
of built-in commands. This means that portions of expressions that are not evaluated are not subjected to
these expansions. For commands which are not internal to the shell, the command name is substituted
separately from the argument list. This occurs very late, after input-output redirection is performed, and
in a child of the main shell.

Command Substitution
Command substitution is indicated by a command enclosed in grave accents (` . . .`). The output from such
a command is normally broken into separate words at blanks, tabs and newlines, with null words being dis-
carded; this text then replacing the original string. Within double quotes, only newlines force new words;
blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note that it is thus possible for a command
substitution to yield only part of a word, even if the command outputs a complete line.

File name Substitution
Each command word is processed as a pattern for file name substitution, also known as globbing, and
replaced with a sorted list of file names which match the pattern. The form of the patterns is the Pattern
Matching Notation defined by regexp(5) with the following exceptions:

Section 1−−142 − 14 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csh(1) csh(1)

• Non-matching lists in bracket expressions are not supported.

• In a list of words specifying file name substitution it is an error for no pattern to match an existing
file name, but it is not required for each pattern to match.

• The metanotation a{b,c,d}e is a shorthand for "abe ace ade". Left to right order is preserved, with
results of matches being sorted separately at a low level to preserve this order. This construct may
be nested. Thus:

~source/s1/{oldls,ls}.c

expands to

/home/source/s1/oldls.c /home/source/s1/ls.c

whether or not these files exist, without any chance of error if the home directory for source is
/home/source . Similarly,

../{memo,*box}

might expand to

../memo ../box ../mbox

(Note that memowas not sorted with the results of matching *box .) As a special case, { , } , and
{ } are passed undisturbed.

Input/Output
The standard input and standard output of a command can be redirected with the following syntax:

< name Open file name (which is first variable, command and file name expanded) as the stan-
dard input.

<< word Read the shell input up to a line which is identical to word. word is not subjected to
variable, file name or command substitution, and each input line is compared to word
before any substitutions are done on this input line. Unless a quoting \ , ’ , or `
appears in word, variable and command substitution is performed on the intervening
lines, allowing \ to quote $, \ and `. Commands which are substituted have all
blanks, tabs, and newlines preserved, except for the final newline which is dropped.
The resultant text is placed in an anonymous temporary file which is given to the com-
mand as standard input.

> name
>! name
>& name
>&! name The file name is used as standard output. If the file does not exist, it is created; if the

file exists, it is truncated, and its previous contents are lost.

If the variable noclobber is set, the file must not exist or be a character special file
(e.g., a terminal or /dev/null) or an error results. This helps prevent accidental
destruction of files. In this case the exclamation point (!) forms can be used to
suppress this check.

The forms involving the ampersand character (&) route the standard error into the
specified file as well as the standard output. name is expanded in the same way as <
input file names are.

>> name
>>& name
>>! name
>>&! name Uses file name as standard output the same as >, but appends output to the end of the

file. If the variable noclobber is set, it is an error for the file not to exist unless
one of the ! forms is given. Otherwise, it is similar to >.

A command receives the environment in which the shell was invoked as modified by the input-output
parameters and the presence of the command in a pipeline. Thus, unlike some previous shells, commands
executed from a shell script have no access to the text of the commands by default; rather they receive the
original standard input of the shell. The << mechanism should be used to present inline data. This per-
mits shell scripts to function as components of pipelines and allows the shell to block-read its input.

HP-UX Release 11i: December 2000 − 15 − Section 1−−143

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csh(1) csh(1)

Diagnostic output can be directed through a pipe with the standard output. Simply use the form |&
rather than | by itself.

CSH UTILITIES
File Name Completion

In typing file names as arguments to commands, it is no longer necessary to type a complete name, only a
unique abbreviation is necessary. When you want the system to try to match your abbreviation, press the
ESC key. The system then completes the file name for you, echoing the full name on your terminal. If the
abbreviation does not match an available file name, the terminal’s bell is sounded. The file name may be
partially completed if the prefix matches several longer file names. In this case, the name is extended up to
the ambiguous deviation, and the bell is sounded.

File name completion works equally well when other directories are addressed. In addition, the tilde (˜)
convention for home directories is understood in this context.

Viewing a File or Directory List
At any point in typing a command, you can request "what files are available" or "what files match my
current specification". Thus, when you have typed:

% cd ˜speech/data/bench/fritz/

you may wish to know what files or subdirectories exist (in ˜speech/data/bench/fritz), without
aborting the command you are typing. Typing CTRL-D at this point lists the files available. Files are listed
in multicolumn format, sorted by column. Directories and executable files are identified by a trailing /
and * , respectively. Once printed, the command is re-echoed for you to complete. Additionally, you may
want to know which files match a prefix, the current file specification so far. If you had typed:

% cd ˜speech/data/bench/fr

followed by a CTRL-D, all files and subdirectories whose prefix was fr in the directory
˜speech/data/bench would be printed. Notice that the example before was simply a degenerate case
of this with a null trailing file name. (The null string is a prefix of all strings.) Notice also that a trailing
slash is required to pass to a new sub-directory for both file name completion and listing. Note that the
degenerate case

% ˜ˆD

prints a full list of login names on the current system.

Command Name Recognition
Command name recognition and completion works in the same manner as file name recognition and com-
pletion above. The current value of the environment variable PATHis used in searching for the command.
For example

% newa [Escape]

might expand to

% newaliases

Also,

% new [Control]-[D]

lists all commands (along PATH) that begin with new. As an option, if the shell variable listpathnum
is set, a number indicating the index in PATHis printed next to each command on a [Control]-[D] listing.

Autologout
A new shell variable has been added called autologout . If the terminal remains idle (no character
input) at the shell’s top level for a number of minutes greater than the value assigned to autologout ,
you are automatically logged off. The autologout feature is temporarily disabled while a command is
executing. The initial value of autologout is 60. If unset or set to 0, autologout is entirely dis-
abled.

Command Line Control
A ˆR re-prints the current command line; ˆW erases the last word entered on the current command line.

Section 1−−144 − 16 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csh(1) csh(1)

Sanity
C shell restores your terminal to a sane mode if it appears to return from some command in raw, cbreak, or
noecho mode.

Saving Your History Buffer
csh has the ability to save your history list between login sessions. If the shell variable savehist is set
to a number, that number of command events from your history list is saved. For example, placing the line

set history=10 savehist=10

in your .cshrc file maintains a history buffer of length 10 and saves the entire list when you logout.
When you log back in, the entire buffer is restored. The commands are saved in the file .history in
your login directory.

EXTERNAL INFLUENCES
Environment Variables

LC_COLLATE determines the collating sequence used in evaluating pattern matching notation for file name
substitution.

LC_CTYPE determines the interpretation of text as single and/or multi-byte characters, the classification of
characters as letters, and the characters matched by character class expressions in pattern matching nota-
tion.

LANG determines the language in which messages are displayed.

If LC_COLLATE or LC_CTYPE is not specified in the environment or is set to the empty string, the value of
LANG is used as a default for each unspecified or empty variable. If LANG is not specified or is set to the
empty string, a default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable con-
tains an invalid setting, csh behaves as if all internationalization variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

WARNINGS
The .cshrc file should be structured such that it cannot generate any output on standard output or stan-
dard error, including occasions when it is invoked without an affiliated terminal. rcp(1) causes .cshrc to
be sourced, and any output generated by this file, even to standard error causes problems. Commands such
as stty(1) should be placed in .login , not in .cshrc , so that their output cannot affect rcp(1).

csh has certain limitations. Words or environment variables can be no longer than 10240 characters. The
system limits argument lists to 10240 characters. The number of arguments to a command which involves
file name expansion is limited to one-sixth the number of characters allowed in an argument list. Com-
mand substitutions may substitute no more characters than are allowed in an argument list.

To detect looping, the shell restricts the number of alias substitutions on a single line to 20.

When a command is restarted from a stop, csh prints the directory it started in if it is different from the
current directory; this can be misleading (i.e., wrong) because the job may have changed directories inter-
nally.

Shell built-in functions are not stoppable/restartable. Command sequences of the form a ; b ; c are
also not handled gracefully when stopping is attempted. If you interrupt b, the shell then immediately exe-
cutes c . This is especially noticeable if this expansion results from an alias . It suffices to place the
sequence of commands in parentheses to force it into a subshell; i.e., (a ; b ; c) .

Because of the signal handling required by csh, interrupts are disabled just before a command is executed,
and restored as the command begins execution. There may be a few seconds delay between when a com-
mand is given and when interrupts are recognized.

Control over tty output after processes are started is primitive; perhaps this will inspire someone to work
on a good virtual terminal interface. In a virtual terminal interface much more interesting things could be
done with output control.

Alias substitution is most often used to clumsily simulate shell procedures; shell procedures should be pro-
vided rather than aliases.

Commands within loops, prompted for by ?, are not placed in the history list. Control structure should be
parsed rather than being recognized as built-in commands. This would allow control commands to be
placed anywhere, to be combined with | , and to be used with & and ; metasyntax.

HP-UX Release 11i: December 2000 − 17 − Section 1−−145

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csh(1) csh(1)

It should be possible to use the : modifiers on the output of command substitutions. All and more than
one : modifier should be allowed on $ substitutions.

Terminal type is examined only the first time you attempt recognition.

To list all commands on the system along PATH, enter [Space]-[Ctrl]-[D].

The csh metasequence !˜ does not work.

In an international environment, character ordering is determined by the setting of LC_COLLATE, rather
than by the binary ordering of character values in the machine collating sequence. This brings with it cer-
tain attendant dangers, particularly when using range expressions in file name generation patterns. For
example, the command,

rm [a-z]*

might be expected to match all file names beginning with a lowercase alphabetic character. However, if
dictionary ordering is specified by LC_COLLATE, it would also match file names beginning with an uppercase
character (as well as those beginning with accented letters). Conversely, it would fail to match letters col-
lated after z in languages such as Norwegian.

The correct (and safe) way to match specific character classes in an international environment is to use a
pattern of the form:

rm [[:lower:]]*

This uses LC_CTYPE to determine character classes and works predictably for all supported languages
and codesets. For shell scripts produced on non-internationalized systems (or without consideration for the
above dangers), it is recommended that they be executed in a non-NLS environment. This requires that
LANG, LC_COLLATE, etc., be set to "C" or not set at all.

csh implements command substitution by creating a pipe between itself and the command. If the root file
system is full, the substituted command cannot write to the pipe. As a result, the shell receives no input
from the command, and the result of the substitution is null. In particular, using command substitution for
variable assignment under such circumstances results in the variable being silently assigned a NULL value.

Relative path changes (such as cd ..), when in a symbolically linked directory, cause csh ’s knowledge of
the working directory to be along the symbolic path instead of the physical path.

Prior to HP-UX Release 9.0, csh , when getting its input from a file, would exit immediately if unable to exe-
cute a command (such as if it was unable to find the command). Beginning at Release 9.0, csh continues
on and attempts to execute the remaining commands in the file. However, if the old behavior is desired for
compatibility purposes, set the environment variable EXITONERRto 1.

AUTHOR
csh was developed by the University of California, Berkeley and HP.

FILES
˜/.cshrc A csh script sourced (executed) at the beginning of execution by each shell. See

WARNINGS

˜/.login A csh script sourced (executed) by login shell, after .cshrc at login.

˜/.logout A csh script sourced (executed) by login shell, at logout.

/etc/passwd Source of home directories for ˜name .

/usr/bin/sh Standard shell, for shell scripts not starting with a #.

/etc/csh.login A csh script sourced (executed) before ˜/.cshrc and ˜/.login when start-
ing a csh login (analogous to /etc/profile in the Bourne shell).

/tmp/sh* Temporary file for <<.

SEE ALSO
cd(1), echo(1), kill(1), nice(1), sh(1), umask(1), access(2), exec(2), fork(2), pipe(2), umask(2), wait(2), tty(7),
a.out(4), environ(5), lang(5), regexp(5).

C Shell tutorial in Shells Users Guide.

Section 1−−146 − 18 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csplit(1) csplit(1)

NAME
csplit - context split

SYNOPSIS
csplit [-s] [-k] [-f prefix] [-n number] file arg1 [... argn]

DESCRIPTION
csplit reads file, separates it into n+1 sections as defined by the arguments arg1 ... argn, and places
the results in separate files. The maximum number of arguments (arg1 through argn) allowed is 99 unless
the -n number option is used to allow for more output file names. If the -f prefix option is specified, the
resulting filenames are prefix00 through prefix NN where NN is the two-digit value of n using a leading
zero if n is less than 10. If the -f prefix option is not specified, the default filenames xx00 through
xx NN are used. file is divided as follows:

Default Prefixed
Filename Filename Contents

From start of file up to (but not including) the line refer-
enced by arg1.

xx00 prefix00

From the line referenced by arg1 up to the line referenced
by arg2.

xx01 prefix01

.

.

.
From the line referenced by argn to end of file.xx NN prefixNN

If the file argument is - , standard input is used.

csplit supports the Basic Regular Expression syntax (see regexp(5)).

Options
csplit recognizes the following options:

-s Suppress printing of all character counts (csplit normally prints the character
counts for each file created).

-k Leave previously created files intact (csplit normally removes created files if an
error occurs).

-f prefix Name created files prefix00 through prefixNN (default is xx00 through xx NN.

-n number The output file name suffix will use number digits instead of the default 2. This
allows creation of more than 100 output files.

Arguments (arg1 through argn) to csplit can be any combination of the following:

/ regexp/ Create a file containing the section from the current line up to (but not including) the
line matching the regular expression regexp . The new current line becomes the line
matching regexp .

/ regexp/+ n
/ regexp/- n Create a file containing the section from the current line up to (but not including) the

nth before (- n) or after (+n) the line matching the regular expression regexp . (e.g.,
/Page/-5). The new current line becomes the line matching regexp±n lines.

%regexp% equivalent to / regexp/, except that no file is created for the section.

line_number Create a file from the current line up to (but not including) line_number. The new
current line becomes line_number.

{ num} Repeat argument. This argument can follow any of the above argument forms. If it
follows a regexp argument, that argument is applied num more times. If it follows
line_number, the file is split every line_number lines for num times from that point
until end-of-file is reached or num expires.

{ *} Repeats previous operand as many times as necessary to finish input.

Enclose in appropriate quotes all regexp arguments containing blanks or other characters meaningful to the
shell. Regular expressions must not contain embedded new-lines. csplit does not alter or remove the

HP-UX Release 11i: December 2000 − 1 − Section 1−−147

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

csplit(1) csplit(1)

original file; it is the user’s responsibility to remove it when appropriate.

EXTERNAL INFLUENCES
Environment Variables

LC_COLLATEdetermines the collating sequence used in evaluating regular expressions.

LC_CTYPEdetermines the characters matched by character class expressions in regular expressions.

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_COLLATEor LC_CTYPEor LC_MESSAGESis not specified in the environment or is set to the
empty string, the value of LANGis used as a default for each unspecified or empty variable. If LANGis
not specified or is set to the empty string, a default of "C" (see lang(5)) is used instead of LANG. If any
internationalization variable contains an invalid setting, csplit behaves as if all internationalization
variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

DIAGNOSTICS
Messages are self explanatory except for:

arg - out of range

which means that the given argument did not reference a line between the current position and the end of
the file. This warning also occurs if the file is exhausted before the repeat count is.

EXAMPLES
Create four files, cobol00 through cobol03 . After editing the ‘‘split’’ files, recombine them back into
the original file, destroying its previous contents.

csplit -f cobol file ’/procedure division/’ /par5./ /par16./

Perform editing operations

cat cobol0[0-3] > file

Split a file at every 100 lines, up to 10,000 lines (100 files). The -k option causes the created files to be
retained if there are fewer than 10,000 lines (an error message is still printed).

csplit -k file 100 ’{99}’

Assuming that prog.c follows the normal C coding convention of terminating routines with a } at the
beginning of the line, create a file containing each separate C routine (up to 21) in prog.c .

csplit -k prog.c ’%main(%’ ’/ˆ}/+1’ ’{20}’

SEE ALSO
sh(1), split(1), environ(5), lang(5), regexp(5).

STANDARDS CONFORMANCE
csplit : SVID2, SVID3, XPG2, XPG3, XPG4

Section 1−−148 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

ct(1) ct(1)

NAME
ct - spawn getty to a remote terminal (call terminal)

SYNOPSIS
ct [-w n] [-x n] [-h] [-v] [-s speed] telno...

DESCRIPTION
ct dials telno, the telephone number of a modem that is attached to a terminal, and spawns a getty(1M)
process to that terminal.

ct tries each line listed in file /etc/uucp/Devices until it finds an available line with appropriate
attributes or runs out of entries. If no lines are free, ct asks whether it should wait for a line, and if so,
how many minutes it should wait before giving up. ct searches again for an available line at one-minute
intervals until the specified limit is exceeded. Note that normally, ct disconnects the current tty line, so
that the line can answer the incoming call. This is because ct assumes that the current tty line is con-
nected to the terminal to spawn the getty process.

The telno argument specifies the telephone number, which can be composed of characters 0 through 9, - ,
=, * , and #. Use equal signs to signify secondary dial tones and minus signs for delays at appropriate
places. The maximum length of telno is 31 characters. If more than one telephone number is specified, ct
tries each in succession until one answers; this is useful for specifying alternate dialing paths.

When ct disconnects the current line, getty should not be spawned on this line if ct is going to make
use of the same line to reconnect. To do this, set the entry for this line in the inittab file to uugetty
instead of getty (see inittab(4)).

Options
ct recognizes the following options and command-line arguments:

-w n Instruct ct to wait for a line a maximum of n number of minutes, if lines are busy. If
this option is specified, ct does not query the user about whether to wait for a line.

-x n Produce detailed output from program execution on the standard error output. This
option is used for debugging. The debugging level n is a single digit; the most useful
value is -x9 .

-h Prevent ct from disconnecting ("hanging up") the current tty line. This option is
necessary if the user is using a different tty line than the one used by ct to spawn the
getty .

-v Verbose mode. The -v option is used with the -h option and causes ct to send a
running narrative to the standard error output stream.

-s speed Set the data rate where speed is expressed in baud. The default rate is 1200 .

After the user on the destination terminal logs out, ct prompts, Reconnect? If the response begins
with the letter n the line is dropped. Otherwise, getty is restarted and the login: prompt is printed.

Of course, the destination terminal must be attached to a modem that can automatically answer incoming
calls.

FILES
/var/adm/ctlog
/etc/uucp/Devices

SEE ALSO
cu(1), login(1), uucp(1), getty(1M), uugetty(1M).

HP-UX Release 11i: December 2000 − 1 − Section 1−−149

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

ctags(1) ctags(1)

NAME
ctags - create a tags file

SYNOPSIS
ctags [-xvFBatwu] files ...

DESCRIPTION
ctags makes a tags file for ex(1) (or vi(1)) from the specified C, Pascal and FORTRAN sources. A tags file
gives the locations of specified objects (for C, functions, macros with argments, and typedefs; Pascal, pro-
cedures, programs and functions; FORTRAN, subroutines, programs and functions) in a group of files. Each
line of the tags file contains the object name, the file in which it is defined, and an address specification for
the object definition. Output is sorted in ascending collation order (see Environment Variables below). All
objects except C typedefs are searched with a pattern, typedefs with a line number. Specifiers are given in
separate fields on the line, separated by spaces or tabs. Using the tags file, ex can quickly find these
objects’ definitions.

-x Cause ctags to print a simple function index. This is done by assembling a list of function
names, file names on which each function is defined, the line numbers where each function
name occurs, and the text of each line. The list is then printed on the standard output. No
tags file is created or changed.

-v Produce a page index on the standard output. This listing contains the function name, file
name, and page number within that file (assuming 56-line pages to match pr(1)).

Files whose name ends in .c or .h are assumed to be C source files and are searched for C routine and
macro definitions. Others are first examined to see if they contain any Pascal or FORTRAN routine
definitions; if not, they are processed again looking for C definitions.

Other options are:

-F Use forward searching patterns (/ .../) (default).

-B Use backward searching patterns (?...?).

-a Add the information from the files to the tags file. Unlike re-building the tags file from the
original files, this can cause the same symbol to be entered twice in the tags file. This option
should be used with caution and then only in very special circumstances.

-t Create tags for typedefs.

-w Suppress warning diagnostics.

-u Update the specified files in tags; that is, all references to those files are deleted, and the new
values are added to the file as in -a above. (Beware: this option is implemented in a way
which is rather slow; it is usually faster to simply rebuild the tags file.)

The tag main is treated specially in C programs. The tag formed is created by adding Mto the beginning
of name of the file, with any trailing .c removed, and leading pathname components also removed. This
makes use of ctags practical in directories with more than one program.

EXTERNAL INFLUENCES
Environment Variables

LC_COLLATEdetermines the order in which the output is sorted.

LC_CTYPEdetermines the interpretation of the single- and/or multi-byte characters within comments and
string literals.

If LC_COLLATE or LC_CTYPE is not specified in the environment or is set to the empty string, the
value of LANGis used as a default for each unspecified or empty variable. If LANGis not specified or is
set to the empty string, a default of ‘‘C’’ (see lang(5)) is used instead of LANG. If any internationalization
variable contains an invalid setting, ctags behaves as if all internationalization variables are set to ‘‘C’’.
See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported with the exception that multi-byte character file
names are not supported.

Section 1−−150 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

ctags(1) ctags(1)

DIAGNOSTICS
Too many entries to sort.

An attempt to get additional heap space failed; the sort could not be performed.

Unexpected end of function in file file, line line.
The tags file may be incorrect.

A } character was found unexpectedly in the first column. This can lead to incorrect entries in the
tags file.

Duplicate entry in file file, line line: name. Second entry ignored.
The same name was detected twice in the same file. A tags entry was made only for the first name
found.

Duplicate entry in files file1 and file2: name (Warning only).
The same name was detected in two different files. A tags entry was made only for the first name
found.

EXAMPLES
Create a tags file named tags in the current directory for all C source (*.c) files and all header (*.h)
files in the current directory:

ctags *.[ch]

Once the tags file exists in the current directory, it can be used with commands that support tag files (such
as vi (see vi(1)).

Use the tags file with vi to edit a particular function myfunc() located in one of the source files:

vi -t myfunc

While editing a C source file using vi , use the ex -mode tag command to edit function myfunc() :

:tag myfunc

Use vi to find main() in file myprog.c :

vi -t Mmyprog

While using vi , find main() in file myprog.c (does not have to be the file currently being edited):

:tag Mmyprog

WARNINGS
Recognition of functions , subroutines , and procedures for FORTRAN and Pascal is done in a
very simple way. No attempt is made to deal with block structure; if there are two Pascal procedures in
different blocks with the same name, a warning message is generated.

The method of deciding whether to look for C or Pascal and FORTRAN functions is an approximation, and can
be fooled by unusual programs.

ctags does not know about #ifdefs and Pascal types.

It relies on the input being well formed to detect typedefs.

Use of -tx shows only the last line of typedefs.

ex is naive about tags files with several identical tags; it simply chooses the first entry its (non-linear)
search finds with that tag. Such files can be created with either the -u or -a options or by editing a tags
file.

If more than one (function) definition appears on a single line, only the first definition is indexed.

AUTHOR
ctags was developed by the University of California, Berkeley.

FILES
tags output tags file
OTAGS temporary file used by -u

HP-UX Release 11i: December 2000 − 2 − Section 1−−151

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

ctags(1) ctags(1)

SEE ALSO
ex(1), vi(1).

STANDARDS CONFORMANCE
ctags : XPG4

Section 1−−152 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cu(1) cu(1)

NAME
cu - call another (UNIX) system; terminal emulator

SYNOPSIS
cu [-s speed] [-l line] [-h] [-q] [-t] [-d level] [-e -o] [-m] [-n] [telno systemname dir]

XPG4 Syntax:
cu [-s speed] [-l line] [-h] [-q] [-t] [-d] [-e -o] [-m] [-n] [telno systemname dir]

DESCRIPTION
cu calls up another system, which is usually a UNIX operating system, but can be a terminal or a non-
UNIX operating system. cu manages all interaction between systems, including possible transfers of
ASCII files.

Options
cu recognizes the following options and command-line arguments:

-s speed Specify the transmission speed (110, 150, 300, 600, 1200, 2400, 3600, 4800, 7200, 9600,
19200). The default value is 300.

-l line Specify a device name to use as the communication line. This can be used to override
searching for the first available line having the right speed. When the -l option is
used without the -s option, the speed of a line is obtained from file
/etc/uucp/Devices . When the -l and -s options are used simultaneously,
cu searches /etc/uucp/Devices to determine whether the requested speed for
the requested line is available. If so, the connection is made at the requested speed;
otherwise, an error message is printed and the call is not made. The specified device
is usually a directly connected asynchronous line (such as /dev/ttyapb). In this
case, a telephone number is not required, but the string dir can be used to specify
that a dialer is not required. If the specified device is associated with an auto-dialer, a
telephone number must be provided.

-h Emulate local echo, supporting calls to other computer systems that expect terminals
to be set to half-duplex mode.

-q Use ENQ/ACK handshake (remote system sends ENQ, cu sends ACK.)

-t Used when dialing an ASCII terminal that has been set to auto-answer. Appropriate
mapping of carriage-return to carriage-return-line-feed pairs is set.

-d level Print diagnostic traces. level is a number from 0-9, where higher levels produce more
detail in the diagnostic messages.

-d (XPG4 only.) Print diagnostic traces. The level is always 9.

-e (-o) Generate even (odd) parity for data sent to the remote.

-m Specify a direct line that has modem controls. Modem controls are ignored by cu .

-n Cause the telephone number that cu dials to be requested interactively from the user
rather than taking it from the command line.

telno When using an automatic dialer, telno is the telephone number, with equal signs for
secondary dial tone or minus signs for delays appropriately placed in the telno string.

systemname A UUCP system name can be used instead of a telephone number (see uucp(1)); in
this case, cu obtains an appropriate direct line or telephone number from
/etc/uucp/Systems (including appropriate baud rate). cu dials each telephone
number or direct line for systemname in the Systems file until a connection is made
or all the entries are tried.

dir Using dir ensures that cu uses the line specified by the -l option.

After making the connection, cu runs as two processes:

• transmit process reads data from the standard input and, except for lines beginning with ˜ , passes
it to the remote system;

• receive process accepts data from the remote system and, except for lines beginning with ˜ , passes
it to the standard output.

HP-UX Release 11i: December 2000 − 1 − Section 1−−153

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cu(1) cu(1)

Normally, an automatic DC3/DC1 protocol is used to control input from the remote to ensure that the buffer
is not overrun. "Prompt handshaking" can be used to control transfer of ASCII files to systems that have
no type-ahead capability but require data to be sent only after a prompt is given. This is described in detail
below. Lines beginning with ˜ have special meanings.

Transmit Process Commands
The transmit process interprets the following commands:

~. , ˜.. Terminate the conversation. On hard-wired lines, ˜. sends several EOF characters
to log out the session, whereas ˜.. suppresses the EOF sequence. In general the
remote hard-wired machine is unaware of the disconnect if ˜.. is used. On dial-up
connections, ˜. and ˜.. do not differ.

~! Escape to an interactive shell on the local system.

~! cmd ... Run cmd on the local system (via sh -c).

~& Similar to ˜! but kill the receive process, restarting it upon return from the shell.
This is useful for invoking sub-processes that read from the communication line where
the receive process would otherwise compete for input.

~&cmd ... Run cmd on the local system (via sh -c) and kill the receive process, restarting it
later.

~| cmd Pipe incoming data from the remote system through the standard input to cmd on the
local system. To terminate, reset with either a ˜& or ˜| command.

~| Resets the receive process following a ˜|cmd command.

~$cmd ... Run cmd locally and send its output to the remote system.

~%cd Change the directory on the local system. Note: ˜!cd causes the command to be
run by a sub-shell, causing a return to the current directory upon completion.

~%take remote_source_file [local_destination_file]
Copy file remote_source_file from the remote system to file local_destination_file on
the local system. If local_destination_file is not specified, the remote_source_file argu-
ment is used in both places.

~%put local_source_file [remote_destination_file]
Copy file local_source_file on local system to file remote_destination_file on remote sys-
tem. If remote_destination_file is not specified, the local_source_file argument is used
in both places.

~˜ ... Send the line ˜ ... to the remote system. If you use cu on the remote system to
access a third remote system, send ˜˜. to cause the second remote cu to exit.

~%break Transmit a BREAK to the remote system.

~%nostop Toggle between DC3/DC1 input control protocol and no input control. This is useful if
the remote system does not respond properly to the DC3 and DC1 characters.

~%<file Send the contents of the local file to the remote system using prompt handshaking.
The specified file is read one line at a time, and each line is sent to the remote system
when the prompt sequence is received. If no prompt is received by the time the
prompt timeout occurs, the line is sent anyway. If the timeout is set to 0 seconds, or if
the first character in the prompt sequence is a null character (ˆ@), the handshake
always appears to be satisfied immediately, regardless of whether or not the remote
system generates a prompt. This capability is intended mainly to facilitate transfer of
ASCII files from HP-UX to an HP 3000 system running MPE. This is usually accom-
plished by running the MPE FCOPY utility and giving the command
from=;to= destfile;new and then running the cu input diversion to send the file to
FCOPYwhich saves it in destfile. This facility might be useful with other systems
also, such as an HP 1000 running RTE.

~%setpt n Specify the number of seconds to wait for a prompt before giving up. The default is 2
seconds. Specifying a timeout of 0 seconds disables handshaking; that is, handshake
appears to complete immediately.

~%setps xy Set the handshake prompt to the characters xy. The default is DC1. The prompt can
be any one or two characters. To specify a control character for x or y, use the Ctrl-X

Section 1−−154 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cu(1) cu(1)

form where a circumflex (ASCII 94) precedes the character, as in ˆX . A null charac-
ter can be specified with ˆ@. (A null first character in the prompt implies a "null"
prompt, which always appears to be satisfied.) A circumflex is specified by ˆ ˆ .

~%>[>]file Divert output from the remote system to the specified file until another ˜%> com-
mand is given. When an output diversion is active, typing ˜%> terminates it,
whereas ˜%> anotherfile terminates it and begins a new one. The output diversion
remains active through a ˜& subshell, but unpredictable results can occur if
input/output diversions are intermixed with ˜%take or ˜%put. The ˜%>> com-
mand appends to the named file. Note that these commands, which are interpreted
by the transmit process, are unrelated to the ˜> commands described below, which
are interpreted by the receive process.

~susp Suspend the cu session. susp is the suspend character set in the terminal when cu
was invoked (usually ˆZ — see stty(1)). As in all other lines starting with tilde, a
~susp line must be terminated by pressing Return.

Receive Process
The receive process normally copies data from the remote system to its standard output. A line from the
remote that begins with ˜> initiates an output diversion to a file. The complete sequence is:

~>[>]: file
zero or more lines to be written to file
~>

Data from the remote is diverted (or appended, if >> is used) to file. The trailing ˜> terminates the
diversion.

The use of ˜%put requires stty(1) and cat(1) on the remote side. It also requires that the current erase
and kill characters on the remote system be identical to the current ones on the local system. Backslashes
are inserted at appropriate places.

The use of ˜%take requires that the remote system support the echo and cat commands (see echo(1)
and cat(1). Also, stty tabs mode should be set on the remote system if tabs are being copied without
expansion. When connecting to a machine that uses the eighth bit as a parity bit, stty istrip mode
should be set on the local system.

When cu is used on system X to connect to system Y and subsequently used on system Y to connect to sys-
tem Z, commands on system Y can be executed if ˜˜ is used. For example, using the keyboard on system
X, uname can be executed on Z, X, and Y as follows where lines 1, 3, and 5 are keyboard commands, and
lines 2, 4, and 6 are system responses:

uname
Z
~!uname
X
~˜!uname
Y

In general, ˜ causes the command to be executed on the original machine; ˜˜ causes the command to be
executed on the next machine in the chain.

EXTERNAL INFLUENCES
Environment Variables

LANGdetermines the language in which messages are displayed.

If LANGis not specified or is set to the empty string, a default of "C" (see lang(5)) is used instead of LANG.
If any internationalization variable contains an invalid setting, cu behaves as if all internationalization
variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

DIAGNOSTICS
Exit code is zero for normal exit; non-zero (various values) otherwise.

HP-UX Release 11i: December 2000 − 3 − Section 1−−155

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cu(1) cu(1)

EXAMPLES
To dial a system whose number is 9 201 555 1212 using 1200 baud:

cu -s1200 9=2015551212

If the speed is not specified, 300 is the default value.

To log in on a system connected by a direct line:

cu -l/dev/tty XpX dir

To dial a system with the specific line and a specific speed:

cu -s1200 -l/dev/tty XpX dir

To dial a system using a specific line:

cu -l/dev/cul XpX 2015551212

To use a system name (yyyzzz):

cu yyyzzz

To connect directly to a modem:

cu -l/dev/culXX -m dir cu -l/dev/cu1XX -m dir

WARNINGS
cu buffers input internally.

AUTHOR
cu was developed by AT&T and HP.

FILES
/etc/uucp/Systems
/etc/uucp/Devices
/etc/uucp/Dialers
/var/spool/locks/ LCK..(tty-device)
/dev/null

SEE ALSO
cat(1), ct(1), echo(1), stty(1), uname(1), uucp(1), uuname(1).

STANDARDS CONFORMANCE
cu : SVID2, SVID3, XPG2, XPG3, XPG4

Section 1−−156 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cue(1) cue(1)
(Series 800 Only)

NAME
cue - HP Character-Terminal User Environment (CUE)

SYNOPSIS
/usr/bin/cue

DESCRIPTION
CUE provides an easy-to-use, attractive, customizable environment that allows users on Series 800 HP-UX
systems to easily identify themselves to the system and begin a work session. See DEPENDENCIES for sup-
ported terminal types.

A menubar is available for changing the native language of the session, changing the type of session to start
upon a successful login, or getting on-line help. To obtain context-sensitive help at any time, press the func-
tion key labeled HELP (f 1).

A pulldown menu and function keys (f 1- f 8) are displayed, allowing the user to modify various options or to
get help. Before the login is initiated, the user has the option of interactively changing the native language
of the session and the type of session to start upon a successful login.

The default native language is C, but the language is easily modifiable by entering the Language Menu
which is accessible by selecting the Configuration item in the menu bar. The native language can also be
specified as a parameter to cuegetty (see cuegetty(1M)).

The default session type is the POSIX shell, sh , but the session type can be easily changed to tsm , keysh ,
or csh by entering the Session Type Menu which is accessible by selecting the Configuration item in the
menu bar.

The following standard login features are available:

• password aging

• logging invalid login attempts in /var/adm/btmp

• list of valid ttys for super-user login

CUE displays a visual screen that prompts for the username and corresponding password. If your user-
name does not have a password, press the <carriage return> key to skip this field. Terminal echo is turned
off (where possible) during typing of the password so that it will not appear on any written record of the
session. After three unsuccessful login attempts, a hangup signal is issued.

If password aging has been invoked by the super-user on your behalf, your password may have expired. In
this case, you will be diverted into passwd to change it, after which you can attempt to login again. See
passwd(1).

If login is not successfully completed within a certain period of time (e.g., five minutes), the terminal may
be silently disconnected.

After a successful login, the accounting files are updated, initializing the user and group ids, group access
list, and working directory. If the session type chosen is tsm , the SHELL to start in each tsm session is
determined from corresponding user entries in the /etc/passwd file. cue then forks the appropriate
shell by using the last component of the shell pathname preceded by a - (for example, -sh or -ksh).
When the session type is invoked with its name preceded by a minus in this manner, the shell performs its
own initialization, including execution of profile, login, or other initialization scripts.

For example, if the user login shell is sh(1) or ksh(1) the shell executes the profile files /etc/profile
and $HOME/.profile if they exist (and possibly others as well). Depending on the contents of the
profile files, messages regarding mail in your mail file or any messages you may have received since your
last login may be displayed. At this point, cuesession is started to perform accounting procedures, display
messages, and start your session.

If /var/adm/btmp is present, all unsuccessful login attempts are logged to this file. This feature is dis-
abled if the file is not present. A summary of bad login attempts can be viewed by users with appropriate
privileges by using lastb , see last(1M).

If /etc/securetty is present, login security is in effect, meaning that only users with appropriate
privileges are allowed to login successfully on the ttys listed in this file. Restricted ttys are listed by device
name, one per line. Valid tty names are dependent on installation. Some examples could be console ,
tty01 , ttya1 , etc. Note that this feature does not inhibit a normal user from using su .

HP-UX Release 11i: December 2000 − 1 − Section 1−−157

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cue(1) cue(1)
(Series 800 Only)

Starting Cue
There are several methods that can be used to start cue .

• An entry for cuegetty can be placed in the /etc/inittab file. See cuegetty(1M)). This is
the preferred method as the user does not need to do anything further to start cue .

• Start cue from the command line by typing: cue .

• Start cue by making it the last entry in the user’s .login configuration file.

Multiple cue logins may run simultaneously on separate terminals attached to the same local host.
cuegetty can be configured in the /etc/inittab file for all users.

Remote users to the CUE system must access CUE by entering the cue command at the command-line
prompt or as the last item in the user’s .login configuration file.

EXTERNAL INFLUENCES
Environment Variables

cue invokes the user’s session with the following default environment:

CUESESSIONis set to the session type selected. Valid values are:

/usr/bin/sh POSIX Shell (DEFAULT)

/usr/bin/tsm manages up to 10 sessions at once

/usr/bin/keysh Easy Context-Sensitive Softkey Shell

/usr/bin/ksh Korn Shell

/usr/bin/csh C Shell

HOME is set to the home directory of the user

LANG is set to the native language selected (C is the default)

LOGNAME is set to the user name

MAIL is set to /var/mail/$LOGNAME

NLSPATH is set to the path applications search for NLS message catalogs, usually
/usr/lib/nls/%L/%N.cat

PATH is set to the path to be searched for commands :/usr/bin

SHELL is set to the user’s default shell (from /etc/passwd)

Several methods are available to modify or add to this list depending on the desired scope of the resulting
environment variable.

Basic environment variables can be set for all CUE users on a system by setting the values in
/etc/profile and /etc/csh.login . Personal environment variables can be set on a per-user basis
in the script file $HOME/.profile for sh and ksh users or .cshrc for csh users.

Note that alias and function definitions need to be included in the file specified by ENV for ksh, as this file
will be sourced for each invocation of the shell. For csh users, the .cshrc file should be structured such
that it cannot generate any output on standard output or standard error, including occasions when it is
invoked without an affiliated terminal. The rcp command sources the .cshrc file and any output gen-
erated by this file, even to standard error, causes problems. Commands such as stty should be placed in
the .login file, not in .cshrc , so that their output cannot affect rcp .

For users with appropriate privileges, PATHis augmented to include /etc .

Section 1−−158 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cue(1) cue(1)
(Series 800 Only)

VT320 Terminal Support
Because the VT320 terminal has predefined local functions for keys labeled as F1, F2, F3 and F4, users
should use following mapping when they desire to use function keys:

HP or Wyse60 VT320 or HP 700/60 in VT320 mode

F1 PF2 !

F2 PF1 !

F3 space bar

F4 PF3 !

F5 F10, [EXIT], F5 *

F6 none

F7 F18, first unlabeled key to right of Pause/Break*

F8 F19, second unlabeled key to right of Pause/Break*

* When using PC-AT keyboard with HP 700/60 in VT320 mode

! See "Configuration: HP 700/60 in DEC mode, or DEC terminals with PC-AT type keyboard"

Further, since DEC terminals do not support softkey menu, no such menu is displayed on these termi-
nals.

Many applications tend to use TAB for forward navigation (moving from one field to another) and
shift-TAB is used for backward navigation. Users having DEC terminals or using terminals in DEC
emulation modes such as VT100 or VT320 may note that these terminals/emulators may give out
same character for TAB and shift-TAB. As such, it is impossible for an application to distinguish
between TAB and shift-TAB, and both of them treated as if a TAB key was pressed. It might present
slight overhead to users in case they want to go backwards. Now instead, they should complete rest of
the inputs and get back to the desired field later.

VT100 Terminal Support
VT100 does not allow the (f1-f8) function keys to be configured. Therefore, the following keyboard map-
pings will apply to VT100 terminals:

HP or Wyse60 VT100 or HP 700/60 in VT100 mode

F1 PF2 !

F2 PF1 !

F3 space bar

F4 [PF3], [space bar] or [PF3], [=] !

F5 return

F6 none

F7 none

F8 none

! See "Configuration: HP 700/60 in DEC mode, or DEC terminals with PC-AT type keyboard"

Further, since DEC terminals do not support softkey menu, no such menu is displayed on these termi-
nals.

Many applications tend to use TAB for forward navigation (moving from one field to another) and
shift-TAB is used for backward navigation. Users having DEC terminals or using terminals in DEC
emulation modes such as VT100 or VT320 may note that these terminals/emulators may give out
same character for TAB and shift-TAB. As such, it is impossible for an application to distinguish
between TAB and shift-TAB, and both of them treated as if a TAB key was pressed. It might present
slight overhead to users in case they want to go backwards. Now instead, they should complete rest of
the inputs and get back to the desired field later.

Configuration: HP 700/60 terminal in DEC mode, or DEC terminal with PC-AT type keyboard
Customers using the following configuration may want to be aware of the following keyboard difference.

HP-UX Release 11i: December 2000 − 3 − Section 1−−159

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cue(1) cue(1)
(Series 800 Only)

It may be possible for a user with the "HP 700/60 terminal in DEC mode, or DEC terminal with PC-AT type
keyboard" configuration to be told to press function key F1 through F4 to achieve some desired result. For
HP 700/60 terminal in DEC mode or DEC terminals, these functions keys may be mapped onto PF1-PF4
keys. (see "Keyboard Mappings"). However, the PC-AT type keyboard does not provide PF1, PF2, PF3, or
PF4 keys, as does the DEC/ANSI keyboard.

Keyboard Mappings

"Num Lock" maps to "PF1"

"/" maps to "PF2"

"*" maps to "PF3"

"-" maps to "PF4"

The "Num Lock", "/", "*", and "-" keys are located on the keyboard, in a row, above the number pad on
the right side of the keyboard. Please note that although this keyboard is called a PC-AT type key-
board, it is supplied by HP. A PC-AT type keyboard can be recognized by location of ESC key at the
left-top of the keyboard.

Wyse60 Terminal Support
On Wyse60, use DEL (located next to Backspace) key to backspace. On an HP 700/60 with a PC-AT type
keyboard in Wyse60 mode, the DEL key is located in the bottom row on the number pad.

Wyse60 terminals provide a single line to display softkey labels unlike HP terminals which provide two
lines. Sometimes this may result in truncated softkey labels. For example, "Help on Context" label for F1
may appear as "Help on C". Some standard labels for screen-oriented applications such as SAM and swin-
stall are as follows:

On wyse60 may appear as .. means

Help On C Help On Context

Select/D Select/Deselect

Menubar Menubar on/off

Internationalization
All screens, labels, and messages are localizable. The message catalog cue.cat contains the localized
representations of the default labels and messages. cue will read the appropriate message catalog indi-
cated by the LANGenvironment variable and display the localized strings. By selecting a native language
in the Language Menu, the language of the CUE screens and the future work session can be specified. If
the the message catalog exists for cue in the language selected, cue will be redisplayed in that language.
If not, the CUE screens will continue in the current language and the work session that is started after a
successful login will be started in the language selected. In either case, the LANGenvironment variable
will be set appropriately for the resulting work session.

If cue will be started on the command line or as the last item in the .login file, the CUE screens will be
brought up using the language specified by the LANGenvironment variable. If CUE screens do not exist,
then the default native language, C, will be used.

To use cue with Asian languages, the AWTERMenvironment variable must be set to hpterm-asian .
This will allow the text in Asian fonts to be displayed properly by cue .

If cue will be started by cuegetty , it is possible to start up the CUE Login Screens in a language other
than the default, C, by invoking cuegetty with the -L nls_language option. Of course, CUE screens and
the cue.cat file must exist for the nls_language specified.

DEPENDENCIES
CUE is available only on Series 800 systems, and is compatible only with the following terminals:

HP 700/92 HP 700/94 HP 2392 HP 2394 VT 320 VT 100 WYSE 60

WARNINGS
cue is an HP proprietary command, which will be obsoleted in a future release, and is not portable to other
vendor’s platforms.

Section 1−−160 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cue(1) cue(1)
(Series 800 Only)

FILES
/var/adm/btmp history of bad login attempts
/etc/logingroup group file - defines group access lists
/etc/motd message-of-the-day
/etc/passwd password file - defines users, passwords, and primary groups
/etc/profile system profile (initialization for all users)
/etc/securetty list of valid ttys for root login
/etc/utmp users currently logged in
/var/adm/wtmp history of logins, logouts, and date changes
/var/mail/ your-name mailbox for user your-name
/usr/bin/cue cue executable
/usr/sbin/cuegetty cuegetty executable
/usr/newconfig/etc/cue.inittab template for /etc/inittab
/etc/cue.dm screen descriptions
/usr/lbin/cuesession starts selected session type
/usr/lib/nls/$LANG/cue.cat NLS message catalog
/usr/share/man/man1.Z/cue.1 man page for cue(1)
/usr/share/man/man1m.Z/cuegetty.1m man page for cuegetty(1M)

SEE ALSO
csh(1), cuegetty(1M), env(1), keysh(1), ksh(1), login(1), passwd(1), sh(1), tsm(1), btmp(4), environ(5),
hpnls(5), lang(5).

HP-UX Release 11i: December 2000 − 5 − Section 1−−161

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cut(1) cut(1)

NAME
cut - cut out (extract) selected fields of each line of a file

SYNOPSIS
cut -c list [file ...]

cut -b list [-n] [file ...]

cut -f list [-d char] [-s] [file ...]

DESCRIPTION
cut cuts out (extracts) columns from a table or fields from each line in a file; in data base parlance, it
implements the projection of a relation. Fields as specified by list can be fixed length (defined in terms of
character or byte position in a line when using the -c or -b option), or the length can vary from line to
line and be marked with a field delimiter character such as the tab character (when using the -f option).
cut can be used as a filter; if no files are given, the standard input is used.

When processing single-byte character sets, the -c and -b options are equivalent and produce identical
results. When processing multi-byte character sets, when the -b and -n options are used together, their
combined behavior is very similar, but not identical to the -c option.

Options
Options are interpreted as follows:

list A comma-separated list of integer byte (-b option), character (-c option), or field (-f
option) numbers, in increasing order, with optional - to indicate ranges. For exam-
ple:

1,4,7 Positions 1, 4, and 7.
1-3,8 Positions 1 through 3 and 8.
-5,10 Positions 1 through 5 and 10.
3- Position 3 through last position.

-b list Cut based on a list of bytes. Each selected byte is output unless the -n option is also
specified.

-c list Cut based on character positions specified by list (-c 1-72 extracts the first 72 char-
acters of each line).

-f list Where list is a list of fields assumed to be separated in the file by a delimiter charac-
ter (see -d); for example, -f 1,7 copies the first and seventh field only. Lines with
no field delimiters will be passed through intact (useful for table subheadings), unless
-s is specified.

-d char The character following -d is the field delimiter (-f option only). Default is tab.
Space or other characters with special meaning to the shell must be quoted. Adjacent
field delimiters delimit null fields. char may be an international code set character.

-n Do not split characters. If the high end of a range within a list is not the last byte of a
character, that character is not included in the output. However, if the low end of a
range within a list is not the first byte of a character, the entire character is included
in the output."

-s Suppresses lines with no delimiter characters when using -f option. Unless -s is
specified, lines with no delimiters appear in the output without alteration.

Hints
Use grep to extract text from a file based on text pattern recognition (using regular expressions). Use
paste to merge files line-by-line in columnar format. To rearrange columns in a table in a different
sequence, use cut and paste . See grep(1) and paste(1) for more information.

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of text as single and/or multi-byte characters.

If LC_CTYPEis not specified in the environment or is set to the empty string, the value of LANGis used
as a default for each unspecified or empty variable. If LANGis not specified or is set to the empty string, a

Section 1−−162 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

c

cut(1) cut(1)

default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable contains an invalid
setting, cut behaves as if all internationalization variables are set to "C". See environ(5).

International Code Set Support
cut supports both single- and multi-byte character code sets. International code set characters may be
specified in the char given to the -d option. cut recognizes the international code set characters accord-
ing to the locale specified in the LC_CTYPEenvironment variable.

EXAMPLES
Password file mapping of user ID to user names:

cut -d : -f 1,5 /etc/passwd

Set environment variable name to current login name:

name=‘who am i | cut -f 1 -d " "‘

Convert file source containing lines of arbitrary length into two files where file1 contains the first
500 bytes (unless the 500th byte is within a multi-byte character), and file2 contains the remainder of
each line:

cut -b 1-500 -n source > file1
cut -b 500- -n source > file2

DIAGNOSTICS
line too long

Line length must not exceed LINE_MAX characters or fields, including the new-line char-
acter (see limits(5).

bad list for b/c/f option
Missing -b , -c , or -f option or incorrectly specified list. No error occurs if a line has
fewer fields than the list calls for.

no fields list is empty.

WARNINGS
cut does not expand tabs. Pipe text through expand(1) if tab expansion is required.

Backspace characters are treated the same as any other character. To eliminate backspace characters
before processing by cut , use the fold or col command (see fold(1) and col(1)).

AUTHOR
cut was developed by OSF and HP.

SEE ALSO
grep(1), paste(1).

STANDARDS CONFORMANCE
cut : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 2 − Section 1−−163

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

date(1) date(1)

NAME
date - display or set the date and time

SYNOPSIS
date [-u]

date [-u] +format

date [-u] [mmddhhmm[[cc]yy]]

date [-a [-]sss[. fff]]

DESCRIPTION
The date command displays or sets the current HP-UX system clock date and time. Since the HP-UX sys-
tem operates in Coordinated Universal Time (UTC), date automatically converts to and from local stan-
dard or daylight/summer time, based on your TZ environment variable. See Environment Variables in
EXTERNAL INFLUENCES below.

Options
date recognizes the following option:

-u Input and output values in Coordinated Universal Time (UTC), functionally equivalent to
Greenwich Mean Time (GMT), instead of in local time.

-a [-]sss[. fff]
Slowly adjust the time by sss. fff seconds (fff represents fractions of a second). This adjustment
can be positive or negative. The system’s clock will be sped up or slowed down until it has
drifted by the number of seconds specified.

Formats
The date command has two forms for displaying the date and time and one form for setting them.

date [-u]

Display the current date and time. The output is the same as for the %c formatting directive
for all languages except the C default language. See Formatting Directives and EXAMPLES
below.

date [-u] +format

Display the current date and time according to formatting directives specified in format ,
which is a string of zero or more formatting directives and ordinary characters. If it contains
blanks, enclose it in apostrophes or quotation marks.

See Formatting Directives below.

All ordinary characters are copied unchanged into the output string.

The output string is always terminated with a newline character.

If + is specified and format is omitted, only a newline is output.

date [-u] [mmddhhmm[[cc]yy]]

Set the HP-UX system clock to the date and time specified. You require the superuser
privilege.

If you include the -u option, the specified date and time is assumed to be in Coordinated
Universal Time (UTC).

The numeric argument is interpreted left to right in two-digit pairs as follows:

mm Month number [01 -12].
dd Day number in the month [01 -31].
hh Hour number (24-hour system) [00 -23].
mm Minute number [00 -59].
cc Century minus one [19 -20].
yy Last two digits of the year number [70 -99 , 00 -37 (1970-1999, 2000-2037)]. If

omitted, the current year is used.

If you attempt to set the date backwards, date generates the warning,

Section 1−−164 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

date(1) date(1)

do you really want to run time backwards?[yes/no]

Type yes or the equivalent for your locale to set the clock backwards; anything else to cancel
the command.

When date is used to set the date, a pair of date change records is written to the file
/var/adm/wtmp .

(XPG4 only.) No warning is generated if date is set backwards.

Formatting Directives
The following formatting directives, shown without the optional field width and precision specification, are
replaced by the indicated characters. If a directive is not one of the following, the result is undefined.

The output for digits, characters, and words depends on the language/locale settings. See Environment
Variables in EXTERNAL INFLUENCES below.

The examples assume that the date command was executed on Wednesday, January 12, 1994 at 7:45:58
p.m. Pacific Standard Time, using the C default language.

%a Abbreviated weekday name. For example, Wed.

%A Full weekday name. For example, Wednesday .

%b Abbreviated month name. For example, Jan .

%B Full month name. For example, January .

%c Current date and time representation. For example, Wed Jan 12 19:45:58 1994 .

%C Century (the year divided by 100 and truncated to an integer) as a two-digit decimal number
[00 -99]. For example, 19 .

%d Day of the month as a two-digit decimal number [01 -31]. For example, 12 .

%e Day of the month as a two-character decimal number with leading space fill [" 1" - "31"].
For example, 12 .

%E Combined Emperor/Era name and year.

%H Hour (24-hour clock) as a two-digit decimal number [00 -23]. For example, 19 .

%I Hour (12-hour clock) as a two-digit decimal number [01 -12]. For example, 07 .

%j Day of the year as a three-digit decimal number [001 -366]. For example, 012 .

%m Month as a decimal two-digit number [01 -12]. For example, 01 .

%M Minute as a decimal two-digit number [00 -59]. For example, 45 .

%n Newline character.

%N Emperor/Era name.

%o Emperor/Era year.

%p Equivalent of either AM or PM. For example, PM.

%R Time as %H:%M

%S Second as a two-digit decimal number (allows for possible leap seconds) [00 -61]. For example,
58 .

%t Tab character.

%u Weekday as a one-digit decimal number [1-7 (Monday-Sunday)]. For example, 3.

%U Week number of the year (Sunday as the first day of the week) as a two-digit decimal number
[00 -53]. All days that precede the first Sunday in the year are considered to be in week 00 .
For example, 02 .

%V Week number of the year (Monday as the first day of the week) as a two-digit decimal number
[01 -53]. If the week containing January 1 has four or more days in the new year (January 1 is
Thursday or sooner), it is designated as week 01 ; otherwise, (January 1 is Friday or later), it is
designated as the last week of the previous year, and the next week is week 01 . For example,
02 .

HP-UX Release 11i: December 2000 − 2 − Section 1−−165

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

date(1) date(1)

%w Weekday as a one-digit decimal number [0-6 (Sunday-Saturday)]. For example, 3.

%W Week number of the year (Monday as the first day of the week) as a two-digit decimal number
[00 -53]. All days that precede the first Monday in the year are considered to be in week 00 .
For example, 02 .

%x Current date representation. For example, 01/12/94 .

%X Current time representation. For example, 19:45:58 .

%y Year without century as a two-digit decimal number [00 -99]. For example, 93 .

%Y Year with century as a four-digit decimal number [1970 -2037]. For example, 1994 .

%Z Time zone name (or no characters if time zone cannot be determined). For example, PST.

%% The %character.

Obsolescent Directives
The following directives are provided for backward compatibility. It is recommended that the preceding
directives be used instead.

%D Date in usual U.S. format. For example, 01/12/94 . Use %xor %m/%d/%yinstead.

%F Full month name. For example, January . Use %Binstead.

%h Abbreviated month name. For example, Jan . Use %binstead.

%r Time in 12-hour U.S. format. For example, 07:45:58 PM . Use "%I:%M:%S %p" instead.

%T Time in 24-hour U.S. format. For example, 19:45:58 . Use %Xor %H:%M:%Sinstead.

%z Time zone name (or no characters if time zone cannot be determined). For example, PST. Use
%Zinstead.

Modified Formatting Directives
Some Formatting Directives can be modified by the E and Omodifier characters to indicate a different for-
mat or specification for the language specified in the LC_TIME environment variable.

If the corresponding keyword (era , era_year , era_d_fmt , and alt_digit) is not specified or not
supported, the unmodified field descriptor value is used. The command

LC_ALL= language locale -ck era era_year era_d_fmt alt_digit

displays the keywords and their values in the specified language (see locale(1)).

%Ec Alternate appropriate date and time representation.

%EC The name of the base year in alternate representation.

%Ex Alternate date representation.

%Ey Offset from %EC(year only) in the alternate representation.

%EY Full alternate year representation.

%Od Day of month using the alternate numeric symbols.

%Oe Day of month using the alternate numeric symbols with leading space-character fill if appli-
cable.

%OH Hour (24-hour clock) using the alternate numeric symbols.

%OI Hour (12-hour clock) using the alternate numeric symbols.

%Om Month using the alternate numeric symbols.

%OM Minutes using the alternate numeric symbols.

%OS Seconds using the alternate numeric symbols.

%OU Week number of the year (Sunday is the first day of the week) using the alternate numeric
symbols.

%Ow Weekday as number using the alternate numeric symbols (Sunday=0).

%OW Weekday number of the year (Monday is the first day of the week) using the alternate
numeric symbols.

Section 1−−166 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

date(1) date(1)

%Oy Year (offset from %C) in alternate representation.

Field Width and Precision
An optional field width and precision specification can immediately follow the initial %of a formatting direc-
tive in the following order:

[- 0]width The decimal digit string width specifies a minimum field width in which the result of the
conversion is right- or left-justified. The default is right-justified with space padding on
the left. If the string starts with "- ", the result is left-justified with space padding on the
right. If the string starts with "0", the result is right-justified and padded with zeros on
the left.

. prec The decimal digit string prec specifies the minimum number of digits to appear for the d,
H, I , j , m, M, o, S, U, w, W, y , and Y numeric directives. If a directive supplies fewer
digits than specified by the precision, it will be expanded with leading zeros.

prec specifies the maximum number of characters to be used from the a, A, b, B, c , D, E,
F, h, n, N, p, r , t , T, x , X, z , Z, and %text directives. If a directive supplies more char-
acters than specified by the precision, excess characters are truncated on the right.

If no field width or precision is specified for a d, H, I , m, M, S, U, W, or y directive, the default is .2 ; for the
j directive, the default is .3 ; for Y, the default is .4 ; for w, the default is .1 .

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of the bytes within the format string as single- and/or multi-byte
characters.

LC_NUMERICdetermines the characters used to form numbers for those directives that produce numbers
in the output. The characters used are those defined by alt_digit (see locale(1) and ALT_DIGIT in
langinfo(5)).

LC_TIME determines the content (for example, the weekday names produced by the %adirective) and for-
mat (for example, the current time representation produced by the %Xdirective) of date and time strings
output by the date command.

LC_MESSAGESdetermines the language in which messages (other than the date and time strings) are
displayed.

If LC_CTYPE, LC_NUMERIC, LC_TIME, or LC_MESSAGESis not specified or is null, it defaults to the
value of LANG.

If LANGis not specified or is null, it defaults to C (see lang(5)).

If any internationalization variable contains an invalid setting, all internationalization variables default to
C (see environ(5)).

TZ determines the conversion between the system time in UTC and the time in the user’s local time zone.
See environ(5) and tztab(4). TZ also determines the content (that is, the time-zone name produced by the
%zand %Zdirectives) of date and time strings output by the date command.

If TZ is not set or is set to the empty string, its default value is EST5EDT.

International Code Set Support
Single- and multi-byte character code sets are supported.

DIAGNOSTICS
The following messages may be displayed.

bad conversion

The date/time specification is syntactically incorrect. Check it against the usage and for the
correct range of each of the digit-pairs.

bad format character - c

HP-UX Release 11i: December 2000 − 4 − Section 1−−167

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

date(1) date(1)

The character c is not a valid format directive, field width specifier, or precision specifier.

do you really want to run time backwards?[yes/no]

The date/time you specified is earlier than the current clock value. Type yes (or the equivalent
for your locale) to set the clock backwards; anything else to cancel the command.

no permission

You need the superuser privilege to change the date.

EXAMPLES
Date in Different Languages

Display the date. In this example, the TZ environment variable contains PST8PDT, and the language
environment variables are set as noted.

date → Fri Aug 20 15:03:37 PDT 1993 ← C (default)
date -u → Fri Aug 20 22:03:37 UTC 1993 ← C (default)
date → Fri, Aug 20, 1993 03:03:37 PM ← en_US.roman8 (U.S. English)
date → Fri. 20 Aug, 1993 03:03:37 PM ← en_GB.roman8 (U.K. English)
date → 20/08/1993 15.47.47 ← pt_PT.roman8 (Portuguese)

Set Date
Set the date to Oct 8, 12:45 a.m.

date 10080045

Display Formatted Date
Display the current date and time using a format. Note the use of quotation marks due to the blanks in the
format.

date "+DATE: %m/%d/%y%nTIME: %H:%M:%S"

The output resembles the following:

DATE: 10/08/87
TIME: 12:45:05

Display Formatted Date Using Local Language Conversion
With the date as set in the "Set Date" example above and LC_TIME set to de_De.roman8 (German):

date +’%-4.4h %2.1d %H:%M’

generates output similar to:

Okt 8 12:45

where the month field is four characters long, flush-left, and space-padded on the right if the month name
is shorter than four characters. The day field is two characters long, with leading zeros suppressed.

WARNINGS
The former HP-UX format directive A has been changed to Wfor ANSI compatibility.

Changing the date while the system is running in multiuser mode should be avoided to prevent disrupting
user-scheduled and time sensitive programs and processes. Also, changing the date can cause make(1) and
the SCCS and cron(1M) subsystems to behave in an unexpected manner. The cron daemon should be
killed prior to setting the date backwards, then restarted. SCCS files should be checked with the val com-
mand (see val(1)) if deltas have been made while the clock was wrongly set.

The following formatting directives may be deleted from future releases: %E, %F, %o, %z.

Currently, the maximum date supported is December 31, 2037 23:59:00 UTC.

AUTHOR
date was developed by AT&T and HP.

FILES
/var/adm/wtmp

Section 1−−168 − 5 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

date(1) date(1)

SEE ALSO
locale(1), stime(2), ctime(3C), strftime(3C), tztab(4), environ(5), lang(5), langinfo(5).

STANDARDS CONFORMANCE
date : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 6 − Section 1−−169

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

dc(1) dc(1)

NAME
dc - desk calculator

SYNOPSIS
dc [file]

DESCRIPTION
dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but one may
specify an input base, output base, and a number of fractional digits to be maintained. (See bc(1), a prepro-
cessor for dc that provides infix notation and a C-like syntax that implements functions. bc also pro-
vides reasonable control structures for programs.) The overall structure of dc is a stacking (reverse Pol-
ish) calculator. If an argument is given, input is taken from that file until its end, then from the standard
input. An end of file on standard input or the q command stop dc. The following constructions are recog-
nized:

number The value of the number is pushed on the stack. A number is an unbroken string of
the digits 0-9 or A-F. It can be preceded by an underscore (_) to input a negative
number. Numbers can contain decimal points.

+ - / * % ˆ
The top two values on the stack are added (+), subtracted (-), multiplied (*), divided
(/), remaindered (%), or exponentiated (ˆ). The two entries are popped off the stack;
the result is pushed on the stack in their place. Any fractional part of an exponent is
ignored and a warning generated. The remainder is calculated according to the
current scale factor; it is not the integer modulus function. 7 % 3 yields .1 (one
tenth) if scale is 1 because 7 / 3 is 2.3 with .1 as the remainder.

sx The top of the stack is popped and stored into a register named x, where x can be any
character. If the s is capitalized, x is treated as a stack and the value is pushed on it.

l x The value in register x is pushed on the stack. Register x is not altered. All registers
start with zero value. If the l is capitalized, register x is treated as a stack and its
top value is popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged. P inter-
prets the top of the stack as an ASCII string, removes it, and prints it.

f All values on the stack are printed.

q exits the program. If executing a string, the recursion level is popped by two. If q is
capitalized, the top value on the stack is popped and the string execution level is
popped by that value.

x treats the top element of the stack as a character string and executes it as a string of
dc commands.

X replaces the number on the top of the stack with its scale factor.

[...] puts the bracketed ASCII string onto the top of the stack. Strings can be nested by
using nested pairs of brackets.

<x >x =x
!< x !> x != x

The top two elements of the stack are popped and compared. Register x is evaluated
if they obey the stated relation.

v Replaces the top element on the stack by its square root. Any existing fractional part
of the argument is taken into account, but otherwise the scale factor is ignored.

! Interprets the rest of the line as an HP-UX system command (unless the next charac-
ter is <, >, or =, in which case appropriate relational operator above is used).

c All values on the stack are popped.

i The top value on the stack is popped and used as the number radix for further input.

I pushes the input base on the top of the stack.

Section 1−−170 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

dc(1) dc(1)

o The top value on the stack is popped and used as the number radix for further output.
See below for notes on output base.

O pushes the output base on the top of the stack.

k the top of the stack is popped, and that value is used as a non-negative scale factor:
the appropriate number of places are printed on output, and maintained during multi-
plication, division, and exponentiation. The interaction of scale factor, input base, and
output base will be reasonable if all are changed together.

K pushes the scale factor on the top of the stack.

z The stack level is pushed onto the stack.

Z replaces the number on the top of the stack with its length.

? A line of input is taken from the input source (usually the terminal) and executed.

; and : Used by bc for array operations.

Y Generates debugging output for dc itself.

The input base may be any number, but only the digits 0-9 and A-F are available for input, thus limiting
the usefulness of bases outside the range 1-16. All 16 possible digits may be used in any base; they always
take their conventional values.

The output base may be any number. Bases in the range of 2-16 generate the "usual" results, with the
letters A-F representing the values from 10 through 16. Bases 0 and 1 generate a string of 1s whose length
is the value of the number. Base −1 generates a similar string consisting of ds. Other bases have each
"digit" represented as a (multi-digit) decimal number giving the ordinal of that digit. Each "digit" is signed
for negative bases. "Digits" are separated by spaces. Given the definition of output base, the command Op
always yields "10" (in a representation appropriate to the base); O1-p yields useful information about the
output base.

DIAGNOSTICS
x is unimplemented Where x is an octal number.

stack empty There are insufficient elements on the stack to do what was asked.

Out of space The free list is exhausted (too many digits).

Out of headers Too many numbers are being kept around.

Out of pushdown Too many items are on the stack.

Nesting Depth There are too many levels of nested execution.

EXAMPLES
This example prints the first ten values of n! (n factorial):

[la1+dsa*pla10>y]sy
0sa1
lyx

SEE ALSO
bc(1).

DC: An Interactive Desk Calculator tutorial in Number Processing Users Guide.

HP-UX Release 11i: December 2000 − 2 − Section 1−−171

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

dd(1) dd(1)

NAME
dd - convert, reblock, translate, and copy a (tape) file

SYNOPSIS
dd [option=value] ...

DESCRIPTION
dd copies the specified input file to the specified output file with possible conversions. The standard input
and output are used by default. Input and output block size can be specified to take advantage of raw phy-
sical I/O. Upon completion, dd reports the number of whole and partial input and output records.

Options
dd recognizes the following option=value pairs:

if= file Input file name; default is standard input.

of= file Output file name; default is standard output. The output file is created using the
same owner and group used by creat() .

ibs= n Input block size is n bytes; default is 512.

obs= n Output block size is n bytes; default is 512.

bs= n Set both input and output block size to the same size, superseding ibs and obs .
This option is particularly efficient if no conversion (conv option) is specified, because
no in-core copy is necessary.

cbs= n Conversion buffer size is n bytes.

skip= n Skip n input blocks before starting copy.

iseek= n Skip n input blocks before starting copy. (This is an alias for the skip option.)

seek= n Skip n blocks from beginning of output file before copying.

oseek= n Skip n blocks from beginning of output file before copying. (This is an alias for the
seek option.)

count= n Copy only n input blocks.

files= n Copy and concatenate n input files. This option should be used only when the input
file is a magnetic tape device.

conv= value [, value ...]
Where values are comma-separated symbols from the following list.

ascii Convert EBCDIC to ASCII.

ebcdic Convert ASCII to EBCDIC.

ibm Convert ASCII to EBCDIC using an alternate conversion table.

The ascii , ebcdic , and ibm values are mutually exclusive.

block Convert each newline-terminated or end-of-file-terminated input
record to a record with a fixed length specified by cbs . Any new-
line character is removed, and space characters are used to fill the
block to size cbs . Lines that are longer than cbs are truncated;
the number of truncated lines (records) is reported (see DIAGNOS-
TICS below).

The block and unblock values are mutually exclusive.

unblock Convert fixed-length input records to variable-length records. For
each input record, cbs bytes are read, trailing space characters
are deleted, and a newline character is appended.

lcase Map upper-case input characters to the corresponding lower-case
characters.

The lcase and ucase values are mutually exclusive.

ucase Map lower-case input characters to the corresponding upper-case
characters.

Section 1−−172 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

dd(1) dd(1)

swab Swap every pair of input bytes.

noerror Do not stop processing on an input error. If the sync conversion
symbol is also specified, missing input is replaced with null bytes
and processed normally; otherwise, the input block is omitted from
the output.

notrunc Do not truncate existing output file. Blocks in the output file not
overwritten by this invocation of dd are preserved.

sync Pad every input block to size ibs . If block or unblock is also
specified, pad with space characters; otherwise, pad with null
bytes.

Where sizes are required, n indicates a numerical value in bytes. Numbers can be specified using the
forms:

n for n bytes
nk for n Kbytes (n × 1024),
nb for n blocks (n × 512), or
nw for n words (n × 2).

To indicate a product, use x to separate number pairs.

The cbs option is used when block , unblock , ascii or ebcdic conversion is specified. In case of
ascii , cbs characters are placed into the conversion buffer, converted to ASCII, trailing blanks are
trimmed, and a newline is added before sending the line to the output. In case of ebcdic , ASCII charac-
ters are read into the conversion buffer, converted to EBCDIC, and blanks are added to make up an output
block of size cbs.

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

Environment Variables
The following environment variables affect execution of dd :

LANG determines the locale when LC_ALL and a corresponding variable (beginning with LC_) do not
specify a locale.

LC_ALL determines the locale used to override any values set by LANG or any environment variables
beginning with LC_.

The LC_CTYPEvariable determines the locale for the interpretation of sequences of bytes of text data as
characters (single-byte/multi-byte characters, upper-case/lower-case characters).

The LC_MESSAGESvariable determines the language in which messages are written.

RETURN VALUE
Exit values are:

0 Successful completion.
>0 Error condition occurred.

DIAGNOSTICS
Upon completion, dd reports the number of input and output records:

f+p records in Number of full and partial blocks read.
f+p records out Number of full and partial blocks written.

When conv=block is specified and there is at least one truncated block, the number of truncated records
is also reported:

n truncated records

EXAMPLES
Read an EBCDIC tape blocked ten 80-byte EBCDIC card images per block into an ASCII file named x :

dd if=/dev/rmt/c0t0d0BEST of=x ibs=800 cbs=80 conv=ascii,lcase

HP-UX Release 11i: December 2000 − 2 − Section 1−−173

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

dd(1) dd(1)

Note the use of the raw magnetic tape device file. dd is especially suited to I/O on raw physical devices
because it allows reading and writing in arbitrary block sizes.

WARNINGS
Some devices, such as 1/2-inch magnetic tapes, are incapable of seeking. Such devices may be positioned
prior to running dd by using mt(1) or some other appropriate command. The skip , seek , iseek and
oseek options do work for such devices. However, skipping blocks using these options is slow on devices
that cannot seek, since the blocks must actually be read to get to the desired position on the tape.

ASCII and EBCDIC conversion tables are taken from the 256-character ACM standard, Nov, 1968. The
ibm conversion, while less widely accepted as a standard, corresponds better to certain IBM print train
conventions. There is no universal solution.

Newline characters are inserted only on conversion to ASCII; padding is done only on conversion to
EBCDIC. These should be separate options.

If if or of refers to a raw disk, bs should always be a multiple of the sector size of the disk. By default,
bs is 512 bytes. If the sector size of the disk is different from 512 bytes, bs should be specified using a
multiple of sector size. The character special (raw) device file should always be used for devices.

It is entirely up to the user to insure there is enough room in the destination file, file system and/or device
to contain the output since dd cannot pre-determine the required space after conversion.

SEE ALSO
cp(1), mt(1), tr(1), disk(7), mt(7).

STANDARDS CONFORMANCE
dd : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

Section 1−−174 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

delta(1) delta(1)

NAME
delta - make a delta (change) to an SCCS file

SYNOPSIS
delta [-r SID] [-s] [-n] [-g list] [-m mrlist] [-y comment] [-p] files

DESCRIPTION
The delta command is used to permanently introduce into the named SCCS file changes that were made
to the file retrieved by get (called the g-file, or generated file). See get(1).

delta makes a delta to each named SCCS file. If a directory is named, delta behaves as though each file
in the directory was specified as a named file, except that non-SCCS files (last component of the path name
does not begin with .s) and unreadable files are silently ignored. If a name of - is given, the standard
input is read (see WARNINGS). Each line of the standard input is taken to be the name of an SCCS file to be
processed.

delta may issue prompts on the standard output, depending upon certain options specified and flags (see
admin(1)) that may be present in the SCCS file (see the -m and -y options below).

Options
Option arguments apply independently to each named file.

-r SID Uniquely identifies which delta is to be made to the SCCS file. Use of this option is
necessary only if two or more outstanding get s for editing (get -e) on the same
SCCS file were done by the same person (login name). The SID value specified with
the -r option can be either the SID specified on the get command line or the SID to
be made as reported by the get command (see get(1)). A diagnostic results if the
specified SID is ambiguous, or, if necessary and omitted on the command line.

-s Suppresses issuing, on the standard output, of the created delta’s SID as well as the
number of lines inserted, deleted and unchanged in the SCCS file.

-n Specifies retention of the edited g-file (normally removed at completion of delta pro-
cessing).

-g list Specifies a list (see get(1) for the definition of list) of deltas which are to be ignored
when the file is accessed at the change level (SID) created by this delta.

-m[mrlist] If the SCCS file has the v flag set (see admin(1)), a Modification Request (MR) number
must be supplied as the reason for creating the new delta.

If -m is not used and the standard input is a terminal, the prompt MRs? is issued on
the standard output before the standard input is read. If the standard input is not a
terminal, no prompt is issued. The MRs? prompt always precedes the comments?
prompt (see the -y option).

MRs in a list are separated by blanks and/or tab characters. An unescaped new-line
character terminates the MR list.

Note that if the v flag has a value (see admin(1)), it is assumed to be the name of a
program (or shell procedure) that is to validate the correctness of the MR numbers. If
a non-zero exit status is returned from the MR number-validation program, delta
assumes that the MR numbers were not all valid and terminates.

-y [comment] Arbitrary text used to describe the reason for making the delta. A null string is con-
sidered a valid comment .

If -y is not specified and the standard input is a terminal, the prompt comments?
is issued on the standard output before the standard input is read. If the standard
input is not a terminal, no prompt is issued. An unescaped new-line character ter-
minates the comment text.

-p Causes delta to print (on the standard output in a diff(1) format) the SCCS file
differences before and after the delta is applied.

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of text as single- and/or multi-byte characters.

HP-UX Release 11i: December 2000 − 1 − Section 1−−175

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

delta(1) delta(1)

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_CTYPEor LC_MESSAGESis not specified in the environment or is set to the empty string, the
value of LANGis used as a default for each unspecified or empty variable. If LANGis not specified or is set
to the empty string, a default of "C" (see lang(5)) is used instead of LANG. If any internationalization vari-
able contains an invalid setting, delta behaves as if all internationalization variables are set to "C". See
environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

DIAGNOSTICS
Use sccshelp(1) for explanations.

WARNINGS
SCCS files can be any length, but the number of lines in the text file itself cannot exceed 99999 lines.

Lines beginning with an ASCII SOH character (octal 001) cannot be placed in the SCCS file unless the SOH is
escaped. This character has special meaning to SCCS (see sccsfile(4)) and will cause an error.

A get of many SCCS files, followed by a delta of those files, should be avoided when the get generates a
large amount of data. Instead, multiple get /delta sequences should be used.

If the standard input (-) is specified on the delta command line, the -m (if necessary) and -y options
must also be present. Omission of these options causes an error.

Comments can be of multiple lines. The maximum length of the comment (total length of all comment
lines) cannot exceed 1024 bytes. No line in a comment should have a length of more than 1000 bytes.

FILES
All of the auxiliary files listed below, except for the g-file, are created in the same directory as the s-file (see
get(1)). The g-file is created in the user’s working directory.

g-file Existed before the execution of delta ; removed after completion of delta
(unless -n was specified).

p-file Existed before the execution of delta ; may exist after completion of delta .
q-file Created during the execution of delta ; removed after completion of delta .
x-file Created during the execution of delta ; renamed to SCCS file after completion of

delta .
z-file Created during the execution of delta ; removed during the execution of delta .
d-file Created during the execution of delta ; removed after completion of delta .
/usr/bin/bdiff Program to compute differences between the file retrieved by get and the g-file.

SEE ALSO
admin(1), bdiff(1), cdc(1), get(1), sccshelp(1), prs(1), rmdel(1), sccsfile(4).

STANDARDS CONFORMANCE
delta : SVID2, SVID3, XPG2, XPG3, XPG4

Section 1−−176 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

deroff(1) deroff(1)

NAME
deroff - remove nroff, tbl, and neqn constructs

SYNOPSIS
deroff [-mx] [-w] [-i] [file ...]

DESCRIPTION
deroff reads each file in sequence and removes all nroff requests, macro calls, backslash constructs,
neqn constructs (between .EQ and .EN lines, and between delimiters — see neqn(1)), and tbl descrip-
tions (see tbl(1)), replacing them with white space (blanks and blank lines), and writes the remainder of the
file on the standard output. deroff follows chains of included files (.so and .nx nroff /troff for-
matter commands); if a file has already been included, a .so naming that file is ignored and a .nx nam-
ing that file terminates execution. If no input file is given, deroff reads the standard input.

The -m option can be followed by an m, s , or l . The -mm option causes the macros be interpreted such
that only running text is output (that is, no text from macro lines). The -ml option forces the -mmoption
and also causes deletion of lists associated with the mmmacros.

If the -w option is given, the output is a word list, one ‘‘word’’ per line, with all other characters deleted.
Otherwise, the output follows the original, with the deletions mentioned above. In text, a ‘‘word’’ is any
multi-byte character string or any string that contains at least two letters and is composed of letters, digits,
ampersands (&), and apostrophes (’); In a macro call, however, a ‘‘word’’ is a multi-byte character string or
a string that begins with at least two letters and contains a total of at least three letters. Delimiters are
any characters other than letters, digits, apostrophes, and ampersands. Trailing apostrophes and amper-
sands are removed from ‘‘words.’’

If the -i option is specified, deroff ignores the .so and .nx nroff /troff commands.

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPE determines the interpretation of text and filenames as single and/or multi-byte characters.
Note that multi-byte punctuation characters are not recognized when using the -w option.

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_CTYPEor LC_MESSAGESis not specified in the environment or is set to the empty string, the
value of LANGis used as a default for each unspecified or empty variable. If LANGis not specified or is
set to the empty string, a default of "C" (see lang(5)) is used instead of LANG.

If any internationalization variable contains an invalid setting, deroff behaves as if all internationaliza-
tion variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

WARNINGS
deroff is not a complete nroff interpreter; thus it can be confused by subtle constructs. Most such
errors result in too much rather than too little output.

The -ml option does not handle nested lists correctly.

AUTHOR
deroff was developed by the University of California, Berkeley.

SEE ALSO
neqn(1), nroff(1), tbl(1).

HP-UX Release 11i: December 2000 − 1 − Section 1−−177

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

diff(1) diff(1)

NAME
diff - differential file and directory comparator

SYNOPSIS
diff [-C n] [-S name] [-lrs] [-bcefhintw] dir1 dir2

diff [-C n] [-S name] [-bcefhintw] file1 file2

diff [-D string] [-biw] file1 file2

DESCRIPTION
Comparing Directories

If both arguments are directories, diff sorts the contents of the directories by name, then runs the regu-
lar file diff algorithm (described below) on text files that have the same name in each directory but are
different. Binary files that differ, common subdirectories, and files that appear in only one directory are
listed. When comparing directories, the following options are recognized:

-l Long output format; each text file diff is piped through pr to paginate it (see pr(1)).
Other differences are remembered and summarized after all text file differences are
reported.

-r Applies diff recursively to common subdirectories encountered.

-s diff reports files that are identical but otherwise not mentioned.

-S name Starts a directory diff in the middle of the sorted directory, beginning with file name.

Comparing Files
When run on regular files, and when comparing text files that differ during directory comparison, diff
tells what lines must be changed in the files to bring them into agreement. diff usually finds a smallest
sufficient set of file differences. However, it can be misled by lines containing very few characters or by
other situations. If neither file1 nor file2 is a directory, either can be specified as - , in which case the stan-
dard input is used. If file1 is a directory, a file in that directory whose filename is the same as the filename
of file2 is used (and vice versa).

There are several options for output format. The default output format contains lines resembling the fol-
lowing:

n1 a n3, n4
n1, n2 d n3
n1, n2 c n3, n4

These lines resemble ed commands to convert file1 into file2. The numbers after the letters pertain to
file2. In fact, by exchanging a for d and reading backwards one may ascertain equally how to convert
file2 into file1. As in ed , identical pairs where n1 = n2 or n3 = n4 are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by <, then all the
lines that are affected in the second file flagged by >.

Except for -b , -w , -i , or -t which can be given with any of the others, the following options are mutually
exclusive:

-e Produce a script of a, c , and d commands for the ed editor suitable for recreating file2
from file1. Extra commands are added to the output when comparing directories with -e ,
so that the result is a shell script for converting text files common to the two directories
from their state in dir1 to their state in dir2 (see sh-bourne(1)

-f Produce a script similar to that of the -e option that is not useful with ed but is more
readable by humans.

-n Produce a script similar to that of -e , but in the opposite order, and with a count of changed
lines on each insert or delete command. This is the form used by rcsdiff (see rcsdiff(1)).

-c Produce a difference list with 3 lines of context. -c modifies the output format slightly:
the output begins with identification of the files involved, followed by their creation dates,
then each change separated by a line containing about twelve asterisks (*)s. Lines removed
from file1 are marked with - , and lines added to file2 are marked +. Lines that change from
one file to the other are marked in both files with with ! . Changes that lie within 3 lines of
each other in the file are grouped together on output.

Section 1−−178 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

diff(1) diff(1)

-C n Output format similar to -c but with n lines of context.

-h Do a fast, half-hearted job. This option works only when changed stretches are short and
well separated, but can be used on files of unlimited length.

-D string
Create a merged version of file1 and file2 on the standard output, with C preprocessor con-
trols included so that a compilation of the result without defining string is equivalent to com-
piling file1, while compiling the result with string defined is equivalent to compiling file2.

-b Ignore trailing blanks (spaces and tabs) and treat other strings of blanks as equal.

-w Ignore all whitespace (blanks and tabs). For example, if (a == b) and if(a==b)
are treated as equal.

-i Ignores uppercase/lowercase differences. Thus A is treated the same as a.

-t Expand tabs in output lines. Normal or -c output adds one or more characters to the front
of each line. Resulting misalignment of indentation in the original source lines can make the
output listing difficult to interpret. This option preserves original source file indentation.

EXTERNAL INFLUENCES
Environment Variables

LANGdetermines the locale to use for the locale categories when both LC_ALL and the corresponding
environment variable (beginning with LC_) do not specify a locale. If LANG is not set or is set to the
empty string, a default of "C" (see lang(5)) is used.

LC_CTYPEdetermines the space characters for the diff command, and the interpretation of text within
file as single- and/or multi-byte characters.

LC_MESSAGESdetermines the language in which messages are displayed.

If any internationalization variable contains an invalid setting, diff and diffh behave as if all interna-
tionalization variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported with the exception that diff and diffh do not
recognize multi-byte alternative space characters.

RETURN VALUE
Upon completion, diff returns with one of the following exit values:

0 No differences were found.

1 Differences were found.

>1 An error occurred.

EXAMPLES
The following command creates a script file script :

diff -e x1 x2 >script

w is added to the end of the script in order to save the file:

echo w >> script

The script file can then be used to create the file x2 from the file x1 using the editor ed in the following
manner:

ed x1 < script

The following command produces the difference output with 2 lines of context information before and after
the line that was different:

diff -C2 x1 x2

The following command ignores all blanks and tabs and ignores uppercase-lowercase differences.

diff -wi x1 x2

HP-UX Release 11i: December 2000 − 2 − Section 1−−179

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

diff(1) diff(1)

WARNINGS
Editing scripts produced by the -e or -f option are naive about creating lines consisting of a single dot
(.).

When comparing directories with the -b , -w , or -i options specified, diff first compares the files in the
same manner as cmp, then runs the diff algorithm if they are not equal. This may cause a small
amount of spurious output if the files are identical except for insignificant blank strings or
uppercase/lowercase differences.

The default algorithm requires memory allocation of roughly six times the size of the file. If sufficient
memory is not available for handling large files, the -h option or bdiff can be used (see bdiff(1)).

With other options if sufficient memory is not available, then either the swap or maxdsiz values can be
increased.

When run on directories with the -r option, diff recursively descends sub-trees. When comparing deep
multi-level directories, more memory may be required than is currently available on the system. The
amount of memory required depends on the depth of recursion and the size of the files.

AUTHOR
diff was developed by AT&T, the University of California, Berkeley, and HP.

FILES
/usr/lbin/diffh used by -h option

SEE ALSO
bdiff(1), cmp(1), comm(1), diff3(1), diffmk(1), dircmp(1), ed(1), more(1), nroff(1), rcsdiff(1), sccsdiff(1),
sdiff(1), terminfo(4).

STANDARDS CONFORMANCE
diff : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

Section 1−−180 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

diff3(1) diff3(1)

NAME
diff3 - 3-way differential file comparison

SYNOPSIS
diff3 [-exEX3] file1 file2 file3

DESCRIPTION
diff3 compares three versions of a file, and prints disagreeing ranges of text flagged with these codes:

==== all three files differ
====1 file1 is different
====2 file2 is different
====3 file3 is different

The type of change required to convert a given range of a given file to some other is indicated in one of
these ways:

f: n1a Text is to be appended after line number n1 in file f, where f = 1, 2, or 3.

f: n1, n2c Text is to be changed in the range line n1 through line n2. If n1 = n2, the range can
be abbreviated to n1.

The original contents of the range follows immediately after a c indication. When the contents of two files
are identical, the contents of the lower-numbered file is suppressed.

-e diff3 Produces a script for the ed editor that can be used to incorporate into file1 all
changes between file2 and file3 (see ed(1)); i.e., the changes that normally would be flagged
==== and ====3 .

-x Produces a script to incorporate only changes flagged ====

-3 Produces a script to incorporate only changes flagged ====3

-E Produces a script that will incorporate all changes between file2 and file3, but treat overlap-
ping changes (that is, changes that would be flagged with ==== in normal listing)
differently. The overlapping lines in both files will be inserted by the edit script bracketed
by <<<<<< and >>>>>> lines.

-X Produces a script that will incorporate only changes flagged ==== , but treat these
changes in the manner of -E option.

The following command applies the resulting script to file1.

(cat script; echo ’1,$p’) | ed - file1

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

WARNINGS
Text lines that consist of a single period (.) defeat -e .

Files longer than 64K bytes do not work.

FILES
/var/tmp/d3*
/usr/lbin/diff3prog

SEE ALSO
diff(1).

HP-UX Release 11i: December 2000 − 1 − Section 1−−181

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

diffmk(1) diffmk(1)

NAME
diffmk - mark changes between two different versions of a file

SYNOPSIS
diffmk prevfile currfile markfile

DESCRIPTION
diffmk compares the previous version of a file with the current version and creates a file that includes
nroff /troff ‘‘change mark’’ commands. prevfile is the name of the previous version of the file and
currfile is the name of the current version of the file. diffmk generates markfile which contains all the
lines of the currfile plus inserted formatter ‘‘change mark’’ (.mc) requests. When markfile is formatted,
changed or inserted text is shown by a | character at the right margin of each line. The position of deleted
text is shown by a single * .

If the characters | and * are inappropriate, a copy of diffmk can be edited to change them because
diffmk is a shell script.

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

EXAMPLES
A typical command line for comparing two versions of an nroff /troff file and generating a file with the
changes marked is:

diffmk prevfile currfile markfile; nroff markfile | pr

diffmk can also be used to produce listings of C (or other) programs with changes marked. A typical com-
mand line for such use is:

diffmk prevfile.c currfile.c markfile.c; nroff macs markfile.c | pr

where the file macs contains:

.pl 1

.ll 77

.nf

.eo

The .ll request can specify a different line length, depending on the nature of the program being printed.
The .eo request is probably needed only for C programs.

WARNINGS
Aesthetic considerations may dictate manual adjustment of some output.

diffmk does not differentiate between changes in text and changes in formatter request coding. Thus, file
differences involving only formatting changes (such as replacing .sp with .sp 2 in a text source file) with
no change in actual text can produce change marks.

Although unlikely, certain combinations of formatting requests can cause change marks to either disappear
or to mark too much. Manual intervention may be required because the subtleties of various formatting
macro packages and preprocessors is beyond the scope of diffmk . tbl cannot tolerate .mc commands in
its input (see tbl(1)), so any .mc request that would appear inside a .TS range is silently deleted. The
script can be changed if this action is inappropriate, or diffmk can be run on two files that have both been
run through the tbl preprocessor before any comparisons are made.

diffmk uses diff , and thus has the same limitations on file size and performance that diff may
impose (see diff(1)). In particular the performance is nonlinear with the size of the file, and very large files
(well over 1000 lines) may take extremely long to process. Breaking the file into smaller pieces may be
advisable.

diffmk also uses the ed(1) editor. If the file is too large for ed , ed error messages may be embedded in
the file. Again, breaking the file into smaller pieces may be advisable.

SEE ALSO
diff(1), nroff(1).

Section 1−−182 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

dircmp(1) dircmp(1)

NAME
dircmp - directory comparison

SYNOPSIS
dircmp [-d] [-s] [-w n] dir1 dir2

DESCRIPTION
dircmp examines dir1 and dir2 and generates various tabulated information about the contents of the
directories. Sorted listings of files that are unique to each directory are generated for all the options. If no
option is entered, a sorted list is output indicating whether the filenames common to both directories have
the same contents.

-d Compare the contents of files with the same name in both directories and output a list telling
what must be changed in the two files to bring them into agreement. The list format is
described in diff(1).

-s Suppress messages about identical files.

-w n Change the width of the output line to n characters. The default width is 72.

EXTERNAL INFLUENCES
Environment Variables

LC_COLLATE determines the order in which the output is sorted.

If LC_COLLATE is not specified in the environment or is set to the empty string, the value of LANG is
used as a default. If LANGis not specified or is set to the empty string, a default of ‘‘C’’ (see lang(5)) is
used instead of LANG. If any internationalization variable contains an invalid setting, dircmp behaves as
if all internationalization variables are set to ‘‘C’’ (see environ(5)).

International Code Set Support
Single- and multi-byte character code sets are supported.

EXAMPLES
Compare the two directories slate and sleet and produce a list of changes that would make the direc-
tories identical:

dircmp -d slate sleet

WARNINGS
This command is likely to be withdrawn from X/Open standards. Applications using this command might
not be portable to other vendors’ systems. As an alternative diff -R is recommended.

SEE ALSO
cmp(1), diff(1).

STANDARDS CONFORMANCE
dircmp : SVID2, SVID3, XPG2, XPG3

HP-UX Release 11i: December 2000 − 1 − Section 1−−183

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

dmpxlt(1) dmpxlt(1)

NAME
dmpxlt - dump iconv translation tables to a readable format

SYNOPSIS
/usr/bin/dmpxlt [-f output_filename] [input_filename]

DESCRIPTION
dmpxlt dumps the compiled version of the iconv codeset conversion tables into an ASCII-readable for-
mat that can be modified and used as input to genxlt(1) to regenerate the table for iconv(1).

Options
dmpxlt recognizes the following options:

-f output_filename If this option is not selected, the data will be sent to standard output.

dmpxlt will create an output file in the prescribed format, giving the filecode mapping between the two
code sets, which can be edited and reused by genxlt(1) to create new tables for iconv(1). The entries are in
hexadecimal.

EXTERNAL INFLUENCES
Environment Variables

LANGprovides a default value for the internationalization variables that are unset or null. If LANG is
unset or null, the default value of "C" (see lang(5)) is used. If any of the internationalization variables con-
tains an invalid setting, dmpxlt will behave as if all internationalization variables are set to "C". See
environ(5).

LC_ALL If set to a non-empty string value, overrides the values of all the other internationalization vari-
ables.

LC_MESSAGESdetermines the locale that should be used to affect the format and contents of diagnostic
messages written to standard error and informative messages written to standard output.

NLSPATHdetermines the location of message catalogues for the processing of LC_MESSAGES.

International Code Set Support
Single and multi-byte character code sets are supported.

RETURN VALUE
The following are exit values:

0 Successful completion.
>0 Error condition occurred.

EXAMPLES
This example creates the source file genxlt_input from the table roma8=iso81 :

dmpxlt -f genxlt_input /usr/lib/nls/iconv/tables/roma8=iso81

FILES
/usr/lib/nls/iconv/tables All tables must be installed in this directory.

SEE ALSO
iconv(1), genxlt(1), iconv(3C), environ(5), lang(5).

Section 1−−184 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

domainname(1) domainname(1)

NAME
domainname - set or display name of Network Information Service domain

SYNOPSIS
domainname [name_of_domain]

DESCRIPTION
Network Information Service (NIS) uses domain names to refer collectively to a group of hosts. Without an
argument, domainname displays the name of the NIS domain. Only superuser can set the domain name by
providing name_of_domain. The domain name is usually set in the configuration file
/etc/rc.config.d/namesvrs , by setting the NIS_DOMAIN variable.

DEPENDENCIES
NIS servers use the NIS domain name as the name of a subdirectory of /var/yp . Since the NIS domain
name can be as long as 64 characters, name_of_domain may exceed the maximum file name length allowed
on a given file system. If that length is exceeded, the subdirectory name becomes a truncated version of
the NIS domain name.

The first 14 characters of all NIS domains on the network must be unique: truncated names should be
checked to verify that they meet this requirement.

AUTHOR
domainname was developed by Sun Microsystems, Inc.

SEE ALSO
ypinit(1M), getdomainname(2), setdomainname(2).

HP-UX Release 11i: December 2000 − 1 − Section 1−−185

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

dos2ux(1) dos2ux(1)

NAME
dos2ux, ux2dos - convert ASCII file format

SYNOPSIS
dos2ux file...

ux2dos file...

DESCRIPTION
dos2ux and ux2dos read each specified file in sequence and write it to standard output, converting to
HP-UX format or to DOS format, respectively. Each file can be either DOS format or HP-UX format for either
command.

A DOS file name is recognized by the presence of an embedded colon (:) delimiter; see dosif(4) for DOS file
naming conventions.

If no input file is given or if the argument - is encountered, dos2ux and ux2dos read from standard
input. Standard input can be combined with other files.

EXAMPLES
Print file myfile on the display:

dos2ux myfile

Convert file1 and file2 to DOS format then concatenate them together, placing them in file3 .

ux2dos file1 file2 > file3

RETURN VALUE
dos2ux and ux2dos return 0 if successful or 2 if the command failed. The only possible failure is the
inability to open a specified file, in which case the commands print a warning.

WARNINGS
Command formats resembling:

dos2ux file1 file2 > file1

overwrite the data in file1 before the concatenation begins, causing a loss of the contents of file1 .
Therefore, be careful when using shell special characters.

SEE ALSO
doschmod(1), doscp(1), dosdf(1), dosls(1), dosmkdir(1), dosrm(1), dosif(4).

Section 1−−186 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

doschmod(1) doschmod(1)

NAME
doschmod - change attributes of a DOS file

SYNOPSIS
doschmod [-u] mode device: file ...

DESCRIPTION
doschmod is the DOS counterpart of chmod (see chmod(1)).

Options
doschmod recognizes one option:

-u Disable argument case conversion. In the absence of this option, all DOS file names are con-
verted to uppercase.

A DOS file name is recognized by the presence of an embedded colon (:) delimiter; see dosif(4) for DOS file
naming conventions.

Metacharacters * , ?, and [...] can be used when specifying DOS file names. These must be quoted when
specifying a DOS file name, because file name expansion must be performed by the DOS utilities, not by the
shell. DOS utilities expand file names as described in regexp(5) under PATTERN MATCHING NOTATION.

The attributes of each named file are changed according to mode, which is an octal number in the range 000
to 0377. mode is constructed from the logical OR of the following modes:

200 Reserved. Do not use.
100 Reserved. Do not use.
040 Archive. Set whenever the file has been written to and closed.
020 Directory. Do not modify.
010 Volume Label. Do not modify.
004 System file. Marks files that are part of the DOS operating system.
002 Hidden file. Marks files that do not appear in a DOS directory listing using the DOS DIR

command.
001 Read-Only file. Marks files as read-only.

WARNINGS
Specifying inappropriate mode values can make files and/or directories inaccessible, and in certain cases
can damage the file system. To prevent such problems, do not change the mode of directories and volume
labels.

Normal users should have no need to use mode bits other than 001, 002, and 040.

EXAMPLES
Mark file /dev/rfd9122:memo.txt as a hidden file:

doschmod 002 /dev/rfd9122:memo.txt

Mark file driveC:autoexec.bat read-only:

doschmod 001 driveC:autoexec.bat

SEE ALSO
chmod(1), dos2ux(1), doscp(1), dosdf(1), dosls(1), dosmkdir(1), dosrm(1), chmod(2), dosif(4).

HP-UX Release 11i: December 2000 − 1 − Section 1−−187

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

doscp(1) doscp(1)

NAME
doscp - copy to or from DOS files

SYNOPSIS
doscp [-fvu] file1 file2

doscp [-fvu] file1 [file2 ...] directory

DESCRIPTION
doscp is the DOS counterpart of cp (see cp(1)). doscp copies a DOS file to a DOS or HP-UX file, an HP-
UX file to an HP-UX or DOS file, or HP-UX or DOS files to an HP-UX or DOS directory. The last name in the
argument list is the destination file or directory.

A DOS file name is recognized by the presence of an embedded colon (:) delimiter; see dosif(4) for DOS file
naming conventions.

Metacharacters * , ?, and [...] can be used when specifying both HP-UX and DOS file names. These must
be quoted when specifying a DOS file name, because file name expansion must be performed by the DOS util-
ities, not by the shell. DOS utilities expand file names as described in regexp(5) under PATTERN MATCH-
ING NOTATION.

The file name - (dash) is interpreted to mean standard input or standard output depending upon its posi-
tion in the argument list.

Options
doscp recognizes the following options:

-f Unconditionally write over an existing file. In the absence of this option, doscp asks permis-
sion to overwrite an existing HP-UX file.

-v Verbose mode. doscp prints the source name.

-u Disable argument case conversion. In the absence of this option, all DOS file names are con-
verted to upper case.

RETURN VALUE
doscp returns 0 if all files are copied successfully. Otherwise, it prints a message to standard error and
returns with a non-zero value.

EXAMPLES
Copy the files in the HP-UX directory abc to the DOS volume stored as HP-UX file hard_disk :

doscp abc/* hard_disk:

Copy DOS file /backup/log through the HP-UX special file /dev/rfd9127 to HP-UX file logcopy
located in the current directory:

doscp /dev/rfd9127:/backup/log logcopy

Copy DOS file zulu on the volume stored as HP-UX file bb to standard output:

doscp bb:zulu -

Copy all files in directory /dameron with extension txt in the DOS volume /dev/rdsk/c1t2d0 to
the HP-UX directory abacus located in the current directory:

doscp ’/dev/rdsk/c1t2d0:/dameron/*.txt’ abacus

WARNINGS
doscp works more reliably if you use a raw device special file (/dev/rdsk/) than a block device special
file.

To use SCSI floppy disk devices, the sflop device driver must be configured into the kernel. (You can use
the ioscan command to verify the configuration.)

SEE ALSO
cp(1), dos2ux(1), doschmod(1), dosdf(1), dosls(1), dosmkdir(1), dosrm(1), ioscan(1M) dosif(4).

Section 1−−188 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

dosdf(1) dosdf(1)

NAME
dosdf - report number of free disk clusters

SYNOPSIS
dosdf device[:]

DESCRIPTION
dosdf is the DOS counterpart of the df command (see df(1)). It prints the cluster size in bytes and the
number of free clusters on the specified DOS volume.

SEE ALSO
df(1), dos2ux(1), doschmod(1), doscp(1), dosls(1), dosmkdir(1), dosrm(1), dosif(4).

HP-UX Release 11i: December 2000 − 1 − Section 1−−189

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

dosls(1) dosls(1)

NAME
dosls, dosll - list contents of DOS directories

SYNOPSIS
dosls [-aAudl] device: [file] ...

dosll [-aAudl] device: [file] ...

DESCRIPTION
dosls is the DOS counterpart of ls (see ls(1)).

For each directory named, dosls lists the contents of that directory. For each file named, dosls
repeats its name and any other information requested. If invoked by the name dosll , the -l (ell) option
is implied.

Options
dosls and dosll recognizes the following options:

-a List all directory entries. In the absence of this option, hidden files, system files, and files
whose names begin with a dot (.) are not listed.

-A Same as -a , except the current directory and the parent directory are not listed. For the
superuser, this option defaults to being set, and is disabled by -A .

-u Disable argument case conversion. In the absence of this option, all DOS file names are con-
verted to uppercase.

-d If an argument is a directory, list only its name. Often used with -l to get the status of a
directory.

-l List in long format, giving file attribute, size in bytes, and the date and time of last
modification for each file, as well as listing the DOS volume label. Long listing is disabled if
this option is used with the dosll command.

A DOS file name is recognized by the presence of an embedded colon (:) delimiter; see dosif(4) for DOS file
naming conventions.

Metacharacters * , ?, and [...] can be used when specifying DOS file names. These must be quoted when
specifying a DOS file name, because file name expansion must be performed by the DOS utilities, not by the
shell. DOS utilities expand file names as described in regexp(5) under PATTERN MATCHING NOTATION.

EXAMPLES
These examples assume that a DOS directory structure exists on the device accessed through HP-UX special
file /dev/rdsk/c2t1d0 .

The following example lists all of the files in the root directory of the DOS directory structure:

dosls -a /dev/rdsk/c2t1d0:

The following example lists all of the files with extension bat in the root directory of the DOS directory
structure:

dosls -a ’/dev/rdsk/c2t1d0:*.bat’

The following example produces a long-format listing of all the information about the DOS directory
/dos/math , but does not list the files in the directory:

dosls -ld /dev/rdsk/c2t1d0:/dos/math

SEE ALSO
dos2ux(1), doschmod(1), doscp(1), dosdf(1), dosmkdir(1), dosrm(1), ls(1), dosif(4).

Section 1−−190 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

dosmkdir(1) dosmkdir(1)

NAME
dosmkdir - make a DOS directory

SYNOPSIS
dosmkdir [-u] device: directory ...

DESCRIPTION
dosmkdir is the DOS counterpart of the mkdir command (see mkdir(1)). It creates specified directories.
The standard entries, . for the directory itself and .. for its parent, are made automatically.

There is one option:

-u Disable argument case conversion. In the absence of this option, all DOS file names are con-
verted to uppercase.

A DOS file name is recognized by the presence of an embedded colon (:) delimiter; see dosif(4) for DOS file
naming conventions.

DIAGNOSTICS
dosmkdir returns 0 if all directories were successfully created. Otherwise, it prints a message to stan-
dard error and returns non-zero.

EXAMPLES
Create an empty subdirectory named numbers under the directory /math/lib on the device accessed
through HP-UX special file /dev/rfd9122 :

dosmkdir /dev/rfd9122:/math/lib/numbers

SEE ALSO
dos2ux(1), doschmod(1), doscp(1), dosdf(1), dosls(1), dosrm(1), mkdir(1), dosif(4).

HP-UX Release 11i: December 2000 − 1 − Section 1−−191

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

dosrm(1) dosrm(1)

NAME
dosrm, dosrmdir - remove DOS files or directories

SYNOPSIS
dosrm [-friu] device: file ...

dosrmdir [-u] device: file ...

DESCRIPTION
dosrm and dosrmdir are DOS counterparts of rm and rmdir (see rm(1) and rmdir(1), respectively).

dosrm removes the entries for one or more files from a directory. If a specified file is a directory, an error
message is printed unless the optional argument -r is specified (see below).

dosrmdir removes entries for the named directories, provided they are empty.

Options
dosrm and dosrmdir recognize the following options:

-f (force) Unconditionally remove the specified file, even if the file is marked read-only.

-r Cause dosrm to recursively delete the entire contents of a directory, followed by the direc-
tory itself. dosrm can recursively delete up to 17 levels of directories.

-i (interactive) Cause dosrm to ask whether or not to delete each file. If -r is also specified,
dosrm asks whether to examine each directory encountered.

-u Disable argument case conversion. In the absence of this option, all DOS file names are con-
verted to uppercase.

A DOS file name is recognized by the presence of an embedded colon (:) delimiter; see dosif(4) for DOS file
naming conventions.

Metacharacters * , ?, and [...] can be used when specifying DOS file names. These must be quoted when
specifying a DOS file name, because file name expansion must be performed by the DOS utilities, not by the
shell. DOS utilities expand file names as described in regexp(5) under PATTERN MATCHING NOTATION.

EXAMPLES
These examples assume that a DOS directory structure exists on the device accessed through the HP-UX
special file /dev/rfd9122 .

Recursively comb through the DOS directory /tmp and ask if each DOS file should be removed forcibly
(that is, with no file mode checks):

dosrm -irf /dev/rfd9122:/tmp

Remove the DOS directory doug from the DOS volume stored as HP-UX file hard_disk :

dosrmdir hard_disk:doug

SEE ALSO
dos2ux(1), doschmod(1), doscp(1), dosdf(1), dosls(1), dosmkdir(1), rm(1), rmdir(1), dosif(4).

Section 1−−192 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

d

du(1) du(1)

NAME
du - summarize disk usage

SYNOPSIS
du [-a -s] [-bkrx] [-t type] [name ...]

DESCRIPTION
The du command gives the number of 512-byte blocks allocated for all files and (recursively) directories
within each directory and file specified by the name operands. The block count includes the indirect blocks
of the file. A file with two or more links is counted only once. If name is missing, the current working
directory is used.

By default, du generates an entry only for the name operands and each directory contained within those
hierarchies.

Options
The du command recognizes the following options:

-a Print entries for each file encountered in the directory hierarchies in addition to the
normal output.

-b For each name operand that is a directory for which file system swap has been
enabled, print the number of blocks the swap system is currently using.

-k Gives the block count in 1024-byte blocks.

-r Print messages about directories that cannot be read, files that cannot be accessed,
etc. du is normally silent about such conditions.

-s Print only the grand total of disk usage for each of the specified name operands.

-x Restrict reporting to only those files that have the same device as the file specified by
the name operand. Disk usage is normally reported for the entire directory hierarchy
below each of the given name operands.

-t type Restrict reporting to file systems of the specified type. (Example values for type are
hfs , cdfs , nfs, etc.) Multiple -t type options can be specified. Disk usage is
normally reported for the entire directory hierarchy below each of the given name
operands.

EXAMPLES
Display disk usage for the current working directory and all directories below it, generating error messages
for unreadable directories:

du -r

Display disk usage for the entire file system except for any cdfs or nfs mounted file systems:

du -t hfs /

Display disk usage for files on the root volume (/) only. No usage statistics are collected for any other
mounted file systems:

du -x /

WARNINGS
Block counts are incorrect for files that contain holes.

SEE ALSO
df(1M), bdf(1M), quot(1M).

STANDARDS CONFORMANCE
du : SVID2, SVID3, XPG2, XPG3, XPG4

HP-UX Release 11i: December 2000 − 1 − Section 1−−193

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

echo(1) echo(1)

NAME
echo - echo (print) arguments

SYNOPSIS
echo [arg] ...

DESCRIPTION
echo writes its arguments separated by blanks and terminated by a new-line on the standard output. It
also understands C-like escape conventions; beware of conflicts with the shell’s use of \ :

\a write an alert character
\b backspace
\c print line without appending a new-line
\f form-feed
\n new-line
\r carriage return
\t tab
\v vertical tab
\\ backslash
\ n the 8-bit character whose ASCII code is the 1-, 2-, 3- or 4-digit octal number n, whose first

character must be a zero.
\0 num write an 8-bit value that is the zero-, one-, two- or three-digit octal number num

echo is useful for producing diagnostics in command files and for sending known data into a pipe.

Notes
Berkeley echo differs from this implementation. The former does not implement the backslash escapes.
However, the semantics of the \c escape can be obtained by using the -n option. The echo command
implemented as a built-in function of csh follows the Berkeley semantics (see csh(1)).

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of arg as single and/or multi-byte characters.

If LC_CTYPEis not specified in the environment or is set to the empty string, the value of LANGis used
as a default for each unspecified or empty variable. If LANGis not specified or is set to the empty string, a
default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable contains an invalid
setting, echo behaves as if all internationalization variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

AUTHOR
echo was developed by OSF and HP.

SEE ALSO
sh(1).

BUGS
No characters are printed after the first \c . This is not normally a problem.

STANDARDS CONFORMANCE
echo : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

Section 1−−194 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ed(1) ed(1)

NAME
ed, red - line-oriented text editor

SYNOPSIS
ed [-p string] [-s -] [-x] [file]

red [-p string] [-s -] [-x] [file]

DESCRIPTION
The ed command executes a line-oriented text editor. It is most commonly used in scripts and noninterac-
tive editing applications because, even though it can be used interactively, other editors such as vi and ex
are typically easier to use in an interactive environment.

If file is specified, ed performs an e command (see below) on the named file; that is to say, the file is read
into ed ’s buffer so that it can be edited.

Options
The following options are recognized:

-p string Use string as the prompt string when in command mode. By default, there is no prompt
string.

-s - Suppress printing of byte counts by e, E, r , and w commands, and suppress the ! prompt
after a ! command. The - option is obsolescent and will be removed in a future release.

-x Perform an X command first to handle an encrypted file.

File Handling
ed operates on a copy of the file it is editing; changes made to the copy have no effect on the original file
until a w (write) command is given. The copy of the text being edited resides in a temporary file called the
buffer. There is only one buffer.

red is a restricted version of ed that only allows editing of files in the current directory and prohibits exe-
cuting shell commands via ! shell-command. Attempts to bypass these restrictions result in the error mes-
sage restricted shell .

Both ed and red support the fspec(4) formatting capability. After including a format specification as the
first line of file and invoking ed with the controlling terminal in stty -tabs or stty tab3 mode (see
stty(1)), the specified tab stops are automatically used when scanning file. For example, if the first line of a
file contained

<:t5,10,15 s72:>

the tab stops would be set at columns 5, 10, and 15, and a maximum line length of 72 would be imposed.

Note: When you input text, ed expands tab characters as they are typed to every eighth column as a
default.

Editor Commands Structure
Commands to ed have a simple and regular structure: zero, one, or two addresses followed by a single-
character command, possibly followed by parameters to that command. These addresses specify one or
more lines in the buffer. Every command that requires addresses has default addresses, so that the
addresses can very often be omitted.

In general, only one command is allowed on a line. Append, change, and insert commands accept text
input which is then placed in the buffer as appropriate. While ed is accepting text following an append,
change, or insert command, it is said to be in input mode. While in input mode, no editor commands are
recognized; all input is merely collected. To terminate input mode, type a period (.) alone at the beginning
of a line.

Regular Expressions
ed supports the Basic Regular Expression (RE) syntax (see regexp(5)), with the following additions:

• The null RE (for example, //) is equivalent to the last RE encountered.

• If the closing delimiter of an RE or of a replacement string (for example, /) would be the last char-
acter before a newline, that delimiter can be omitted, in which case the addressed line is printed.
The following pairs of commands are equivalent:

HP-UX Release 11i: December 2000 − 1 − Section 1−−195

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ed(1) ed(1)

s/s1/s2 g/s1 ?s1
s/s1/s2/p g/s1/p ?s1?

Line Addresses
To understand line addressing, remember that ed maintains a pointer to the current line. Generally
speaking, the current line is the last line affected by a command. The exact effect of a given command on
the current line is discussed under the description of each command. Addresses are interpreted according
to the following rules:

1. The character . refers to the current line.

2. The character $ refers to the last line of the buffer.

3. A decimal number n refers to the nth line of the buffer.

4. A ’ x refers to the line marked with the mark name character x, which must be a lower-case
letter. Lines are marked with the k command described below.

5. An RE enclosed by slashes (/ RE/) refers to the first line found by searching forward from the line
following the current line toward the end of the buffer and stopping at the first line containing a
string matching the RE. If necessary, the search wraps around to the beginning of the buffer and
continues up to and including the current line, so that the entire buffer is searched. (Also see
WARNINGS below.)

6. An RE enclosed by question marks (?RE?) addresses the first line found by searching backward
from the line preceding the current line toward the beginning of the buffer and stopping at the
first line containing a string matching the RE. If necessary, the search wraps around to the end
of the buffer and continues up to and including the current line. (Also see WARNINGS below.)

7. An address followed by a plus (+) or minus (-) sign followed by a decimal number specifies that
address plus or minus the indicated number of lines. The plus sign can be omitted.

8. If an address begins with + or - , the addition or subtraction is calculated with respect to the
current line. For example, -5 is interpreted as .-5 .

9. If an address ends with + or - , 1 is added to or subtracted from the address, respectively. As a
consequence of this and rule 8 above, the address - refers to the line preceding the current line.
(To maintain compatibility with earlier versions of the editor, the circumflex (ˆ) and - characters
are interpreted identically when encountered in addresses.) Moreover, multiple trailing + and -
characters have a cumulative effect, so -- refers to the second line preceding the current line.

10. For convenience, a comma (,) represents the address pair 1,$, while a semicolon (;) represents
the pair .,$.

Commands require zero, one, or two addresses. Commands that do not use addresses treat the presence of
an address as an error. Commands that accept one or two addresses assume default addresses when the
number of addresses specified is insufficient. If more addresses are specified than a given command
requires, the last one or two are used as appropriate.

Addresses are usually separated from each other by a comma (,). They can also be separated by a semi-
colon (;), in which case the current line (.) is set to the first address, after which the second address is cal-
culated. This feature can be used to determine the starting line for forward and backward searches (see
rules 5 and 6 above). The second address of any two-address sequence must correspond to a line in the
buffer that follows the line corresponding to the first address.

Editor Commands
In the following list of ed commands, the default addresses are shown in parentheses (parentheses are not
part of the address and should not be placed in an actual command except for other purposes).

It is generally illegal for more than one command to appear on a line. However, any command (except e,
f , r , or w) can be suffixed by l , n, or p in which case the current line is respectively either listed, num-
bered, or printed, as discussed below under the l , n, and p commands.

(.)a
text
.

The a (append) command reads text and appends it after the addressed line. Upon comple-
tion, the new current line is the last inserted line, or, if no text was added, at the addressed
line. Address 0 is legal for this command, causing the appended text to be placed at the
beginning of the buffer.

Section 1−−196 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ed(1) ed(1)

(.,.)c
text
.

The c (change) command deletes the addressed lines then accepts input text to replace the
deleted lines. Upon completion, the new current line is the last line in text or, if no text
was provided, at the first line after the deleted line or lines.

(.,.)d The d (delete) command deletes the addressed lines from the buffer. Upon completion, the
new current line is the first line following the deleted text, or the last line in the file if the
deleted line or lines were at the end of the buffer.

e file The e (edit) command deletes the entire contents of the buffer, then reads in the named
file. Upon completion, the new current line is the last line in the buffer. If no file name is
given, the remembered file name, if any, is used (see the f command). The number of
characters read is displayed, and file is remembered for possible use as a default file name
in subsequent e, r , or w commands.

If the file name starts with ! , the rest of the line is interpreted as a shell command whose
standard output is to be read. Such a shell command is not remembered as the current file
name.

Also see DIAGNOSTICS below.

E file The E (forced edit) command is identical to e except that no check is made to ensure that
the current buffer has not been altered since the last w command.

f file If file is specified, the f (file name) command changes the remembered file name to file.
Otherwise, it prints the remembered file name.

(1,$)g/ RE/ command-list
The g (global) command first marks every line that matches the given RE. Then, for every
such line, the given command-list is executed with the current line initially set to that line.
A single command or the first of a list of commands appears on the same line as the global
command. All lines of a multiple-line list except the last line must end with a backslash
(\). a, i , and c commands and associated input are permitted. The . that normally ter-
minates input mode can be omitted if it would be the last line of the command-list. An
empty command-list is equivalent to the p command. The g, G, v , and V commands are
not permitted in the command-list. (Also see WARNINGS below.)

(1,$)G/ RE/ The interactive G (Global) command first marks every line that matches the given RE.
Then, for every such line, the line is printed, then the current line is changed to that line
and one command (other than a, c , i , g, G, v , or V) can be input and executed. After exe-
cuting that command, the next marked line is printed, and so on. A newline character acts
as a null command, and an & causes the re-execution of the most recent command executed
within the current invocation of G. Note that the commands input as part of the execution
of the G command may address and affect any lines in the buffer. The G command can be
terminated by an interrupt signal (ASCII DEL or BREAK).

h The h (help) command gives a short error message explaining the reason for the most
recent ? diagnostic.

H The H (Help) command causes ed to enter a mode in which error messages are printed for
all subsequent ? diagnostics. It also explains the previous ? if there was one. The H com-
mand alternately turns this mode on and off. Initially, it is off.

(.)i
text
.

The i (insert) command inserts the given text before the addressed line. Upon completion,
the current line is the last inserted line, or, if there were none, the addressed line. This
command differs from the a command only in the placement of the input text. Address 0 is
not legal for this command.

(.,.+1)j The j (join) command joins contiguous lines by removing the appropriate newline charac-
ters. If exactly one address is given, this command does nothing.

(.)kx The k (mark) command marks the addressed line with the name x, which must be a lower-
case letter. The address ’ x then addresses this line. Upon completion, the new current
line remains unchanged from before.

(.,.)l The l (list) command writes the addressed lines to standard output in a visually unambigu-
ous form. Characters listed in the following table are written as the corresponding escape
sequence. Nonprintable characters not in the table are written as a three-digit octal
number (with a preceding backslash character) for each byte in the character (most
significant byte first).

HP-UX Release 11i: December 2000 − 3 − Section 1−−197

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ed(1) ed(1)

Long lines are folded with the point of folding indicated by writing a backslash character
followed by a newline. The end of each line is marked with a $. An l (ell) command can be
appended to any command other than e, E, f , q, Q, r , w, or ! . The current line number is
set to the address of the last line written.

Escape ASCII Escape ASCII
Sequence Represents Name Sequence Represents Name

\\ backslash \ \r carriage return CR
\a alert BEL \t horizontal tab HT
\b backspace BS \v vertical tab VT
\f formfeed FF

(.,.)ma The m (move) command repositions the addressed lines after the line addressed by a.
Address 0 is legal for a, causing the addressed lines to be moved to the beginning of the file.
It is an error if address a falls within the range of moved lines; Upon completion, the new
current line is the last line moved.

(.,.)n The n (number) command prints the addressed lines, preceding each line by its line number
and a tab character. Upon completion, the new current line is the last line printed. The n
command can be appended to any command other than e, f , r , or w.

(.,.)p The p (print) command prints the addressed lines. Upon completion, the new current line
is the last line printed. The p command may be appended to any other command other
than e, E, f , q, Q, r , w, or ! . For example, dp deletes the current line and prints the new
current line.

P The P (prompt) command causes ed to prompt with an asterisk (*) (or with string if the -p
option was specified in the command line) for all subsequent commands. The P command
alternately turns this mode on and off. It is initially on if the -p option was specified; oth-
erwise, off. The current line number is unchanged.

q The q (quit) command causes ed to exit. No automatic write of a file is done (but see
DIAGNOSTICS below).

Q The editor exits unconditionally without checking for changes in the buffer since the last w
command.

($)r file The r (read) command reads the specified file into the buffer after the addressed line. If no
file name is given, the remembered file name, if any, is used (see the e and f commands).
The remembered file name is not changed unless file is the very first file name mentioned
since ed was invoked. Address 0 is legal for r and places the contents of file at the begin-
ning of the buffer. If the read is successful, the number of characters read is displayed.
Upon completion, the new current line is the last line read into the buffer. If the file name
starts with ! , the rest of the line is interpreted as a shell command whose standard output
is to be read. For example, $r !ls appends a listing of files in the current directory to
the end of the file being edited. A shell command is not remembered as the current file
name.

(.,.)s/ RE/ replacement/ flags
The s (substitute) command searches each addressed line for an occurrence of the specified
RE. In each line in which a match is found, all (nonoverlapped) matched strings are
replaced by replacement if the global replacement indicator g appears after the command.
If the global indicator does not appear, only the first occurrence of the matched string is
replaced. If a number n appears after the command, only the nth occurrence of the
matched string on each addressed line is replaced. It is an error for the substitution to fail
on all addressed lines. Any character other than space or newline can be used instead of /
to delimit the RE and replacement . Upon completion, the new current line is the last line
on which a substitution occurred. (Also see WARNINGS below.)

If an ampersand (&) appears in replacement , it is replaced by the string matching the RE
on the current line. The special meaning of & in this context can be suppressed by preced-
ing it with \ .

As a more general feature, the characters \ n, where n is a digit, are replaced by the text
matched by the nth regular subexpression of the specified RE enclosed between \(and \) .
When nested parenthesized subexpressions are present, n is determined by counting
occurrences of \(, starting from the left.

Section 1−−198 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ed(1) ed(1)

When the character % is the only character in replacement , the replacement used in the
most recent substitute command is used as the replacement in the current substitute com-
mand. The %loses its special meaning when it is in a replacement string containing more
than one character or when preceded by a \ .

A line can be split by substituting a newline character into it. The newline in replacement
must be escaped by preceding it by \ . Such substitution cannot be done as part of a g or v
command list.

The value of flags is zero or more of:

n Substitute for the nth occurrence only of the RE found on each addressed line.

g Substitute for all nonoverlapped occurrences of the RE on each addressed line.

l Write to standard output the final line in which a substitution was made. The
line is written in the format specified for the l command.

n Write to standard output the final line in which a substitution was made. The
line is written in the format specified for the n command.

p Write to standard output the final line in which a substitution was made. The
line is written in the format specified for the p command.

(.,.)t a Same as m command, except that a copy of the addressed lines is placed after address a
(which can be 0). Upon completion, the new current line is the last line of the copy.

u The u (undo) command nullifies the effect of the most recent command that modified any-
thing in the buffer, that is, the most recent a, c , d, g, G, i , j , m, r , s , t , v , or V com-
mand. All changes made to the buffer by a g, G, v , or V global command are "undone" as a
single change; if no changes were made by the global command (such as with g/ RE/p),
the u command has no effect. The current line number is set to the value it had immedi-
ately before the command started.

(1,$)v/ RE/ command-list
The complement of the global command g in that the lines marked during the first step are
those that do not match the RE.

(1,$)V/ RE/ The complement of the interactive global command G in that the lines marked during the
first step are those that do not match the RE.

(1,$)w file The w (write) command writes the addressed lines into the named file. If the file does not
exist, it is created with mode 666 (readable and writable by everyone), unless the current
umask setting dictates otherwise (see umask(1). The remembered file name is not
changed unless file is the very first file name encountered since ed was invoked. If no file
name is given, the remembered file name, if any, is used (see the e and f commands).
Upon completion, the current line address is unchanged. If the command is successful, the
number of characters written is displayed.

If the file name starts with ! , the rest of the line is interpreted as a shell command whose
standard input is the addressed lines. Such a shell command is not remembered as the
current file name.

X A key string is demanded from the standard input. Subsequent e, r , and w commands will
encrypt and decrypt the text with this key, using the algorithm of crypt(1). An explicitly
empty key turns off encryption.

($)= The line number of the addressed line is displayed. The current line address is unchanged
by this command.

! shell-command
The remainder of the line after the ! is sent to the shell to be interpreted and executed as a
command. Within the text of that command, the unescaped character % is replaced with
the remembered file name. If a ! appears as the first character of the shell command, it is
replaced with the text of the previous shell command. Thus, !! repeats the last shell com-
mand. If any expansion is performed, the expanded line is echoed. Upon completion, the
current line address is unchanged.

(.+1) newline An address alone on a line causes the addressed line to be printed. A newline alone is
equivalent to .+1p . This technique is useful for stepping forward through the buffer.

HP-UX Release 11i: December 2000 − 5 − Section 1−−199

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ed(1) ed(1)

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns to its command level.

The following size limitations apply: 256 characters per global command list, 64 characters per file name,
and 32 MB characters in the buffer. The limit on the number of lines depends on the amount of user
memory: each line takes 1 word.

EXTERNAL INFLUENCES
Environment Variables

SHELL determines the preferred command-line interpreter for use in all ! -style commands. If this vari-
able is null or not set, the POSIX shell, /usr/bin/sh , is used (see sh-posix(1)).

When set, TMPDIR specifies a directory to be used for temporary files, overriding the default directory,
/tmp .

LANGprovides a default value for internationalization variables that are unset or null. If LANGis unset or
null, the default value is "C" (see lang(5)). If any internationalization variable contains an invalid setting,
all internationalization variables default to "C". See environ(5).

If LC_ALL is set to a nonempty string value, it overrides the values of all the other internationalization
variables, including LANG.

LC_CTYPEdetermines the interpretation of text as single- and/or multibyte characters, the classification
of characters as printable, and the characters matched by character class expressions in regular expres-
sions.

LC_MESSAGESdetermines the locale that should be used to affect the format and contents of diagnostic
messages written to standard error and informative messages written to standard output.

NLSPATHdetermines the location of message catalogues for the processing of LC_MESSAGES.

International Code Set Support
Single- and multibyte character code sets are supported.

DIAGNOSTICS
? Command error. Use h or H to get a detailed explanation.

?file Inaccessible file. Use h or H to get a detailed explanation.

If changes have been made in the buffer since the last w command that wrote the entire buffer, ed warns
you if you attempt to destroy the buffer with an e or q command. ed displays ? or warning: expect-
ing ‘w’ , then continues normal editing unless you enter a second e or q command, in which case the
second command is executed. The -s or - command-line option inhibits this feature.

EXAMPLES
Make a simple substitution in file-1 from a shell script, changing the first occurrence of abc in any line
to xyz , and save the changes in file-2 .

cat - << EOF | ed -s file-1
1,$ s/abc/xyz/
w file-2
q
EOF

Note that, if a command fails, the editor exits immediately.

WARNINGS
A ! command cannot be subject to a g or a v command.

The ! command and the ! escape from the e, r , and w commands cannot be used if the the editor is
invoked from a restricted shell (see sh(1)).

The sequence \n in a regular expression does not match a newline character.

The l command does not handle DEL correctly.

Files encrypted directly with the crypt command with the null key cannot be edited (see crypt(1)).

If the editor input is coming from a command file (e.g., ed file < ed-cmd-file) , the editor exits at
the first failure of a command in the command file.

Section 1−−200 − 6 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ed(1) ed(1)

When reading a file, ed discards ASCII NUL characters and all characters after the last newline. This can
cause unexpected behavior when using regular expressions to search for character sequences containing
NUL characters or text near end-of-file.

AUTHOR
ed was developed by HP and OSF.

FILES
/tmp/e p Temporary buffer file where p is the process number.
ed.hup Work is saved here if the terminal is hung up.

SEE ALSO
awk(1), csh(1), crypt(1), ex(1), grep(1), ksh(1), sed(1), sh(1), sh-bourne(1), sh-posix(1), stty(1), vi(1), fspec(4),
environ(5), lang(5), regexp(5).

The ed section in Text Processing: User’s Guide.

STANDARDS CONFORMANCE
ed : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

red : SVID2, SVID3, XPG2, XPG3

HP-UX Release 11i: December 2000 − 7 − Section 1−−201

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elfdump(1) elfdump(1)
(64-Bit Applications Only)

NAME
elfdump - dump information contained in object files

SYNOPSIS
elfdump [-acCfghHjkLopqrsStuUv] [-D num] [+D num2] [-n name] [+s section] [-T
num] [+T num2] files...

DESCRIPTION
elfdump takes one or more object files or libraries and dumps information about them. The following
options are supported:

-a Dumps archive headers from an archive library.

-c Dumps the string table(s).

-C (Modifier) Demangles C++ symbol names before printing them. This modifier is valid with
-c , -r , -s , and -t . If specified with -H , this modifier is ignored. If specified with -n
name, the symbol whose unmangled name matches name will be printed, and its symbol
name will be printed as a demangled name.

-D num (Modifier) Prints the section whose index is num.

+D num2 (Modifier) Prints the sections in the range 1 to num2. If used with -D , the sections in the
range num to num2 are printed. Valid with -h , -r , -s . If used with -r , only the reloca-
tions which apply to the section(s) in the range are printed.

-f Dumps the file header.

-g Dumps global symbols from an archive.

-h Dumps the section headers.

-H (Modifier) Dumps output information in hexadecimal, octal, or decimal format, with all
options.

-j Prints the object dictionary for one or more executable files, if the source file was compiled
with +objdebug or linked with +tools . The object dictionary entry contains the name
of the object file that contributed to a particular section, the relative offset within the sec-
tion, size of the object file’s contribution, and attributes of the entry.

-k Prints the CTTI section headers according to the directory member relationship.

-L Dumps the .dynamic section in shared libraries and dynamically linked program files.

-n name (Modifier) Dumps information about the specified section or symbol name. This option is
valid with -h , -r , -s , and -t . If used with -t , name pertains to a symbol name and
elfdump will only dump the symbol entry whose name matches name. If used with the
other options, name pertains to a section name and elfdump will only dump the section
whose name matches it.

-o Dumps the optional headers (program headers).

-p (Modifier) Do not print titles, with all options.

-q (Modifier) Suppresss printing CTTI section headers. Valid with -k option.

-r Dumps the relocations.

-s Dumps the section contents.

+s name (Modifier) Dumps the section specified by name. Valid with -c and -t only.

-S (Modifier) Dumps output information in short format. Valid with the -h and -o options.

-t Dumps the symbol table entries.

-T num Prints the symbol whose index is num.

+T num2 (Modifier) Prints the symbols in the range 0 to num2. If used with -T , print the symbols in
the range num to num2. Valid with -t .

-u Prints the usage menu.

-U Prints the unwind table.

Section 1−−202 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elfdump(1) elfdump(1)
(64-Bit Applications Only)

-v (Modifier) Verifies the CTTI section headers before printing. Valid with the -k option.

SEE ALSO
System Tools

ld(1) Invoke the link editor

Miscellaneous
a.out(4) Assembler, compiler, and linker output
elf(3E) Executable and Linking Format

Texts and Tutorials:
HP-UX Linker and Libraries Online User Guide

(See the +help option)
HP-UX Linker and Libraries User’s Guide

(See manuals(5) for ordering information)
HP-UX Software Transition Toolkit (STK) -- ELF Object Formats

http://www.software.hp.com/STK/

HP-UX Release 11i: December 2000 − 2 − Section 1−−203

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

NAME
elm - process electronic mail through a screen-oriented interface

SYNOPSIS
elm [-aKkmtVz] [-f folder]

elm [-s subject] address-list

elm -c [alias-list]

elm -h

elm -v

DESCRIPTION
The elm program is a screen-oriented electronic mail processing system. It supports the industry-wide
MIME standard for nontext mail, a special forms message and forms reply mechanism, and an easy-to-use
alias system for individuals and groups. elm operates in three principal modes:

• Interactive mode, running as an interactive mail interface program. (First syntax.)

• Message mode, sending a single interactive message to a list of mail addresses from a shell command
line. (Second syntax.)

• File mode, sending a file or command output to a list of mail addresses via a command-line pipe or
redirection. (Second syntax.)

In all three cases, elm honors the values that are set in your elmrc initialization file, in your elm alias
database, and in the system elm alias database.

The modes are described below in inverse order (shortest description to longest).

Options
The following options are recognized:

-a Set arrow=ON . Use the arrow (->) instead of the inverse bar to mark the current
item in the various indexes. This overrides the setting of the arrow boolean variable
(see the ELM CONFIGURATION section).

-c Check alias. Check the aliases in alias-list against your personal elm alias database
and the system elm alias database. The results are written to standard output.
Errors are reported first, in the form:

(alias " alias" is unknown)

Successes are reported in a header-entry format, with group aliases replaced by their
members, in the form:

Expands to: alias-address (fullname),
alias-address (fullname),
...
alias-address (fullname)

If there is no fullname, the " (fullname) " portion is omitted.

-f folder Folder file. Read mail from the folder file rather than from the incoming mailbox. A
folder file is in the standard mail file format, as created by the mail system or saved
by elm itself.

-h Help. Display an annotated list of command-line options.

-k Set softkeys=OFF . Disable the use of softkeys (HP 2622 function keys). This
overrides the setting of the softkeys boolean variable (see the ELM CONFIGURA-
TION section).

-K Set keypad=OFF and softkeys=OFF . Disable the use of softkeys and arrow cur-
sor keys. If your terminal does not have the HP 2622 function key protocols, this
option is required. This overrides the settings of the keypad and softkeys
boolean variables (see the ELM CONFIGURATION section).

-m Set menu=OFF. Do not display the command menus on several Interactive Mode
screens. This overrides the setting of the menu boolean variable (see the ELM

Section 1−−204 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

CONFIGURATION section).

-s subject Subject. Specify the subject for a File Mode or Message Mode message.

-t Set usetite=OFF . Do not use the termcap ti /te and terminfo cup cursor-
positioning entries. This overrides the setting of the usetite boolean variable (see
the ELM CONFIGURATION section).

-V Verbose transmission. Pass outbound messages to the sendmail mail transport
agent using the -v option (see sendmail(1M)).

-v Version. Print out the elm version information. This displays the revision number
and build date as well as the compilation features that were specified or omitted.

-z Zero. Do not enter elm if there is no mail in the incoming mailbox.

Operands
The following operands are recognized:

address-list A blank-separated list of one or more mail addresses, your elm user aliases, or elm
system aliases.

alias-list A blank-separated list of one or more of your elm user aliases or elm system aliases.

Terminology
The following terms are used throughout this manpage.

blank

A space or a tab character, sometimes known as linear white space.

body

The body of a message. See message.

boolean variable

See configuration variable.

configuration variable

A boolean, numeric, or string variable that defines default behavior in the elm mail system. See
the ELM CONFIGURATION section.

elm system alias text file

The source file, /var/mail/.elm/aliases.text , for the elm system alias database.

elm user alias text file

The source file , $HOME/.elm/aliases.text , for a user’s own elm alias database.

elm user headers file

A file, $HOME/.elm/elmheaders , where a user can specify special header entries that are
included in all outbound messages.

elmrc configuration file

A file, $HOME/.elm/elmrc , that defines the initial values for elm configuration variables.

environment variable

A global variable set in the shell that called elm . See the EXTERNAL INFLUENCES section.

folder

A file that contains mail messages in the format created by sendmail or elm .

full name

The first and last name of a user, as extracted from an alias text file or from the /etc/passwd
file.

header

The header of a message. See message.

HP-UX Release 11i: December 2000 − 2 − Section 1−−205

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

header entry

An entry in the header portion of a message, sometimes called a header field.

incoming mailbox

The mailbox where you receive your mail, usually /var/mail/ loginname.

mail directory

The directory, defined by the maildir string variable, where a user normally stores mail mes-
sages in folders.

mail transport agent (MTA)

The program that sends and receives mail messages to and from other systems. On HP-UX sys-
tems, the MTA is sendmail (see sendmail(1M)).

mailcap

A file that contains information on how to compose and display mail messages that are not just
seven- and eight-bit ASCII characters.

metamail

A system program that processes nontext mail messages.

message

In a folder, a sequence of text lines comprised of a message delimiter, a header, and a body. The
message delimiter is a line in the form:

From sender date

The header starts after the message delimiter and ends with the first null line. The body
begins at the null line and ends at the next message delimiter. A body can have subsections,
called attachments or body parts, which have are comprised of a boundary delimiter, a
header, and a body. This process can be recursive. See the METAMAIL CONFIGURATION sec-
tion for more details.

numeric variable

See configuration variable.

sendmail alias database

The alias database, /etc/mail/aliases , that is used by the sendmail MTA to direct local
mail.

signature file

A file that is appended to your outbound messages, usually containing information about your-
self. You can have two signature files, one for messages to your local machine and one for other
messages. See the localsignature and remotesignature string variables.

string variable

See configuration variable.

user name

Usually the login or mailbox name of someone you send mail to.

variable

See configuration variable and environment variable.

FILE MODE
If standard input is connected to a pipe or to a file, and an address-list is specified, elm operates in File
Mode.

The output of the previous command in the pipe, or the content of the file, is mailed to the members of the
address-list. The address-list is expanded, based on your elm alias database and the system elm alias
database, and placed in the To: header entry.

If -s is omitted or subject is null, subject defaults to:

Section 1−−206 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

no subject (file transmission)

The expressed or default value of subject is placed in the Subject: header entry.

See the EXAMPLES section.

MESSAGE MODE
If standard input is connected to your terminal, and an address-list is specified, elm operates in Message
Mode.

The address-list is expanded, based on your elm alias database and the system elm alias database, and
placed in the To: header entry. The To: header entry is displayed, in the same form as for the Message
Menu m(mail) command in Interactive Mode.

The value of subject, if nonnull, or a null string, is placed in the Subject: header entry and the Sub-
ject: line is displayed for modification.

If askcc is ONin your elmrc file, you are prompted for Copies to: .

Then the editor defined by the editor string variable (if a signature file is not added) or the alteditor
string variable (if a signature file is added) is started so that you can write your message.

When you leave your editor, you enter the Send Menu, as described for Interactive Mode.

If you choose the Send Menu s (send) command, the message is sent and the program terminates. If you
select the Send Menu f (forget) command, the message is stored in $HOME/Canceled.mail and the
program terminates. If you select other commands, the appropriate action occurs.

See the EXAMPLES section.

INTERACTIVE MODE
If standard input is connected to your terminal, and there is no address-list, elm operates in a screen-
oriented Interactive Mode.

If you do not have a $HOME/.elm directory, or if you do not have a mail directory, defined by the mail-
dir string variable, you are asked in turn if they should be created. You can answer y for yes, n for no, or
q for quit. For y or n, the directories are created or not, as appropriate, and the program continues. For
q, the program terminates.

Overview
When invoked, elm reads customized variables from file $HOME/.elm/elmrc (if it exists) to initialize
parameters. This file can be saved from within elm and some of these variables can also be modified with
the Message Menu o (option) command.

elm first displays the Main or Message Menu, which shows index entries for the messages in your incom-
ing mailbox or selected mail folder. Among other options, you can read, print, reply to, and forward these
messages, as well as initiate new mail messages to other users.

You can also move to the Alias Menu, where you can create, modify, and delete your personal aliases.
From the Alias Menu, you can select one or more of your aliases and send a message to the corresponding
users.

When you send a message, you can include attachments in a number of formats, such as PostScript,
images, audio, and video, as well as plain text. The attachments are managed separately, which can be
convenient both for you and your correspondents.

Sending Messages
When you send a message, you use the editor defined by the editor or alteditor string variable. If
builtin is your editor, a set of commands described in the Built-In Editor subsection is available while
composing your message

If the elmheaders file exists (see the HEADER FILE section), all nonblank lines in the file are copied to
the headers of all outbound mail. This is useful for adding special information headers such as X-
Organization: , X-Phone: , and so forth.

MIME Support
elm supports the MIME protocols for headers and messages (RFC 1521 and RFC 1522) enabling it to view
and send mail containing other than normal ASCII text. For example, the mail contents can be audio,
video, images, etc., or a combination of these.

HP-UX Release 11i: December 2000 − 4 − Section 1−−207

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

This also enables conformance with SMTP (RFC 821), which allows only 7-bit characters in the message, by
using MIME-encoding (base64 and quoted-printable) to convert 8-bit data to 7-bit.

elm also provides a facility to view multipart MIME messages. If elm receives a message whose type is
not text/plain , it invokes metamail , which invokes the appropriate utility (for example, ghost-
view , xv , an audio editor, mpeg) to display the different mail parts according to the content type (for
example, application/postscript , image , audio , video).

Aliases
elm has its own alias system that supports both personal and system-wide aliases. Personal aliases are
specific to a single user; system aliases are available to everyone on the system where the system aliases
reside (see newalias(1)). You can access the Alias Menu by executing the Message Menu a (alias) com-
mand. You can then create and save an alias for the current message, create and check other aliases, and
send messages to one or more aliases.

Aliases are limited to 2500 bytes. If you wish to create a group alias that is longer than 2500 bytes, please
ask your system administrator to create it for you in the sendmail system alias file,
/etc/mail/aliases (see sendmail(1M)).

INTERACTIVE MODE MENUS AND COMMANDS
This section begins with the Message Menu, which is the main screen for Interactive Mode. The rest of the
menus are presented alphabetically.

Message Menu
The Message Index is displayed on the Message Menu. You can use the following commands to manipulate
and send messages. Some commands use a series of prompts to complete their action. You can use Ctrl-D
to cancel their operations.

The commands are:

! command Shell Escape. Send command to the shell defined by the shell string variable
without leaving elm .

Display all known information about the current message.

$ Resynchronize the messages without leaving elm . If there are any messages marked
for deletion, you are asked if you want to delete them. If any messages are deleted or
any status flags have changed, the messages are written back to the mailbox file. All
tags are removed.

% Display the computed return address of the current message.

* Set the current message pointer to the last message.

+ Display the next message index page, when applicable.

- Display the previous message index page, when applicable.

/ pattern Pattern match. Search for pattern in the from and subject fields of the current mes-
sage index. The search starts at the current message and wraps around to the begin-
ning of the index. The current message pointer is set to the first message that
matches. Uppercase and lowercase are treated as equivalent.

// pattern Pattern match. Search for pattern through all the lines of the current folder. The
search starts at the current message and wraps around to the beginning of the folder.
The current message pointer is set to the first message that matches. Uppercase and
lowercase are treated as equivalent.

< Calendar. Scan message for calendar entries and add them to your calendar file. A
calendar entry is defined as a line whose first nonblank characters are -> , as in:

-> calendar-entry

The delimiter -> and surrounding blanks are removed before the entry is added to
the calendar file. Resultant blank lines are ignored. You can define the calendar file
name in your elmrc file or with the Options Menu.

= Set the current message pointer to the first message.

> Save in folder. Same as the Message Menu s (save) command.

Section 1−−208 − 5 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

?key ... Help on key. Display a one-line description of what each key does. ? displays a sum-
mary listing for each command available. A period (.) returns you to the Message
Menu.

@ Display a summary of the messages indexed on the current screen.

| Pipe the current message or the set of tagged messages through other filters as
desired. Use the shell defined by the shell string variable.

n New current message. Change the current message pointer to the one indexed as n.
If the message is not on the current page of headers, the appropriate page displayed.

Return Read current message. The screen is cleared and the current message is displayed by
the pager defined by the pager string variable.

a Alias. Switch to the Alias Menu.

b Bounce mail. This is similar to forwarding a message, except that you do not edit the
message and the return address is set to the original sender’s address, rather than to
your address.

c Change folder. This command is used to change the file whose messages are displayed
on the Message Menu. You are asked for a file name. The file must be in message
format; otherwise, elm aborts. You can use the customary wildcards for your shell, as
well as the following special names:

! Your incoming mail folder.

> Your received folder, defined by the receivedmail string variable.

< Your sent folder, defined by the sentmail string variable.

. The previously used folder.

@alias The default folder for the login name associated with the alias alias.

=filename A file in the directory defined by the maildir string variable.

C Copy message. Save the current message or the set of tagged messages to a folder.
You are prompted for a file name with a default value. The default value is a file in
the maildir directory with the user name of the sender of the first message in the
set being saved. Any tags are cleared. Unlike the > and s commands, the messages
are not marked for deletion and the current message pointer is not moved.

d Delete. Mark the current message for deletion. See also Ctrl-D, u, and Ctrl-U.

Ctrl-D Delete. Mark all messages for deletion that contain a specified pattern in the From:
and Subject: header entries. See also d, u, and Ctrl-U.

e Edit. Allows you to physically edit the current mail folder using the editor defined by
the editor string variable. When you exit from your editor, elm resynchronizes
your mail folder (see the $ command).

f Forward the current message. You are asked if you want to edit the outbound mes-
sage. If you answer y , the characters defined by the prefix string variable are
prefixed to each line of the message and the editor defined by the editor string vari-
able will be invoked to allow you to edit the message. If you answer n, the characters
are not prefixed and the editor will not be invoked. In either case, you are prompted
for To: recipients, allowed to edit the Subject: header entry, and, if the askcc
boolean variable is ON, you are prompted for Cc: recipients.

If the userlevel numeric variable is 1 (intermediate) or 2 (expert), and there was
a previous sent or forgotten message in this session, you are asked if you would like to

Recall last kept message instead? (y/n)

If you answer y , the previous message is returned to the send buffer. If you answer
n, the current message is copied into the send buffer and your signature file (if any) is
appended.

Then the editor is invoked if you chose to edit the outbound message (above). When
you leave the editor, or if it was not invoked, the Send Menu is displayed.

HP-UX Release 11i: December 2000 − 6 − Section 1−−209

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

g Group reply. The reply is automatically sent To: the sender of the message, with
Cc: to all the original To: and Cc: recipients. Otherwise, the action is the same as
for the r command.

h Same as Return, except that the message is displayed with all headers.

j Move down. Move the current message pointer down to the next message.

J Move down. Move the current message pointer down to the next undeleted message.

k Move up. Move the current message pointer up to the previous message.

K Move up. Move the current message pointer up to the previous undeleted message.

l (ell) Limit the displayed messages to those that contain certain string values. You are
prompted with Enter criteria: . To set, add to, or clear the limiting criteria,
type one of:

all Clear all the criteria and restore the normal display.

from string Restrict to entries that contain string in the From: header.

subject string Restrict to entries that contain string in the Subject: header.

to string Restrict to entries that contain string in the To: header.

You can add limiting criteria by repeating the l command.

Ctrl-L Redraw the screen.

m Mail. Send mail to one or more addresses. You are prompted for To: recipients, a
Subject: and, if the askcc boolean variable is ON, Cc: recipients.

If the userlevel numeric variable is 1 (intermediate) or 2 (expert), and there was
a previous sent or forgotten message in this session, you are asked if you would like to

Recall last kept message instead? (y/n)

If you answer y , the previous message is returned to the send buffer. If you answer
n, the signature file (if any) is copied into the send buffer.

Then, the editor defined by the editor string variable is invoked. After you exit
from your editor, the Send Menu is displayed.

n Next message. Advances the current message pointer to the next message, and
displays that message as for the Return command.

o Options. Invokes the Options Menu, permitting you to change certain configuration
options. The changeable options are defined by the configoptions string vari-
able.

p Print. Print the current message or the set of tagged messages using the command
defined by the print string variable. The current message pointer does not move.
Tagged messages remain tagged.

q Quit. Gracefully terminate, performing message cleanup according to defined per-
sonal preferences. You can choose to actually delete messages marked for deletion.
For your incoming mailbox, you can choose to keep undeleted mail in the mailbox or
move it to the received folder defined by the receivedmail string variable.

If the ask boolean variable is ON, you may be asked the following questions. The
actions described are all performed after you have answered all the relevant ques-
tions.

Delete messages? (y/n)

This question is asked if you have messages marked for deletion. The default
answer is provided by the alwaysdelete boolean variable (ONmeans y (yes)
and OFFmeans n (no)).

If you answer y , all messages marked for deletion will be deleted.

If you answer n, all messages marked for deletion will be restored to their
former read, unread, or new state.

Section 1−−210 − 7 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

Move read messages to "received" folder? (y/n)

This question is asked if you are reading your incoming mailbox and if you have
messages that have been read. The default answer is provided by the always-
store boolean variable (ONmeans y (yes) and OFFmeans n (no)).

If you answer y , undeleted messages that have been read will be moved to the
folder defined by the receivedmail string variable and the next question will
also be asked.

If you answer n, all undeleted messages are returned to your incoming mailbox
and the next question is not asked.

Keep unread messages in incoming mailbox? (y/n)

This question is asked if you are reading your incoming mailbox, if you answered
y to the Move read messages ... question (or it was not asked), and if you
have messages that have not been read. The default answer is provided by the
alwayskeep boolean variable (ONmeans y (yes) and OFFmeans n (no)).

If you answer y , all undeleted unread (new and old) messages are returned to
your incoming mailbox.

If you answer n, all undeleted unread messages will be moved to the folder
defined by the receivedmail string variable.

If the ask boolean variable is OFF, the answers to the questions (which are not
displayed) are taken automatically from the values of the alwaysdelete , always-
store , and alwayskeep boolean variables, respectively.

Q Quick quit. This is equivalent to executing the q command with the ask boolean
variable set to OFF.

r Reply to the sender of the current message. If the autocopy boolean variable is
OFF, you are asked if the source message should be copied into the edit buffer. If it is
ON, the message is copied automatically. If copied in, all lines from the message are
preceded by the prefix string defined by the prefix string variable. The To:
header is set to the sender of the message (or the address in the Reply-To: header,
if one was set), the Subject: is set to the subject of the message, preceded by Re: ,
and presented for you to edit. If the askcc boolean variable is ON, you are prompted
for Cc: recipients. Then, the editor defined by the editor string variable is
invoked. After you exit from your editor, the Send Menu is displayed.

s Save in folder (same as >). Save the current message or the set of tagged messages to
a folder. You are prompted for a file name with a default value. The default value is a
file in the maildir directory with the login name of the sender of the first message
in the set being saved. Any tags are cleared and the messages are marked for dele-
tion. The current message pointer is moved to the first undeleted message after the
last saved message.

t Tag toggle. Tag the current message for a later operation and move the current mes-
sage pointer to the next undeleted message. The operation can be one of | , C, p, and
s .

Or, remove the tag from a tagged message. See also the Ctrl-T command.

T Tag toggle. Tag the current message for a later operation and remain at the current
message. The operation can be one of | , C, p, and s .

Or, remove the tag from a tagged message. See also the Ctrl-T command.

Ctrl-T Tag all messages containing the specified pattern. Or remove the tags from all tagged
messages.

If any messages are currently tagged, you are asked if the tags should be removed.
Answer y to remove the old tags; answer n to keep them. In either case, you are
prompted for a string to match in either the From: or Subject: line of each mes-
sage. All messages that match the criterion are tagged. If you enter a null string
(carriage-return alone), no more messages are tagged.

HP-UX Release 11i: December 2000 − 8 − Section 1−−211

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

u Undelete. Remove the deletion mark from the current message. See also d, Ctrl-D,
and Ctrl-U.

Ctrl-U Undelete. Remove any deletion mark from all messages that contain a specified pat-
tern in the From: and Subject: header entries. See also d, Ctrl-D, and u.

v View attachments. Invoke the Attachment View Menu for the current message.

x Exit. Exit without changing the mailbox. If changes are pending, such as deletions,
you are asked if they can be abandoned. If you answer y , the changes are abandoned
and the program terminates. If you answer n the exit is abandoned and you return to
the Message Menu command prompt.

X Exit immediately without changing the mailbox. All pending changes are abandoned.

Message Index
The messages in the current folder are indexed on the Message Menu, one per line, in the format:

sssnum mmm d from (lines) subject

defined as:

sss A three-character status field, described in the Message Status subsection.

num The ordinal message index number.

mmm The month from the last Date: header entry, or from the From message header.

d The day from the last Date: header entry, or from the From message header.

from Either the sender name from the last From: header entry or from the From message
header.

lines The number of lines in the message.

subject The subject description from the first Subject: header entry, truncated to fit your
screen.

The current message index entry is either highlighted in inverse video or marked in the left margin with an
arrow (->). See the -a option in the Options subsection and the arrow string variable in the ELM CON-
FIGURATION section.

Message Status
The first three characters of each message index entry describe the message status. Each can be blank or
one of the values described below in descending order of precedence.

When a message has more than one status flag of a particular type set, the highest-precedence indicator is
displayed on the index line. For example, if a forms message (F) is also marked as company confidential
(C), the C rather than the F status character is displayed.

Column One: Variable Status

D Deleted. The message is marked for deletion.

E Expired. The date specified in the Expires: header entry is older than today. elm accepts
the following date formats:

Mon, 11 Jun 90 (format produced by elm in the Header Menu)
Jun 11, 90
11 Jun, 90
9006111324GMT (ISO X.400 format: YYMMDDhhmmzzz)

N New. The message was received after your last elm session or during the current session. The
message has not been read.

O Old. The message was received before or during your last elm session. It was marked N in your
last session and it was not read.

Blank. The message has been read.

Column Two: Permanent Status

Section 1−−212 − 9 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

C Confidential. The Sensitivity: 3 header entry is present. The message is considered com-
pany confidential, as specified by the ISO X.400 standard. You can set this value for outbound
mail with the user-defined option of the Header Menu.

U Urgent. The message contains a Priority: header entry.

P Private. The Sensitivity: 2 header entry is present. The message is considered private,
as specified by the ISO X.400 standard. You can set this value for outbound mail with the user-
defined option of the Header Menu.

A Action. The message contains an Action: header entry.

F Forms. The message is an elm forms message. The message contains a Content-
Type: mailform header entry.

M MIME. The message or its attachments is in a MIME format that can be displayed using
metamail .

? MIME. The message or its attachments is in a MIME format whose version is not supported.

Blank. Normal status.

Column Three: Tagged Status

+ Tagged. Tagged messages are handled as a group by some commands. See t and other com-
mands in the Message Menu subsection.

Blank. The message is not tagged.

Built-In Editor
When you are composing an outbound message with the builtin built-in editor, it prompts you for text
lines with an empty line. Enter a period (.) to end the message and continue with the Send Menu.

Built-in editor commands are lines that begin with an escape character, defined by the escape string vari-
able. The default escape character is tilde (˜).

Note: Some remote login programs use tilde as their default escape character when it is the first character
on a line. (You can tell, because the tilde does not print.) Usually, the tilde is transmitted when you enter
a second character that is not recognized by the program or when you enter a second tilde. See the pro-
gram documentation for further information.

The built-in editor commands are:

~! [command] Execute the shell command, if one is given (as in ˜!ls), or start an interactive
shell, using the shell defined by the shell string variable.

~< command Execute the shell command and place the output of the command into the editor
buffer. For example, "˜< who " inserts the output of the who command in your
message.

~? Print a brief help menu.

~˜ Start a line with a single tilde (˜) character.

~b Prompt for changes to the Blind-Carbon-Copy (Bcc:) list.

~c Prompt for changes to the Carbon-Copy (Cc:) list.

~e Invoke the editor defined for the easyeditor string variable on the message,
if possible.

~f [options] Add the specified list of messages or the current message. This uses readmail
which means that all readmail options are available (see readmail(1)).

~h Prompt for changes to all the available headers (To: , Cc: , Bcc: , and Sub-
ject:).

~m [options] Same as ˜f , but each line is prefixed with the current prefix. See the prefix
string variable.

~o Prompt for the name of an editor to use on the message.

~p Print out the message as typed in so far.

HP-UX Release 11i: December 2000 − 10 − Section 1−−213

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

~r filename Include (read in) the contents of the specified file.

~s Prompt for changes to the Subject: line.

~t Prompt for changes to the To: list.

~v Invoke the editor defined for the visualeditor string variable on the mes-
sage, if possible.

Alias Menu
The Alias Menu is invoked with the Message Menu a command. The source text for your alias file is stored
in the file $HOME/.elm/aliases.text . You can edit this file directly or with the following com-
mands.

The aliases currently compiled into your database and the system database are displayed in an indexed list
similar to the Message Menu. The entry format is described in the Alias Index subsection. The index is
sorted in the order defined by the aliassortby string variable.

The commands are:

$ Resynchronize your alias text file and your alias database by rebuilding the database
from the text file by running newalias . Aliases marked for deletion are removed,
tagged aliases are untagged, and new and changed aliases are recognized. The alias
screen is updated to reflect these changes.

+ Display the next alias index page, when applicable.

- Display the previous alias index page, when applicable.

/ pattern Pattern match. Search for pattern in the alias and user name fields of the alias list.
The search starts at the current alias and wraps around to the beginning of the alias
list. The current alias pointer is set to the first alias that matches. Uppercase and
lowercase are treated as equivalent.

// pattern Pattern match. Search for pattern through all the fields of the alias list (alias, user
name, comment, and address). The search starts at the current alias and wraps
around to the beginning of the alias list. The current alias pointer is set to the first
alias that matches. Uppercase and lowercase are treated as equivalent. / pattern Pat-
tern match. This command allows you to search through all the alias and username
entries in the alias list, starting at the current alias and continuing through the end.
If the first character of the pattern is a / , then the comment and the fully expanded
address fields are also included in the search. The search is case-insensitive. This
allows you to find a specific alias in a situation where there are a large number of
aliases.

?key ... Help on key. Display a one-line description of what each key does. ? displays a sum-
mary listing for each command available. A period (.) returns you to the Alias Menu.

a Alias current message. This allows you to create an alias that has the return address
of the current message as the address field of the alias. It prompts for a unique alias
name and allows you to edit the comment and address fields.

c Change the current user alias. The old values of the alias fields are used as the
defaults in the prompts for the new values. You cannot change the alias name. If the
alias name is one of a multiple-alias record, it is removed from that record and stored
as a separate record. The old alias is marked N. Changes are effective after the next
alias resynchronization.

d Mark the current user alias for deletion. The deletions are made when you exit from
the Alias Menu with an q, r , or i command or you resynchronize your alias database
with the $ command. (You cannot delete a system alias in this way.)

Ctrl-D Delete user aliases with a specified search pattern.

e Edit your aliases.text file, using the editor defined in the editor string vari-
able. Your aliases are resynchronized when you finish editing (see the $ command).

f Display a fully expanded alias. The currently selected alias is fully expanded and
displayed.

Section 1−−214 − 11 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

i ,I See the Alias Menu q and Qcommands.

j Move down. Move the current alias pointer down to the next alias.

J Move down. Move the current alias pointer down to the next undeleted alias.

k Move up. Move the current alias pointer up to the previous alias.

K Move up. Move the current alias pointer up to the previous undeleted alias.

l (ell) Limit the displayed aliases to certain types or those that contain certain string values.
You are prompted with Enter criteria: . To set, add to, or clear the limiting cri-
teria, type one of:

all Clear all the criteria and restore the normal display.

alias string Restrict to alias names containing string.

name string Restrict to full names (first name and last name) containing
string.

group Restrict to group aliases (can include system and user aliases).

person Restrict to person aliases (can include system and user aliases).

system Restrict to system aliases (can include group and person aliases).

user Restrict to system aliases (can include group and person aliases).

You can add limiting criteria by repeating the l command.

Ctrl-L Redraw the screen.

m Mail to the current alias or to the set of tagged aliases. The corresponding expanded
addresses are placed in the To: header entry, and processing continues as for the
Message Menu m(mail) command. The tags are cleared.

n Make a user alias. elm prompts for a unique alias name, then for an address. The
information provided is added to your individual alias_text file
($HOME/.elm/aliases.text), then added to the database.

q Exit. Return to the Message Menu. If aliases are marked for deletion, you are asked
if you want to delete them. The alias index pointer is retained. If the alias text file
was changed, the database is resynchronized.

Q Exit. Return to the Message Menu. If aliases are marked for deletion, the mark is
retained and the alias is not deleted. The alias index pointer is retained. If the alias
text file was changed, the database is resynchronized.

r ,R See the Alias Menu q and Qcommands.

t Tag the current alias for a later operation and move the current alias pointer to the
next undeleted alias. The operation can be one of c , m, or n.

Or, remove the tag from a tagged alias. See also the Ctrl-T command.

T Tag. Tag the current alias for a later operation and remain at the current alias. The
operation can be one of c , m, or n.

Or, remove the tag from a tagged alias. See also the Ctrl-T command.

Ctrl-T Tag all aliases containing a specified pattern for a later operation. The operation can
be one of c , m, or n. Or remove the tags from all tagged aliases.

If any aliases are currently tagged, you are asked if the tags should be removed.
Answer y to remove the old tags; answer n to keep them. In either case, you are
prompted for a string to match in either the alias name or user name fields of each
alias. All aliases that match the criterion are tagged. If you enter a null string
(carriage-return alone) no more aliases are tagged.

u Undelete. Remove the deletion mark from the current alias. See also d, Ctrl-D, and
Ctrl-U.

Ctrl-U Undelete. Remove any deletion mark from all messages that contain a specified pat-
tern in the From: and Subject: header entries. See also d, Ctrl-D, and u.

HP-UX Release 11i: December 2000 − 12 − Section 1−−215

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

v View. Display the address-list for the current alias.

x Exit from the alias menu without processing any deletions. Aliases marked for dele-
tion are unmarked and newalias is not run, even if alias additions have been made.

Alias Index
The aliases in the current database are indexed on the Alias Menu, one per line. The database values are
defined in newalias(1).

ssnum fullname[, comment] type [(S)] alias

defined as:

ss A two-character status field. The first character can be:

D Delete. The alias is marked for deletion.

N New. The alias is new or changed in the alias text file but is not included in the
current database. Resynchronization is needed.

Blank. The alias is in the current database.

The second character can be:

+ Tag. The alias is tagged.

Blank. The alias is not tagged.

num The index number of the alias.

fullname The full name for the alias, as it will be used in an expanded address. It has the form:

firstname lastname

firstname The first name, from the alias database.

lastname The last name, from the alias database.

comment Comment, from the alias database.

type Type of alias. This is Person for an alias with a single address or Group for an alias with
two or more addresses.

(S) If present, the entry is from the elm system alias database. If absent, the entry is from
your personal alias database.

alias The alias name. If the record has multiple alias names, there is one index entry per name.

Attachment Configuration Menu
The Attachment Configuration Menu is invoked with the Attachment Send Menu a (add) or m (modify)
command. The menu displays the default or current specification for an attachment. If it is called with the
a command, it automatically prompts for a file name. The commands are:

d Description. The value is placed in a Content-Description: body-part header entry. The
default is the file name.

e Content-Transfer-Encoding. This is the method by which the file is encoded to allow it to pass
through various Mail Transport Agents. The choices are:

7bit Unencoded, normal US-ASCII text.

8bit Unencoded 8-bit characters with the high-order bit set.

quoted-printable
Text with control characters and high-order-bit characters converted to a string in the
form =hh, where hh is the hexadecimal representation of the character. An = at the
end of a line indicates that the source line was broken into two lines.

base64 Any file type with bits encoded in 6-bit groups and rendered in numeric order as the
US-ASCII characters A−Z, a−z , 0−9, +, and / . The last line may be padded to a
multiple of 4 characters with = characters.

binary Unencoded binary data.

The value is placed in a Content-Transfer-Encoding: body-part header entry. The
default is 7bit .

Section 1−−216 − 13 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

f File name. The name of the file to be attached. elm examines the file and sets the values of
Content-Transfer-Encoding, Content-Disposition, and Content-Type accordingly.

p Content-Disposition. The value is placed in a Content-Disposition: body-part header
entry. The default is attachment; filename= filename.

t Content-Type. The type of the file and supporting parameters, in the form:

type/ subtype [; parameter]...

The type can be one of application , audio , image , message , text , or video , as
defined in RFC 1521. Although multipart is also a valid type, you cannot specify it directly;
elm provides it as necessary and handles messages that contain it. The value is placed in a
Content-Type: body-part header entry. The default is:

text/plain; charset=US-ASCII

Some common entries are described below. See the METAMAIL CONFIGURATION section for
additional information.

text/ subtype [; charset= charset]

This is relatively readable text that may be formatted with embedded text characters, as
for possible subtypes richtext or html . The default subtype is plain (unformatted in
any way). The default charset is US-ASCII .

application/octet-stream

This is a catch-all for files such as program binary, or files that contain control characters or
characters with high-order bits set.

application/postscript

The file can be displayed with a PostScript-equipped printer or viewer.

message/rfc822

This specifies that the file is in message format, as described in the Terminology subsection.

image/jpeg , image/gif

These are picture formats that require a display program.

audio/basic

This is an audio format that requires a reproduction program.

video/mpeg

This is an audio/video format that requires a reproduction program.

Attachment Send Menu
The Attachment Send Menu is invoked with the Send Menu a command. This menu displays a list of the
attachments that will be sent in a message, one per line, as described in the Attachment Index subsection.

The commands are:

a Add attachments. Call the Attachment Configuration Menu and prompt for a file
name.

d Delete an attachment.

e Edit an attachment. Call the editor associated with the attachment if it is editable.

j Move the current attachment pointer down to the next attachment.

k Move the current attachment pointer up to the previous attachment.

Ctrl-L Redraw the screen.

m Modify the attributes of an attachment. Call the Attachment Configuration Menu.

p Print an attachment. See the Message Menu p (print) command.

q Quit. Return to the Send Menu.

s Save an attachment. See the Message Menu C (copy) command.

HP-UX Release 11i: December 2000 − 14 − Section 1−−217

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

Attachment View Menu
The Attachment View Menu is invoked with the Send Menu v command. This menu displays a list of the
attachments in a folder message, one per line, as described in the Attachment Index subsection.

The commands are:

Return Display the current attachment.

j Move the current attachment pointer down to the next attachment.

k Move the current attachment pointer up to the previous attachment.

Ctrl-L Redraw the screen.

p Print the attachment. See the Message Menu p (print) command.

q Quit. Return to the previous attachment level or the Message Menu.

s Save the attachment. The attachment is saved in the form it was received, as with
the Message Menu s (save) command.

v View the subattachment list, if any.

Attachment Index
Attachments are listed on the Attachment Send Menu and the Attachment View Menu in the following for-
mat:

num filename (size) format [encoding]

defined as:

num The index number of the attachment.

filename The name of the attached file.

size The size of the attachment in bytes, computed from the file or the message.

type/ subtype The type and subtype of the attachment. This value is placed or found in a
Content-Type: header.

encoding The encoding type. This value is placed or found in a Content-Transfer-
Encoding: header.

Header Menu
The Header Menu is invoked with the Send Menu h command. It allows you to add, change, and delete a
set of common header entries in your message. In general, if an item is empty, it is not included in the
message.

The commands are:

Return Return to Send Menu.

! command Shell. Execute command with the shell defined by the shell string variable.

a Action: header. Enter any string. If this entry is present in a received message,
elm displays an A in the Permanent Status column of the Message Index.

b Bcc: header. Enter a list of aliases and actual addresses. Aliases are expanded and
shown as addresses and user names.

c Cc: header. Enter a list of aliases and actual addresses. Aliases are expanded and
shown as addresses and user names.

d Domainize. Convert non-Internet addresses to Internet format. The UUCP ! format
(host. domain! user) becomes the Internet @format (user@host. domain). If . domain
is omitted, it defaults to .uucp .

e Expires: header. Enter any numeric value from 1 to 56 (8 weeks). If this entry is
present in a received message, elm displays an E in the Variable Status column of the
Message Index when the computed date has passed.

i In-Reply-To: header. Enter a string.

n Precedence: header. Enter a precedence name. If the precedences string
variable is set and nonnull, the name must be one defined by the variable. If the

Section 1−−218 − 15 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

name is associated with a priority, and the Priority: header is null, the priority
value is inserted in the Priority: header. If precedences is null or not set,
you can enter any value.

If the precedence name matches one defined in the sendmail configuration file
/etc/mail/sendmail.cf , the transmission priority is modified accordingly. If
there is no match, the priority is not changed.

p Priority: header. Enter a string. If this entry is present in a received message,
elm displays a U in the Permanent Status column of the Message Index

r Reply-To: header. Enter a personal alias or a single address. If it is present, elm
and other mailers use this header instead of the From: header when choosing the
address for a reply (Message Menu r (reply) command).

s Subject: header. Enter a string.

t To: header. Enter a list of aliases and actual addresses. Aliases are expanded and
shown as addresses and user names.

u User-defined header. Define your own header entry in the form:

header-name: header-string

header-name: must not contain blanks. You can use this command to create a Sen-
sitivity: header entry, as described in the Message Status subsection, or a
different header, but only one. See the HEADER FILE section for another way to
include user-defined header entries.

Options Menu
The Options Menu is invoked with the Message Menu o command. It displays a list of the options, defined
by the configoptions string variable, that you can modify while elm is running. Enter the appropri-
ate letter (in upper- or lowercase) that is followed with a right parenthesis ()) and follow the directions on
the screen. The full set of option prompts and the corresponding variables is listed below. The default
options are marked with an *.

A)rrow cursor The arrow string variable. *
B)order on copy The prefix string variable.
C)alendar file The calendar string variable. *
D)isplay mail using The pager string variable. *
E)ditor (primary) The editor string variable. *
F)older directory The maildir string variable. *
H)old sent message The copy boolean variable.
J) reply editor The alteditor string variable.
K) pause after pager The promptafter boolean variable.
A(l)ias Sorting The aliassortby string variable.
M)enu display The menu boolean variable. *
N)ames only The names boolean variable. *
O)utbound mail saved The sentmail string variable. *
P)rint mail using The print string variable. *
R)eply copies msg The autocopy boolean variable.
S)orting criteria The sortby string variable. *
T)ext editor (˜e) The easyeditor string variable.
U)ser level The userlevel numeric variable. *
V)isual Editor (˜v) The visualeditor string variable. *
W)ant Cc: prompt The askcc boolean variable.
Y)our full name The fullname string variable. *
Z) signature dashes The sigdashes boolean variable.

Note: The menu displays the first screen-height-6 lines from the defined set. screen-height is the number
of text lines on the screen. If an option is not displayed, it cannot be modified.

When you are done, enter one of the following values:

> Save the current configuration values in your configuration file, $HOME/.elm/elmrc . If the
file does not exist, it is created. This is a convenient way to make an configuration file that you
can edit directly, as well as with the Options Menu.

HP-UX Release 11i: December 2000 − 16 − Section 1−−219

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

i ,I Return to the Message Menu.

q,Q Return to the Message Menu.

x ,X Exit immediately from elm without changing the mailbox. All pending changes are abandoned.

Send Menu
The Send Menu is invoked when your outbound message has been prepared to be mailed after a Message
Menu f , g, m, or r command or the Alias Menu mcommand.

The commands are:

! command Shell. Execute a shell command. See the Message Menu ! (shell) command.

a Attachments. Invoke the Attachments Send Menu.

c Copy. Copy to a file. See the Message Menu C (copy) command.

e Edit. Invoke your editor, as defined by the alteditor string variable, to revise the
message.

f Forget. Do not send the message. At user levels 1 and 2, the message may be
returned to the send buffer when you execute a subsequent Message Menu f , g, m, or
r command or the Alias Menu mcommand.

h Edit the header entries. Invoke the Header Menu.

m Make form. Convert the message to the forms message format. See the FORMS
MESSAGES section. This command is only available if the forms boolean variable is
ONand the userlevel numeric variable is either 1 or 2.

s Send. Send the message.

FORMS MESSAGES
A feature that is unique to elm is the ability to compose and reply to forms messages.

Creating a Forms Message
• In your elmrc file, set forms=ON .

• Set your userlevel numeric variable to 1 (moderately experienced) or 2 (expert). You can do this
in your elmrc file or on the default Options Menu.

• As you compose the message, define the fields to be filled in by the recipient with a colon (:), followed
by either the number of spaces allowed for the field value, or a newline to indicate that the field may
fill the remainder of the line.

A colon on a line by itself indicates that the recipient will be prompted for multiline input. There can
be no blanks before the colon.

Every line containing a colon is a prompt line. During the response process, all text starting at the
first nonblank character after the last colon on each line is deleted and the line is evaluated for
response fields.

• After you have created the message, enter the Send Menu m(make form) command to set up the spe-
cial format. Then enter the Send Menu s (send) command to send the message.

Here is an example of a simple forms message:

On-Line Phone and Address Database
Please fill out and return as soon as possible.
Name:
Manager:
Department: Division:
Your home address:
Home phone number:
Thank you for your cooperation.

Replying to a Forms Message
When you receive a forms message, the message index entry is flagged with an F status letter. You can
view it in the normal way with the Return or h commands.

Section 1−−220 − 17 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

To reply, use the Message Menu r (reply) command (you cannot use the Message Menu g (group reply)
command). elm prompts you for each field, with any text present between the fields displayed as appropri-
ate. The example above is presented line-by-line; user input is in italic type:

On-Line Phone and Address Database
Please fill out and return as soon as possible.
Name:my name
Manager: my manager
Department: my department
Division: my division
Your home address: home address
Home phone number: phone number
Thank you for your cooperation.

The received message would look like this:

On-Line Phone and Address Database
Please fill out and return as soon as possible.
Name: my name
Manager: my manager
Department: my department Division: my division
Your home address: home address
Home phone number: phone number
Thank you for your cooperation.

HEADER FILE
The $HOME/.elm/elmheaders file provides you with a way to specify special information headers such
as X-Organization: , X-Phone: , and so forth. The nonblank lines from this file are added to the
headers of all outbound mail.

Entries in the elmheaders file should have the following format:

header-name: header-string

header-name: must not contain blanks. header-string can be continued over several lines by preceding
each continuation line with blanks, as indicated by the output below.

Within the elmheaders file, you can use backquotes (left apostrophes) to execute shell commands when
the file is read, so that an entry of the form:

X-Operating-System: ‘uname -a‘

would produce a header entry like:

X-Operating-System:
HP-UX hpulpc17 B.10.10 A 9000/710 2012505939 two-user license

According to RFC 822, user-defined header names should begin with X- or x- . Otherwise, they risk hav-
ing their usage overridden if the name is later standardized with some other meaning.

Defined Headers
The following header names are defined for the message header in RFC 822 and RFC 1521.

Bcc: (822) Cc: (822)
Comments: (822) Content-Description: (1521)
Content-ID: (1521) Content-Transfer-Encoding: (1521)
Content-Type: (1521) Date: (822)
Encrypted: (822) From: (822)
In-Reply-To: (822) Keywords: (822)
MIME-Version: (1521) Message-ID: (822)
Received: (822) References: (822)
Reply-To: (822) Resent-Bcc: (822)
Resent-Cc: (822) Resent-Date: (822)
Resent-From: (822) Resent-Message-ID: (822)
Resent-Reply-To: (822) Resent-Sender: (822)
Resent-To: (822) Return-Path: (822)
Sender: (822) Subject: (822)
To: (822) X-user-defined: (822)

HP-UX Release 11i: December 2000 − 18 − Section 1−−221

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

Other commonly used headers:
Action: Apparently-To:
Content-Disposition: Content-Length:
Expires: Mailer:
Newsgroups: Precedence:
Priority: Sensitivity:
Status: X-Mailer:

ELM CONFIGURATION
elm supports user configuration by means of the $HOME/.elm/elmrc configuration file. You can create
the configuration file with the Options Menu > command. It can contain any combination of the string,
numeric, and boolean variables described below.

String Variables
String variables have the form

string-name = string-value

The following string variables are defined.

aliassortby The sort order for the alias index in the Alias Menu. The recognized values
are:

alias Sort by alias name.
name Sort by the full name of the alias, last name first.
text Sort by the order of the aliases in the alias text file.

Prefix the value with reverse- to reverse the sort order. The default is
name.

alteditor The name of the editor to use for messages that have initial text (a copied
message in a reply, a signature in any outbound message, etc.). when the
editor string variable is set to none or builtin . The default is the
value of the EDITOR environment variable, if set and nonnull, or
/usr/bin/vi otherwise. See also the editor string variable.

alternatives A list of other machine and user name combinations that you receive for-
warded mail from. elm uses this information when a group reply is being
processed to ensure that a reply message is not sent to a user and/or
machine address that would simply forward the reply message back to you.
The default is none.

attribution Attribution string for replies. When you reply to a message and include the
message in the reply, this string is placed at the top of the message. The
characters %s are replaced by the full name of the author of the original
message. The default is none. For example:

attribution = %s wrote:

calendar The name of your calendar file. This is used in conjunction with the Mes-
sage Menu < (calendar) command, which scans messages for calendar
entries. The default is $HOME//calendar .

charset The name of the character set used with the MIME Content-Type:
header for the text/plain type. It can be any Internet-defined charac-
ter set name that is a superset of US-ASCII . The default is US-ASCII .
For example,

Content-Type: text/plain; charset=US-ASCII

compatcharsets A list of Internet-defined character sets that are supersets of US-ASCII, so
that messages with charset=US-ASCII can be displayed without the
help of metamail . The default is a string containing the following values:

Extended_UNIX_Code_Packed_Format_for_Japanese
ISO-2022-JP
ISO-8859-1
ISO-8859-2
ISO-8859-3

Section 1−−222 − 19 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

ISO-8859-4
ISO-8859-5
ISO-8859-7
ISO-8859-8
ISO-8859-9
KOI8-R
Shift_JIS

configoptions A string of options that can be configured on the Options Menu. Specify the
options as a single letter each, in the order they should be displayed. The
default is "ˆ_cdefsopyv_am_un ". The defaults are marked below with
an *.

The option characters include:

^ The menu title.
_ A blank line.
a The arrow string variable. *
b The prefix string variable.
c The calendar string variable. *
d The pager string variable. *
e The editor string variable. *
f The maildir string variable. *
h The copy boolean variable.
j The alteditor string variable.
k The promptafter boolean variable.
l The aliassortby string variable.
m The menu boolean variable. *
n The names boolean variable. *
o The sentmail string variable. *
p The print string variable. *
r The autocopy boolean variable.
s The sortby string variable. *
t The easyeditor string variable.
u The userlevel numeric variable. *
v The visualeditor string variable. *
w The askcc boolean variable.
y The fullname string variable. *
z The sigdashes boolean variable.

displaycharset The name of the character set supported by the display. This is indepen-
dent of the charset string variable. This is also copied to the
MM_CHARSETenvironment variable when metamail is called. The
default is US-ASCII .

easyeditor The name of the editor for the ˜e command of the built-in editor. See also
the editor string variable. The default is none.

editor The name of the editor to use when creating new mail. The default is the
value of the EDITOR environment variable, if set and nonnull, or
/usr/bin/vi otherwise.

You can use none or builtin to specify the built-in editor. The built-in
editor is available for all outbound mail that does not already have text in
the send buffer (no forwarded message, no copied message in a reply, no
signature in any outbound message, etc.). If there is text in the send buffer
and builtin is specified, the editor defined by the alteditor variable
is used instead.

See also the alteditor , easyeditor , and visualeditor string
variables.

escape The escape character used in the built-in editor. The default is tilde (˜).

fullname The name the mailer will use when sending mail from you. The default is
the full name portion (everything up to the first comma) of the pw_gecos
field from your entry in the /etc/passwd file. This field can be set with

HP-UX Release 11i: December 2000 − 20 − Section 1−−223

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

the chfn command (see chfn(1), finger(1), and passwd(4)).

localsignature A signature file that is automatically appended to outbound mail to the
local host before the editor is invoked. This usually contains personal data
about the sender. See also the remotesignature string variable. The
default is none.

All the addresses in the To: header must be apparently for the local host.
Local addresses are those that, after any elm alias conversion, do not con-
tain a domain name. That is, they have only a user name (for example,
santaclaus) or a user name and the local host name (for example,
santaclaus@northpole).

santaclaus@northpole.arcticsea.org is considered to be a
remote address, even if it points to the local host. A user name that is
readdressed by the sendmail system alias list is treated as local if it
matches the preceding criteria.

maildir Your mail directory, where you usually store your folders for received and
outbound mail. The default is $HOME//Mail .

In elm , you can use the = metacharacter to specify this directory. For
example, if you save a message to file =/archive , the = is expanded to
the current value of maildir . (The slash (/) is optional.)

When you start elm , if the directory specified by maildir does not exist,
you are asked if you want to create it. If you answer y (yes), the directory
is created, with access permissions set to 700 .

pager The program to display each message. The default is the value of the
PAGERenvironment variable, if set and nonnull, or the built-in pager,
builtin+ , otherwise.

The built-in pager, builtin+ , also allows you to execute some Message
Menu commands while you are viewing the message and it has some simple
forward and backward scrolling commands. While it is active, enter ? for a
list of commands. An alternative is the more utility.

precedences A list of precedence values that you can place in a Precedence: header
entry in outbound mail, using the Header Menu. Each precedence value
can be optionally paired with a priority value that is automatically placed in
a Priority: header entry, causing the received message to be marked
as urgent. The default is none.

The HP-UX mail transport agent, sendmail , recognizes this header. If
the precedence value is defined by a P control line in the sendmail
configuration file, /etc/mail/sendmail.cf , the transmission priority
of the message is adjusted accordingly. See sendmail(1M).

The format of the entry is

precedences = precedence[: priority] [precedence[: priority]] ...

precedence is a precedence name. The default list defined in
/etc/mail/sendmail.cf is:

first-class Transmission priority 0, the default
special-delivery Transmission priority 100
list Transmission priority −30
bulk Transmission priority −60
junk Transmission priority −100

priority is an arbitrary string that is placed in a Priority: header entry.

prefix The prefix for an included line in an outbound message. When you reply to
a message or forward a message to another person, you can optionally
include the original message. This prefix marks the included line. The
default is >_ (the _ is interpreted as a space character).

print The command to run when the p (print) command is executed from various
menus. There are two possible formats for this string: If the string

Section 1−−224 − 21 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

contains the special variable %s, the variable is replaced by the name of a
temporary file that contains the messages, and the command is executed by
the shell defined by the shell string variable. If the string does not con-
tain %s, the temporary file name is appended to it, and the command is
executed. The default is

cat %s | lp

receivedmail The file where the received messages will be saved. The default is
=received , the file received in the directory defined by maildir .

remotesignature A signature file that is automatically appended to all outbound mail to
remote hosts before the editor is invoked. This usually contains personal
data about the sender. See also the localsignature string variable.
The default is none.

If any of the addresses in the To: header entry are not local, as described
for the localsignature string variable, the remote signature file is
attached.

savecharset The character set to be used to save a message in a folder. Possible values
are JIS , SJIS , and EUC. If a value is not specified, the message will be
saved according to your locale (given by the LC_TYPE and/or LANG
environmental variables). This option is applicable only for the Japanese
locale. The default is none. See also the jisconversion boolean vari-
able.

sentmail The file where copies of outbound mail can be saved. One possibility is your
incoming mailbox, /var/mail/ loginname. The default is =sent , the
file sent in the directory defined by maildir .

See the copy boolean variable for further details.

shell The shell to use for ! escapes and other such operations. The default is the
value of the SHELL environment variable, if set and nonnull, or
/usr/bin/ksh otherwise.

sortby The way to sort the index of the current folder. The choices are:

from The name of the sender.

sent The date the message was sent.

received The date the message was received.

subject The subject of the message. A leading Re: (and some oth-
ers) is ignored, so replies sort with original messages.

lines The number of lines in the message.

status The read status: blank, O, and N.

You can prefix these values with reverse- to reverse the order of the
sort. The value can be modified on the Options Menu. The default is
reverse-sent .

textencoding Type of encoding to put into the MIME Content-Transfer-
Encoding: header entry. The choices are 7bit or 8bit . The default is
7bit .

tmpdir Where to create temporary files. The default is the value of the TMPDIR
environment variable, if set and nonnull, or to /tmp/ otherwise.

visualeditor Name of the editor to use for the ˜v command of the built-in editor. The
default is the value of the VISUAL environment variable, if set and non-
null, or /usr/bin/vi otherwise.

weedout A list of header-entry initial strings that you don’t want to see when you
are reading mail. This list is made effective by setting the weed boolean
variable to ON.

The list can continue for as many lines as desired, as long as the continued
lines all have leading blanks. To include blanks in a string, enclose it in

HP-UX Release 11i: December 2000 − 22 − Section 1−−225

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

quotation marks ("). The strings you specify are normally appended to the
default list, which is:

>From
Apparently-To:
Content-Length
Content-Transfer-Encoding
Content-Type:
From
In-Reply-To:
MIME-Version
Mailer:
Message-Id:
Newsgroups:
Received:
References:
Status:
X-Mailer:

There are two special values:

clear-weed-list

Clear the default list. The default headers are removed from the
weedout list, allowing you to completely define your own list.

end-of-user-headers

Mark the end of the weedout list, in case any following lines could
be mistaken for headers in the list.

The default value of weedout is *end-of-user-headers* .

The underscore (_) character can be used to specify a space.

Note that From weeds out both From and From: . If, for example, you
want to weed out From but not From: , specify *clear-weed-list*
followed by From_ and any other headers that you don’t want to see.

Numeric Variables
Numeric variables have the form

numeric-name = numeric-value

The following numeric variables are defined.

bounceback Threshold for returning copies of remote UUCP messages. If the destina-
tion host is greater than the specified number of hops (gateways) from your
local host, the destination host sends you a copy of the message when it is
received. If the value is 0, this feature is disabled. The default is 0.

builtinlines Determines if the built-in pager should be used on some messages, even if
you usually use an external pager, defined in the pager string variable.
There are two ways of defining whether the built-in pager should be used.

• If you want to use the built-in pager on any message that is shorter than
n lines, set the value to n.

• If you want to use the built-in pager on any message that is m lines
shorter than the number of lines on your screen, set the value to - m.

If you set the value to 0, the message will always be sent through the
external pager. The default is -3 .

noencoding This enables you to send raw 8-bit or binary data when the mail transfer
agent doesn’t support the 8BITMIME and the -B8BITMIME options. The
default is 0.

The possible values are:

0 Always convert 8-bit and binary messages to 7-bit before sending
them.

Section 1−−226 − 23 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

1 Convert 8-bit messages to 7-bit, but depend on sendmail to handle
binary messages.

2 Depend on sendmail to handle both 8-bit and binary messages.

readmsginc The value by which the Reading in folder, message: counter is
incremented while reading a new folder. If you set this value to a number
larger than one, it will speed up the time it takes to read a large folder
when you are using a slow terminal. The default is 1.

sleepmsg The time in seconds that elm will wait after displaying a diagnostic mes-
sage before erasing it. The value can be 0 or a positive integer. The
default is 2.

timeout The interval, in seconds, after which elm rechecks the incoming mailbox
for new mail. The default is 600 (10 minutes).

userlevel The relative level of your user sophistication. Acceptable values are:

0 Novice user (the default). Command menus are a small verbose sub-
set of the available commands.

1 Moderately experienced user. Command menus are a larger terse
subset of the available commands. Outbound message commands
allow you to recover previously unsent messages as the text of the
current outbound message.

2 Expert. The features are the same as for 1.

Level 1 or 2 is required if you want to send a forms message.

Boolean Variables
Boolean variables have the forms

boolean-name = ON −and− boolean-name = OFF

The following boolean variables are defined.

alwaysdelete If ON, the default answer of the Message Menu q (quit) prompt

Delete messages? (y/n)

is set to y (yes). If OFF, the default answer is set to n (no). The default is
OFF. See the Message Menu q command.

alwayskeep If ON, the default answer of the Message Menu q (quit) prompt

Keep unread messages in incoming mailbox? (y/n)

is set to y (yes). If OFF, the default answer is set to n (no). The default is
ON. See the Message Menu q command.

alwaysstore If ON, the default answer of the Message Menu q (quit) prompt

Move read messages to "received" folder? (y/n)

is set to y (yes). If OFF, the default answer is set to n (no). The default is
OFF. See the Message Menu q command.

arrow If ON, use an arrow (->) to mark the current item in a menu index. If
OFF, use an inverse bar. If the program is invoked with the -a command
line option, arrow is set to ON. The default is OFF.

ask If ON, you are asked the questions

Delete messages? (y/n)
Move read messages to "received" folder? (y/n)
Keep unread messages in incoming mailbox? (y/n)

(as appropriate) each time you leave the program with the Message Menu q
(quit) command. See that command for details of the process. If OFF, or if
you use the Message Menu Qcommand, elm uses the values defined by the
alwaysdelete , alwaysstore , and alwayskeep boolean variables,
respectively, without prompting. The default is ON.

HP-UX Release 11i: December 2000 − 24 − Section 1−−227

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

askcc If ON, elm prompts you for "carbon copies" with the prompt Copies To:
each time you send, forward, or reply to a message. If OFF, the prompt is
omitted. In either case, you can still explicitly include Cc: addresses with
the ˜c command in the built-in editor, or with the Header Menu com-
mands. The default is ON.

autocopy If ON, elm automatically copies the text of the message you are replying to
into the edit buffer. If OFF, elm prompts you with Copy message? .
The default is OFF.

confirmappend If ON, you are asked to confirm before messages are appended to an exist-
ing file, whether it is a file in your mail directory or a file in another direc-
tory. If OFF, see confirmappend and confirmfiles Operation
below. The default is OFF.

confirmcreate If ON, you are asked to confirm before a new file is created. whether it is a
file in your mail directory or a file in another directory. If OFF, see con-
firmcreate and confirmfolders Operation below. The default is
OFF.

confirmfiles If ON, you are asked to confirm before messages are appended to an exist-
ing file that is not in your mail directory. This does not affect files in your
mail directory. If OFF, see confirmappend and confirmfiles
Operation below. The default is OFF.

confirmfolders If ON, you are asked to confirm before a new file is created in your mail
directory. This does not affect files in other directories. If OFF, see con-
firmcreate and confirmfolders Operation below. The default is
OFF.

confirmcreate and confirmfolders Operation

confirmcreate=ON and confirmfolders=ON
Confirm before creating a file in your mail directory.
Confirm before creating a file another directory.

ONand OFF Confirm before creating a file in your mail directory.
Confirm before creating a file another directory.

OFFand ON Confirm before creating a file in your mail directory. Do
not confirm before creating a file another directory.

OFFand OFF Do not confirm before creating a file in your mail directory.
Do not confirm before creating a file another directory.

confirmappend and confirmfiles Operation

confirmappend=ON and confirmfiles=ON
Confirm before appending to a file in your mail directory.
Confirm before appending to a file in another directory.

ONand OFF Confirm before appending to a file in your mail directory.
Confirm before appending to a file in another directory.

OFFand ON Confirm before appending to a file in your mail directory.
Do not confirm before appending to a file in another direc-
tory.

OFFand OFF Do not confirm before appending to a file in your mail direc-
tory. Do not confirm before appending to a file in another
directory.

copy If ON, save silent copies of all outbound mail on the outbound step. If OFF,
do not save copies. The default is OFF.

If ON, and the savename boolean variable is ON, elm first tries to save it
to a file named as defined by savename . If the file exists, the message is
saved. If the file does not exist, but the forcename boolean variable is
ON, the file is created and the message is saved. If forcename=OFF , the
message is saved to the file defined by the sentmail string variable. If
savename=OFF , the message is saved to the file defined by the

Section 1−−228 − 25 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

sentmail string variable.

forcename If ON, create the folder when saving outbound messages by the login name
of the recipient, even if the folder doesn’t already exist. If OFF, do not
create the folder. The default is OFF.

See the copy boolean variable for further details.

forms If ON, and the userlevel numeric variable is 1 or 2, you can create a
forms message. The Send Menu m (make form) command converts your
message into a forms message. If OFF, you cannot. The default is ON.

jisconversion If ON, convert outbound mail to JIS (Japanese Industrial Standard) before
sending it. If OFF, do not convert it. This option is applicable only to the
Japanese locales, ja_JP.SJIS and ja_JP.eucJP . The default is OFF.
savecharset string variable.

keepempty If ON, keep folders from which all the messages are deleted. If OFF, delete
empty folders. The default is OFF.

keypad If ON, enable the HP 2622 terminal cursor keys. If OFF, disable the cursor
keys. If the program is invoked with the -K command line option,
keypad is set to OFF. See also the softkeys boolean variable. The
default is ON.

menu If OFF, this inhibits the menu display on all program screen displays. If
ON, the menus are displayed. If the program is invoked with the -m com-
mand line option, menu is set to OFF. The default is ON.

metoo If ON, you are sent a copy of the message that you send to an alias that
includes your name also. If OFF, the copy is not sent. The default is OFF.

mimeforward If ON, a forwarded message is sent as an attachment. If OFF, a forwarded
message is sent as part of the main message. The default is ON.

movepage If ON, commands that move through the mailbox by pages (the + and -
commands) also move the current index pointer to the top of the new page
of messages. If OFF, moving through the pages does not alter the current
message pointer location. The default is ON.

names If ON, show only the user names when expanding the To: aliases for an
outbound message. If OFF , show the entire expanded addresses. The
default is ON.

nohdrencoding If ON, don’t do RFC 1522 encoding for header values that contain 8-bit or
multibyte characters. If OFF, do the encoding. The default is OFF.

noheader If ON, do not include the headers of messages when copying a message into
a file buffer for replying to or forwarding. If OFF, copy all headers. The
default is ON.

noheaderfwd If ON, do not include headers when copying a message into a file buffer for
forwarding. If OFF, copy all headers. For forwarding, this option overrides
the setting of noheader . The default is OFF.

pagemultipart If ON, use the value of the pager variable to display MIME multipart
messages with unknown subparts or with unknown subtypes. If OFF, call
metamail to view multipart messages. The default is OFF.

pointnew If ON, automatically point to the first new message in your message index
at start-up. If OFF, point to the first message. In either case, if the start-
up folder is not your incoming mailbox, or if there are no new messages,
point to the first message. The default is ON.

promptafter If ON, prompt for a command after the external pager exits. If OFF, return
to the calling menu. The default is ON.

resolve If ON, move the pointer to the next message in the index, after deleting,
undeleting, saving, or forwarding a message. If OFF, keep the pointer at
the current message. The default is ON.

HP-UX Release 11i: December 2000 − 26 − Section 1−−229

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

savename If ON, and you are saving a message, elm constructs a suggested file name
in your maildir directory from the user name of the person who sent the
message, in the form =username. If OFF, no file name is suggested.

If ON, and you are sending a message that will be saved, elm constructs a
file name based on the user name of the first entry in the To: list, in the
same form as above. If OFF, no file name is constructed. See the copy
boolean variable for further details.

The default is ON.

sigdashes If ON, insert two dashes above the signature text, included from a local or
remote signature file. This is a common convention. If OFF, omit the
dashes. The default is ON.

softkeys If ON, enable the HP 2622 terminal function-key protocol. If OFF, disable
the function-key protocol. If the program is invoked with the -k or -K
command line option, softkeys is set to OFF. See also the keypad
boolean variable. The default is OFF.

titles If ON, title a displayed message with a line in the form:

Message number/ total sendername date time

sendername, date, and time are extracted from the message headers in the
manner described in Message Index. This is useful if you have suppressed
the relevant header entries with the weedout list. If OFF, the message is
not titled. The default is ON.

usetite If ON, use the termcap ti /te and terminfo cup cursor-positioning
entries (see terminfo(4)). If OFF, do not use those entries. If the program
is invoked with the -t command line option, usetite is set to OFF. The
default is ON.

weed If ON, do not display the headers defined by weedout variable when
displaying a message for reading. If OFF, display all headers. The default
is ON.

METAMAIL CONFIGURATION
MIME (Multipurpose Internet Mail Extensions) encoding classifies the message and its attachments accord-
ing to a Content-Transfer-Encoding, which is the encoding, if any, that is used to make the message mail-
able, and a Content-Type, which is the type and form of the message part after it has been decoded. The
encoding and types are described in more detail in the Attachment Configuration Menu subsection and in
RFC 1521.

elm provides built-in support for the following Content-Types:

text/plain [; charset= charset]

The text is all in the displayable character set charset which defaults to US-ASCII .

multipart/mixed ; boundary= boundary-string

The message is composed of a number of individual "body parts", separated by -- boundary-
string, each having optional headers defining Content-Type and Content-Transfer-Encoding. The
default Content-Type is text/plain .

multipart/digest ; boundary= boundary-string

This is similar to multipart/mixed , except that the default Content-Type is
message/rfc822 .

multipart/report ; boundary= boundary-string

message/rfc822

The message consists of another message in standard message format.

metamail is a system program that is invoked by elm to manage the display of messages and attach-
ments that are not displayable in ordinary ASCII text.

Section 1−−230 − 27 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

metamail provides external support for other Content-Types, as defined in one or more mailcap files.
The system mailcap file is /etc/mail/mailcap . You can define your own default mailcap file in
$HOME/.mailcap . You can also specify your own list of mailcap files by setting the MAILCAPS
environment variable. The mailcap files are searched in order until an entry is found that matches the
Content-Type and any qualifications.

A minimum mailcap entry consists of a line in the form:

content-type ; command

The command is the command that you would type to view a file of the indicated Content-Type, with the
string %s replaced by a file name. For example, to view body part that was HTML source text and had the
Content-Type text/html , you could have the entry

text/html; netscape %s

Similarly, for a GIF image file, you could have the entry

image/gif; xv %s

RFC 1521 defines a number of Content-Types that elm leaves for metamail to handle:

text/richtext
multipart/alternative
multipart/parallel
multipart/digest
message/partial
message/external-body
image/jpeg
image/gif
audio/basic
video/mpeg
application/octet-stream
application/postscript

Check the system mailcap file for entries that handle many of them.

EXTERNAL INFLUENCES
Environment Variables

HOME Your home (login) directory.

EDITOR If set and nonnull, provides a default value for the alteditor and editor string vari-
ables.

LANG If set and nonnull, determines the language in which messages are displayed. The default
is C. See environ(5).

MAILCAPS If set, defines the search path for mailcap files used by metamail . The default is

$HOME/.mailcap:/etc/mail/mailcap

PAGER If set and nonnull, provides a default value for the pager string variable.

SHELL If set and nonnull, provides a default value for the shell string variable.

TMPDIR If set and nonnull, provides a default value for the tmpdir string variable.

VISUAL If set and nonnull, provides a default value for the visualeditor string variable.

International Code Set Support
Single- and multibyte character code sets are supported.

EXAMPLES
Message Mode Example

To send a message without loading the main elm mail-processing program, use the simple command form
consisting of the name of the program followed by the recipient’s login name and optional address. elm
prompts for subject and copies, then starts an editor so you can compose the message (user responses are in
italic type):

$ elm j_doe
To: doe (John Doe)

HP-UX Release 11i: December 2000 − 28 − Section 1−−231

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

Subject: this is a test
Copies To: ...
...invokes editor, you compose message, then...
Your options now are:
a)ttachments e)dit message edit h)eader s)end it f)orget it.

What is your choice? s
mail sent!

If you "forget" the message, it is saved in $HOME/Canceled.mail .

File Mode with Redirection
To send a file by use of command-line redirection, use a command like:

$ elm j_doe < help.c

which reads file help.c and sends it with the default subject.

File Mode with a Pipe
To mail the output of a command and include a subject line:

$ ls -a | elm -s "Directory Listing" j_doe

WARNINGS
Using two separate mail programs to access the same mail file simultaneously (usually inadvertently from
two separate windows) can cause unpredictable results.

AUTHOR
elm was developed by Hewlett-Packard Company.

FILES
$HOME/.elm Directory for the user’s elm alias, configuration, header,

and other files
$HOME/.elm/aliases User alias database data table
$HOME/.elm/aliases.dir User alias database directory table
$HOME/.elm/aliases.pag User alias database hash table
$HOME/.elm/aliases.text User alias source text
$HOME/.elm/elmheaders User-defined additional headers
$HOME/.elm/elmrc User configuration file
$HOME/Canceled.mail Canceled message in noninteractive use.
/tmp/alias. pid Temporary file for deleting alias
/tmp/form. pid Editor buffer for forms message
/tmp/mbox. loginname Temporary mailbox for user logname
/tmp/print. pid Temporary file for printing message
/tmp/snd. pid Outgoing mail message edit buffer
/tmp/sndh. pid Outgoing mail header edit buffer
/usr/lib/nls/msg/C/elm.cat Location of the message catalog
/usr/share/lib/elm/elmrc-info Comment file for $HOME/.elm/elmrc file
/var/mail Directory for incoming mail;

it must have mode 755 and group ID mail
/var/mail/.elm Directory for elm mailer system aliases
/var/mail/.elm/aliases System alias database data table
/var/mail/.elm/aliases.dir System alias database directory table
/var/mail/.elm/aliases.pag System alias database hash table
/var/mail/.elm/aliases.text System alias source text
/var/mail/ loginname Incoming mailbox for user;

it must have mode 660 and group ID mail
/var/mail/ loginname.lock Lock for mail directory

SEE ALSO
answer(1), chfn(1), elmalias(1), fastmail(1), finger(1), mailfrom(1), newalias(1), newmail(1), readmail(1),
vi(1), sendmail(1M), passwd(4), terminfo(4), environ(5).

RFC 821 "Simple Mail Transfer Protocol (SMTP)"

Section 1−−232 − 29 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elm(1) elm(1)

RFC 822 "Standard for the Format of Internet Text Messages"

RFC 1521 "MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and
Describing the Format of Internet Message Bodies"

RFC 1522 "MIME (Multipurpose Internet Mail Extensions) Part Two: Message Header Extensions for
Non-ASCII Text"

HP-UX Release 11i: December 2000 − 30 − Section 1−−233

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elmalias(1) elmalias(1)

NAME
elmalias - display and verify elm user and system aliases

SYNOPSIS
elmalias [-dersu] [-a -f format-n -v -V] [alias-name-list]

Remarks
The former functionality of the elmalias command has been taken over by the newalias command
(see newalias(1)).

DESCRIPTION
The elmalias command displays and verifies user and system elm aliases.

The system database must have been created by the newalias command (see newalias(1)). The user
database must have been created by either the newalias command or the elm mail system (see elm(1)).
If the same alias is in both databases, the user version is used. Missing database files are silently ignored.

Each database entry can have the following fields, which are described in detail in newalias(1):

alias-list A list of one or more aliases for the entry.

address-list A list of one or more addresses for the entry. An address can be an alias from another
entry’s alias-list.

comment An optional field containing information about the entry. This field is not included in
outbound mail.

firstname An optional field interpreted as the first name of the person or group. It is used in
fullname.

lastname An optional field interpreted as the last name of the person or group. It is used in
fullname.

fullname A combination value made up from the firstname and lastname fields, in the form:
firstname lastname.

elmalias recognizes three types of alias names:

person A database entry that has one address in address-list. elmalias assumes this
address is a valid mailing address.

group A database entry that has two or more addresses in address-list. elmalias
assumes initially that these addresses are aliases to person or group entries.

unknown An address in a group entry or an alias in alias-name-list that is not an alias in the
database. In both cases, the item is reported as both the alias name and its address.

With no options or operands, elmalias displays the address-list field for each alias in the two databases.
If an entry has more than one alias, the address-list field is displayed multiple times.

With an alias-name-list and no options, elmalias displays the address-list field of each alias name in the
list. If an alias name is not found in the databases, it is treated as unknown , without comment.

Options
elmalias recognizes the following options:

-a Change the display to alias name followed by address-list field.

-d Turn debugging on.

-e Fully expand group aliases. This option can be used only when an alias-name-list is
given.

If an address in a group address list is an alias name, it is replaced by that alias
entry. The process is recursive until the results are either person or unknown
types. If a group address is not an alias name, it is reported as both the alias name
and the address, with type unknown . Duplicate alias names are reported only once.
person entries are not expanded, even if their addresses are actually aliases.

-f format Display the format string for each alias name in the file or in the alias-name-list. The
following character pairs are replaced in the format by the corresponding value for
each alias.

Section 1−−234 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elmalias(1) elmalias(1)

%a The alias name.

%c The comment field.

%l The lastname field.

%n The fullname value.

%t The alias type: person , group , or unknown .

%v The address-list field.

-n Change the display to address-list followed by fullname, if any, in parentheses.

-r Report an error if a name in alias-name-list does not correspond to an alias in the
database. Display a message for each unknown name and exit with a nonzero status.

-s Use the system alias database only, unless -u is also specified.

-u Use the user alias database only, unless -s is also specified.

-v Use a verbose output format. Change the display to alias name, followed by address-
list, followed by fullname, if any, in parentheses.

-V Use a very verbose, multiline output format with the following titles, corresponding to
the format codes of the -f option. If a field is empty, the title is omitted.

Alias:
Address:
Type:
Name:
Last Name:
Comment:

EXIT STATUS
elmalias sets the following exit status values:

0 Normal completion.

<>0 An error occurred. You may have specified:

• An invalid option.
• The -e option without an alias-name-list.
• The -f option without a format .
• The -r option with an unknown alias name in alias-name-list.

EXAMPLES
Consider a user database that contains the following entries:

sample alias file
mom = My Mommy, Work: x2468 = my_mother@a.computer
dad,father,pop = Father; Dear, Work: x1357 = host!otherhost!dad
parents = The Folks = mom dad parent@host
siblings = The Kids = brother1

brother2
sister

brother1 = Son; First = bro1@kid.computer

Since brother2 and sister do not refer to alias entries, they are typed as unknown.

elmalias with no options or operands produces the following output.

my_mother@a.computer
host!otherhost!dad
host!otherhost!dad
host!otherhost!dad
mom,dad,parent@host
brother1,brother2,sister
bro1@kid.computer

elmalias -v produces the alias names, address, and full name, as follows:

HP-UX Release 11i: December 2000 − 2 − Section 1−−235

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

elmalias(1) elmalias(1)

mom my_mother@a.computer (My Mommy)
dad host!otherhost!dad (Dear Father)
father host!otherhost!dad (Dear Father)
pop host!otherhost!dad (Dear Father)
parents mom,dad,parent@host (The Folks)
siblings brother1,brother2,sister (The Kids)
brother1 bro1@kid.computer (First Son)

To expand a set of aliases and format them with field titles, use the -e and -f options, as in the following
command:

elmalias -ef "Alias: %a Address: %v Type: %t" parents siblings

producing:

Alias: mom Address: my_mother@a.computer Type: Person
Alias: dad Address: host!otherhost!dad Type: Person
Alias: parent@host Address: parent@host Type: Unknown
Alias: brother1 Address: bro1@kid.computer Type: Person
Alias: brother2 Address: brother2 Type: Unknown
Alias: sister Address: sister Type: Unknown

AUTHOR
elmalias was developed by HP.

FILES
$HOME/.elm/aliases User alias database data table
$HOME/.elm/aliases.dir User alias database directory table
$HOME/.elm/aliases.pag User alias database hash table
$HOME/.elm/aliases.text User alias source text
/var/mail/.elm/aliases System alias database data table
/var/mail/.elm/aliases.dir System alias database directory table
/var/mail/.elm/aliases.pag System alias database hash table
/var/mail/.elm/aliases.text System alias source text

SEE ALSO
elm(1), newalias(1).

Section 1−−236 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

enable(1) enable(1)

NAME
enable, disable - enable/disable LP printers

SYNOPSIS
enable printers

disable [-c] [-r [reason]] printers

DESCRIPTION
The enable command activates the named printers, enabling them to print requests taken by lp . Use
lpstat to find the status of printers (see lp(1) and lpstat(1)).

disable deactivates the named printers, disabling them from printing requests taken by lp . By default,
any requests that are currently printing on the designated printers are reprinted in their entirety either on
the same printer or on another member of the same class. Use lpstat to find the status of printers.

Options
disable recognizes the following options:

-c Cancel any requests that are currently printing on any of the designated printers.

-r [reason] Associate a reason with the deactivation of the printers. This reason applies to all
printers mentioned up to the next -r option. If the -r option is not present or the
-r option is given without a reason, a default reason is used. reason is reported by
lpstat . The maximum length of the reason message is 80 bytes.

EXTERNAL INFLUENCES
Environment Variables

LANGdetermines the language in which messages are displayed.

If LANGis not specified or is null, it defaults to C (see lang(5)).

If any internationalization variable contains an invalid setting, all internationalization variables default to
C (see environ(5)).

International Code Set Support
Single- and multibyte character code sets are supported.

EXAMPLES
Enable printer snowwhite to accept requests:

enable snowwhite

Deactivate printer snowwhite and cancel any logged jobs:

disable -c snowwhite

WARNINGS
If the restrict cancel feature (selected by the lpadmin -orc option — see lpadmin(1M)) is enabled,
disable ignores the -c option.

enable and disable perform their operation on the local system only.

FILES
/etc/lp/*
/usr/lib/lp/*
/var/adm/lp/*
/var/spool/lp/*

SEE ALSO
lp(1), lpstat(1), accept(1M), lpadmin(1M), lpsched(1M), rcancel(1M), rlp(1M), rlpdaemon(1M), rlpstat(1M).

HP-UX Release 11i: December 2000 − 1 − Section 1−−237

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

env(1) env(1)

NAME
env - set environment for command execution

SYNOPSIS
env [-] [-i] [name = value] ... [command [arguments ...]]

DESCRIPTION
env obtains the current environment , modifies it according to its arguments, then executes the command
with the modified environment. Arguments of the form name=value are merged into the inherited
environment before the command is executed. The -i option causes the inherited environment to be
ignored completely so that the command is executed with exactly the environment specified by the argu-
ments. The - option is obsolete and has the same effect as the -i option.

If no command is specified, the resulting environment is printed, one name-value pair per line.

RETURN VALUE
If command is invoked, the exit status of env is the exit status of command; otherwise, env exits with
one of the following values:

0 env completed successfully.
1-125 env encountered an error.
126 command was found but could not be invoked.
127 command could not be found.

EXTERNAL INFLUENCES
Environment Variables

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_MESSAGESis not specified in the environment or is set to the empty string, the value of LANGis
used as a default for each unspecified or empty variable. If LANGis not specified or is set to the empty
string, a default of "C" (see lang(5)) is used instead of LANG.

If any internationalization variable contains an invalid setting, env behaves as if all internationalization
variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

WARNING
The - option is obsolete. Use -i instead.

SEE ALSO
sh(1), exec(2), profile(4), environ(5).

STANDARDS CONFORMANCE
env : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

Section 1−−238 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

eucset(1) eucset(1)

NAME
eucset - sets and gets code widths for ldterm

SYNOPSIS
eucset [-p]

eucset [[-c HP15-codeset] or [-c UTF8] or [cswidth]]

DESCRIPTION
The eucset command sets or gets (reports) the encoding and display widths of the Extended UNIX Code
(EUC) and UCS Transformation Format (UTF8) characters processed by the current input terminal. EUC
is an encoding method for codesets composed of single or multiple bytes. It permits applications and the
terminal hardware to use the 7-bit US ASCII code and up to three single byte or multibyte code sets simul-
taneously.

The eucset command without any options, first tries to set the codeset to one of the four HP15 codesets.
If unsuccessful, 7-bit US ASCII is used as the default codeset. This command must be used to specify any
other EUC codesets, whether they are single byte or multibyte. See the WARNINGS section, for special
warnings on the values of the cswidth argument.

To utilize this command for UTF8, specify UTF8 with the -c option.

Options
The eucset command recognizes the following options and arguments:

-p Displays the current settings of the EUC character widths for the terminal.

-c Sets the codeset to one of the four HP15 codesets or the UTF8 codeset. The HP15 codesets
supported are SJIS , CCDC, GB, and BIG5 .

EUC Code Set Classes
EUC divides codesets into four classes. Each codeset has two characteristics: the number of bytes for
encoding the characters in the codeset, and the number of display columns to display the characters in the
codeset. All characters within a codeset possess the same characteristics.

• Codeset 0 consists of all 7-bit, single byte ASCII characters. The most significant bit of each of
these characters is 0 (zero). Characters in codeset 0 require one byte for encoding, and occupy one
display column. These values are fixed for codeset 0 (zero). The 7-bit US ASCII code is the pri-
mary EUC codeset, which is available to users without direct specification.

• Codeset 1 is a supplementary EUC codeset. Codeset 1 characters have an initial byte whose most
significant bit is 1. Characters in codeset 1 may require more than one byte for encoding, and may
require more than one display column. The eucset command must be used to set the charac-
teristics for codeset 1.

• Codesets 2 and 3 are supplementary EUC codesets. Characters in these codesets have an initial
byte of SS2 or SS3, respectively. They require more than one byte for encoding, and may require
more than one display column. The eucset command must be used to set the characteristics for
codesets 2 and 3.

The cswidth argument in the eucset command line is a character string that describes the character
widths for codesets 1 through 3. This command does not allow the user to modify the settings for codeset 0.
The character string is of the following format:

X1 [: Y1], X2 [: Y2], X3 [: Y3]

The value X1 is the number of bytes required to encode a character in codeset class 1. Y1 is the number of
display columns needed to display characters in this class. X2 is the number of bytes required to encode a
character in codeset 2, not counting the SS2 byte, and Y2 is the number of display columns for codeset 2
characters. X3 is the number of bytes needed to encode characters in codeset 3, not counting the SS3 byte,
and Y3 is the number of display columns required for these characters. The values for the column widths
may be omitted if they are equal to the number of encoding bytes. If the encoding value of any of the EUC
codesets is set to 0 (zero), this indicates that the codeset does not exist. See the WARNINGS section for
special warnings on the values of the cswidth argument.

If no cswidth argument is supplied, the eucset command uses the value of the CSWIDTHenvironment
variable. If this variable is not present, the following default string is substituted:

HP-UX Release 11i: December 2000 − 1 − Section 1−−239

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

eucset(1) eucset(1)

1:1,0:0,0:0

This default string designates that the environment uses a single byte EUC codeset that has characters in
the EUC codeset 1 format. If the environment uses a multibyte EUC codeset in the codeset 1 format, sin-
gle byte or multibyte EUC codesets in the codeset 2 or 3 format, or both, the default setting cannot be used.

EXTERNAL INFLUENCES
Environment Variables

LANG Provide a default value for the internationalization variables that are unset or null. If
LANGis not specified or is set to the empty string, a default of C (see lang(5)) is used
instead of LANG. If any of the internationalization variables contain an invalid set-
ting, eucset behaves as if all internationalization variables are set to C. See
environ(5).

LC_ALL If set to a nonempty string value, override the values of all other internationalization
variables.

LC_MESSAGES Determines the locale that should be used to affect the format and contents of diag-
nostic messages written to standard error and informative messages written to stan-
dard output.

NLSPATH Determines the location of message catalogs for the processing of LC_MESSAGES.

EXAMPLES
To display the encoding and display widths for the EUC codesets 1 to 3 in your environment, enter:

eucset -p

Assuming eucset has been previously used to set for ja_JP.eucJP , the entry generates the following:

cswidth 2:2,1:1,2:2

To change the current settings of the encoding and display widths for the EUC characters in codesets 1 and
2 to two bytes each, enter one of the following:

eucset 2:2,2:2,0:0

eucset 2,2,0

To set the encoding and display widths for the EUC characters in the locale ja_JP.eucJP , enter:

eucset 2:2,1:1,2:2

For zh_TW.eucTW , enter:

eucset 2:2,3:2

For ko_KR.eucKR , enter:

eucset 2:2

To set the codewidth to that of UTF8, enter:

eucset -c UTF8

WARNINGS
The cswidth argument does not include the SS2 or SS3 bytes in the byte width values.

This command is not specified by standards, may not be available on other vendor’s systems, and may be
subject to change or obsolescence in a future release.

AUTHOR
eucset was developed by OSF and HP.

SEE ALSO
dtterm(1), ldterm(1).

Section 1−−240 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ex(1) ex(1)

NAME
ex, edit - extended line-oriented text editor

SYNOPSIS
ex [-] [-l] [-r] [-R] [-t tag] [-v] [-w size] [-x] [-C] [+command] [file ...]

XPG4 Synopsis
ex [-rR] [-s -v] [-c command] [-t tag] [-w size] [file ...]

Obsolescent Options
ex [-rR] [- -v] [+command] [-t tag] [-w size] [file ...]

edit [-] [-l] [-r] [-R] [-t tag] [-v] [-w size] [-x] [-C] [+command] [file ...]

Remarks
The program names ex , edit , vi , view , and vedit are separate personalities of the same program.
This manual entry describes the behavior of the ex /edit personality. On many HP-UX and other similar
systems, e is a synonym for ex .

DESCRIPTION
The ex program is the line-oriented personality of a text editor that also supports screen-oriented editing
(see vi(1)).

(XPG4 only.) Certain block-mode terminals do not have all the capabilities necessary to support the com-
plete ex definition, such as the full-screen editing commands (visual mode or open mode). When these
commands cannot be supported on such terminals, this condition shall neither produce an error message
such as "not an editor command" nor report a syntax error.

The edit program is identical to ex , except that some editor option defaults are altered to make the edi-
tor somewhat friendlier for beginning and casual users (see Editor Options below).

Options and Arguments
ex recognizes the following command-line options and arguments:

- (Obsolescent) Suppress all interactive-user feedback. This is useful when editor commands
are taken from scripts.

-s (XPG4 only.)

Suppress all interactive-user feedback. This is useful when editor commands are taken
from scripts.

Ignore the value of the TERMand any implementation terminal type and assume the ter-
minal is a type incapable of supporting visual mode.

Suppress the use of the EXINIT environment variable and the reading of the .exrc file.

-l Set the lisp editor option (see Editor Options below).

-r Recover the specified files after an editor or system crash. If no file is specified, a list of all
saved files is printed. You must be the owner of the saved file in order to recover it
(superuser cannot recover files owned by other users).

-R Set the readonly editor option to prevent overwriting a file inadvertently (see Editor
Options below).

-t tag (XPG4 only.) Edit the file containing the specified tag and proceed as if the first command
were :tag tag. The tags represented by the -t tag and the ta command is optional. It
shall be provided on any system that also provides a confirming implementation of ctags ,
Otherwise, the use of the -t produces undefined results.

Execute the tag tag command to load and position a predefined file. See the tag com-
mand in Command Descriptions and the tags editor option in Editor Options below.

-v Invoke visual mode (vi).

-w size Set the value of the window editor option to size (see Editor Options below). If size is
omitted, it defaults to 3.

HP-UX Release 11i: December 2000 − 1 − Section 1−−241

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ex(1) ex(1)

-x Set encryption mode. You are prompted for a key to initiate the creation or editing of an
encrypted file (see the crypt command in Command Descriptions below).

-C Encryption option. Same as the -x option, except that all text read in is assumed to have
been encrypted.

-c command (XPG4 only.)
+command (Obsolescent) Begin editing by executing the specified ex search or positioning command.

file Specify the file or files to be edited. If more than one file is specified, they are processed in
the order given. If the -r option is also specified, the files are read from the recovery area.

(XPG4 only.) If both the -t tag and -c command options are given, the -t tag shall be processed first;i.e,
the file containing the tag is selected by the -t and then the command is executed.

Definitions
Current file. The name of the file being edited by ex is called the current file. Text from the current file
is read into a work area, and all editing changes are performed on this work area. Changes do not affect
the original file until the work area is explicitly written back to the file. If the %character is used as a file
name, it is replaced by the current file name.

Alternate file. The alternate file is the name of the last file mentioned in an editor command, or the pre-
vious current file name if the last file mentioned becomes the current file. If the # character is used as a
file name, it is replaced by the alternate file name.

Buffers. Twenty-six buffers named a through z can be used for saving blocks of text during the edit. If
the buffer name is specified in uppercase, text is appended to the existing buffer contents rather than
overwriting it.

Readonly flag. The readonly flag can be cleared from within the editor by setting the noreadonly
editor option (see Editor Options below). Writing to a different file is allowed even when the readonly
flag is set. Also, a write can be forced to a readonly file by using ! after the write command (see the
write command in Command Descriptions below).

Interrupt. If an interrupt signal is received, and commands are being supplied from a keyboard, ex
returns to command mode. If editor commands are coming from a file, an interrupt signal causes ex to
abort.

System crash. If the system crashes or ex aborts due to an internal error or unexpected signal, ex
attempts to preserve the work area if any unwritten changes were made. Use the -r command-line option
to retrieve the saved changes.

Command mode/input mode. ex starts up in command mode, as indicated by the colon (:) prompt. ex
switches to input mode whenever an append , change , or insert command is encountered. To ter-
minate input mode and return to command mode, type a period (.) alone at the beginning of a line.

Comments. Command lines beginning with a quotation mark (") are ignored (this is useful for placing
comments in an editor script).

Multiple commands can be combined on a single line by separating them with a vertical bar character
(|). However, global commands, comments, and the shell escape command must be the last command on a
line because they cannot be terminated by a | character.

Addressing
(XPG4 only.) Addressing in ex relates to the current line. In general, the current line shall be the last line
affected by the command; the exact effect on the current line is discussed under the description of each
command. When the buffer contains no lines, the current line shall be set to zero.

ex recognizes the following line address forms:

. Dot or period (.) refers to the current line. There is always a current line whose
position can be the result of an explicit movement command or the result of a com-
mand that affects multiple lines (in which case it is usually the last line affected).

n The nth line in the work area. Lines are numbered sequentially, starting at line 1.

$ The last line in the work area.

% Abbreviation for 1,$, meaning the entire work area.

Section 1−−242 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ex(1) ex(1)

+n, +[+]...
- n, - [-]...

An offset relative to the current line or the preceding line specification. + means for-
ward; - means backward. For example, the forms .+3 , +3 , and +++ are equivalent.

/ re/
?re?

The line containing the pattern re, scanning forward (/) or backward (?). The trailing
/ or ? can be omitted if the line is only being displayed. If re is omitted, ex uses the
more recently set of either the scanning string or the substitution string (see Regular
Expressions below).

’ x Lines can be marked using single lowercase letters (see the mark command in Com-
mand Descriptions below). ’ x refers to the line marked with x. In addition, the pre-
vious current line is marked before each nonrelative motion. This line can be referred
to by using ’ for x (thus ’’ refers to the previous current line).

(XPG4 only.) Commands require zero, one or two addresses. Commands that require
zero addresses shall regard the presence of an address as an error.

(XPG4 only.) Adjacent address in a range shall be separated from each other by a comma (,) or a semi-
colon(;). In the latter case, the current line(.) shall be set to the first address, and only then is the second
address calculated. This feature can be ued to determine the starting line for forwards and backwards
searches. The second address of any two-address sequence shall correspond to the first address. The first
address shall be less than or equal to the second address. The first address shall be greater than or equal to
the first line of the editing buffer, and the last address shall be less than or equal to the last line of the edit-
ing buffer. Any other case shall be an error.

Addresses for commands consist of a series of line addresses (specified as above), separated by a comma (,)
or semicolon (;). Such address lists are evaluated left-to-right. When the separator is a semicolon, the
current line is set to the value of the previous address before the next address is interpreted. If more
addresses are given than the command requires, then all but the last one or two are ignored. Where a com-
mand requires two addresses, the first line addressed must precede the second one in the work area. A
null (missing) address in a list defaults to the current line.

Regular Expression
The editor maintains copies of two regular expression strings at all times: the substitution string, and the
scanning string. The substitute command sets the substitution string to the regular expression used. Both
the global-command and the regular-expression form of line addressing (see Addressing above) for all com-
mands set the scanning string to the regular expression used. These strings are used as default regular
expressions as described under Addressing, the global command, and the substitute command.

The editor supports Basic Regular Expressions (see regexp(5)) with the following modifications:

\< The \< matches the beginning of a "word"; that is, the matched string must begin in a
letter, digit, or underline, and must be preceded by the beginning of the line or a charac-
ter other than the above. This construct can only be used at the beginning of a regular
expression (as in \<word), but not in the middle (word1 \<word2).

\> The \> matches the end of a "word" (see previous paragraph). This construct can only be
used at the end of a regular expression (as in word\>), but not in the middle (word1\>
word2).

~ Match the replacement part of the last substitute command.

[string] The positional quoting within bracket expressions defined by Basic Regular Expressions
is replaced by the use of the backslash (\) to quote bracket-expression special characters.

nomagic When the editor option nomagic is set, the only characters with special meanings are ˆ
at the beginning of a pattern, $ at the end of a pattern, and \. The characters ., *, [,
and ˜ lose their special meanings unless escaped by a \ .

Replacement Strings
The character & in the replacement string stands for the text matched by the pattern to be replaced. Use
\& if the nomagic editor option is set.

The character ˜ is replaced by the replacement part of the previous substitute command. Use \˜ if
the nomagic editor option is set.

The sequence \ n, where n is an integer, is replaced by the text matched by the subpattern enclosed in the
nth set of parentheses \(and \) .

HP-UX Release 11i: December 2000 − 3 − Section 1−−243

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ex(1) ex(1)

The sequence \u (\l) causes the immediately following character in the replacement to be converted to
uppercase (lowercase), if the character is a letter. The sequence \U (\L) turns case conversion on, until the
sequence \E or \e is encountered, or the end of the replacement string is reached.

Command Names and Abbreviations
The following table summarizes the line-mode commands. The commands whose names are enclosed in
parentheses are available only in their abbreviated forms.

Command Abbr. Command Abbr. Command Abbr.
abbreviate ab next n tag ta
append a number nu # unabbreviate una
args ar open o undo u
change c pop unmap unm
chdir chd cd preserve pre version ve
copy co t print p visual vi
crypt cr X put pu write w wq
delete d quit q xit x
edit e ex read r yank ya
file f recover rec
global g v rewind rew (execute buffer) * @
insert i set se (line number) =
join j shell sh (left shift) <
list l source so (right shift) >
map stop st ˆZ (scroll) ^D
mark ma k substitute s sr & ˜ (shell escape) !
move m suspend su ˆZ (window) z

Command Descriptions
In the following command descriptions, some arguments appear frequently. They are described below.

line A single line address, in any of the forms described in Addressing above. The default is the
current line.

range A pair of line addresses separated by a comma or semicolon, as described in Addressing
above. The default is the current line (.,.).

count A positive integer specifying the number of lines to be affected by the command. The
default is 1 or the number of lines in range.

When count is specified, range is ineffective. Instead, only a line number should be
specified to indicate the first line affected by the command. (If a range is given, the last
line of the range is interpreted as the starting line for the command.)

flags One or more of the characters #, p, and l . The corresponding command to print the line is
executed after the command completes. Any number of + or - characters can also be given
with these flags. The default is no flags.

These modifiers are all optional.

When only a line or a range is specified (with a null command), the implied command is print . If a null
line is entered, the next line is printed (equivalent to .+1p)

buffer XPG4 Feature. One of a number of named areas for saving text. The named buffers are
specified by the lowercase letters of the POSIX locale. Specifying buffer shall cause the
area of the text affected by the command to be stored into the buffer as it was before the
command took effect. This argument is also used on the put command and the visual
mode "put" commands (p and P), to specify the buffer that shall provide the text to insert.

If the buffer name is specified in uppercase, and the buffer is to be modified, the buffer shall
be appended to rather than being overwritten. If the buffer is not to be modified, the buffer
name can be specified in lowercase or uppercase with the same results. There shall be also
one unnamed buffer, which is the repository for all text deleteed or yanked when no buffer
is specified.

Section 1−−244 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ex(1) ex(1)

There are also numbered buffers, 1 through 9, which shall be accessible only from visual
mode. These buffers are special in that, in the visual mode, when deleted text is placed in
the unnamed buffer, it also shall be placed in buffer 1, the previous contents buffer 1 shall
be placed in buffer 2 and so on. Any text in the buffer 9 shall be lost. Text that is yanked
into the unnamed buffer shall not modify the numbered buffers. Text cannot be placed
directly into the numbered buffered, although it can be retrieved from them by using a
visual mode "put" command with the buffer name given as s number. When the buffer
modifier is not used in the commands below, the unnamed buffer shall be the default.

word XPG4 Feature. In the POSIX Locale, a word consists of a maximal sequence of letters,
digits and underscores, delimited at both ends by characters other than letters, digits, or
underscores, or by the beginning or end of a word or the file. ! A character that can be
appended to the command to modify its operation, as detailed in the individual command
descriptions.

If both a count and range is specified for a command that uses them, the number of
lines affected shall be taken from the count value rather than the range . The starting
line for the command shall be taken to be the first line addressed by the range.

When only a line or range is specified with no command, the implied command shall be
either print , list , or number (p, l , or #). The command selected shall be the last of
these three commands to be used. When no range or count is specified and the command
line is a blank line, the current line shall be written, and the current line shall be set to
.+1 .

Zero or mode <blank> characters can precede or follow the addresses, count or command
name. Any object following a command name (such as buffer, file etc) that begins with an
alphabetic character shall be separated from the command name with at least one <blank>.

For each of the commands listed below, the command can be entered as the abbreviation (those characters
in the Synopsis command word preceding the [), the full command (all characters shown for the command
word, omitting the [and]), or any subset of the characters of the full command down to the abbreviation.

abbreviate ab [breviate] word replacement

Add the named abbreviation to the current list. In visual mode, if word is typed as a
complete word during input, it is replaced by the string replacement .

append line a[ppend][!]

Enter input mode; the input text is placed after the specified line. If line 0 is specified,
the text is placed at the beginning of the work area. The last input line becomes the
current line, or the target line if no lines are input.

Appending ! to the command toggles the autoindent editor option setting for this
insert only.

args ar [gs]

Prints the argument, placing the current argument between [and] .

change range c [hange][!] count

Enter input mode; the input text replaces the specified lines. The last input line
becomes the current line; if no lines are input, the effect is the same as a delete.

Appending ! to the command toggles the autoindent editor option setting for this
insert only.

chdir chd [ir][!] [directory]
cd [!] [directory]

Change the working directory to directory . If directory is omitted, the value of the
HOMEenvironment variable is used. If the work area has been modified since the last
write and the name of the file being edited does not begin with a slash (/), a warning is
issued and the working directory is not changed. To force a change of directory in this
case, append the character ! to the command.

copy range co [py] line flags
range t line flags

HP-UX Release 11i: December 2000 − 5 − Section 1−−245

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ex(1) ex(1)

A copy of the specified lines (range) is placed after the specified destination line; line 0
specifies that the lines are to be placed at the beginning of the work area. (The letter t
is an alternative abbreviation for the copy command.)

crypt cr [ypt]
X

The user is prompted for a key with which to enter encryption mode. This command
can also be used to change the key entered from a previous crypt command or the -x
command line option. If no key is supplied in response to the prompt (that is, only car-
riage return is pressed), encryption mode is canceled and the work area is written out in
plain-text form by subsequent write commands.

While in encryption mode, all file input is decrypted using the current key. However,
while an input file is being processed, if a block of text (approximately 1024 bytes) is
encountered that contains only 7-bit ASCII characters, that block of text is assumed to
be plain-text and is not decrypted. All file output, except that piped via a ! shell escape
to another command, is encrypted using the current key.

The temporary file used by the editor to manage the work area is not encrypted until
the current work area is discarded (or written out) and editing begins on a new file.
When creating a new file that requires encryption protection, ensure that the work area
file is also encrypted by specifying the -x option when invoking the editor.

cr [ypt]
C

Encryption option. Same as the X command, except that all text read in is assumed to
have been encrypted.

delete range d[elete] buffer count

The specified lines are deleted from the work area. If a named buffer is specified, the
deleted text is saved in it. If no buffer is specified, the unnamed buffer is used (that is,
the buffer where the most recently deleted or yanked text is placed by default). The
new current line is the line after the deleted lines or the last line of the file if the deleted
lines were at the end of the file.

edit e [dit][!] [+ line] file
ex [!] [+ line] file

Begin editing a new file (ex is an alternative name for the edit command). If the
current work area has been modified since the last write, a warning is printed and the
command is aborted. This action can be overridden by appending the character ! to the
command (e! file). The current line is the last line of the work area unless it is exe-
cuted from within vi, in which case the current line is the first line of the work area. If
the +line option is specified, the current line is set to the specified position, where line
can be a number (or $) or specified as / re or ?re.

file f [ile]

Print the current file name and other information, including the number of lines and the
current position.

global range g[lobal][!] / re/ command...
range v / re/ command...

Perform command on lines within range (or on the entire work area if no range is given)
that contain re. First mark the lines within the given range that match the pattern re.
If the pattern is omitted, the more recently set of either the substitution string or the
scanning string is used (see Regular Expressions above). Then the given commands are
executed with . set to each marked line. Any character other than a letter or a digit
can be used to delimit the pattern instead of the / .

command can be specified on multiple lines by hiding new-lines with a backslash. If
command is omitted, each line is printed. append , change , and insert commands
are allowed; the terminating dot can be omitted if it ends command or commands. The
visual command is also permitted (unless the global command itself has been
issued from visual mode), and takes input from the terminal. (If command contains a
visual-mode command (that is, open or visual), the visual-mode command must be

Section 1−−246 − 6 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ex(1) ex(1)

terminated by the visual-mode Qcommand in order to proceed to the next marked line.)

The global command itself and the undo command are not allowed in command.
The editor options autoprint , autoindent , and report are inhibited.

Appending a ! to the global command (that is, g! ...) or using the alternate name v
causes command to be run on the lines within range that do not match the pattern.

insert line i [nsert][!]

Enter input mode; the input text is placed before the specified line. The last line input
becomes the current line, or the line before the target line, if no lines are input.

Appending ! to the command toggles the autoindent editor option setting for this
insert only.

join range j [oin][!] count flags

Join together the text from the specified lines into one line. White space is adjusted to
provide at least one blank character (two if a period appears at the end of a line, or none
if the first character of a line is a closing parenthesis ())). Extra white space at the
beginning of a line is discarded.

Appending a ! to the command causes a simpler join with no white-space processing.

list range l [ist] ount flags

Print the specified lines with tabs displayed as ˆI and the end of each line marked with
a trailing $. (The only useful flag is # for line numbers.) The last line printed becomes
the current line.

map mapkey#n action
map! key#n action

The map and map! commands define macros for use in visual mode. The first argu-
ment, key, can be a single character or a multicharacter sequence. In the special
sequence, #n, n is a digit referring to the function key n. Special characters, whi-
tespace, and newline must be escaped with a ˆV to be entered in the arguments. The
key argument cannot contain a colon (:) as its first character, nor can a multicharacter
sequence begin with an alphabetic character.

Macros defined by map are effective in visual command mode. Macros defined by map!
are effective in visual input mode. When key or the function key corresponding to #n is
entered, the editor interprets the operation as though action were typed.

The map or map! command without options displays the corresponding current list of
macros.

See also the editor options keyboardedit , keyboardedit! , timeout , and
timeoutlen in Editor Options below.

mark line ma[rk] x
line k x

The specified line is given the specified mark x, which must be a single lowercase letter
(a-z). x must be preceded by a space or tab. The current line position is not affected. k
is an alternate name for mark .

move range m[ove] line

Move the specified lines (range) to follow the target line. The first line moved becomes
the current line.

next n [ext][!] [file ...]

The next file from the command line argument list is edited. Appending a ! to the com-
mand overrides the warning about the work area having been modified since the last
write (and discards any changes unless the autowrite editor option is set). The argu-
ment list can be replaced by specifying a new one on this command line.

number range nu [mber] count flags
range # count flags

HP-UX Release 11i: December 2000 − 7 − Section 1−−247

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ex(1) ex(1)

(The # character is an alternative abbreviation for the number command.) Print the
lines, each preceded by its line number (the only useful flag is l). The last line printed
becomes the current line.

open line o[pen] / re/ flags

Enter open mode, which is similar to visual mode with a one-line window. All the
visual-mode commands are available. If a match is found in line for the optional regular
expression, the cursor is placed at the start of the matching pattern. Use the visual
mode command Qto exit from open mode. For more information, see vi(1).

pop pop [!]

Load the file whose name is stored at the top of the tag stack and set the current line to
the stored location. The top entry of the tag stack is deleted. (The current file name is
placed on the stack when you execute the line mode tag command or the visual mode
^] command.)

! overrides the warning about the work area having been modified since the last write;
any changes are discarded unless the autowrite editor option is set).

preserve pre [serve]

The current editor work area is saved as if the system had just crashed. Use this com-
mand in emergencies, for example when a write does not work and the work area can-
not be saved in any other way. Use the -r command-line option to recover the file.
After the file has been preserved, a mail message shall be sent to the user. The message
shall contain the name of the file, the time of preservation and an ex command that
could be used to recover the file. Additional information may be included in the mail
message.

print range p [rint] count

Print the specified lines, with non-printing characters printed as control characters in
the form ˆx ; DEL is represented as ˆ? . The last line printed becomes the current line.

put line pu [t] buffer

Place deleted or "yanked" lines after line. A buffer can be specified; otherwise, the text
in the unnamed buffer (that is, the buffer in which deleted or yanked text is placed by
default) is restored. The current line indicator shall be set to the first line put back.

quit q [uit][!]

Terminate the edit. If the work area has been modified since the last write, a warning
is printed and the command fails. To force termination without preserving changes,
append ! to the command.

read line r [ead] file

Place a copy of the specified file in the work area after the target line (which can be line
0 to place text at the beginning). If no file is named, the current file is the default. If no
current file exists, file becomes the current file. The last line read becomes the current
line except in visual mode where the first line read becomes the current line.

If file is given as ! string, string is interpreted as a system command and passed to
the command interpreter; the resultant output is read into the work area. A blank or
tab must precede the ! .

recover rec [over][!] file

Recover file from the save area, after an accidental hangup or a system crash. If the
current work area has been modified since the last write, a warning is printed and the
command is aborted. This action can be overridden by appending the character ! to the
command (rec! file).

rewind rew [ind][!]

The argument list is rewound, and the first file in the list is edited. This shall be
equivalent to a next command with the current argument list as its operands. If the
current buffer has been modified since the last write, a warning shall be written and the
command shall be aborted. Any warnings can be overridden by appending a ! . The

Section 1−−248 − 8 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ex(1) ex(1)

current indicator line shall be affected by the editor options, autowrite and wri-
teany .

set se [t] [all]
se [t] [no]boolean-option?
se [t] value-option[?]
se [t] boolean-option
se [t] noboolean-option
se [t] value-option=value

Set and display the values of the editor options (see Editor Options below).

With no arguments, the command prints those editor options whose values have been
changed from the default settings. If all is specified, it prints all current option
values.

The second and third forms display the current value of the specified option. The ? is
necessary only for Boolean options.

The fourth form turns a Boolean option on. The fifth form turns a Boolean option off.

The sixth form assigns values to string and numeric options. Spaces and tabs in strings
must be escaped with a leading backslash (\).

The last five forms can be combined; interpretation is left-to-right.

shell sh [ell]

Execute the command interpreter specified by the shell editor option (see Editor
Options below). Editing is resumed when you exit from the command interpreter.

source so [urce] file

Read and execute commands from the specified file. so commands can be nested. The
maximum supported nesting depths is implementation defined, but shall be at least one.

substitute range s [ubstitute] / re/ repl/ options count flags
range s options count flags
range & options count flags
range sr options count flags
range ˜ options count flags
range s\? repl
range s\& repl

On each specified line, the first instance of the pattern re is replaced by the string repl.
(See Regular Expressions and Replacement Strings above.) Any character other than a
letter or a digit can be used to delimit the pattern instead of the / .

If you include the g (global) option, all instances of the pattern in the line are substi-
tuted.

If you include the c (confirm) option, you are queried about whether to perform each
individual substitution, as follows: Before each substitution the line is displayed with
the pattern to be replaced marked underneath with carets (ˆ). Type y to cause the sub-
stitution to be performed; any other input to abort it. The last line substituted becomes
the current line.

If the substitution pattern re is omitted (s// repl/), the more recently set of either the
substitution string or the scanning string is used (see Regular Expressions above).

If the s or & forms of the command are used, the substitution pattern defaults to the
previous substitution string and the replacement string defaults to the previous replace-
ment string used.

If the sr or ˜ forms of the command are used, the substitution pattern defaults to the
more recently set of either the substitution string or the scanning string and the
replacement string defaults to the previous replacement string used.

The form s\? repl is equivalent to s/ scan-re/ repl/ , where scan-re is the previous scan-
ning string.

HP-UX Release 11i: December 2000 − 9 − Section 1−−249

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ex(1) ex(1)

The form s\& repl is equivalent to s/ subs-re/ repl/ , where subs-re is the previous sub-
stitution string.

suspend su [spend][!]
stop st [op][!]

susp

Suspend the editor job and return to the calling shell. stop and susp are equivalent to
suspend . susp is the user process control suspend character, which is typically the
character ˆZ (ASCII SUB) (see stty(1)). This command is disabled if the calling shell
does not support job control or has disabled it.

The work area is written to the current file before the editor is suspended if the
autowrite editor option is set, the readonly editor option is not set, and the work
area has been modified since the last write. To override this action, append the ! char-
acter to the suspend or stop command.

tag ta [g][!] tag

Search the files specified by the tags editor option (see Editor Options below) sequen-
tially until a tag definition for tag is found. If tag is found, load the associated file into
the work area and set the current position to the address specified in the tag definition.

The work area is written to the current file before the new file is loaded if the new file is
different from the current file, the autowrite editor option is set, the readonly
editor option is not set, and the work area has been modified since the last write. To
override this action, append the ! character to the command.

If the tagstack editor option is set, the current file name and line number is pushed
onto the tag stack for later recall with the line mode pop command or the visual mode
^] command.

unabbreviate una [bbreviate] word

Delete word from the list of abbreviations (see the abbreviate command above).

undo u [ndo]

Reverse the changes made by the previous editing command. For this purpose, glo-
bal and visual are considered single commands. Commands that affect the external
environment, such as write , edit , and next , cannot be undone. An undo can itself
be reversed.

unmap unm[ap][!] key

The macro definition for key is removed (see the map command above).

version ve [rsion]

Print the current version information for the editor.

visual line vi [sual] type count flags

Enter visual mode at the specified line.

The type can be one of the characters +, - , . , or ˆ , as in the z (window) command, to
specify the position of the specified line on the screen window The default is to place the
line at the top of the screen window.

A count specifies an initial window size; the default is the value of the editor option
window .

The flags # and l (ell) cause the lines in the visual window to be displayed in the
corresponding mode (see the number and list commands).

Use the Qcommand to exit visual mode. For more information, see vi(1).

write [range] w[rite][!][>>] file
[range] wq[!][>>] file

Write the specified lines (or the entire work area, if no range is given) out to file, print-
ing the number of lines and characters written. If file is not specified, the default is the
current file (the command fails with an error message if there is no current file and no
file is specified).

Section 1−−250 − 10 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ex(1) ex(1)

If an alternate file is specified and the file exists, the write fails, but can be forced by
appending ! to the command. To append to an existing file, append >> to the com-
mand. If the file does not exist, an error is reported.

If the file is specified as ! string, string is interpreted as a system command, the com-
mand interpreter is invoked, and the specified lines are passed as standard input to the
command.

The command wq is equivalent to a w followed by a q. wq! is equivalent to w! followed
by q. wq>> is equivalent to w>> followed by q.

xit x [it][!][>>] file

If changes have been made to the work area, a write command is executed with any
options (such as ! , >>, or file) used by the write command. Then (in any case) the
quit command is executed.

yank range ya [nk] buffer count

Place the specified lines in the named buffer. If no buffer is specified, the unnamed
buffer is used (that is, the buffer where the most recently deleted or yanked text is
placed by default).

(execute buffer) * [buffer]
@[buffer]

Execute the contents of buffer as an editor command. buffer can be the letter of a
named buffer (a−z) or * or @. The * and the @forms of this command are equivalent.
If a buffer is not specified or buffer is * or @, the buffer last named in a * or @command
is executed.

(line number) line = flags

Print the line number of the specified line. The default is the last line. The current line
position is not affected.

(scroll) ^D

Print the next n lines, where n is the value of the scroll editor option.

(shell escape) ! command
range ! command

Pass the remainder of the line after the ! to the system command interpreter for execu-
tion. A warning is issued if the work area has been changed since the last write. A sin-
gle ! is printed when the command completes. The current line position is not affected.

Within the text of command, %and # are expanded as file names, and ! is replaced
with the text of the previous ! command. Thus, !! repeats the previous ! command.
When such expansion is performed, the expanded line is echoed.

If you specify range, the specified lines are passed to the command interpreter as stan-
dard input. The output from the command replaces the specified lines.

(shift left) range < count flags

Shift the specified lines to the left. The number of spaces to be deleted is determined by
the editor option shiftwidth . Only whitespace (blanks and tabs) is lost in shifting;
other characters are not affected. The last line changed becomes the current line.

(shift right) range > count flags

Shift the specified lines to the right by inserting whitespace The number of spaces
inserted is determined by the editor option shiftwidth . The last line changed
becomes the current line.

(window) line z type count flags

The number of lines specified by count are displayed. The default for count is the value
of the editor option window .

If type is omitted, count lines following the specified line are printed.

HP-UX Release 11i: December 2000 − 11 − Section 1−−251

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ex(1) ex(1)

If type is specified, it must be one of the following characters:

+ Display a window of lines following the addressed line.
- Place the addressed line at the bottom of the window of displayed lines.
. Place the addressed line at the center of the window.
^ Display a window of lines that is two windows prior to the addressed line.
= Display the addressed line at the center of the window with a line of dashes above

and below the addressed line.

The last line printed becomes the current line, except for the =, where the addressed
line becomes the current line.

Editor Options
The command ex has a number of options that modify its behavior. These options have default settings,
which can be changed using the set command (see above). Options can also be set at startup by putting a
set command string in the environment variable EXINIT , or in the file .exrc in the HOMEdirectory, or
in .exrc in the current directory. If EXINIT exists, the .exrc file in the HOMEdirectory is not exe-
cuted. If the current directory is not the HOMEdirectory and the exrc editor option is set (see below), the
.exrc file in the current directory is executed after EXINIT or the HOMEdirectory .exrc .

The editor obtains the horizontal and vertical size of the terminal screen from the terminfo database
(see terminfo(4)). These values can be overridden by setting the UNIX95 environment variable, which
specifies to use the XPG4 behavior for this command. COLUMNSand LINES environment variables. See
the window editor option below for more information.

The following table shows the defaults that differ for the various editor personalities:

Name Default Editor Options
edit nomagic novice noreadonly report=1 showmode
ex magic nonovice noreadonly report=5 noshowmode
vedit nomagic novice noreadonly report=1 showmode
vi magic nonovice noreadonly report=5 noshowmode
view magic nonovice readonly report=5 noshowmode

Editor options are Boolean unless otherwise specified. Abbreviations are shown in parentheses.

autoindent (ai) Indent each line in input mode (using blanks and tabs) to align with the previous line.
Indentation begins after the line appended, or before the line inserted or the first line
changed. Additional indentation can be provided as usual. Succeeding lines are
automatically indented to the new alignment.

Reducing the indent is achieved by typing ˆD one or more times: the cursor is moved
back to the next multiple of shiftwidth spaces for each ˆD . A ˆ followed by a ˆD
removes all indentation temporarily for the current line. A 0 followed by a ˆD
removes all indentation.

Reversed by noautoindent (noai). The default is noautoindent .

autoprint (ap) The current line is printed after each command that changes work area text. Auto-
print is suppressed in global commands. Reversed by noautoprint (noap).
The default is autoprint .

autowrite (aw) The work area is written out to the current file if the work area has been modified and
a next , rewind , or ! command is given. Reversed by noautowrite (noaw).
The default is noautowrite .

beautify (bf) Cause all control characters other than tab, newline, and formfeed to be discarded
from the input text. Reversed by nobeautify (nobf). The default is nobeau-
tify .

directory= dirname (dir)
Specify the directory in which the editor work area should be placed. This option only
takes effect when a new work area is created. It should be set in EXINIT or .exrc
to affect the location of the work area file for the edit file specified on the command
line. The default is /var/tmp .

If the specified directory is set from EXINIT or a .exrc file and is not writable by
the user, the editor quits; if set interactively by the user, the editor issues an error

Section 1−−252 − 12 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ex(1) ex(1)

message.

doubleescape When set, two consecutive ESC (escape) characters are required to leave input mode.
In input mode, a single ESC character followed by a different character causes vi to
issue an audible or visual warning (see the flash editor option) and insert both char-
acters into the work area. Reversed by nodoubleescape . The default is
nodoubleescape .

The character sequences transmitted by the keyboard editing keys of some terminals
are identical to some sequences of vi user commands. If the mapping of these keys is
enabled (see the keyboardedit and keyboardedit! options), vi might not be
able to reliably distinguish between the character sequence transmitted by an editing
key and the same character sequence typed by a user. This problem is most likely to
occur when the user types ESC to terminate input mode immediately followed by
another vi command. If you set the doubleescape option, the ambiguity of this
case is removed.

edcompatible (ed)
Cause the presence of g and c suffixes on substitute commands to be remembered,
and toggled by repeating the suffixes. Reversed by noedcompatible (noed).
The default is noedcompatible .

errorbells (eb) When set, error messages are preceded with a bell only on terminals that do not sup-
port a standout or highlighting mode such as inverse video. If the terminal supports
highlighting, the bell is never used prior to error messages and this option has no
effect. Note that visual-mode errors are signaled by the bell (regardless of the setting
of this option) without an accompanying error message.

Reversed by noerrorbells (noeb). The default is noerrorbells .

exrc When set, the .exrc file in the current directory is processed during editor initializa-
tion if the current directory is not the HOMEdirectory. This option is not set by
default and must be set in the EXINIT environment variable or the HOMEdirectory
.exrc file to have any effect. See the Editor Options introductory text above.
Reversed by noexrc . The default is noexrc .

flash (fl) When set, the screen flashes instead of beeping, provided an appropriate
flash_screen entry is present in the /usr/share/lib/terminfo database
for the terminal being used. Reversed by noflash (nofl). The default is flash .

hardtabs= number (ht)
Define the spacing between hardware tab settings and the number of spaces used by
the system when expanding tab characters. Tab stops are placed in each column
number (starting at the left edge of the screen) that corresponds to an integer multi-
ple of number. The default is hardtabs=8 .

ignorecase (ic) All uppercase characters in the text are mapped to lowercase in regular expression
matching. Also, all uppercase characters in regular expressions are mapped to lower-
case, except in character class specifications. Reversed by noignorecase (noic).
The default is noignorecase .

keyboardedit When set, any keyboard editing key mappings that are loaded automatically at initial-
ization for command-mode use are enabled. If not set, these mappings are disabled
(but not deleted). Use the map command to get a list of the currently enabled
command-mode mappings. Reversed by nokeyboardedit . The default is key-
boardedit .

keyboardedit! When set, the keyboard editing key mappings automatically loaded at initialization for
input mode use are enabled. If not set, these mappings are disabled (but not deleted).
Use the map! command to list the currently enabled input-mode mappings. Reversed
by nokeyboardedit! . The default is nokeyboardedit! for terminals whose
keyboard editing keys send HP-style escape sequences (an ESC followed by a single
letter). The default is keyboardedit! for all other terminals.

lisp Modify autoindent mode and the (,) , [[,]] , { , and } commands in visual mode
for lisp source code. Reversed by nolisp . The default is nolisp .

list Display all printed lines with tabs shown as ˆI , and the end of line marked by a $.
Reversed by nolist . The default is nolist .

HP-UX Release 11i: December 2000 − 13 − Section 1−−253

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ex(1) ex(1)

magic Affect the interpretation of characters in regular expressions and substitution replace-
ment strings (see Regular Expressions and Replacement Strings above). Reversed by
nomagic . The ex , vi , and view default is magic . The edit and vedit default
is nomagic .

mesg Allows other users to use the write command (see write(1)) to send messages to
your terminal, possibly disrupting the screen display. Unsetting this option
(nomesg) blocks write permission to your terminal from other system users while
you are using the editor. Reversed by nomesg . The default is mesg.

modelines (ml) If set when the editor reads in a file, any ex commands embedded in the first five and
last five lines of the file are executed after .exrc and EXINIT commands are pro-
cessed but before editing control is given to the user. The ex commands must be
prefixed by ex: or vi: and terminated by : in a single line. Any number of other
characters with the exception of the colon (:) can precede or follow the embedded
command. Reversed by nomodelines (noml). The default is nomodelines .

novice Use the version of the editor available for novices, known as edit or vedit .
Reversed by nonovice . The ex , vi , and view default is nonovice . The edit ,
and vedit default is novice .

number (nu) Cause lines to be printed with line numbers. Reversed by nonumber (nonu). The
default is nonumber .

optimize (opt) Suppress automatic carriage returns on terminals that do not support direct cursor
addressing. This streamlines text output in certain situations such as when printing
multiple lines that contain leading whitespace. Reversed by nooptimize (noopt).
The default is nooptimize .

paragraphs= pair-string (para)
The value of this option is a string whose successive pairs of characters specify the
names of text-processing macros that begin paragraphs. (A macro appears in the text
in the form . xx, where the . is the first character in the line.)

If any macros have a single-character name, use a space character to substitute for
the missing second character in the name. To type a space character in such situa-
tions, precede the space with a backslash (\) to prevent the editor from interpreting it
as a delimiter.

The default is paragraphs=IPLPPPQPP\ LIpplpipnpbp .

prompt When set, command mode input is prompted for with a colon (:); when unset, no
prompt is displayed. Reversed by noprompt . The default is prompt .

readonly (ro) Set the readonly flag for the file being edited, thus preventing accidental overwrit-
ing at the end of the session. This option is equivalent to invoking ex , edit , vi , or
vedit with the -R option or using the view command. Reversed by
noreadonly (noro). The ex , edit , vi , and vedit default is noreadonly .
The view default is readonly .

redraw Simulate an intelligent terminal on a dumb terminal. During input mode, lines are
continuously reprinted as text is entered. Since this is likely to require a large
amount of output to the terminal, it is useful only at high transmission speeds. If
noredraw is set, lines are reprinted only when input mode is terminated and
deleted lines are marked with an @in the left margin. Reversed by noredraw . The
default is redraw .

remap If set, macro translation allows for macros defined in terms of other macros; transla-
tion continues until the final product is obtained. If unset, a one-step translation only
is done. Reversed by noremap . The default is remap .

report= n The value of n gives the number of lines that must be changed by a command before a
report is displayed on the number of lines affected. If n is 5, then changes are
reported for 6 or more lines. The ex , vi , and view default is report=5 . The
edit , and vedit default is report=1 .

scroll= n The value of n determines the number of lines scrolled by a ˆD command and the
number of lines displayed by the z command (twice the value of scroll). The default is
half the value of the window option.

Section 1−−254 − 14 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ex(1) ex(1)

sections= pair-string
The value of this option is a string, in that successive pairs of characters specify the
names of text-processing macros that begin sections. See the paragraphs editor
option above. The default is sections=NHSHH\ HUuhsh+c .

shell= filename (sh)
Set the file name of the shell to be used for the ! shell escape and the shell com-
mand. It defaults to the value of your SHELL environment variable, if set, and other-
wise to /usr/bin/sh .

shiftwidth= n (sw)
Sets the indentation step value used by autoindent and the shift (< and >) com-
mands. The default is shiftwidth=8 .

showmatch (sm) In visual mode, jump momentarily to the matching (or { when you type a) or } , if
the match is still on the screen. Reversed by noshowmatch (nosm). The default is
noshowmatch .

showmode (smd) Display the current editor mode (such as INPUT MODE, REPLACE 1 CHAR,
REPLACE MODE) in the lower right-hand corner of the screen during visual and open
mode. Reversed by noshowmode (nosmd). The ex , vi , and view default is
noshowmode . The edit , and vedit default is showmode.

slowopen (slow) In visual mode, slowopen prevents screen updates during input to improve
throughput on unintelligent terminals. Reversed by noslowopen (noslow). The
default is noslowopen .

tabstop= n (ts) Sets the spacing of the software tab stops used by the editor to expand tabs in the
input file. The default is tabstop=8 .

taglength= n (tl)
Set the maximum number of characters that should be treated as significant in a tag.
Characters beyond the limit are ignored. A value of zero means that all characters in
the tag are significant. The default is taglength=0 .

tags= [filename]... Specify the tags files to be used by the tag command and the -t command-line
option. The default is tags=tags /usr/lib/tags , specifying the file tags in
the current directory and the file /usr/lib/tags . File names are separated by
whitespace.

Each line of a tags file contains the following three fields separated by whitespace:
the tag name, the name of the file to be edited, and an address specification (see
Addressing above). A tags file must be sorted in order by tag name.

The ctags command (see ctags(1)) creates tags files from C, Pascal and FORTRAN
source files.

tagstack (tgst) Enable the pushdown stack of activated tags. Reversed by notagstack (notgst).
The default is tagstack .

When you enter a line mode tag command or visual mode ˆ] command, the current
line number and file name are stored on the tag stack. A future line mode pop com-
mand or visual mode ˆT command will return to the stored file name at the stored
line number.

If the tag stack is disabled and then reenabled again, the stack continues where it left
off. The pop command does not work when the tag stack is disabled.

term= termtype Define the type of terminal being used with the editor. The default value is obtained
from the TERMenvironment variable. If TERM is unset or null, term is set to
unknown . There is no difference between the term and ttytype editor options.
Setting either one results in both being changed.

terse Use shorter error messages. Reversed by noterse . The default is noterse .

timeout (to) If set, require that all the characters of a multicharacter macro name (the first argu-
ment in a map command) must be received within the amount of time specified by the
timeoutlen option in order to be accepted as a match for the macro name. If not
set, no limit is placed on how long to wait for the completion of a macro name.
Reversed by notimeout (noto). The default is timeout .

HP-UX Release 11i: December 2000 − 15 − Section 1−−255

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ex(1) ex(1)

timeoutlen= n Set, in milliseconds (ms), the length of the macro timeout period (see the timeout
editor option). This option has no effect unless timeout is set. The value of n must
be at least 1. The default is timeoutlen=500 (half a second).

ttytype= termtype (tty)
Define the type of terminal being used with the editor. See the term editor option
for details. There is no difference between the term and ttytype editor options.
Setting either one results in both being changed.

warn Before executing a ! or shell command escape, display the message [No write
since last change] if the work area has been modified since it was last loaded
or fully written to a file. Reversed by nowarn . The default is warn .

window= lines (wi)
Set the number of lines in a text window in visual mode. The default value is one less
than the size of your terminal screen (as defined by the LINES environment variable,
if set, or the entry for your terminal in the terminfo(4) data base otherwise). How-
ever, if the terminal baud rate (see stty(1) is set to less than 1200 or 2400, the default
value is reduced to a maximum of 8 or 16 lines, respectively. The startup value can be
specified with the -w command-line option.

w300= lines If the terminal baud rate is less than 1200, set the window editor option to the value
specified.

w1200= lines If the terminal baud rate is greater than or equal to 1200 but less than 2400, set the
window editor option to the value specified.

w9600= lines If the terminal baud rate is greater than or equal to 2400, set the window editor
option to the value specified.

wrapmargin= n (wm)
In visual mode only, if n is greater than zero, a newline is automatically inserted in an
input line at a word boundary, so that lines end at least n spaces from the right mar-
gin of the terminal screen. The default is wrapmargin=0 .

wrapscan (ws) When set, editor searches using / re/ (or ?re?) continue silently from the beginning
(or end) of the file upon reaching the end (or beginning) of the file (that is, the scan
"wraps around"). When unset, editor searches stop at the beginning or the end of the
file, as appropriate. Reversed by nowrapscan (nows). The default is wrapscan .

writeany (wa) Inhibits the checks otherwise made before write commands, allowing a write to any
file (provided the system allows it). Reversed by nowriteany (nowa). The default
is nowriteany .

EXTERNAL INFLUENCES
Environment Variables

COLUMNSThis variable shall override the system-selected horizontal screen size.

LINES overrides the system-selected vertical screen size, used as the number of lines in a screenful and as
the vertical screen size in visual mode.

PATHdetermines the search path for the shell command specified in the editor commands, shell , read ,
and write .

SHELL is variable that shall be interpreted as the preferred command-line interpreter for use in ! ,
shell , read , and other commands with an operand of the form !string . For the shell command,
the program shall be invoked with the single argument -i . For all others, it shall be invoked with the two
arguments -c and string. If no SHELL environment variable is set, or it is set to a null string, the sh
utility shall be used.

TERMis a variable that shall be interpreted as the name of the terminal type. If this variable is unset or
null, an unspecified default terminal type shall be used.

EXINIT is a variable that shall be interpreted to contain a list of ex commands that are executed on edi-
tor startup, before reading the first file. The list can contain multiple commands by separating then using a
vertical line (|) character.

HOMEshall be interpreted as a pathname of a directory that shall be searched for an editor startup file
name .exrc .

Section 1−−256 − 16 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ex(1) ex(1)

LC_COLLATEdetermines the collating sequence used in evaluating regular expressions and in processing
the tags file. If it is not specified or is null, it defaults to the value of LANG.

LC_CTYPEdetermines the interpretation of text as single and/or multibyte characters, the classification of
characters as uppercase or lowercase letters, the shifting of the case of letters, and the characters matched
by character class expressions in regular expressions. If it is not specified or is null, it defaults to the value
of LANG.

LANGdetermines the language in which messages are displayed. If it is not specified or is null, it defaults
to "C" (see lang(5)).

LC_ALL determines the locale to be used to override any values for locale categories specified by the set-
ting of LANGor any environment variable (beginning with LC_).

LC_MESSAGESdetermines the processing of affirmative responses and the language in which messages
should be written.

If any internationalization variable contains an invalid setting, all internationalization variables default to
"C" (see environ(5)).

When set, the TMPDIRenvironment variable specifies a directory to be used for temporary files, overriding
the default directory /var/tmp .

International Code Set Support
Single- and multibyte character code sets are supported.

ASYNCHRONOUS EVENTS (XPG4 Only)
The following actions shall be taken upon receipt of signals:

SIGINT
When an interrupt occurs, ex shall alert the terminal and write a message. The current editor com-
mand shall be aborted, and ex shall return to the command level and prompt for another command.
If the standard input is not a terminal device, ex shall exit at the interrupt and return a nonzero exit
status.

SIGCONT
The screen shall be refreshed.

SHIGHUP
If the current buffer has changed since the last e or w command, ex shall attempt to save the
current file in a state such that it can be recovered later by an ex -r command.

The action taken for all other signals is unspecified.

EXTENDED DESCRIPTION (XPG4 Only)
The pathname of the file being edited by ex is referred to as the current file. The text of the file shall
be read into a working version of the file (called buffer in this clause), and all editing changes shall be
performed on that version; the changes shall have no effect on the original file until an ex command
causes the file to be written out. Lines in the buffer may be limited to { LINE_MAX } bytes, and an error
message may be written if the limit is exceeded during editing.

The alternate pathname is the name of the last file mentioned in an editor command, or the previous
current pathname if the last file mentioned became the current file. When the %appears in a pathname
entered as part of a command argument, it shall be replaced by the altername pathname. Any character,
including %and # shall retain its literal value when preceded by a backslash.

When an error occurs, ex shall alert ther terminal and write a message.

If the system crashes, ex shall attempt to preserve the buffer if any unwritten changes were made. The
command-line option -r can be used to retrieve the saved changes.

During initialization (before the first file is read or any user commands from the terminal are processed), if
the environment variable EXINIT is set, the editor shall execute ex commands contained in that vari-
able. If the variable is not set, ex shall attempt to read commands from the $HOME/.exrc . If and only
if EXINIT or $HOME/.exrc sets the editor option exrc, ex finally shall attempt to read commands from
a file .exrc in the current directory. In the event that EXINIT is not set and the current directory is
the home directory of the user, any .exrc file shall only be processed once. No .exrc shall be read
unless it is owned by the same user ID as the effective user ID of the process. After any .exrc files are
processed, any commands specified by the -c option shall be processed.

HP-UX Release 11i: December 2000 − 17 − Section 1−−257

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

ex(1) ex(1)

By default, ex shall start in the command mode, which shall be indicated by the ":" prompt. The input
mode can be entered by append , insert , or change commands. There is one other mode, visual mode,
in which full screen editing is available. This is described more fully under the visual command. The
command line can consist of multiple ex commands separated by vertical-line characters(|). The use of
commands that enter input or visual modes in this manner, unless they are the final command on the line,
produces undefined results.

Command lines beginning with the double-quote character (") shall be ignored. This can be used for com-
ments in an editor script.

WARNINGS
The undo command causes all marks to be lost on lines that are changed and then restored.

The z command prints a number of logical rather than physical lines. More than a screenful of output can
result if long lines are present.

Null characters are discarded in input files and cannot appear in resultant files.

On some systems, the recovery of an edit file with the -r option is possible only if certain system-
dependent actions are taken when the system is restarted.

Edit preserve files can only be recovered on systems running the same HP-UX release in which they were
preserved. Preserve files are not recoverable across different releases.

On HP terminals, the attribute field of any function key specified by a map #n ... command should be set
to normal rather than to the default of transmit .

Do not use the -C option to edit unencrypted files. The -C option is meant to be used only on files that are
already encrypted. If the -C option is used on files which are not yet encrypted, a write in the edit session
is likely to corrupt the file.

For information about line length limits, file size limits, etc., see the WARNINGS section of vi(1).

EXIT STATUS (XPG4 Only)
The ex utility shall exit with one of the following values:

0 Successful completion.

>0 An error occurred.

AUTHOR
ex was developed by the University of California, Berkeley. The 16-bit extensions to ex are based in part
on software of the Toshiba Corporation.

FILES
$HOME/.exrc Primary editor initialization file
./.exrc Secondary editor initialization file
/usr/lbin/expreserve Preserve command
/usr/lbin/exrecover Recover command
/usr/share/lib/terminfo/*/* Description of terminal capabilities
/var/preserve Preservation directory
/var/tmp/Ex nnnnn Editor temporary file
/var/tmp/Rx nnnnn Named buffer temporary file

SEE ALSO
ctags(1), ed(1), stty(1), vi(1), write(1), terminfo(4), environ(5), lang(5), regexp(5).

The Ultimate Guide to the vi and ex Text Editors, Benjamin/Cummings Publishing Company, Inc., ISBN 0-
8053-4460-8, HP part number 97005-90015.

STANDARDS COMPLIANCE
ex : SVID2, SVID3, XPG2, XPG3, XPG4

Section 1−−258 − 18 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

expand(1) expand(1)

NAME
expand, unexpand - expand tabs to spaces, and vice versa

SYNOPSIS
expand [-t tablist] [file ...]

unexpand [-a] [-t tablist] [file ...]

Obsolescent:
expand [- tabstop] [- tab1, tab2, ..., tabn] [file ...]

DESCRIPTION
expand processes the named files or the standard input and writes to the standard output with tabs
changed into spaces. Backspace characters are preserved in the output, and the column count is decreased
by one column for tab calculations. For proper tab calculation, if a multi-column character is to be
"backspace’d", it should be followed by multiple backspace characters which equal to it’s column width. If a
tab character is found after the last tab position, it is replaced by a single space. expand is useful for
preprocessing character files that contain tabs (before sorting, looking at specific columns, etc).

expand recognizes the following command-line options and arguments:

[-t tablist] tablist specifies where to set the tab positions instead of the default 8. tablist can
take two forms. If it is a single number, tabs are set tablist spaces apart. tablist can
also be a blank- or comma-separated list of increasing positions where tabs are to be
set.

[- tabstop] This option is obsolescent and is equivalent to using -t tabstop.

[- tab1, tab2, ..., tabn]
This option is obsolescent and is equivalent to using -t tab1, tab2, ... , tabn.

unexpand processes the named files or the standard input and writes to the standard output with spaces
changed into tabs where possible. By default, only leading spaces and tabs are converted to maximal
strings of tabs. The default tab position is every 8 characters. Backspace characters are preserved into the
output, and the column count is decreased by one column for tab calculations. For proper tab calculation, if
a multi-column character is to be "backspace’d", it should be followed by multiple backspace characters
which equal to it’s column width.

unexpand recognizes the following command-line options and arguments:

-a Tabs are inserted whenever they would compress the resultant file by replacing two or
more spaces before a tab position.

-t tablist tablist specifies the tab positions. tablist can take two forms. If it is a single number,
tabs are set every tablist spaces apart. If tablist is a blank- or comma-separated list of
increasing positions, tabs are set at those locations. The -t option implies the -a
option. If the -t option is not specified, the default is equivalent to specifying -t 8
except that -a is not implied for this case.

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of text as single and/or multi-byte characters.

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_CTYPEor LC_MESSAGESis not specified in the environment or is set to the empty string, the
value of LANGis used as a default for each unspecified or empty variable. If LANGis not specified or is
set to the empty string, a default of "C" (see lang(5)) is used instead of LANG.

If any internationalization variable contains an invalid setting, expand and unexpand behave as if all
internationalization variables are set to "C". See environ(5).

If LC_ALL is set to a non-empty string value, it overrides the values of all the other internationalization
variables.

International Code Set Support
Single- and multi-byte character code sets are supported with the exception that unexpand do not recog-
nize multi-byte alternative space characters.

HP-UX Release 11i: December 2000 − 1 − Section 1−−259

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

expand(1) expand(1)

STANDARDS CONFORMANCE
expand : XPG4, POSIX.2

unexpand : XPG4, POSIX.2

Section 1−−260 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

expand_alias(1) expand_alias(1)

NAME
expand_alias - recursively expands the sendmail aliases

SYNOPSIS
expand_alias [-r max_recursion] [-t] [-tt] alias

DESCRIPTION
Expand_alias is a shell script that recursively expands the sendmail aliases. Through use of tel-
net host 25 and the expn command, each alias is recursively expanded into its destination(s). Inden-
tation is used to show each level of recursion. Because of the recursive use of telnet , expand_alias
is slow. If the local telnet cannot directly connect to a remote system, due to a firewall configuration,
expand_alias will not be able to succeed. If the local telnet is to transparently connect across the
firewall, expand_alias will be able to contact sendmail daemons outside the firewall, allowing the alias
to be more fully expanded. (For example, some local telnet clients use a socksd located on the firewall to
permit the local telnet client to transparently connect to Internet hosts. If the local default telnet
uses a socksd in such a manner, expand_alias will use that telnet functionality to more fully
expand an alias.)

max_recursion defaults to 10. After max_recursion expansions, no further expansion is attempted.

If -t is specified, only the terminal aliases will be displayed.

-tt is similar to -t except that if a terminal line has a pipe, its printing is suppressed and the previous
level of expansion is printed instead.

EXAMPLES
expand_alias root

expand_alias root@cat

expand_alias root@cat.cup.hp.com

expand_alias root@cup.hp.com

AUTHOR
expand_alias was developed by the Hewlett-Packard Company.

HP-UX Release 11i: December 2000 − 1 − Section 1−−261

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

expr(1) expr(1)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION
expr takes arguments as an expression, evaluates, then writes the result on the standard output. Terms
in the expression must be separated by blanks. Characters special to the shell must be escaped. Note that
0, rather than the null string, is returned to indicate a zero value. Strings containing blanks or other spe-
cial characters should be quoted. Integer-valued arguments can be preceded by a unary minus sign. Inter-
nally, integers are treated as 32-bit, 2’s complement numbers.

The operators and keywords are listed below. Characters that need to be escaped are preceded by \ . The
list is in order of increasing precedence with equal-precedence operators grouped within {} symbols.

expr \| expr Returns the first expr if it is neither null nor 0, otherwise returns the second expr.

expr \& expr Returns the first expr if neither expr is null or 0, otherwise returns 0.

expr { =, \> , \>= , \< , \<= , != } expr
If both arguments are integers, and if the comparison is satisfied, expr returns 1 other-
wise it returns 0. expr returns the result of an integer comparison if both arguments
are integers; otherwise returns the result of a lexical comparison (note that = and ==
are identical, in that both test for equality).

expr { +, - } expr
Addition or subtraction of decimal integer-valued arguments.

expr { \ ∗, / , %} expr
Multiplication, division or remainder of decimal integer-valued arguments producing an
integer result.

expr : expr The matching operator : compares the first argument with the second argument which
must be a regular expression. expr supports the Basic Regular Expression syntax (see
regexp(5)), except that all patterns are ‘‘anchored’’ (i.e., begin with ˆ) and, therefore, ˆ
is not a special character, in that context. Normally, the matching operator returns the
number of characters matched (0 on failure). Alternatively, the \(... \) pattern sym-
bols can be used to return a portion of the first argument.

length expr The length of expr.

substr expr expr expr
Takes the substring of the first expr, starting at the character specified by the second
expr for the length given by the third expr.

index expr expr Returns the position in the first expr which contains a character found in the second
expr.

match Match is a prefix operator equivalent to the infix operator : .

\(... \) Grouping symbols. Any expression can be placed within parentheses. Parentheses can
be nested to a depth of EXPR_NEST_MAXas specified in the header file
<limits.h >.

EXTERNAL INFLUENCES
Environment Variables

LC_COLLATEdetermines the collating sequence used in evaluating regular expressions and the behavior
of the relational operators when comparing string values.

LC_CTYPEdetermines the interpretation of text as single- and/or multi-byte characters, and the charac-
ters matched by character class expressions in regular expressions.

LANGdetermines the language in which messages are displayed.

If LC_COLLATE or LC_CTYPE is not specified in the environment or is set to the empty string, the
value of LANGis used as a default for each unspecified or empty variable. If LANGis not specified or is
set to the empty string, a default of "C" (see lang(5)) is used instead of LANG. If any internationalization
variable contains an invalid setting, expr behaves as if all internationalization variables are set to "C" (see
environ(5)).

Section 1−−262 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

e

expr(1) expr(1)

International Code Set Support
Single- and multi-byte character code sets are supported.

RETURN VALUE
As a side effect of expression evaluation, expr returns the following exit values:

0 Expression is neither null nor zero.

1 Expression is null or zero.

2 Invalid expression.

>2 An error occurred while evaluating the expression.

DIAGNOSTICS
syntax error Operator or operand errors

non-numeric argument Arithmetic attempted on a string

EXAMPLES
Add 1 to the shell variable a:

a=‘expr $a + 1‘

For $a equal to either /usr/abc/file or just file , return the last segment of a path name (i.e.,
file). Beware of / alone as an argument because expr interprets it as the division operator (see WARN-
INGS below):

expr $a : ’.*/\(.*\)’ \| $a

A better representation of the previous example. The addition of the // characters eliminates any ambi-
guity about the division operator and simplifies the whole expression:

expr //$a : ’.*/\(.*\)’

Return the number of characters in $VAR:

expr $VAR : ’.*’

WARNINGS
After argument processing by the shell, expr cannot tell the difference between an operator and an operand
except by the value. If $a is an =, the command:

expr $a = ’=’

resembles:

expr = = =

as the arguments are passed to expr (and they will all be taken as the = operator). The following works:

expr X$a = X=

AUTHOR
expr was developed by OSF and HP.

SEE ALSO
sh(1), test(1), environ(5), lang(5), regexp(5).

STANDARDS CONFORMANCE
expr : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 2 − Section 1−−263

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

factor(1) factor(1)

NAME
factor, primes - factor a number, generate large primes

SYNOPSIS
factor [number]

primes [start [stop]]

DESCRIPTION
If no arguments are provided on the command line, factor waits for a number to be typed in. If a posi-
tive number is typed, it factors the number and print its prime factors; each one is printed the proper
number of times. It then waits for another number. factor exits if it encounters a zero or any non-
numeric character.

If an argument is provided on the command line, factor factors the number as above, then exits.

Maximum time to factor is proportional to sqrt(n) and occurs when n is prime or the square of a prime.

The largest number that can be dealt with by factor is 1.0e14.

primes prints prime numbers between a lower and upper bound. If no arguments are provided on the
command line, primes waits for two numbers to be typed in. The first number is interpreted as the
lower bound; the second as the upper bound. All prime numbers in the resulting inclusive range are
printed.

If start is specified, all primes greater than or equal to start are printed. If both start and stop are given,
all primes occurring in the inclusive range start through stop are printed.

start and stop values must be integers represented as long integers.

If the stop value is omitted in either case, primes runs either until overflow occurs or until it is stopped
by typing the interrupt character.

The largest number that can be dealt with by primes is 2,147,483,647.

DIAGNOSTICS
Both commands print Ouch when the input is out of range, illegal characters are encountered, or when
start is greater than stop.

EXAMPLES
Print the prime factorization for the number 12:

factor 12

Print all prime numbers between 0 and 20:

primes 0 20

Section 1−−264 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

fastbind(1) fastbind(1)

NAME
fastbind - prepare an incomplete executable for faster program start-up

SYNOPSIS
fastbind [-nu] incomplete-executable...

DESCRIPTION
fastbind is a tool that can improve the start-up time of programs that use shared libraries (incomplete
executables) by storing information about needed shared library symbols in the executable file.

fastbind performs analysis on the symbols used to bind an executable and all of it’s dependent shared
libraries, and stores this information in the executable file. The next time the executable is run, the
dynamic loader (/usr/lib/dld.sl for 32-bit PARISC or /usr/lib/pa20_64/dld.sl for 64-bit
PARISC) will notice that this information is available, and it will use this fastbind information to bind the
executable instead of the standard search method for binding the symbols.

Since fastbind writes the fastbind information in the executable file, you must have write permission on
the executable file. Also, if the executable file being analyzed is being run as another process, the file will
be locked against modifications by the kernel, and fastbind will fail.

If the shared libraries that an executable is dependent on are modified after the fastbind information is
created, the dynamic loader will silently revert to standard search method for binding the symbols. The
fastbind information can be re-created by running fastbind on the executable again. fastbind will
automatically erase the old fastbind information and generate the new one.

The ld option +fb can be used to instruct the linker to run the fastbind tool on an incomplete executable it
has produced.

Environment Variables
If dld determines that the fastbind information is out of date, it will silently revert to standard search
method for binding the symbols. If the environment variable _HP_DLDOPTSis set to -fbverbose the
dynamic loader will emit a warning message when the fastbind information is out of date.

The environment variable _HP_DLDOPTScan be set to -nofastbind to make the dynamic loader
ignore the fastbind information and revert to the standard search method for binding the symbols.

Options
fastbind recognizes the following options:

-n Remove the fastbind information from the executable, returning it to the same state it
was in before fastbind was originally run on it.

-u Normally, if fastbind detects any unsatisfied symbols while building the fastbind
information, it will generate an error message and not modify the executable file. When
fastbind is invoked with -u option however, unresolved symbols are allowed.

EXTERNAL INFLUENCES
Environment Variables

The following internationalization variables affect the execution of fastbind :

LANG
Determines the locale category for native language, local customs and coded character set in the
absence of LC_ALL and other LC_* environment variables. If LANGis not specified or is set to the
empty string, a default of C (see lang(5)) is used instead of LANG.

LC_ALL
Determines the values for all locale categories and has precedence over LANG and other LC_*
environment variables.

LC_MESSAGES
Determines the locale that should be used to affect the format and contents of diagnostic messages
written to standard error.

LC_NUMERIC
Determines the locale category for numeric formatting.

LC_CTYPE
Determines the locale category for character handling functions.

HP-UX Release 11i: December 2000 − 1 − Section 1−−265

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

fastbind(1) fastbind(1)

NLSPATH
Determines the location of message catalogs for the processing of LC_MESSAGES.

If any internationalization variable contains an invalid setting, fastbind behaves as if all internationali-
zation variables are set to C. See environ(5).

In addition, the following environment variable affects fastbind :

TMPDIR
Specifies a directory for temporary files (see tmpnam(3S)).

DIAGNOSTICS
fastbind returns zero when the operation is successful. A non-zero return code indicates that an error
occurred.

EXAMPLES
To run fastbind on the executable file a.out
enter:

fastbind a.out

To later remove the fastbind information from the executable file a.out enter:

fastbind -n a.out

WARNINGS
32-bit PARISC fastbind does not work with EXEC_MAGIC executables.

fastbind effectively enforces bind restricted and bind immediate. For example, consider an executable
linked bind deferred, which calls a function foo() defined in an implicitly loaded library. Before the actual
call is made, if it explicitly loads a shared library (using shl_load(3X) with BIND_FIRST) having a
definition for foo(), when foo() is finally called, it will be resolved from the explicitly loaded library. But after
running fastbind, the symbol foo() will be resolved from the implicitly loaded library.

AUTHOR
fastbind was developed by Hewlett-Packard.

FILES
a.out output file
/usr/lib/dld.sl 32-bit PARISC dynamic loader
/usr/lib/pa20_64/dld.sl 64-bit PARISC dynamic loader
/usr/lib/nls/$LANG/fastbind.cat message catalog
/var/tmp/__FB* temporary files

SEE ALSO
System Tools:

ld(1) invoke the link editor

Miscellaneous:
a.out(4) assembler, compiler, and linker output
dld.sl(5) dynamic loader

Texts and Tutorials:
HP-UX Linker and Libraries User’s Guide

Section 1−−266 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

fastmail(1) fastmail(1)

NAME
fastmail - quick batch mail interface

SYNOPSIS
fastmail [-b bcc-list] [-c cc-list] [-C comments] [-f from-name] [-F from-addr] [-i in-reply-to]

[-r reply-to] [-R references] [-s subject] filename address-list

DESCRIPTION
The fastmail command is a simple interface to the mail system that allows you to send a message
without the overhead of an interactive mailer. It is particularly efficient in batch-processing mail to very
large groups of people.

All addresses should be full e-mail addresses, sendmail aliases in the /etc/mail/aliases file, or
local login names.

Options
fastmail recognizes the following options:

-b bcc-list Include a Bcc: header entry. Send blind carbon copies to the comma-separated list
of addresses in bcc-list.

-c cc-list Include a Cc: header entry. Send carbon copies to the comma-separated list of
addresses in cc-list.

-C comments Include a Comments: header entry with the string value comments .

-d Debug. Display information on processing steps.

-f from-name Replace the user name in the From: header entry with from-name.

If the user is x@y, and the user name is MrX, then the default From: line is:

From: x@y (MrX) .

The option -f Joe changes it to:

From: x@y (Joe)

-F from-addr Replace the address in the From: header entry with from-addr. In the -f example
above, -F a@b changes the original entry to

From: a@b (MrX)

-i in-reply-to Include the In-Reply-To: header entry with the string value in-reply-to. This is
usually used to identify a message that you are replying to.

-r replyto Include the Reply-To: header entry with the single address given in replyto . This
is the address where replies will usually be sent, instead of to the address given in the
From: header entry, very common with mailing lists.

-R references Include a References: header entry containing the string value references .

-s subject Include a Subject: header entry containing the value subject. If this option is
omitted, the message is sent without a subject entry.

Operands
fastmail recognizes the following operands:

address-list A list of one or more blank-separated addresses for the To: header line. These are
the principal recipients of the message.

filename Either the name of a file containing the message, or a dash (-) to read from standard
input.

EXAMPLES
A Fully Specified Command

This command has every option specified.

fastmail \
-b "bcc1,bcc2,bcc3,bcc4" \
-C "Just a Comment" \
-c "cc1,cc2,cc3,cc4" \

HP-UX Release 11i: December 2000 − 1 − Section 1−−267

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

fastmail(1) fastmail(1)

-d \
-F me@anotherhost.com \
-f My Name \
-i "Your recent message" \
-R REF:13579 \
-r oscar \
-s "Testing fastmail" \
message-file \
addr1 addr2 addr3 addr4

The online execution displays the following debug messages:

Mailing to addr1,addr2,addr3,addr4 cc1,cc2,cc3,cc4 bcc1,bcc2,bcc
3,bcc4 [via sendmail]
cat /tmp/fastmail.5578 message-file | /usr/sbin/sendmail addr1,a
ddr2,addr3,addr4 cc1,cc2,cc3,cc4 bcc1,bcc2,bcc3,bcc4

The received message has the following relevant header entries:

From realsender@mycomputer.myhost.com Tue Oct 22 21:14:04 EDT 1996
Subject: Testing fastmail
From: me@anotherhost.com (My Name)
Reply-To: oscar@mycomputer.myhost.com
To: addr1@mycomputer.myhost.com, addr2@mycomputer.myhost.com,

addr3@mycomputer.myhost.com, addr4@mycomputer.myhost.com
Cc: cc1@mycomputer.myhost.com, cc2@mycomputer.myhost.com,

cc3@mycomputer.myhost.com, cc4@mycomputer.myhost.com
References: REF:13579
In-Reply-To: Your recent message
Comments: Just a Comment

The Bcc: header entry is not transmitted.

A Batch Process
Suppose you are user big on machine big-machine and you have a shell script named batch-mail
that contains the following lines:

#
Batch Mail - batch mailing of a file to a LOT of users
#
Usage: batch-mail "<from>" "<subject>" <filename>

sender_copy=$LOGIN
replyto=The-Mr-Big-list

fastmail -b $sender_copy -r $replyto -f "$1" -s "$2" $3 person1
sleep 10
fastmail -r $replyto -f "$1" -s "$2" $3 person2
sleep 10
fastmail -r $replyto -f "$1" -s "$2" $3 person3
sleep 10
fastmail -r $replyto -f "$1" -s "$2" $3 person4

The command:

batch-mail "Mr. Big" "Warning to all" warning.text

would mail a copy of the warning.text file to person1 , person2 , person3 , and person4 , stag-
gered ten seconds apart.

$LOGIN would also silently receive a copy of the first message in the mail. Each resultant message would
include the header lines:

From: big@big-machine (Mr. Big)
Subject: Warning to all
Reply-To: The-Mr-Big-list

Section 1−−268 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

fastmail(1) fastmail(1)

FILES
/etc/mail/aliases sendmail aliases file.
/usr/sbin/sendmail Mail transport agent.
/tmp/fastmail. pid Temporary file.

AUTHOR
fastmail was developed by HP.

SEE ALSO
elm(1), sendmail(1M).

RFC 822 "Standard for the Format of Internet Text Messages"

HP-UX Release 11i: December 2000 − 3 − Section 1−−269

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

file(1) file(1)

NAME
file - determine file type

SYNOPSIS
file [-m mfile] [-c] [-f ffile] [-h] file ...

DESCRIPTION
file performs a series of tests on each file in an attempt to classify it. If file appears to be an ASCII file,
file examines the first 512 bytes and tries to guess its language. If file is an executable a.out file,
file prints the version stamp, provided it is greater than 0 (see the description of the -V option in ld(1)).

file uses the file /etc/magic to identify files that have some sort of magic number, that is, any file
containing a numeric or string constant that indicates its type. Commentary at the beginning of
/etc/magic explains the format.

Options
file recognizes the following command-line options:

-m mfile Use alternate magic file mfile.

-c Check the magic file for format errors. This validation is not normally carried out for
reasons of efficiency. No file classification is done when this option is specified.

-f ffile Obtain the list of files to be examined from file ffile. file classifies each file whose
name appears in ffile.

-h Do not follow symbolic links.

EXTERNAL INFLUENCES
Environment Variables

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_MESSAGESis not specified in the environment or is set to the empty string, the value of LANGis
used as a default for each unspecified or empty variable. If LANGis not specified or is set to the empty
string, a default of "C" (see lang(5)) is used instead of LANG.

If any internationalization variable contains an invalid setting, file behaves as if all internationalization
variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported. However, all non-ASCII text files are identified
as "data".

WARNINGS
The file command for a release interprets the core files for that particular release correctly. Using the
file command on a core file generated on a different release will report incorrect results.

SEE ALSO
ld(1).

STANDARDS CONFORMANCE
file : SVID2, SVID3, XPG2, XPG4

Section 1−−270 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

find(1) find(1)

NAME
find - find files

SYNOPSIS
find pathname_list [expression]

DESCRIPTION
The find command recursively descends the directory hierarchy for each path name in pathname_list
(that is, one or more path names) seeking files that match a Boolean expression written in the primaries
given below. By default, find does not follow symbolic links.

The Boolean expression is evaluated using short-circuit evaluation. This means that whenever the result of
a Boolean operation (AND or OR) is known from evaluating the left-hand argument, the right-hand argu-
ment is not evaluated.

In the descriptions of the primaries, the argument n represents a decimal integer; +n means more than n,
- n means less than n, and n means exactly n.

The following primaries are recognized:

-depth A position-independent term which causes descent of the directory hierarchy to
be done so that all entries in a directory are acted on before the directory itself.
This can be useful when find is used with cpio(1) to transfer files that are con-
tained in directories without write permission. It is also useful when using
cpio(1) and the modification dates of directories must be preserved. Always true.

-follow A position-independent term which causes find to follow symbolic links. When
following symbolic links, find keeps track of the directories visited so that it
can detect infinite loops; for example, such a loop would occur if a symbolic link
pointed to an ancestor. This expression should not be used with the -type l
expression. Always true.

-fsonly FStype A position-independent term which causes find to stop descending any direc-
tory whose file system is not of the type specified by FStype, where FStype is one
of cdfs , hfs , vxfs , or nfs , representing the CDFS, HFS, JFS (VXFS) or
NFS file system type, respectively.

In this context, mount points inherit the FStype of their parent directory. This
means that when -fsonly hfs has been specified and find encounters an
NFS mount point that is mounted on an HFS file system, the mount point will be
visited but entries below that mount point will not. It is important to note that
when -fsonly nfs has been specified, any HFS file systems that are beneath
the mount point of an NFS file system are not traversed. Always true.

-local True if the file physically resides on the local system. This does not restrict the
search to only files which physically reside on the local system, it merely
matches such files. See EXAMPLES.

-xdev A position-independent term that causes find to avoid crossing any file system
mount points that exist below starting points enumerated in pathname_list. The
mount point itself is visited, but entries below the mount point are not. Always
true.

-mountstop Identical to -xdev . This primary is provided for backward compatibility only.
-xdev is preferred over -mountstop .

-name file True if file matches the last component of the current file name. The matching is
performed according to Pattern Matching Notation (see regexp(5)). Pattern may
contain supplementary code set characters.

-path file Same as -name except the full path (as would be output by -print) is used
instead of just the base name. Note that / characters are not treated as a spe-
cial case. For example, */.profile matches ./home/fred/.profile .

-perm [-]mode In this primary, the argument mode is used to represent file mode bits. The
argument is identical in format to the mode operand as described in chmod(1),
with the exception that the first character must not be the - operator. When
using the symbolic form of mode, the starting template is assumed to have all
file mode bits cleared.

HP-UX Release 11i: December 2000 − 1 − Section 1−−271

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

find(1) find(1)

If the leading minus is omitted, this primary is true when the file permission bits
exactly match the value of mode. Bits associated with the symbolic attributes s
(set-user-ID, set-group-ID) and t (sticky bit) are ignored when the minus is
omitted.

If mode is preceded by a minus, this primary is true if all of the bits that are set
in mode are also set in the file permission bits. In this case, the bits associated
with the symbolic attributes s and t are significant.

-fstype FStype True if the file system to which the file belongs is of type FStype, where FStype
is one of cdfs , hfs , or nfs , corresponding to the CDFS, HFS, or NFS file sys-
tem type, respectively.

-type c True if the type of the file is c, where c is one of:
f Regular file
d Directory
b Block special file
c Character special file
p FIFO (named pipe)
l Symbolic link
s Socket
n Network special file
M Mount point

-links n True if the file has n links.

-user uname True if the file belongs to the user uname. If uname is numeric and does not
appear as a login name in the /etc/passwd file, it is taken as a user ID. The
uname operand can be preceded by a + or - to modify the comparison of the pri-
maries. If the argument n represents a decimal integer; +n means more than n,
- n means less than n, and n means exactly n.

-group gname True if the file belongs to the group gname. If gname is numeric and does not
appear in the /etc/group file, it is taken as a group ID. The gname operand
can be preceded by a + or - to modify the comparison of the primaries. If the
argument n represents a decimal integer; +n means more than n, - n means less
than n, and n means exactly n.

-nouser True if the file belongs to a user ID that is not listed in the password database.
See passwd(4).

-nogroup True if the file belongs to a group ID that is not listed in the group database.
See group(4).

-size n[c] True if the file is n blocks long (512 bytes per block). If n is followed by a c , the
size is in bytes.

-atime n True if the file access time subtracted from the initialized time is n-1 to n multi-
ples of 24 h. The initialization time shall be a time between the invocation of the
find utility and the first access by that invocation of the find utility to any
file specified by its path operands. The access time of directories in
pathname_list is changed by find itself.

-mtime n True if the file modification time subtracted from the initialization time is n-1 to
n multiples of 24 h. The initialization time shall be a time between the invocation
of the find utility and the first access by that invocation of the find utility to
any file specified in its path operands.

-ctime n True if the time of last change of file status information subtracted from the ini-
tialization time is n-1 to n multiples of 24 h. The initialization time shall be a
time between the invocation of the find utility and the first access by that invo-
cation of the find utility to any file specified by its path operands.

-newer file True if the current file has been modified more recently than the argument file.

-newer [tv1[tv2]] file True if the indicated time value (tv1) of the current file is newer than the indi-
cated time value (tv2) of file. The time values tv1 and tv2 are each selected from
the set of characters:

Section 1−−272 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

find(1) find(1)

a The time the file was last accessed
c The time the inode of the file was last modified
m The time the file was last modified

If the tv2 character is omitted, it defaults to m. Note that the -newer option is
equivalent to -newermm .

Syntax examples;

-newera file
-newermc file

-inum n True if the file serial number (inode number) is n. Note that file serial numbers
are unique only within a given file system. Therefore, matching file serial
numbers does not guarantee that the referenced files are the same unless you
restrict the search to a single file system.

-linkedto path True if the file is the same physical file as the file specified by path (i.e., linked to
path). This primary is similar to -inum , but correctly detects when a file is
hard-linked to path, even when multiple file systems are searched.

-print Causes the current path name to be printed. Always true.

-exec cmd True if the executed cmd returns a zero value as exit status. The end of cmd
must be punctuated by a semicolon (;) or a plus sign (+) (semicolon and plus are
special to the shell and must be escaped). When a plus sign is used, cmd aggre-
gates a set of pathnames and executes on the set. The reason for preferring + to
a semicolon is vastly improved performance. Any command argument {} is
replaced by the current path name. cmd may contain supplementary code set
characters.

-ok cmd Same as -exec except that the generated command line is printed with a ques-
tion mark first, and is executed only if the user responds by typing y . The form
of the affirmative response is locale dependent: y in the C locale, see LANG on
environ(5). cmd may contain supplementary code set characters.

-cpio device Write the current file on device in cpio(4) format (5120-byte records). The use of
-cpio implies -depth . Always true.

-ncpio Same as -cpio but adds the -c option to cpio . The use of -ncpio implies
-depth . Always true.

-prune If the current entry is a directory, cause find to skip that directory. This can
be useful to avoid walking certain directories, or to avoid recursive loops when
using cpio -p . Note, however, that -prune is useless if the -depth option
has also been given. See the description of -only and the EXAMPLES section,
below, for more information. Always true.

-only This is a positive-logic version of -prune . A -prune is performed after every
directory, unless -only is successfully evaluated for that directory. As an
example, the following three commands are equivalent:

find . -fsonly hfs -print
find . -print -fstype hfs -only
find . -print ! -fstype hfs -prune

Note, however, that -only is useless if the -depth option has also been given.
Always true.

(expression) True if the parenthesized expression is true. The spaces are required.
Parentheses are special to the shell and must be escaped, as in \(and \) .

Primaries can be combined by using the following operators (in order of decreasing precedence):

! expression Logical NOT operator. True if expression is not true.

expression [-a] expression Logical AND operator. True if both of the expressions are true.

expression -o expression Logical OR operator. True if either or both of the expressions are true.

If expression is omitted, or if none of -print , -ok , -exec , -cpio , or -ncpio is specified, -print is
assumed. The -user , -group , and -newer primaries each evaluate their respective arguments once.

HP-UX Release 11i: December 2000 − 3 − Section 1−−273

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

find(1) find(1)

HFS Access Control Lists
The -acl primary enables the user to search for HFS access control list entries. It is true if the file’s
access control list matches an access control list pattern or contains optional access control list entries (see
acl(5)). It has three forms:

-acl aclpatt Match all files whose access control list includes all (zero or more) pattern
entries specified by the aclpatt pattern.

-acl = aclpatt Match a file only if its access control list includes all (zero or more) pattern
entries specified by the aclpatt pattern, and every entry in its access control list
is matched by at least one pattern entry specified in the aclpatt pattern.

-acl opt Match all files containing optional access control list entries.

The aclpatt string can be given as an operator or short form pattern; see acl(5).

By default, -acl is true for files whose access control lists include all the (zero or more) access control list
patterns in aclpatt. A file’s access control list can also contain unmatched entries.

If aclpatt begins with =, the remainder of the string must match all entries in a file’s access control list.

The aclpatt string (by default, or the part following =) can be either an access control list or an access con-
trol list pattern. However, if it is an access control list, aclpatt must include at least the three base entries
((user.%, mode), (%.group, mode), and (%.%, mode)).

As a special case, if aclpatt is the word opt , the primary is true for files with access control list entries.

JFS Access Control Lists
The -aclv primary enables the user to search for JFS access control list entries. It is true if the file’s
access control list matches an access control list pattern or contains optional access control list entries (see
aclv(5)). It has three forms:

-aclv aclpatt Match all files whose access control list includes all (zero or more) pattern
entries specified by the aclpatt pattern.

-aclv = aclpatt Match a file only if its access control list includes all (zero or more) pattern
entries specified by the aclpatt pattern, and every entry in its access control list
is matched by at least one pattern entry specified in the aclpatt pattern.

-aclv opt Match all files containing optional access control list entries.

By default, -aclv is true for files whose access control lists include all the (zero or more) access control list
patterns in aclpatt. A file’s access control list can also contain unmatched entries.

If aclpatt begins with =, the remainder of the string must match all entries in a file’s access control list.

An aclpatt consists of a type field, an ID field, and a mode field, separated by colons. Multiple comma-
separated aclpatts may be specified.

The type field is one of user , group , class , other or * , optionally preceded by default: . user ,
group , class , other and default can be abbreviated to u, g, c , o and d, respectively. A type field
of * matches any of the above types.

The ID field is either a numeric user or group ID, a user or group ID string from /etc/passwd or
/etc/group respectively, or * , which matches any ID.

The mode field consists of a string of three characters. The first character is either r , indicating that read
permission is granted; - , indicating that read permission is denied; or ?, which matches either state of read
permission. The second character is either w, - , or ?, similarly indicating the state of write permission;
and the third character is either x , - , or ?, indicating the state of execute permission.

As a special case, if aclpatt is the word opt , the primary is true for files with optional access control list
entries.

EXTERNAL INFLUENCES
Environment Variables

If an internationalization variable is not specified or is null, it defaults to the value of LANG.

If LANGis not specified or is null, it defaults to C (see lang(5)).

If LC_ALL is set to a nonempty string value, it overrides the values of all the other internationalization
variables.

Section 1−−274 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

find(1) find(1)

If any internationalization variable contains an invalid setting, all internationalization variables default to
C (see environ(5)).

LC_CTYPEdetermines the interpretation of text as single and/or multibyte characters, the classification of
characters as printable, and the characters matched by character class expressions in regular expressions.

LC_MESSAGESdetermines the locale that should be used to affect the format and contents of diagnostic
messages written to standard error and informative messages written to standard output.

NLSPATHdetermines the location of message catalogues for the processing of LC_MESSAGES.

International Code Set Support
Single- and multibyte character code sets are supported.

EXAMPLES
Search the two directories /example and /new/example for files containing the string Where are
you and print the names of the files:

find /example /new/example -exec grep -l ’Where are you’ {} \;

Remove all files named a.out or *.o that have not been accessed for a week:

find / \(-name a.out -o -name ’*.o’ \) -atime +7 -exec rm {} \;

Note that the spaces delimiting the escaped parentheses are required.

Print the names of all files on this machine. Avoid walking nfs directories while still printing the nfs
mount points:

find / -fsonly hfs -print

Match only local files, and do not examine the contents of any directory found to be remotely mounted:

find / ! -local -prune -o -size +50 -print

This only works correctly if there are no local file systems mounted on top of remote directories. This exam-
ple will print all local files on the system larger than 50 blocks, without wasting time accessing remote files.

To get the same effect, but to check for files in local file systems mounted on remote directories, use:

find / -local -size +50 -print

Copy the entire file system to a disk mounted on /Disk , avoiding the recursive copy problem. Both com-
mands are equivalent (note the use of -path instead of -name):

cd /; find . ! -path ./Disk -only -print | cpio -pdxm /Disk
cd /; find . -path ./Disk -prune -o -print | cpio -pdxm /Disk

Copy the root disk to a disk mounted on /Disk , skipping all mounted file systems below / . Note that -
xdev does not cause / to be skipped, even though it is a mount point. This is because / is the starting
point and -xdev only affects entries below starting points.

cd /; find . -xdev -print | cpio -pdm /Disk

Change permissions on all regular files in a directory subtree to mode 444, and permissions on all direc-
tories to 555:

find pathname -type f -print | xargs chmod 444
find pathname -type d -print | xargs chmod 555

Note that output from find was piped to xargs(1) instead of using the -exec primary. This is
because when a large number of files or directories is to be processed by a single command, the -
exec primary spawns a separate process for each file or directory, whereas xargs collects file names
or directory names into multiple arguments to a single chmod command, resulting in fewer processes
and greater system efficiency. The + delimiter for the -exec primary can be used to achieve the
same efficiency.

Access Control List Examples
Find all files not owned by user karl that have access control lists with at least one entry associated with
karl , and one entry for no specific user in group bin with the read bit on and the write bit off:

find / ! -user karl -acl ’karl.*, %.bin+r-w’ -print

HP-UX Release 11i: December 2000 − 5 − Section 1−−275

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

find(1) find(1)

Find all files that have a read bit set in any access control list entry:

find / -acl ’*.*+r’ -print

Find all files that have the write bit unset and execute bit set in every access control list entry:

find / -acl ’=*.*-w+x’ -print

Find all files that have optional access control list entries:

find / -acl opt -print

DEPENDENCIES
NFS

The -acl primary is always false for NFS files.

WARNINGS
Because of interoperability goals, cpio does not support archiving files larger than 2GB or files that have
user/group IDs larger than 60,000 (60K). Files with user/group IDs greater than 60K are archived and
restored under the user/group ID of the current process.

AUTHOR
find was developed by AT&T and HP.

FILES
/etc/group Group names
/etc/mnttab Mount points
/etc/passwd User names

SEE ALSO
chacl(1), chmod(1), cpio(1), setacl(1), sh(1), test(1), xargs(1), mknod(2), stat(2), cpio(4), fs(4), group(4),
passwd(4), acl(5), aclv(5), environ(5), lang(5), regexp(5).

STANDARDS CONFORMANCE
find : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

Section 1−−276 − 6 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

findmsg(1) findmsg(1)

NAME
findmsg, dumpmsg - create message catalog file for modification

SYNOPSIS
findmsg [-aiv] [[-D sym] [-U sym]] file ...

dumpmsg file ...

DESCRIPTION
The findmsg command extracts messages from a C program source file and writes them to the standard
output in a format suitable for input to gencat (see gencat(1)). The input file will be preprocessed using
cpp (see cpp(1)) in order to select print specifiers and handle ifdef , ifndef ... conditional cpp primi-
tives. If multiple input files are specified and the -a option is not used, the files are processed sequentially
such that message catalog comment lines identifying the input file are written before the output for each
input file.

The findmsg command scans the source files for uncommented lines with one of the following three for-
mats embedded within it:

catgets(any_var,NL_SETN, n,< message>)

<message> /* catgets n */

/* catgets n */ < message>

or any combination of these formats wholly contained on a single physical line. <message> could be a
string constant or a combination of string constants and print specifiers (PRI*). Any number of spaces or
tabs can separate the catgets comment from the message . The digit n, which can be any valid message
number (see gencat(1)), is combined with the message string to produce a message catalog source line. The
message source line is assigned to the set whose number is the current value of NL_SETNas set by the last
#define directive encountered. If NL_SETNhas not yet been defined when a message line is found, the
message is output without a set number specification. If more than one message is found belonging to the
same set and message number, the last message found is output; any others are silently discarded. Condi-
tional compilation and #include instructions in the C source files are ignored.

Options
findmsg recognizes the following command-line options:

-a Merge identically numbered sets from multiple input files so that gencat can process
the findmsg output.

-D sym Define symbol sym .

-U sym Cause symbol sym to be undefined.

-i Consider all #ifdefs to extract messages from the input file. Options -D and -U will be
used to select print specifiers if this option is not used.

-v Outputs all error messages issued by cpp . By default, findmsg does not display the
error messages issued by cpp .

The dumpmsg command extracts messages from a message catalog file created by gencat . Messages are
written to standard output in a format suitable for editing and re-input to gencat .

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of messages as single-byte and/or multi-byte characters.

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_CTYPE or LC_MESSAGESis not specified in the environment or is set to the empty string, the
value of LANGis used as a default for each unspecified or empty variable. If LANGis not specified or is set
to the empty string, a default of C (see lang(5)) is used instead of LANG. If any internationalization vari-
able contains an invalid setting, findmsg and dumpmsg behave as if all internationalization variables are
set to C. See environ(5).

International Code Set Support
Single-byte and multi-byte character code sets are supported.

HP-UX Release 11i: December 2000 − 1 − Section 1−−277

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

findmsg(1) findmsg(1)

WARNINGS
The findmsg and dumpmsg commands are HP proprietary, not portable to other vendors’ systems, and
will not be provided in future HP-UX releases.

AUTHOR
findmsg and dumpmsg were developed by HP.

SEE ALSO
findstr(1), gencat(1), insertmsg(1), catgets(3C).

Section 1−−278 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

findstr(1) findstr(1)

NAME
findstr - find strings for inclusion in message catalogs

SYNOPSIS
findstr file ...

DESCRIPTION
findstr examines files of C source code for uncommented string constants which it places, along with the
surrounding quotes, on the standard output, preceding each by the file name, start position, and length.
This information is used by insertmsg (see insertmsg(1)). findstr does not output strings that are
parameters of the catgets() routine (see catgets(3C)).

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of comments and string literals as single- and/or multi-byte char-
acters.

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_CTYPEor LC_MESSAGESis not specified in the environment or is set to the empty string, the
value of LANGis used as a default for each unspecified or empty variable. If LANGis not specified or is
set to the empty string, a default of "C" (see lang(5)) is used instead of LANG. If any internationalization
variable contains an invalid setting, findstr behaves as if all internationalization variables are set to
"C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

WARNINGS
findstr outputs initialization strings of static string variables. Calling insertmsg with these strings
causes their replacement with a call to catgets() (see catgets(3C)). Since the initializer must be a
string, this assignment results in an invalid C declaration. For example, the following line:

static char *x[] = " message"
is modified by insertmsg (see insertmsg(1)) to:

static char *x[] = (catgets(catd,NL_SETN,1," message"))
These strings should be manually removed from findstr output before being input to insertmsg .

findstr will not be provided in future HP-UX releases.

SEE ALSO
insertmsg(1).

HP-UX Release 11i: December 2000 − 1 − Section 1−−279

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

finger(1) finger(1)

NAME
finger - user information lookup program

SYNOPSIS
finger [options] user_name ...

DESCRIPTION
By default, finger lists for each user_name on the system:

• Login name,
• Full given name,
• Terminal write status (if write permission is denied),
• Idle time,
• Login time,
• User’s home directory and login shell,
• Any plan the user has placed in file .plan in their home directory,
• Project on which they are working from the file .project , also in the home directory,
• office location and phone number (if known),
• last time the user received the mail, and last time the user read the mail.

Idle time is in minutes if listed as a single integer, hours and minutes if a : is present, or days and hours if
a d is present. Account names as well as first and last names of users are accepted.

finger can also be used to list users on a remote machine. The format for user_name is user_name@host.
If user_name is not specified, the remote system (HP-UX or non-HP-UX) uses its default standard format
for listing user information.

Options
finger recognizes the following options:

-b Suppress printing the user’s home directory and shell.

-f Suppress printing the header that is normally printed in a short-format printout.

-h Suppress printing the .project file in a long-format printout.

-i Force ‘‘idle’’ output format. Similar to short format except that only the login name, termi-
nal, login time, and idle time are printed.

-l Force long output format.

-m Match arguments only on user name.

-p Suppress printing of the .plan files

-q Force quick output format. Similar to short format except that only the login name, termi-
nal, and login time are printed.

-R Print the user’s host name.

-s Force short output format.

-w Suppress printing the full name in a short-format printout.

WARNINGS
Only the first line of the .project file is printed.

AUTHOR
finger was developed by the University of California, Berkeley.

FILES
/etc/utmp who file
/var/adm/wtmp last login file
/etc/passwd for users names, offices, ...
˜/.plan plans
˜/.project projects
/var/mail mail directory

Section 1−−280 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

finger(1) finger(1)

SEE ALSO
chfn(1), who(1).

HP-UX Release 11i: December 2000 − 2 − Section 1−−281

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

fmt(1) fmt(1)

NAME
fmt - format text

SYNOPSIS
fmt [-cs] [-w width] [file...]

DESCRIPTION
The fmt command is a simple text formatter that fills and joins lines to produce output lines of (up to) the
number of characters specified in the -w width option. The default width is 72. fmt concatenates the
file arguments. If none are given, fmt formats text from the standard input.

Blank lines are preserved in the output, as is the spacing between words. fmt does not fill lines beginning
with a period (.), for compatibility with nroff . Nor does it fill lines starting with From: .

Indentation is preserved in the output and input lines with differing indentation are not joined (unless -c
is used).

fmt can also be used as an in-line text filter for vi ; the vi command:

!}fmt

reformats the text between the cursor location and the end of the paragraph.

Options
fmt recognizes the following options:

-c Crown margin mode. Preserve the indentation of the first two lines within a paragraph and
align the left margin of each subsequent line with that of the second line. This is useful for
tagged paragraphs.

-s Split lines only. Do not join short lines to form longer ones. This prevents sample lines of code,
and other such formatted text, from being unduly combined.

-w Fill output lines to up to width columns.

WARNINGS
The -w width option is acceptable for BSD compatibility, but it may go away in future releases.

SEE ALSO
nroff(1), vi(1).

Section 1−−282 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

fold(1) fold(1)

NAME
fold - fold long lines for finite width output device

SYNOPSIS
fold [-b] [-s] [-w width] [file ...]

Obsolete form:
fold [-s] [- width] [file ...]

DESCRIPTION
The fold command is a filter that folds the contents of the specified files, breaking the lines to have a
maximum of width column positions (or bytes, if the -b option is specified). The fold command breaks
lines by inserting a newline character so that each output line is the maximum width possible that does not
exceed the specified number of column positions (or bytes). A line cannot be broken in the middle of a char-
acter. If no files are specified or if a file name of - is specified, the standard input is used.

The fold command is often used to send text files to line printers that truncate, rather than fold, lines
wider than the printer is able to print.

If the backspace, tab, or carriage-return characters are encountered in the input, and the -b option is not
specified, they are treated specially as follows:

Backspace The current count of line width is decremented by one, although the count never
becomes negative. Thus, the character sequence character-backspace-character
counts as using one column position, assuming both characters each occupy a single
column position. fold does not insert a newline character immediately before or
after any backspace character.

Tab Each tab character encountered advances the column position pointer to the next
tab stop. Tab stops are set 8 columns apart at column positions 1, 9, 17, 25, 33, etc.

Carriage-return The current count of line width is set to zero. fold does not insert a newline
character immediately before or after any carriage-return character.

Note that fold may affect any underlining that is present.

Options
The fold command recognizes the following options and command-line arguments:

-b Count width in bytes rather than in column positions.

-s Break the line on the last blank character found before the specified number of
column positions (or bytes). If none are found, break the line at the specified line
length.

-w width
- width

Specify the maximum line length, in column positions (or bytes if -b is specified).
The default value is 80. width should be a multiple of 8 if tabs are present, or the
tabs should be expanded using expand before processing by fold (see expand(1)).
The - width option is obsolescent and may be removed in a future release.

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of text as single- and/or multi-byte characters.

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_CTYPE or LC_MESSAGESis not specified in the environment or is set to the empty string, the
value of LANGis used as a default for each unspecified or empty variable. If LANGis not specified or is set
to the empty string, a default of "C" (see lang(5)) is used instead of LANG.

If any internationalization variable contains an invalid setting, fold behaves as if all internationalization
variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

HP-UX Release 11i: December 2000 − 1 − Section 1−−283

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

fold(1) fold(1)

SEE ALSO
expand(1).

STANDARDS CONFORMANCE
fold : XPG4, POSIX.2

Section 1−−284 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

forder(1) forder(1)

NAME
forder - convert file data order

SYNOPSIS
forder [-a] [-l] [-n] [file ...]

DESCRIPTION
The text orientation (mode) of a file can be right-to-left (non-Latin) or left-to-right (Latin). This text orien-
tation can affect the way data is arranged in the file. The data arrangements that result are called screen
order and keyboard order. forder converts the order of characters in the file from screen order to key-
board order or vice versa.

forder reads the concatenation of input files (or standard input if none are given) and produces on stan-
dard output a converted version of its input. If - appears as an input file name, forder reads standard
input at that point (use - - to delimit the end of options in such instances).

forder converts input files for all languages that are read from right-to-left. Unless the -a option is
used, the command merely copies input files to standard output for languages that are read from left-to-
right.

Options
forder recognizes the following options:

-a Convert file data order for languages read from left-to-right.

-l Identify the file as having been created in Latin mode.

-n Identify the file as having been created in non-Latin mode.

EXTERNAL INFLUENCES
Environment Variables

The LANGOPTSenvironment variable determines the mode and order of the file. The syntax of LAN-
GOPTSis:

[mode] [_order]

where mode describes the mode of a file: l represents Latin mode, and n represents non-Latin mode.
Non-Latin mode is assumed for values other than l and n. The order describes the data order of a file: k
is keyboard, and s is screen. Keyboard order is assumed for values other than k and s . Mode informa-
tion in LANGOPTScan be overridden from the command line.

The LC_ALL environment variable determines the direction of a language (left-to-right or right-to-left).

The LC_NUMERICenvironment variable determines whether a language has alternative numbers.

The LANGenvironment variable determines the language in which messages are displayed.

International Code Set Support
Single-byte character code sets are supported.

EXAMPLES
The following command begins with file1, which exists in screen order, converts it to keyboard order, sorts
the keyboard-ordered output, converts it back to screen order, and redirects the output to file2. Note that
-n is given to inform forder that file1 was created in non-Latin mode.

forder -n file1 | sort | forder -n > file2

WARNINGS
It is the user’s responsibility to ensure that the LANGOPTSenvironment variable accurately reflects the
status of the file.

If present, alternative numbers always have a left-to-right orientation.

The forder command is HP proprietary, not portable to other vendors’ systems, and will not be provided
in future HP-UX releases.

AUTHOR
forder was developed by HP.

HP-UX Release 11i: December 2000 − 1 − Section 1−−285

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

forder(1) forder(1)

SEE ALSO
environ(5), strord(3C), nljust(1).

Section 1−−286 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

from(1) from(1)

NAME
from - who is my mail from?

SYNOPSIS
from [-s sender] [user]

DESCRIPTION
from prints the mail header lines in your mailbox file to show who sent you mail. If user is specified,
user ’s mailbox is examined instead of your own. If the -s option is given, only headers of mail from sender
are printed.

EXAMPLES
List header lines for all current mail in your mailbox that was sent by ken .

from -s ken

FILES
/var/mail/*

AUTHOR
from was developed by the University of California, Berkeley.

SEE ALSO
biff(1), mail(1), prmail(1).

HP-UX Release 11i: December 2000 − 1 − Section 1−−287

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

fruled(1) fruled(1)

NAME
fruled - turn on/off attention LEDs (cell, cabinet and I/O chassis attention LEDs)

SYNOPSIS
fruled [-f |-o] [-B] -c cell [-c ...]

fruled [-f |-o] [-B] -i I/Ochassis [-i ...]

fruled [-f |-o] -b cabinet [-b ...]

fruled [-f] -C [-l cabinet] [-l ...]

fruled [-f] -I [-l cabinet] [-l ...]

DESCRIPTION
The fruled command turns on/off attention LEDs of cells or I/O chassis. The command can also be used
to start or stop flashing cabinet number LEDs.

If a cell attention LED is being illuminated, the cabinet number LED of the cabinet that contains the com-
ponent can be made to flash by using the -B option. Likewise, if an internal component’s LED is being
turned off, the cabinet number LED can also be made to stop flashing using the -B option.

Options and Arguments
fruled recognizes the following command line options and arguments:

-f Turn off specified attention LED(s). This is the default.

The -f and -o options are mutually exclusive.

-o Turn on specified attention LED(s).

The -o option is unavailable with -C or -I .

-B Start or stop flashing the cabinet number LED of the cabinet that contains the cell or I/O
chassis.

The -B option is only available with -c and -i .

-c cell Turn on/off the specified cell attention LED.

cell can be specified either in the local (cabinet#/slot#) or global (cell_ID) format. For
example, the cell located in cabinet 2, slot 4 is locally identified as 2/4 or globally as simply
20.

-i I/Ochassis Turn on/off the specified I/Ochassis attention LED.

An I/Ochassis can be specified in the form of cabinet#/enclosure#/chassis#. For example,
the I/O chassis located in cabinet 1, enclosure 4 and I/O chassis slot 1 is identified as 1/4/1.

-b cabinet Start or stop flashing the cabinet number LED of the specified cabinet.

-C Turn off all cell attention LEDs.

By default the scope will be the whole complex if -l option is not specified.

-I Turn off all I/O chassis LEDs.

By default the scope will be the entire complex if the -l option is not specified.

-l cabinet Limit the scope of the -C or -I option to a given cabinet.

EXIT STATUS
The fruled utility exits with one of the following values:

0 Successful completion.

1 Error condition occurred.

2 No LED associated with specified object.

EXAMPLES
Turn on the attention LED of the cell located in cabinet 0 slot 4 and also turn on the attention LED of the
cabinet in which it is contained.

Section 1−−288 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

fruled(1) fruled(1)

fruled -o -B -c 0/4

Turn off the attention LEDs of 2 cells located in cabinet 0, slot 4 and cabinet 0, slot 6.

fruled -f -c 0/4 -c 0/6

WARNINGS
The presence of ? in the command output indicates a problem in address translation. If you see ? (exam-
ple: "I/O chassis 0/?/3") in the command output, please contact your Hewlett Packard representative.

AUTHOR
fruled was developed by the Hewlett-Packard Company.

SEE ALSO
parstatus(1), partition(1), frupower(1M), parcreate(1M), parmodify(1M), parremove(1M), parunlock(1M).

HP-UX Release 11i: December 2000 − 2 − Section 1−−289

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftio(1) ftio(1)

NAME
ftio - faster tape I/O

SYNOPSIS
ftio -o -O [achpvxAELM] [-B blksize] [-D type] [-e extarg] [-K comment] [-L filelist]

[-N datefile] [-S script] [-T tty] [-Z nobufs] tapedev [pathnames] [-F ignorenames]

ftio -i -I [cdfmptuvxAEMPR] [-B blksize] [-S script] [-T tty] [-Z nobufs] tapedev [patterns]

ftio -g [v] tapedev [patterns]

DESCRIPTION
ftio is a tool designed specifically for copying files to tape drives. It performs faster than either cpio or
tar in comparable situations (see cpio(1) and tar(1)). ftio uses multiple processes (to read/write the file
system and to write/read the tape device), with large amounts of memory sharing between processes as
well as a large block size for reading and writing to the tape.

ftio is compatible with cpio in that output from cpio is always readable by ftio , and output from
ftio is readable by cpio , except as explained in the "cpio Compatibility" section, later in the manpage.

ftio must be invoked with exactly one of the following options: -o , -O , -i , -I , or -g . The -o and -O
options specify that ftio is writing "out" from file system to tape; the -i and -I options specify that
ftio is writing "in" from tape to file system. The -o , -O , -i , and -I options can be followed by modifiers
that must appear immediately after the option with no spaces between the option and the modifier, as in
ftio -idxE (see Modifiers section below).

tapedev specifies the name of a device special file for the tape device to which the output is written. A dev-
ice on a remote machine can be specified in the form

machine: device_special_file

ftio creates a server process from /usr/sbin/rmt on the remote machine to access the tape device.
If /usr/sbin/rmt does not exist on the remote system, ftio creates a server process from
/etc/rmt , on the remote machine to access the tape device.

Options
ftio recognizes the following options:

-o Copy (out) files from the file system to tapedev, including path name and status infor-
mation. If pathnames are specified, ftio recursively descends pathnames looking
for files, and copies those files to tapedev. If pathnames are not specified, ftio
reads the standard input to obtain a list of path names to copy. ftio can copy to
multiple tapes if required. For every tape used, ftio generates a tape header con-
taining the current tape volume number, machine node name and type, operating sys-
tem name, release and version numbers (all from the uname() system call; see
uname(2)), username of the person issuing the ftio command, the time and date the
command was executed, the number of consecutive times the current media has been
used, a comment field, and other items used internally by ftio . The tape header is
separated from the main body of the tape archive by an end-of-file mark. The tape
header can be read by invoking cat with the device file name as the first argument
(see cat(1)). Note, character and block device special files written with the -o option
are not transportable to other HP-UX implementations.

-O Copy out files in the same way as ftio -ocva , when no modifiers are used with the
-O . However, if the .ftiorc file exists in the user’s home directory, ftio opens
this file and scans for lines preceded by O=. Options defined on matching lines are
passed to ftio as if they had been specified on the command line. See EXAMPLES
section.

-i Extract (copy into the file system) files from tapedev, which is assumed to be a tape
and the product of a previous ftio -o operation. Only files with names that match
patterns, according to the rules of Pattern Matching Notation (see regexp(5)), are
selected. In addition, a leading ! within a pattern indicates that only those names
that do not match the remainder of the pattern should be selected. Multiple patterns
can be specified. If no patterns are specified, the default for patterns is * (that is,
select all files). The extracted files are conditionally created and copied into the
current directory tree, based upon the options described below. The permissions of

Section 1−−290 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftio(1) ftio(1)

the files are those of the previous -o operation.

-I Extract (copy into the file system) files in the same way as for ftio -icdmv , when
no modifiers are used with the -I . However, if the .ftiorc file exists in the user’s
home directory, ftio opens this file, and scans for lines preceded by I= . Options
defined on matching lines are passed to ftio as if they had been specified on the
command line. See EXAMPLES section.

-g Read the file list in tapedev. If patterns is specified, only file names that match are
printed. Note that file names are always preceded by the volume that ftio
expected the file to be on when the file list was created; thus only the last volume is
valid in this respect.

-e extarg Specifies the handling of any extent attributes of the file[s] to be archived. Extent
attributes cannot be preserved when archiving files with ftio. extarg takes one of
the following values:

warn Issue a warning message and archive the file without extent attri-
butes.

ignore A file with extent attributes will be archived, without preserving the
extent attributes and without issuing a warning message.

force A file with extent attributes will not be archived and a warning mes-
sage will be issued.

If -e is not specified, the default value for extarg is warn .

-B blksize Specify the size (in bytes) of blocks written to tape. This number can end with k ,
which specifies multiplication by 1024. The use of larger blocks generally improves
performance and tape usage. The maximum allowable block size is limited by the
tape drive used. A default of 16384 bytes is set because this is the maximum block
size on most Hewlett-Packard tape drives.

-D type Descend a directory recursively, only if the file system to which it belongs is type,
where type can be hfs , vxfs , or nfs .

-F ignorenames
Arguments following -F specify patterns that should not be copied to the tape. The
same rules apply to ignorenames as to patterns; see the earlier description for ftio
-i .

-K comment Specify a comment to be placed in the ftio tape header.

-L filelist Create a list of the files being backed up. filelist specifies the output file. If path-
names is specified, perform the file search and generate a list of files prior to actually
commencing the backup. This list is then appended to the tape header of each tape in
the backup as a list of files that ftio attempted to fit onto this tape. The last tape
in the backup contains a catalog identifying where the files are in the archive set. If
pathnames is not also specified, the file list is taken from standard input before the
backup begins. In addition to generating file lists, the -L option implements tape
checkpointing, allowing the backup to restart from a write failure on bad media.

-M Make fully compatible with cpio . That is, do not generate or expect tape headers
and change the default block size to 5120 bytes. (See the cpio Compatibility section
below.)

-N datefile Only files newer than the file specified in datefile are copied to tape.

-R Resynchronize automatically, when ftio goes out of phase. This is useful when res-
toring from a multi-tape backup from tapes other than the first. By default, ftio
asks the user if resynchronization is required.

-S script Specify a command to be invoked every time a tape is completed in a multi-tape
backup. The command is invoked by the Bourne shell (see sh-bourne(1) with the fol-
lowing arguments: script tape_no user_name. script is the string argument script
specified with the -S option. tape_no is the number of the tape required, and
user_name is the user who invoked ftio . Typically, the string script specifies a shell
script which is used to notify the user that a tape change is required.

-T tty Specify alternative to /dev/tty . Normally /dev/tty is opened by ftio when
terminal interaction is required.

HP-UX Release 11i: December 2000 − 2 − Section 1−−291

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftio(1) ftio(1)

-Z nobufs Specify the number of blksize chunks of memory to use as buffer space between the
two processes, where blksize is the size of blocks written to the tape. More chunks is
usually better, but a point is reached where no improvement is gained, and perfor-
mance might deteriorate as buffer space is swapped out of main memory. A default
value of 16 is set for nobufs, but using 32 or 64 might improve performance if your
system is not heavily loaded. Best results are obtained when backups are performed
with the system in single-user mode (see shutdown(1M)).

Modifiers
The following modifiers can be used with certain options as indicated in the SYNOPSIS:

a After files are copied to tape, reset their access time to appear as though the files were not
accessed by ftio .

c Write header information in ASCII character form, for portability.

d When restoring files, create directories as needed.

f Copy in all files except those that match patterns.

h Archive the files to which symbolic links point, as if they were normal files or directories. By
default, ftio archives the link itself.

m Retain previous file modification time and ownership of file. Restoring modification time does
not apply to directories that are being restored.

p At the end of the backup, print the number of blocks transferred, the total time taken
(excluding tape rewind and reel-change time), and the effective transfer rate calculated from
these figures. These values are printed at the end of each tape if p is specified twice.

t Print only a table of contents of the input. No files are created, read, or copied.

u Copy unconditionally (by default, ftio does not replace a newer file with a older file of the
same name).

v Be verbose. Print a list of file names and tape headers. When used with the t modifier, the
table of contents looks the same as the output of the ls -l (ell) command (see ls(1)).

x Save or restore device special files. ftio uses mknod(2) to recreate these files during a
restore operation. Thus, this modifier is restricted to users with appropriate privileges. This
is intended for intrasystem (backup) use. Restoring device files onto a different system can be
very dangerous.

A If copying from tape (-i or -I option), print all file names found on the tape archive, noting
which files have been restored. This is useful when the user restores selected files, but wants
to know which (if any) files are on the tape.

If copying to tape (-o or -O option), the A modifier suppresses warning messages regarding
optional access control list entries. ftio(1) does not back up optional access control list entries
in a file’s access control list (see acl(5)). Normally, a warning message is printed for each file
that has optional access control list entries.

E When archiving, store all files having absolute path names (that is, path names beginning
with /) with path names relative to the root directory (in other words, remove the leading /).
On restoration, any files in the archive that had an absolute path name before archiving are
restored relative to the current directory.

L Same as the -L option, except that the file list is left in the current directory as the file
ftio.list , instead of the file named in filelist.

P On restoration, use prealloc() to allocate disk space beforehand for the file (see preal-
loc(2)). This vastly improves the localization of file fragments.

When end-of-tape is reached, ftio invokes script if the -S option was specified, rewinds the current
tape, then asks the user to mount the next tape.

To pass one or more metacharacters to ftio without having the shell expand them, protect them either
by preceding each of them with a backslash (as in /usr*), or enclosing them in protective single quotes
(as in ’/usr*’).

Section 1−−292 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftio(1) ftio(1)

cpio Compatibility
ftio uses the same archive format as cpio . However, by default ftio creates tape headers and uses a
tape block size of 16KB. cpio by default uses 512-byte blocks. When used with the -B option, cpio
uses 5120 byte blocks. To achieve full compatibility with cpio in either input or output mode, the user
should specify the M modifier. ftio -oM creates a single- or multi-tape archive that has no tape
headers, and, by default, the same block size as cpio - [oi]B. An archive created by a cpio -oB
command can be restored using ftio -iM . If the M modifier of ftio is combined with a -B 512
block-size specification, full compatibility with cpio - [oi] (no -B) is achieved.

EXTERNAL INFLUENCES
Environment Variables

LC_COLLATE determines the collating sequence used in evaluating pattern matching notation for file
name generation.

LC_CTYPEdetermines the characters matched by character class expressions in pattern matching nota-
tion.

LC_TIME determines the format and contents of date and time strings.

LANGdetermines the language in which messages are displayed.

If LC_COLLATE, LC_CTYPE, or LC_TIME is not specified in the environment or is set to the empty
string, the value of LANG is used as a default for each unspecified or empty variable. If LANG is not
specified or is set to the empty string, a default of C (see lang(5)) is used instead of LANG. If any interna-
tionalization variable contains an invalid setting, ftio behaves as if all internationalization variables are
set to C. See environ(5).

International Code Set Support
Single-byte character code sets are supported.

EXAMPLES
Copy the entire contents of the file system (including special files) onto tape drive
/dev/rmt/c0t0d0BEST :

ftio -ox /dev/rmt/c0t0d0BEST /

Restore all the files on /dev/rmt/c0t0d0BEST , relative to the current directory:

ftio -idxE /dev/rmt/c0t0d0BEST

List the contents of a backup set created using ftio -o . Note that use of the v modifier gives a more
detailed listing, and displays the contents of tape headers.

ftio -itv /dev/rmt/c0t0d0BEST

Show how to use the .ftiorc file:

Assume a .ftiorc file exists in the user’s home directory and contains the following:

Sample .ftiorc file.
I= cdmuvEpp -B 16k -S /usr/local/bin/ftio.change
O= cavEpp -Z 8 -B 16k -S /usr/local/bin/ftio.change

Invoke ftio with the following command line to back up the user’s home directory and the operat-
ing system commands directory:

ftio -O /dev/rmt/c0t0d0BEST /home/my_home /usr/sbin

Specifying the -O option causes ftio to check the .ftiorc file for additional options. In this
case, character headers are generated, access times are reset, a listing of the files copied are printed
to standard output, all file names are copied to /dev/rmt/c0t0d0BEST with path names relative
to / , performance data is printed when the backup is complete (and at every tape change), and, if the
backup goes beyond one media the script, /usr/local/bin/ftio.change is invoked by ftio
after each media is completed.

WARNINGS
Because of industry standards and interoperability goals, ftio does not support the archival of files larger
than 2GB or files that have user/group IDs greater than 60K. Files with user/group IDs greater than 60K
are archived and restored under the user/group ID of the current process.

HP-UX Release 11i: December 2000 − 4 − Section 1−−293

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftio(1) ftio(1)

ftio operates using System V shared memory and semaphores. The resources committed to these func-
tions are not freed automatically by the system when the process terminates. ftio does this only when
it terminates normally, or when it terminates after receiving one the following signals: SIGHUP, SIGINT ,
SIGTERM. Any other signal is handled in the default manner described by signal(2). Note that the
behavior for SIGKILL is to terminate the process without delay. Thus, if ftio receives a SIGKILL
signal (as might be produced by the indiscriminate use of kill -9 (see kill(1)), system resources used for
shared memory and semaphores are not returned to the system. If it becomes necessary to terminate an
invocation of ftio , use kill -15 instead. Current system usage of shared memory and semaphores
can be checked using the ipcs command (see ipcs(1)). Committed resources can be removed using
ipcrm (see ipcrm(1)).

AUTHOR
ftio was developed by HP.

SEE ALSO
cpio(1), find(1), ipcs(1), ipcrm(1), kill(1), ls(1), rmt(1M), mknod(2), prealloc(2), signal(2), uname(2), acl(5),
environ(5), lang(5), regexp(5), mt(7).

Section 1−−294 − 5 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftp(1) ftp(1)

NAME
ftp - file transfer program

SYNOPSIS
ftp [-g] [-i] [-n] [-c] [-v] [-B size] [server-host]

DESCRIPTION
ftp is a user interface to the File Transfer Protocol. ftp copies files over a network connection between
the local ‘‘client’’ host and a remote ‘‘server’’ host. ftp runs on the client host.

Options
The ftp command supports the following options:

-g Disable file name ‘‘globbing’’; see the glob command, below. By default, when this option is not
specified, globbing is enabled.

-i Disable interactive prompting by multiple-file commands; see the prompt command, below.
By default, when this option is not specified, prompting is enabled.

-n Disable ‘‘auto-login’’; see the open command, below. By default, when this option is not
specified, auto-login is enabled.

-c When this option is set, the SYST and TYPE calls are not made by the ftp client to the
server upon establishing a connection. The -c option takes effect only when auto-login is dis-
abled i.e. when it is invoked along with the -n option. This option does not disable the SYST
and TYPE commands, but only refrains from invoking these commands upon establishing a con-
nection.

-v Enable verbose output; see the verbose command, below. If this option is not specified, ftp
displays verbose output only if the standard input is associated with a terminal.

-B Set the buffer size of the data socket to size blocks of 1024 bytes. The valid range for size is an
integer from 1 to 64 (default is 56).

Note: A large buffer size will improve the performance of ftp on fast links (e.g., FDDI), but
may cause long connection times on slow links (e.g., X.25).

The name of the server host that ftp communicates with can be specified on the command line. If the
server host is specified, ftp immediately opens a connection to the server host; see the open command,
below. Otherwise, ftp waits for commands from the user.

File Transfer Protocol specifies file transfer parameters for type, mode, form , and struct. ftp supports
the ASCII , binary , and tenex File Transfer Protocol types . ASCII is the default FTP type. (It
should be noted though that, whenever ftp establishes a connection between two similar systems, it
switches automatically to the more efficient binary type.) ftp supports only the default values for the
file transfer parameters mode which defaults to stream , form which defaults to non-print , and struct
which defaults to file .

COMMANDS
ftp supports the following commands. Command arguments with embedded spaces must be enclosed in
quotes (for example, "argument with embedded spaces").

! [command [args]]
Invoke a shell on the local host. The SHELL environment variable specifies which shell program to
invoke. ftp invokes /usr/bin/sh if SHELL is undefined. If command is specified, the shell
executes it and returns to ftp . Otherwise, an interactive shell is invoked. When the shell ter-
minates, it returns to ftp .

$ macro-name [args]
Execute the macro macro-name that was defined with the macdef command. Arguments are
passed to the macro unglobbed.

account [passwd]
Supply a supplemental password required by a remote system for access to resources once a login has
been successfully completed. If no argument is included, the user is prompted for an account pass-
word in a non-echoing input mode.

append local-file [remote-file]
Copy local-file to the end of remote-file. If remote-file is left unspecified, the local file name is used in

HP-UX Release 11i: December 2000 − 1 − Section 1−−295

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftp(1) ftp(1)

naming the remote file after being altered by any ntrans or nmap setting.

ascii
Set the file transfer type to network ASCII. This is the default type.

bell
Sound a bell after each file transfer completes.

binary
Set the file transfer type to binary .

bye Close the connection to the server host if a connection was open, and exit. Typing an end-of-file (EOF)
character also terminates and exits the session.

case
Toggle remote computer file name case mapping during mget commands. When case is on (the
default is off), remote computer file names with all letters in uppercase are written in the local direc-
tory with the letters mapped to lowercase.

cd remote-directory
Set the working directory on the server host to remote-directory.

cdup
Set the working directory on the server host to the parent of the current remote working directory.

chmod mode file-name
Change the permission modes of the file file-name on the remote system to mode.

close
Terminate the connection to the server host. The close command does not exit ftp . Any defined
macros are erased.

cr Toggle carriage return stripping during ascii type file retrieval. Records are denoted by a
carriage-return/line-feed sequence during ascii type file transfer. When cr is on (the default),
carriage returns are stripped from this sequence to conform with the UNIX single line-feed record del-
imiter. Records on non-UNIX remote systems may contain single line-feeds; when an ascii type
transfer is made, these line-feeds can be distinguished from a record delimiter only when cr is off.

delete remote-file
Delete remote-file. The remote-file can be an empty directory. No globbing is done.

dir [remote-directory] [local-file]
Write a remote-directory listing to standard output or optionally to local-file. If neither remote-
directory nor local-file is specified, list the remote working directory to standard output. If interactive
prompting is on, ftp prompts the user to verify that the last argument is indeed the target file for
dir output. Globbing characters are always expanded.

disconnect
A synonym for close .

form format
Set the file transfer form to format . The only supported format is non-print

get remote-file [local-file]
Copy remote-file to local-file. If local-file is unspecified, ftp uses the specified remote-file name as
the local-file name, subject to alteration by the current case, ntrans, and nmap settings.

glob
Toggle file name globbing. When file name globbing is enabled, ftp expands csh(1) metacharacters
in file and directory names. These characters are * , ?, [,] , ˜ , { , and } . The server host expands
remote file and directory names. Globbing metacharacters are always expanded for the ls and dir
commands. If globbing is enabled, metacharacters are also expanded for the multiple-file commands
mdelete , mdir , mget , mls , and mput .

hash
Toggle printing of a hash-sign (#) for each 1024 bytes transferred. Note that the use of this feature
may cause performance degradation.

help [command]
Print an informative message about the ftp command called ftp-command. If ftp-command is
unspecified, print a list of all ftp commands.

Section 1−−296 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftp(1) ftp(1)

idle [seconds]
Set the inactivity timer on the remote server to seconds seconds. If seconds is omitted, ftp prints
the current inactivity timer.

lcd [local-directory]
Set the local working directory to local-directory. If local-directory is unspecified, set the local work-
ing directory to the user’s local home directory.

ls [remote-directory] [local-file]
Write a listing of remote-directory to local-file. The listing includes any system-dependent information
that the server chooses to include; for example, most UNIX systems produce output from the com-
mand ls -l (see also nlist). If neither remote-directory nor local-file is specified, list the remote
working directory. If globbing is enabled, globbing metacharacters are expanded.

macdef macro-name
Define a macro. Subsequent lines are stored as the macro macro-name ; an empty input line ter-
minates macro input mode. There is a limit of 16 macros and 4096 total characters in all defined mac-
ros. Macros remain defined until a close command is executed. The macro processor interprets $
and \ as special characters. A $ followed by a number (or numbers) is replaced by the corresponding
argument on the macro invocation command line. A $ followed by an i signals to the macro processor
that the executing macro is to be looped. On the first pass $i is replaced by the first argument on the
macro invocation command line, on the second pass it is replaced by the second argument, and so on.
A \ followed by any character is replaced by that character. Use the \ to prevent special treatment
of the $.

mdelete [remote-files]
Delete remote-files. If globbing is enabled, globbing metacharacters are expanded.

mdir remote-files local-file
Write a listing of remote-files to local-file. If globbing is enabled, globbing metacharacters are
expanded. If interactive prompting is on, ftp prompts the user to verify that the last argument is
indeed the target local file for mdir output.

mget remote-files
Copy remote-files to the local system. If globbing is enabled, globbing metacharacters are expanded.
The resulting local file names are processed according to case, ntrans, and nmap settings.

mkdir directory-name
Create remote directory-name.

mls remote-files local-file
Write an abbreviated listing of remote-files to local-file. If globbing is enabled, globbing metacharac-
ters are expanded. If interactive prompting is on, ftp prompts the user to verify that the last argu-
ment is indeed the target local file for mls output.

mode [mode-name]
Set the FTP file transfer mode to mode-name. The only supported mode is stream .

modtime remote-file
Show the last modification time of remote-file.

mput local-files
Copy local-files from the local system to the remote system. The remote files have the same name as
the local files processed according to ntrans and nmap settings. If globbing is enabled, globbing char-
acters are expanded.

newer file-name
Get the file only if the modification time of the remote file is more recent that the file on the current
system. If the file does not exist on the current system, the remote file is considered newer. Other-
wise, this command is identical to get .

nlist [remote-directory] [local-file]
Write an abbreviated listing of remote-directory to local-file. If remote-directory is left unspecified, the
current working directory is used. If interactive prompting is on, ftp prompts the user to verify
that the last argument is indeed the target local file for nlist output.

nmap [inpattern outpattern]
Set or unset the filename mapping mechanism. If no arguments are specified, the filename mapping
mechanism is unset. If arguments are specified, remote filenames are mapped during mput

HP-UX Release 11i: December 2000 − 3 − Section 1−−297

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftp(1) ftp(1)

commands and put commands issued without a specified remote target filename. If arguments are
specified, local filenames are mapped during mget commands and get commands issued without a
specified local target filename. This command is useful when connecting to a non-UNIX remote com-
puter with different file naming conventions or practices. The mapping follows the pattern set by
inpattern and outpattern. inpattern is a template for incoming filenames (which may have already
been processed according to the ntrans and case settings). Variable templating is accomplished
by including the sequences $1 , $2 , ..., $9 in inpattern. Use \ to prevent this special treatment of
the $ character. All other characters are treated literally, and are used to determine the nmap
inpattern variable values. For example, given inpattern $1.$2 and the remote file name
mydata.data , $1 would have the value mydata , and $2 would have the value data . The out-
pattern determines the resulting mapped filename. The sequences $1 , $2 , ..., $9 are replaced by
any value resulting from the inpattern template. The sequence $0 is replaced by the original
filename. Additionally, the sequence [seq1, seq2] is replaced by seq1 if seq1 is not a null string; oth-
erwise it is replaced by seq2. For example, the command nmap $1.$2.$3
[$1,$2].[$2,file] would yield the output filename myfile.data for input filenames
myfile.data and myfile.data.old , myfile.file for the input filename myfile , and
myfile.myfile for the input filename .myfile . Spaces can be included in outpattern, as in the
example: nmap $1 | sed s/*$// > $1 Use the \ character to prevent special treatment of the
$, [,] , and , characters.

ntrans [inchars [outchars]]
Set or unset the filename character translation mechanism. If no arguments are specified, the
filename character translation mechanism is unset. If arguments are specified, characters in remote
filenames are translated during mput commands and put commands issued without a specified
remote target filename. If arguments are specified, characters in local filenames are translated dur-
ing mget commands and get commands issued without a specified local target filename. This com-
mand is useful when connecting to a non-UNIX remote computer with different file naming conven-
tions or practices. Characters in a filename matching a character in inchars are replaced with the
corresponding character in outchars. If the character’s position in inchars is longer than the length of
outchars, the character is deleted from the file name.

open server-host [port-number]
Establish a connection to server-host , using port-number (if specified). If auto-login is enabled, ftp
attempts to log into the server host.

passive
Toggle passive mode of transfer. By default, the passive mode of transfer is disabled. This command
enables the server to specify the data port for the ftp transfer.

prompt
Toggle interactive prompting. By default, ftp prompts the user for a yes or no response for each
output file during multiple-file commands. If interactive prompting is disabled, ftp performs the
command for all specified files.

proxy ftp-command
Execute an ftp command on a secondary control connection. This command allows simultaneous
connection to two remote FTP servers for transferring files between the two servers. The first
proxy command should be an open , to establish the secondary control connection. Enter the com-
mand proxy ? to see other FTP commands executable on the secondary connection. The following
commands behave differently when prefaced by proxy : open does not define new macros during
the auto-login process, close does not erase existing macro definitions, get and mget transfer
files from the host on the primary control connection to the host on the secondary control connection,
and put , mput , and append transfer files from the host on the secondary control connection to the
host on the primary control connection. Third party file transfers depend upon support of the FTP
protocol PASVcommand by the server on the secondary control connection.

put local-file [remote-file]
Copy local-file to remote-file. If remote-file is unspecified, ftp assigns the local-file name, processed
according to any ntrans or nmap settings, to the remote-file name.

pwd Write the name of the remote working directory to stdout.

quit
A synonym for bye .

quote arguments
Send arguments, verbatim, to the server host. See ftpd(1M).

Section 1−−298 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftp(1) ftp(1)

recv remote-file [local-file]
A synonym for get .

reget remote-file [local-file]
reget acts like get , except that if local-file exists and is smaller than remote-file, local-file is
presumed to be a partially transferred copy of remote-file and the transfer is continued from the
apparent point of failure. This command is useful when transferring very large files over networks
that tend to drop connections.

rhelp [command-name]
Request help from the server host. If command-name is specified, supply it to the server. See
ftpd(1M).

rstatus [file-name]
With no arguments, show status of remote machine. If file-name is specified, show status of file-name
on remote machine.

rename remote-from remote-to
Rename remote-from , which can be either a file or a directory, to remote-to .

reset
Clear reply queue. This command re-synchronizes command/reply sequencing with the remote FTP
server. Resynchronization may be necessary following a violation of the FTP protocol by the remote
server.

restart marker
Restart the immediately following get or put at the indicated marker. On UNIX systems, marker
is usually a byte offset into the file.

rmdir remote-directory
Delete remote-directory. remote-directory must be an empty directory.

runique
Toggle storing of files on the local system with unique filenames. If a file already exists with a name
equal to the target local filename for a get or mget command, a .1 is appended to the name. If
the resulting name matches another existing file, a .2 is appended to the original name. If this pro-
cess continues up to .99 , an error message is printed, and the transfer does not take place. ftp
reports the unique filename. Note that runique does not affect local files generated from a shell
command (see below). The default value is off .

send local-file [remote-file]
A synonym for put .

sendport
Toggle the use of PORTcommands. By default, ftp attempts to use a PORTcommand when estab-
lishing a connection for each data transfer. If the PORTcommand fails, ftp uses the default data
port. When the use of PORTcommands is disabled, ftp makes no attempt to use PORTcommands
for each data transfer. This is useful for certain FTP implementations that ignore PORTcommands
but (incorrectly) indicate that they’ve been accepted. See ftpd(1M). Turning sendport off may
cause delays in the execution of commands.

site arguments
Send arguments, verbatim, to the server host as a SITE command. See ftpd(1M).

size remote-file
Show the size of remote-file.

status
Show the current status of ftp .

struct [struct-name]
Set the FTP file transfer struct to struct-name. The only supported struct is file .

sunique
Toggle storing of files on remote machine under unique file names. The remote server reports the
unique name. By default, sunique is off .

system
Show the type of operating system running on the remote machine.

HP-UX Release 11i: December 2000 − 5 − Section 1−−299

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftp(1) ftp(1)

tenex
Set the FTP file transfer type to tenex .

type [type-name]
Set the FTP file transfer type to type-name. If type-name is unspecified, write the current type to
stdout. Ascii , binary , and tenex are the types currently supported.

umask [newmask]
Set the default umask on the remote server to newmask. If newmask is omitted, the current umask is
printed.

user user-name [password] [account]
Log into the server host on the current connection, which must already be open. A .netrc file in
the user’s local home directory can provide the user-name, password, and optionally the account; see
netrc(4). Otherwise ftp prompts the user for this information. The HP-UX FTP server does not
require an account. For security reasons, ftp always requires a password. It does not log into
remote accounts that do not have a password.

verbose
Toggle verbose output. If verbose output is enabled, ftp displays responses from the server host,
and when a file transfer completes it reports statistics regarding the efficiency of the transfer.

? [command]
A synonym for the help command. Prints the help information for the specified command.

Aborting A File Transfer
To abort a file transfer, use the terminal interrupt key (usually Ctrl-C). Sending transfers are halted
immediately. ftp halts incoming (receive) transfers by first sending a FTP protocol ABORcommand to
the remote server, then discarding any further received data. The speed at which this is accomplished
depends upon the remote server’s support for ABORprocessing. If the remote server does not support the
ABOR command, an ftp> prompt does not appear until the remote server completes sending the
requested file.

The terminal interrupt key sequence is ignored while ftp awaits a reply from the remote server. A long
delay in this mode may result from the ABORprocessing described above, or from unexpected behavior by
the remote server, including violations of the FTP protocol. If the delay results from unexpected remote
server behavior, the local ftp program must be killed manually.

File Naming Conventions
Files specified as arguments to ftp commands are processed according to the following rules.

• If the file name - is specified, ftp uses the standard input (for reading) or standard output (for writ-
ing).

• If the first character of the file name is | , ftp interprets the remainder of the argument as a shell
command. ftp forks a shell, using popen() (see popen(3S)) with the supplied argument, and reads
(writes) from standard output (standard input). If the shell command includes spaces, the argument
must be quoted, as in:

"| ls -lt" .

Some useful examples of this mechanism are:

ls . "| more" .

The above command lists the files in the current directory page by page.

put "| tail -20 loc_file" rem_file .

This command copies the last twenty lines of the local file "loc_file" to the remote system as "rem_file".

• Otherwise, if globbing is enabled, ftp expands local file names according to the rules used by the C
shell (see csh(1)); see the glob command, below. If the ftp command expects a single local file (e.g.,
put), only the first filename generated by the globbing operation is used.

• For mget commands and get commands with unspecified local file names, the local filename is named
the same as the remote filename, which may be altered by a case , ntrans , or nmap setting. The
resulting filename may then be altered if runique is on.

• For mput commands and put commands with unspecified remote file names, the remote filename is
named the same as the local filename, which may be altered by a ntrans or nmap setting. The

Section 1−−300 − 6 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftp(1) ftp(1)

resulting filename may then be altered by the remote server if sunique is on.

WARNINGS
Correct execution of many commands depends upon proper behavior by the remote server.

DIAGNOSTICS
Error! could not retrieve authentication type.

Please notify sys admin.
There are two authentication mechanisms used by ftp . One authentication mechanism is based on
Kerberos and the other is not. The type of authentication mechanism is obtained from a system file
which is updated by inetsvcs_sec (see inetsvcs_sec (1M)). If the system file does not contain
known authentication types, the above error is displayed.

AUTHOR
ftp was developed by the University of California, Berkeley.

SEE ALSO
csh(1), rcp(1), ftpd(1M), inetsvcs_sec(1M), netrc(4), ftpusers(4), hosts(4).

HP-UX Release 11i: December 2000 − 7 − Section 1−−301

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftp(1) Kerberos ftp(1)

NAME
ftp - file transfer program

SYNOPSIS
ftp [-g] [-i] [-n] [-c] [-P] [-v] [-B size] [server-host]

DESCRIPTION
ftp is a user interface to the File Transfer Protocol. ftp copies files over a network connection between
the local ‘‘client’’ host and a remote ‘‘server’’ host. ftp runs on the client host.

Options
The ftp command supports the following options:

-g Disable file name ‘‘globbing’’; see the glob command, below. By default, when this option is not
specified, globbing is enabled.

-i Disable interactive prompting by multiple-file commands; see the prompt command, below.
By default, when this option is not specified, prompting is enabled.

-P Disables Kerberos authentication and authorization. Only applicable in a secure environment
based on Kerberos V5. When this option is specified, a password is required and the password is
sent across the network in a readable form. By default, if this option is not specified, a password
is not required and Kerberos authentication and authorization takes place instead. See sis(5).

-n Disable ‘‘auto-login’’; see the open command, below. By default, when this option is not
specified, auto-login is enabled.

-c When this option is set, the SYST and TYPE calls are not made by the ftp client to the
server upon establishing a connection. The -c option takes effect only when auto-login is dis-
abled i.e. when it is invoked along with the -n option. This option does not disable the SYST
and TYPE commands, but only refrains from invoking these commands upon establishing a con-
nection.

-v Enable verbose output; see the verbose command, below. If this option is not specified, ftp
displays verbose output only if the standard input is associated with a terminal.

-B Set the buffer size of the data socket to size blocks of 1024 bytes. The valid range for size is an
integer from 1 to 64 (default is 56).

Note: A large buffer size will improve the performance of ftp on fast links (e.g., FDDI), but
may cause long connection times on slow links (e.g., X.25).

The name of the server host that ftp communicates with can be specified on the command line. If the
server host is specified, ftp immediately opens a connection to the server host; see the open command,
below. Otherwise, ftp waits for commands from the user.

File Transfer Protocol specifies file transfer parameters for type, mode, form , and struct. ftp supports
the ASCII , binary , and tenex File Transfer Protocol types . ASCII is the default FTP type. (It
should be noted though that, whenever ftp establishes a connection between two similar systems, it
switches automatically to the more efficient binary type.) ftp supports only the default values for the
file transfer parameters mode which defaults to stream , form which defaults to non-print , and struct
which defaults to file .

COMMANDS
ftp supports the following commands. Command arguments with embedded spaces must be enclosed in
quotes (for example, "argument with embedded spaces").

! [command [args]]
Invoke a shell on the local host. The SHELL environment variable specifies which shell program to
invoke. ftp invokes /usr/bin/sh if SHELL is undefined. If command is specified, the shell
executes it and returns to ftp . Otherwise, an interactive shell is invoked. When the shell ter-
minates, it returns to ftp .

$ macro-name [args]
Execute the macro macro-name that was defined with the macdef command. Arguments are
passed to the macro unglobbed.

account [passwd]
Supply a supplemental password required by a remote system for access to resources once a login has

Section 1−−302 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftp(1) Kerberos ftp(1)

been successfully completed. If no argument is included, the user is prompted for an account pass-
word in a non-echoing input mode.

append local-file [remote-file]
Copy local-file to the end of remote-file. If remote-file is left unspecified, the local file name is used in
naming the remote file after being altered by any ntrans or nmap setting.

ascii
Set the file transfer type to network ASCII. This is the default type.

bell
Sound a bell after each file transfer completes.

binary
Set the file transfer type to binary .

bye Close the connection to the server host if a connection was open, and exit. Typing an end-of-file (EOF)
character also terminates and exits the session.

case
Toggle remote computer file name case mapping during mget commands. When case is on (the
default is off), remote computer file names with all letters in uppercase are written in the local direc-
tory with the letters mapped to lowercase.

cd remote-directory
Set the working directory on the server host to remote-directory.

cdup
Set the working directory on the server host to the parent of the current remote working directory.

chmod mode file-name
Change the permission modes of the file file-name on the remote system to mode.

close
Terminate the connection to the server host. The close command does not exit ftp . Any defined
macros are erased.

cr Toggle carriage return stripping during ascii type file retrieval. Records are denoted by a
carriage-return/line-feed sequence during ascii type file transfer. When cr is on (the default),
carriage returns are stripped from this sequence to conform with the UNIX single line-feed record del-
imiter. Records on non-UNIX remote systems may contain single line-feeds; when an ascii type
transfer is made, these line-feeds can be distinguished from a record delimiter only when cr is off.

delete remote-file
Delete remote-file. The remote-file can be an empty directory. No globbing is done.

dir [remote-directory] [local-file]
Write a remote-directory listing to standard output or optionally to local-file. If neither remote-
directory nor local-file is specified, list the remote working directory to standard output. If interactive
prompting is on, ftp prompts the user to verify that the last argument is indeed the target file for
dir output. Globbing characters are always expanded.

disconnect
A synonym for close .

form format
Set the file transfer form to format . The only supported format is non-print

get remote-file [local-file]
Copy remote-file to local-file. If local-file is unspecified, ftp uses the specified remote-file name as
the local-file name, subject to alteration by the current case, ntrans, and nmap settings.

glob
Toggle file name globbing. When file name globbing is enabled, ftp expands csh(1) metacharacters
in file and directory names. These characters are * , ?, [,] , ˜ , { , and } . The server host expands
remote file and directory names. Globbing metacharacters are always expanded for the ls and dir
commands. If globbing is enabled, metacharacters are also expanded for the multiple-file commands
mdelete , mdir , mget , mls , and mput.

hash
Toggle printing of a hash-sign (#) for each 1024 bytes transferred. Note that the use of this feature

HP-UX Release 11i: December 2000 − 2 − Section 1−−303

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftp(1) Kerberos ftp(1)

may cause performance degradation.

help [command]
Print an informative message about the ftp command called ftp-command. If ftp-command is
unspecified, print a list of all ftp commands.

idle [seconds]
Set the inactivity timer on the remote server to seconds seconds. If seconds is omitted, ftp prints
the current inactivity timer.

lcd [local-directory]
Set the local working directory to local-directory. If local-directory is unspecified, set the local work-
ing directory to the user’s local home directory.

ls [remote-directory] [local-file]
Write a listing of remote-directory to local-file. The listing includes any system-dependent information
that the server chooses to include; for example, most UNIX systems produce output from the com-
mand ls -l (see also nlist). If neither remote-directory nor local-file is specified, list the remote
working directory. If globbing is enabled, globbing metacharacters are expanded.

macdef macro-name
Define a macro. Subsequent lines are stored as the macro macro-name ; an empty input line ter-
minates macro input mode. There is a limit of 16 macros and 4096 total characters in all defined mac-
ros. Macros remain defined until a close command is executed. The macro processor interprets $
and \ as special characters. A $ followed by a number (or numbers) is replaced by the corresponding
argument on the macro invocation command line. A $ followed by an i signals to the macro processor
that the executing macro is to be looped. On the first pass $i is replaced by the first argument on the
macro invocation command line, on the second pass it is replaced by the second argument, and so on.
A \ followed by any character is replaced by that character. Use the \ to prevent special treatment
of the $.

mdelete [remote-files]
Delete remote-files. If globbing is enabled, globbing metacharacters are expanded.

mdir remote-files local-file
Write a listing of remote-files to local-file. If globbing is enabled, globbing metacharacters are
expanded. If interactive prompting is on, ftp prompts the user to verify that the last argument is
indeed the target local file for mdir output.

mget remote-files
Copy remote-files to the local system. If globbing is enabled, globbing metacharacters are expanded.
The resulting local file names are processed according to case, ntrans, and nmap settings.

mkdir directory-name
Create remote directory-name.

mls remote-files local-file
Write an abbreviated listing of remote-files to local-file. If globbing is enabled, globbing metacharac-
ters are expanded. If interactive prompting is on, ftp prompts the user to verify that the last argu-
ment is indeed the target local file for mls output.

mode [mode-name]
Set the FTP file transfer mode to mode-name. The only supported mode is stream .

modtime remote-file
Show the last modification time of remote-file.

mput local-files
Copy local-files from the local system to the remote system. The remote files have the same name as
the local files processed according to ntrans and nmap settings. If globbing is enabled, globbing char-
acters are expanded.

newer file-name
Get the file only if the modification time of the remote file is more recent that the file on the current
system. If the file does not exist on the current system, the remote file is considered newer. Other-
wise, this command is identical to get .

nlist [remote-directory] [local-file]
Write an abbreviated listing of remote-directory to local-file. If remote-directory is left unspecified, the
current working directory is used. If interactive prompting is on, ftp prompts the user to verify

Section 1−−304 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftp(1) Kerberos ftp(1)

that the last argument is indeed the target local file for nlist output.

nmap [inpattern outpattern]
Set or unset the filename mapping mechanism. If no arguments are specified, the filename mapping
mechanism is unset. If arguments are specified, remote filenames are mapped during mput com-
mands and put commands issued without a specified remote target filename. If arguments are
specified, local filenames are mapped during mget commands and get commands issued without a
specified local target filename. This command is useful when connecting to a non-UNIX remote com-
puter with different file naming conventions or practices. The mapping follows the pattern set by
inpattern and outpattern. inpattern is a template for incoming filenames (which may have already
been processed according to the ntrans and case settings). Variable templating is accomplished
by including the sequences $1 , $2 , ..., $9 in inpattern. Use \ to prevent this special treatment of
the $ character. All other characters are treated literally, and are used to determine the nmap
inpattern variable values. For example, given inpattern $1.$2 and the remote file name
mydata.data , $1 would have the value mydata , and $2 would have the value data . The out-
pattern determines the resulting mapped filename. The sequences $1 , $2 , ..., $9 are replaced by
any value resulting from the inpattern template. The sequence $0 is replaced by the original
filename. Additionally, the sequence [seq1, seq2] is replaced by seq1 if seq1 is not a null string; oth-
erwise it is replaced by seq2. For example, the command nmap $1.$2.$3
[$1,$2].[$2,file] would yield the output filename myfile.data for input filenames
myfile.data and myfile.data.old , myfile.file for the input filename myfile , and
myfile.myfile for the input filename .myfile . Spaces can be included in outpattern, as in the
example: nmap $1 | sed "s/ *$//" > $1 . Use the \ character to prevent special
treatment of the $, [,] , and , characters.

ntrans [inchars [outchars]]
Set or unset the filename character translation mechanism. If no arguments are specified, the
filename character translation mechanism is unset. If arguments are specified, characters in remote
filenames are translated during mput commands and put commands issued without a specified
remote target filename. If arguments are specified, characters in local filenames are translated dur-
ing mget commands and get commands issued without a specified local target filename. This com-
mand is useful when connecting to a non-UNIX remote computer with different file naming conven-
tions or practices. Characters in a filename matching a character in inchars are replaced with the
corresponding character in outchars. If the character’s position in inchars is longer than the length of
outchars, the character is deleted from the file name.

open server-host [port-number]
Establish a connection to server-host , using port-number (if specified). If auto-login is enabled, ftp
attempts to log into the server host.

prompt
Toggle interactive prompting. By default, ftp prompts the user for a yes or no response for each
output file during multiple-file commands. If interactive prompting is disabled, ftp performs the
command for all specified files.

put local-file [remote-file]
Copy local-file to remote-file. If remote-file is unspecified, ftp assigns the local-file name, processed
according to any ntrans or nmap settings, to the remote-file name.

pwd Write the name of the remote working directory to stdout.

quit
A synonym for bye .

quote arguments
Send arguments, verbatim, to the server host. See ftpd(1M).

recv remote-file [local-file]
A synonym for get .

reget remote-file [local-file]
reget acts like get , except that if local-file exists and is smaller than remote-file, local-file is
presumed to be a partially transferred copy of remote-file and the transfer is continued from the
apparent point of failure. This command is useful when transferring very large files over networks
that tend to drop connections.

rhelp [command-name]
Request help from the server host. If command-name is specified, supply it to the server. See

HP-UX Release 11i: December 2000 − 4 − Section 1−−305

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftp(1) Kerberos ftp(1)

ftpd(1M).

rstatus [file-name]
With no arguments, show status of remote machine. If file-name is specified, show status of file-name
on remote machine.

rename remote-from remote-to
Rename remote-from , which can be either a file or a directory, to remote-to .

reset
Clear reply queue. This command re-synchronizes command/reply sequencing with the remote FTP
server. Resynchronization may be necessary following a violation of the FTP protocol by the remote
server.

restart marker
Restart the immediately following get or put at the indicated marker. On UNIX systems, marker
is usually a byte offset into the file.

rmdir remote-directory
Delete remote-directory. remote-directory must be an empty directory.

runique
Toggle storing of files on the local system with unique filenames. If a file already exists with a name
equal to the target local filename for a get or mget command, a .1 is appended to the name. If
the resulting name matches another existing file, a .2 is appended to the original name. If this pro-
cess continues up to .99 , an error message is printed, and the transfer does not take place. ftp
reports the unique filename. Note that runique does not affect local files generated from a shell
command (see below). The default value is off .

send local-file [remote-file]
A synonym for put .

sendport
Toggle the use of PORTcommands. By default, ftp attempts to use a PORTcommand when estab-
lishing a connection for each data transfer. If the PORTcommand fails, ftp uses the default data
port. When the use of PORTcommands is disabled, ftp makes no attempt to use PORTcommands
for each data transfer. This is useful for certain FTP implementations that ignore PORTcommands
but (incorrectly) indicate that they’ve been accepted. See ftpd(1M). Turning sendport off may
cause delays in the execution of commands.

site arguments
Send arguments, verbatim, to the server host as a SITE command. See ftpd(1M).

size remote-file
Show the size of remote-file.

status
Show the current status of ftp .

struct [struct-name]
Set the FTP file transfer struct to struct-name. The only supported struct is file .

sunique
Toggle storing of files on remote machine under unique file names. The remote server reports the
unique name. By default, sunique is off .

system
Show the type of operating system running on the remote machine.

tenex
Set the FTP file transfer type to tenex .

type [type-name]
Set the FTP file transfer type to type-name. If type-name is unspecified, write the current type to
stdout. Ascii , binary , and tenex are the types currently supported.

umask [newmask]
Set the default umask on the remote server to newmask. If newmask is omitted, the current umask is
printed.

Section 1−−306 − 5 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftp(1) Kerberos ftp(1)

user user-name [password] [account]
Log into the server host on the current connection, which must already be open. A .netrc file in
the user’s local home directory can provide the user-name, password, and optionally the account; see
netrc(4). Otherwise ftp prompts the user for this information. In a secure environment based on
Kerberos V5, ftp will not require a password. Instead, Kerberos authentication and authorization
will be performed as described in sis(5). In all other environments, users are considered authenti-
cated if they have a password and that password is correct, and authorized if an account exists for
them on the remote system.

verbose
Toggle verbose output. If verbose output is enabled, ftp displays responses from the server host,
and when a file transfer completes it reports statistics regarding the efficiency of the transfer.

? [command]
A synonym for the help command. Prints the help information for the specified command.

Aborting A File Transfer
To abort a file transfer, use the terminal interrupt key (usually Ctrl-C). Sending transfers are halted
immediately. ftp halts incoming (receive) transfers by first sending a FTP protocol ABORcommand to
the remote server, then discarding any further received data. The speed at which this is accomplished
depends upon the remote server’s support for ABORprocessing. If the remote server does not support the
ABOR command, an ftp> prompt does not appear until the remote server completes sending the
requested file.

The terminal interrupt key sequence is ignored while ftp awaits a reply from the remote server. A long
delay in this mode may result from the ABORprocessing described above, or from unexpected behavior by
the remote server, including violations of the FTP protocol. If the delay results from unexpected remote
server behavior, the local ftp program must be killed manually.

File Naming Conventions
Files specified as arguments to ftp commands are processed according to the following rules.

• If the file name - is specified, ftp uses the standard input (for reading) or standard output (for writ-
ing).

• If the first character of the file name is | , ftp interprets the remainder of the argument as a shell
command. ftp forks a shell, using popen() (see popen(3S)) with the supplied argument, and reads
(writes) from standard output (standard input). If the shell command includes spaces, the argument
must be quoted, as in:

"| ls -lt"

Some useful examples of this mechanism are:

ls . "| more"

The above command lists the files in the current directory page by page.

put "| tail -20 loc_file" rem_file

This command copies the last twenty lines of the local file "loc_file" to the remote system as "rem_file".

• Otherwise, if globbing is enabled, ftp expands local file names according to the rules used by the C
shell (see csh(1)); see the glob command, below. If the ftp command expects a single local file (e.g.
put), only the first filename generated by the globbing operation is used.

• For mget commands and get commands with unspecified local file names, the local filename is named
the same as the remote filename, which may be altered by a case , ntrans , or nmap setting. The
resulting filename may then be altered if runique is on.

• For mput commands and put commands with unspecified remote file names, the remote filename is
named the same as the local filename, which may be altered by a ntrans or nmap setting. The
resulting filename may then be altered by the remote server if sunique is on.

WARNINGS
Correct execution of many commands depends upon proper behavior by the remote server.

HP-UX Release 11i: December 2000 − 6 − Section 1−−307

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftp(1) Kerberos ftp(1)

DIAGNOSTICS
Error! could not retrieve authentication type.

Please notify sys admin.
There are two authentication mechanisms used by ftp . One authentication mechanism is based on
Kerberos and the other is not. The type of authentication mechanism is obtained from a system file
which is updated by inetsvcs_sec(1M). If the system file does not contain known authentication types,
the above error is displayed.

AUTHOR
ftp was developed by the University of California, Berkeley.

SEE ALSO
csh(1), rcp(1), ftpd(1M), inetsvcs_sec(1M), netrc(4), ftpusers(4), hosts(4), sis(5).

Section 1−−308 − 7 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftpcount(1) ftpcount(1)

NAME
ftpcount - show current number of users for each class

SYNOPSIS
/usr/bin/ftpcount

DESCRIPTION
The ftpcount command shows the current number of users (and the limit) for each class defined in the
ftpaccess file. If the ftpaccess file does not exist, the ftpcount command will not display anything.
However, if the ftpaccess file exists and it is of zero bytes, ftpcount will display an error message:

ftpcount:no service classes defined, no usage count kept.

EXIT STATUS
ftpcount returns:

0 successful

1 failure

AUTHOR
ftpcount was developed by the Washington University, St. Louis, Missouri.

SEE ALSO
ftpwho(1), ftpaccess(4).

HP-UX Release 11i: December 2000 − 1 − Section 1−−309

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftprestart(1) ftprestart(1)

NAME
ftprestart - remove the shutdown message file created by ftpshut utility.

SYNOPSIS
/usr/bin/ftprestart

DESCRIPTION
The ftprestart command removes all the shutdown message files from the real, anonymous, and vir-
tual user accounts. The message files are created by the ftpshut utility in the path as specified by the
‘shutdown’ directive in the /etc/ftpd/ftpaccess file (see ftpshut(1) for more details). This command
is always used after the ftpshut command is executed.

Note: For guest user accounts, the message files have to be removed manually. The removal will not be
done by the ftprestart command.

EXIT STATUS
ftprestart returns:

0 successful

1 failure

AUTHOR
ftprestart was developed by the Washington University, St. Louis, Missouri.

SEE ALSO
ftpshut(1), ftpaccess(4).

Section 1−−310 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftpshut(1) ftpshut(1)

NAME
ftpshut - create shutdown message file to shut down the ftp servers at a given time

SYNOPSIS
/usr/bin/ftpshut [-l min] [-d min] time [warning-message ...]

DESCRIPTION
The ftpshut command provides an automated shutdown procedure that a superuser can use to notify ftp
users when the ftp server is shutting down. This command will create a shutdown message file in the path
specified by the ’shutdown’ directive in the /etc/ftpd/ftpaccess file in the real, anonymous and vir-
tual user accounts. For guest accounts the system administrator must copy the message file created in the
real user account to the guest accounts manually. The server will check this file regularly to see if the
server is going to be shut down.

-l min This option is used as deny_offset. New FTP access is disabled ’min’ minutes before
shutdown. The default value of ’min’ is 10 minutes. This value can be reset by the
user.

-d min This option is used as disc_offset. All current FTP connections will be dropped ’min’
minutes before shutdown. The default value of ’min’ is 5 minutes. This value can be
reset by the user.

time time, is the time at which the ftp server will be shutdown. If time is set to the word
‘now’ the shutdown will be immediate. time can also be set to a future time. Future
time can be specified in one of the two formats: + number or HHMM. The first format
brings the ftp servers down in number minutes. The second format brings the ftp
servers down at the time of day indicated, using a 24-hour clock format.

warning-message
The warning-message is the message the server will flash to its clients on shut down.
The user can use a message of his choice or use the ’macros’ or ’magic cookies’ that are
available. The server will replace the macro with the specified text string. The
warning-message will be formatted to be 75 characters long, including the length of
any expanded macros ("magic cookies"). The default warning message is "System shut-
down at %s". The following magic cookies are available:

%s time system is going to shut down

%r time new connections will be denied

%d time current connections will be dropped

%C current working directory

%E the maintainer’s email address as defined in ftpaccess

%L local host name

%M maximum allowed number of users in this class

%N current number of users in this class

%R remote host name

%T local time (form Thu Nov 15 17:12:42 1990)

%U username given at login time

WARNINGS
You can kill the servers only between now and 23:59, if you use the absolute time for ftpshut .

EXIT STATUS
ftpshut returns:

0 successful

1 failure

-1 the wrong parameter was passed to ftpshut .

HP-UX Release 11i: December 2000 − 1 − Section 1−−311

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftpshut(1) ftpshut(1)

AUTHOR
ftpshut was developed by the Washington University, St. Louis, Missouri.

SEE ALSO
ftpaccess(4).

Section 1−−312 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

f

ftpwho(1) ftpwho(1)

NAME
ftpwho - show current process information for each ftp user.

SYNOPSIS
/usr/bin/ftpwho

DESCRIPTION
The ftpwho command shows the current process information for each user logged into the ftp server. If
the ftpaccess file does not exist, this command will not display anything. However, if the ftpaccess file
exists and it is of zero bytes then this command will display an error message:

ftpwho: no service classes defined, no usage count kept.

EXIT STATUS
ftpwho returns:

0 successful

1 failure

AUTHOR
ftpwho was developed by the Washington University, St. Louis, Missouri.

SEE ALSO
ftpcount(1), ftpaccess(4).

HP-UX Release 11i: December 2000 − 1 − Section 1−−313

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

gencat(1) gencat(1)

NAME
gencat - generate a formatted message catalog file

SYNOPSIS
gencat [-l] catfile msgfile ...

DESCRIPTION
Message catalogs allow a program to process input and produce output according to local customs and
languages. For details, see Native Language Support Users Guide.

The gencat command merges each message source msgfile into a formatted message catalog catfile that
can be accessed by catgets() (see catgets(3C)). If catfile does not exist, it is created. If catfile exists, its
messages are included in the new catfile. If set and message numbers collide, the new message text in file
replaces the old message text in catfile. A msgfile consists of message, directive, and comment lines (all
without leading spaces or tabs) described below. Except as noted, fields are separated by one or more space
or tab characters.

If - is specified as catalog file, standard output is used.

If - is specified for an instance of message file, standard input is used.

$set s [comment] A $set directive specifies the set s, of the messages that follow until the
next $set or end-of-file appears. The set number s is an unsigned integer in
the range 1 through NL_SETMAX. Any string following the set number is
treated as a comment. If a $set directive is not specified, messages are put
in the default set NL_SETD.

Set numbers must be in ascending order within a msgfile but need not be con-
tiguous.

$delset s [comment] A $delset directive deletes the message set identified by the set number s,
from an existing message catalog. Any string following the set number is
treated as a comment.

m message_text A message line specifies a message number m, and associated message text.
The message number m is an unsigned integer in the range 1 through
NL_MSGMAX. The message_text is a C string, including spaces, tabs and \
(backslash) escapes, but by default without surrounding quotes (see $quote
directive below). The message number m is separated from the message_text
by a single space or tab character. The message_text begins with the first
character following the separator and ends at new-line. Extra spaces or tabs
(including any trailing spaces or tabs) are considered part of the
message_text .

The message_text of a message line is stored in catfile with message number
m and set number s specified by the most recent $set directive.

Message numbers must be in ascending order within a set, but need not be
contiguous.

Note that the space or tab separator distinguishes insertion of a null message
from deletion of a message. If a message line has a number and separator
but no text, the message number and an associated null message string are
stored in catfile. If a message line has a number but neither separator nor
text, the message number and its associated message text are deleted from
catfile.

-l If the -l option is specified, the length of message_text must be no more
than MAX_BUFLEN− 1 bytes. If the -l option is not specified, the length of
message_text must be no more than NL_TEXTMAXbytes. See catgets(3C),
for message length limits imposed by these routines.

$quote [q comment] A $quote directive specifies a quote character q, used to surround
message_text and make leading and trailing space visible in a message line.
Any string following the specified quote character q is treated as a comment.
By default, or if a quote character q not is supplied, quoting of message_text is
not recognized.

Section 1−−314 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

gencat(1) gencat(1)

$ comment A $ followed by a space or tab is treated as a comment and can appear any-
where in a file. A line consisting of zero or more spaces or tabs is treated as a
comment line.

NL_TEXTMAX, NL_SETMAX, and NL_MSGMAXare defined in <limits.h> . NL_SETD is defined in
<nl_types.h> . MAX_BUFLENis defined in <msgcat.h> .

EXTERNAL INFLUENCES
Environment Variables

LANGprovides a default value for the internationalization variables that are unset or null. If LANG is
unset or null, the default value of "C" (see lang(5)) is used. If any of the internationalization variables con-
tains an invalid setting, gencat will behave as if all internationalization variables are set to "C". See
environ(5).

LC_ALL, if set to a non-empty string value, overrides the values of all of the other internationalization
variables.

LC_CTYPEdetermines the interpretation of text as single and/or multi-byte characters, the classification
of characters as printable, and the characters matched by character class expressions in regular expres-
sions.

LC_MESSAGESdetermines the locale that should be used to affect the format and contents of diagnostic
messages written to standard error and informative messages written to standard output.

NLSPATHdetermines the location of message catalogs for the processing of LC_MESSAGES.

International Code Set Support
Single- and multi-byte character code sets are supported.

WARNINGS
The $quote directive is not currently supported on the HP MPE and RTE operating systems.

AUTHOR
gencat was developed by HP and the X/Open Company, Ltd.

SEE ALSO
dumpmsg(1), findmsg(1), insertmsg(1), catgets(3C), catopen(3C).

Native Language Support Users Guide.

STANDARDS CONFORMANCE
gencat : XPG2, XPG3

HP-UX Release 11i: December 2000 − 2 − Section 1−−315

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

genxlt(1) genxlt(1)

NAME
genxlt - generate iconv translation tables

SYNOPSIS
genxlt [-f output_filename] [input_filename]

DESCRIPTION
genxlt generates a compiled, non-readable binary version of the iconv table that is suitable for use by
iconv(1) and iconv(3C). If input_filename or output_filename is not supplied, standard input and/or stan-
dard output will be used.

Since the output of genxlt is a binary, non-readable file, if the -f option is not used, the redirection
symbol > maybe used to redirect the standard output to a file.

Options
genxlt recognizes the following options:

-f output_filename
If this option is not selected, the data will be sent to standard output, from where it
could be redirected to a file.

genxlt creates tables that are in a prescribed format and which can be interpreted by the default conver-
sion routines of iconv(3C). The input file has two columns, giving the filecode mapping between the two
code sets. The entries are in hexadecimal.

The input file must be formatted as two columns of hexadecimal digits. Characters in the first column are
translated into the characters in the second column. Lines preceded with # in the first column are ignored
as comments on all lines except in the case of the following keywords: #Galley: and #What:

In addition to the data, which defines the filecode mapping, a Galley character (see iconv(3C)) may also be
defined for that particular conversion. This is done by adding the line #Galley: 0xnnnn , to the begin-
ning of the input file. The nnnn is any multi-byte character (see EXAMPLES). A What string (see
what(1)), may also be defined in the input file using the entry #What: <any_string>. This string may
contain information like version number, type of conversion, etc., which are not used in any way for the
conversions. Note that if the What string is defined, it should appear before the Galley definition.

EXTERNAL INFLUENCES
Environment Variables

LANGprovides a default value for the internationalization variables that are unset or null. If LANG is
unset or null, the default value of "C" (see lang(5)) is used. If any of the internationalization variables con-
tains an invalid setting, genxlt will behave as if all internationalization variables are set to "C" (see
environ(5)).

If LC_ALL is set to a non-empty string value, it overrides the values of all the other internationalization
variables.

LC_MESSAGESdetermines the locale that should be used to affect the format and contents of diagnostic
messages written to standard error and informative messages written to standard output.

NLSPATHdetermines the location of message catalogues for the processing of LC_MESSAGES.

International Code Set Support
Single and multi-byte character code sets are supported.

RETURN VALUE
The exit values are:

0 Successful completion.
>0 Error condition occurred.

EXAMPLES
This example compiles the iconv_input and puts the output binary in
/usr/lib/nls/iconv/tables/roma8=iso81. The following iconv statement uses the
roma8=iso81 table to convert the data_file from code set roman8 to code set iso8859-1 .

% genxlt iconv_input > /usr/lib/nls/iconv/tables/roma8=iso81
% iconv -f roma8 -t iso81 data_file

Section 1−−316 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

genxlt(1) genxlt(1)

This is an example of the input_file:

#What: CodesetA to CodesetB: version 1.0
#Galley: 0xffff
the conversion data is as follows:
0x01 0x01
0x02 0x42
...
0xff87 0x4567
...
etc.

WARNINGS
Because genxlt will write over the existing table, it is wise to save the existing table into another file
before using genxlt .

Warnings are not given for incorrect data in the input_file.

You must have super-user privileges to install files in /usr/lib/nls/iconv/tables .

FILES
/usr/lib/nls/iconv/tables All tables must be installed in this directory.

SEE ALSO
dmpxlt(1), iconv(1), iconv(3C).

STANDARDS COMPLIANCE
genxlt : XPG4 tables

HP-UX Release 11i: December 2000 − 2 − Section 1−−317

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

get(1) get(1)

NAME
get - get a version of an SCCS file

SYNOPSIS
get [-r SID] [-c cutoff] [-e] [-b] [-i list] [-x list] [-k] [-l [p]] [-p] [-s] [-m] [-n] [-g] [-t]

[-w string] [-a seq-number] file ...

DESCRIPTION
The get command generates an ASCII text file from each named SCCS file according to the specifications
given by its option arguments, which begin with - . The arguments can be specified in any order, but all
option arguments apply to all named SCCS files. If a directory is named, get behaves as if each file in the
directory was specified as a named file, except that non-SCCS files (last component of the path name does
not begin with s.) and unreadable files are silently ignored. If a file name of - is given, the standard
input is read and each line of the standard input is assumed to be the name of an SCCS file to be processed.
Again, non-SCCS files and unreadable files are silently ignored.

The generated text is normally written into a file called the g-file whose name is derived from the SCCS file
name by simply removing the s. prefix (see FILES below).

Options
Explanation of the option arguments below is based on processing only one SCCS file. When processing
multiple SCCS files, the effects of any option argument applies independently to each named file.

-r SID The SCCS IDentification string (SID) of the version (delta) of an SCCS file to be
retrieved. Table 1 shows, for the most useful cases, which version of an SCCS file is
retrieved (as well as the SID of the version to be eventually created by delta if the
-e option is also used), as a function of the SID specified (see delta(1)).

-c cutoff cutoff date-time, in the form:

YY[MM[DD[HH[MM[SS]]]]]

No changes (deltas) to the SCCS file which were created after the specified cutoff
date-time are included in the generated ASCII text file. Units omitted from the date-
time default to their maximum possible values; that is, -c7502 is equivalent to
-c750228235959 . Any number of non-numeric characters can separate the vari-
ous 2-digit pieces of the cutoff date-time. This feature allows one to specify a cutoff
date in the form: -c77/2/2 9:22:25 . Note that this implies that one can use the
%E%and %U%identification keywords (see below) for nested get s within a command:

~!get "-c%E% %U%" s.file

-e Indicates that the get is for the purpose of editing or making a change (delta) to the
SCCS file via a subsequent use of delta . The -e option used in a get for a particu-
lar version (SID) of the SCCS file prevents further get s for editing on the same SID
until delta is executed or the j (joint edit) flag is set in the SCCS file (see
admin(1)). Concurrent use of get -e for different SIDs is always allowed. Note,
however, that only one user is permitted to do a concurrent get -e (see admin(1)).

If the g-file generated by get with an -e option is accidentally ruined in the process
of editing it, it can be regenerated by re-executing the get command with the -k
option in place of the -e option.

SCCS file protection specified via the ceiling, floor, and authorized user list stored in
the SCCS file (see admin(1)) are enforced when the -e option is used.

-b Used with the -e option to indicate that the new delta should have an SID in a new
branch as shown in Table 1. This option is ignored if the b flag is not present in the
file (see admin(1)) or if the retrieved delta is not a leaf delta. (A leaf delta is one that
has no successors on the SCCS file tree.)

Note: A branch delta can always be created from a non-leaf delta.

-i list A list of deltas to be included (forced to be applied) in the creation of the generated
file. The list has the following syntax:

list ::= range list, range
range ::= SID SID - SID

Section 1−−318 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

get(1) get(1)

SID, the SCCS Identification of a delta, can be in any form shown in the "SID
Specified" column of Table 1. Partial SIDs are interpreted as shown in the "SID
Retrieved" column of Table 1. See WARNINGS.

-x list A list of deltas to be excluded (forced not to be applied) in the creation of the gen-
erated file. See the -i option for the list format.

-k Suppresses replacement of identification keywords (see below) in the retrieved text by
their value. The -k option is implied by the -e option.

-l [p] Causes a delta summary to be written into an l-file. If -lp is used, an l-file is not
created; the delta summary is written on the standard output instead. See FILES for
the format of the l-file. The user must have s-file read permission in order to use the
-l option.

-p Causes the text retrieved from the SCCS file to be written on the standard output.
No g-file is created. All output that normally goes to the standard output goes to file
descriptor 2 (standard error) instead, unless the -s option is used, in which case it
disappears.

-s Suppresses all output normally written on the standard output. However, fatal error
messages (which always go to file descriptor 2) remain unaffected.

-m Causes each text line retrieved from the SCCS file to be preceded by the SID of the
delta that inserted the text line in the SCCS file. The format is: SID, followed by a
horizontal tab, followed by the text line.

-n Causes each generated text line to be preceded with the %M%identification keyword
value (see below). The format is: %M%value, followed by a horizontal tab, followed by
the text line. When both the -m and -n options are used, the format is: %M%value,
followed by a horizontal tab, followed by the -m option-generated format.

-g Suppresses the actual retrieval of text from the SCCS file. It is primarily used to gen-
erate an l-file, or to verify the existence of a particular SID.

-t Used to access the most recently created ("top") delta in a given release (e.g., -r1), or
release and level (e.g., -r1.2).

-w string Substitute string for all occurrences of @%M%when get ting the file.

-a seq-number The delta sequence number of the SCCS file delta (version) to be retrieved (see
sccsfile(4)). This option is used by the comb command (see comb(1)); it is not a gen-
erally useful option, and should be avoided. If both the -r and -a options are
specified, the -a option is used. Care should be taken when using the -a option in
conjunction with the -e option, because the SID of the delta to be created may not be
what one expects. The -r option can be used with the -a and -e options to control
the naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID being accessed and with the
number of lines retrieved from the SCCS file.

If the -e option is used, the SID of the delta to be made appears after the SID accessed and before the
number of lines generated. If there is more than one named file, or if a directory or standard input is
named, each file name is printed (preceded by a new-line) before it is processed. If the -i option is used
included deltas are listed following the notation "Included". If the -x option is used, excluded deltas are
listed following the notation "Excluded".

HP-UX Release 11i: December 2000 − 2 − Section 1−−319

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

get(1) get(1)

Table 1. Determination of SCCS Identification String

SID* −−b Option Other SID SID of Delta
Specified Used % Conditions Retrieved to be Created

none %% no R defaults to mR mR.mL mR.(mL+1)
none %% yes R defaults to mR mR.mL mR.mL.(mB+1).1

R no R > mR mR.mL R.1***
R no R = mR mR.mL mR.(mL+1)
R yes R > mR mR.mL mR.mL.(mB+1).1
R yes R = mR mR.mL mR.mL.(mB+1).1
R - R < mR and hR.mL** hR.mL.(mB+1).1

R does not exist
R - Trunk succ.# R.mL R.mL.(mB+1).1

in release > R
and R exists

R.L no No trunk succ. R.L R.(L+1)
R.L yes No trunk succ. R.L R.L.(mB+1).1
R.L - Trunk succ. R.L R.L.(mB+1).1

in release ≥ R

R.L.B no No branch succ. R.L.B.mS R.L.B.(mS+1)
R.L.B yes No branch succ. R.L.B.mS R.L.(mB+1).1

R.L.B.S no No branch succ. R.L.B.S R.L.B.(S+1)
R.L.B.S yes No branch succ. R.L.B.S R.L.(mB+1).1
R.L.B.S - Branch succ. R.L.B.S R.L.(mB+1).1

Notes for Table 1

* "R", "L", "B", and "S" are the "release", "level", "branch", and "sequence" components of the
SID, respectively; "m" means "maximum". Thus, for example, "R.mL" means "the maximum
level number within release R"; "R.L.(mB+1).1" means "the first sequence number on the
new branch (i.e., maximum branch number plus one) of level L within release R". Note that
if the SID specified is of the form "R.L", "R.L.B", or "R.L.B.S", each of the specified com-
ponents must exist.

** "hR" is the highest existing release that is lower than the specified, nonexistent, release R.

*** This is used to force creation of the first delta in a new release.

Successor.

% The -b option is effective only if the b flag (see admin(1)) is present in the file. An entry of
- means "irrelevant".

%% This case applies if the d (default SID) flag is not present in the file. If the d flag is present
in the file, then the SID obtained from the d flag is interpreted as if it had been specified on
the command line. Thus, one of the other cases in this table applies.

Identification Keywords
Identifying information is inserted into the text retrieved from the SCCS file by replacing identification key-
words with their value wherever they occur. The following keywords can be used in the text stored in an
SCCS file:

Keyword Value

%M% Module name: either the value of the m flag in the file (see admin(1)), or if absent, the
name of the SCCS file with the leading s. removed.

%I% SCCS identification (SID) (%R%.%L%.%B%.%S%) of the retrieved text.

Section 1−−320 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

get(1) get(1)

%R% Release.

%L% Level.

%B% Branch.

%S% Sequence.

%D% Current date (YY/MM/DD).

%H% Current date (MM/DD/YY).

%T% Current time (HH:MM:SS).

%E% Date newest applied delta was created (YY/MM/DD).

%G% Date newest applied delta was created (MM/DD/YY).

%U% Time newest applied delta was created (HH:MM:SS).

%Y% Module type: value of the t flag in the SCCS file (see admin(1)).

%F% SCCS file name.

%P% Fully qualified SCCS file name.

%Q% The value of the q flag in the file (see admin(1)).

%C% Current line number. This keyword is intended for identifying messages output by the pro-
gram such as "this should not have happened" type errors. It is not intended to be used on
every line to provide sequence numbers.

%Z% The 4-character string @(#) recognizable by what (see what(1)).

%W% A shorthand notation for constructing what(1) strings for HP-UX system program files.

%W%=%Z%%M%horizontal-tab%I%

%A% Another shorthand notation for constructing what(1) strings for non-HP-UX system pro-
gram files.

%A% = %Z%%Y% %M% %I%%Z%

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of text as single- and/or multi-byte characters.

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_CTYPEor LC_MESSAGESis not specified in the environment or is set to the empty string, the
value of LANGis used as a default for each unspecified or empty variable. If LANGis not specified or is set
to the empty string, a default of "C" (see lang(5)) is used instead of LANG. If any internationalization vari-
able contains an invalid setting, get behaves as if all internationalization variables are set to "C". See
environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

DIAGNOSTICS
Use sccshelp(1) for explanations.

WARNINGS
If the effective user has write permission (either explicitly or implicitly) in the directory containing the
SCCS files, but the real user does not, then only one file can be named when the -e option is used.

Unexpected results occur when using the -i option to merge changes into sections of a file that have been
(perhaps inadvertently) deleted and subsequently re-inserted into a file.

An l-file cannot be generated when -g is used. In other words, -g -l does not work.

FILES
Several auxiliary files can be created by get . These files are known generically as the g-file, l-file, p-file,
and z-file. The letter before the hyphen is called the tag. An auxiliary file name is formed from the SCCS
file name: the last component of all SCCS file names must be of the form s. module-name, the auxiliary

HP-UX Release 11i: December 2000 − 4 − Section 1−−321

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

get(1) get(1)

files are named by replacing the leading s with the tag. The g-file is an exception to this scheme: the g-file
is named by removing the s. prefix. For example, s.xyz.c , the auxiliary file names would be xyz.c ,
l.xyz.c , p.xyz.c , and z.xyz.c , respectively.

The g-file, which contains the generated text, is created in the current directory (unless the -p option is
used). A g-file is created in all cases, whether or not any lines of text were generated by the get . It is
owned by the real user. If the -k option is used or implied its mode is 644; otherwise its mode is 444. Only
the real user need have write permission in the current directory.

The l-file contains a table showing which deltas were applied in generating the retrieved text. The l-file is
created in the current directory if the -l option is used; its mode is 444 and it is owned by the real user.
Only the real user need have write permission in the current directory.

Lines in the l-file have the following format:

1. A blank character if the delta was applied;
* otherwise.

2. A blank character if the delta was applied or was not applied and ignored;
* if the delta was not applied and was not ignored.

3. A code indicating a "special" reason why the delta was or was not applied:

I : Included.
X: Excluded.
C: Cut off (by a -c option).

4. Blank.

5. SCCS identification (SID).

6. Tab character.

7. Creation date and time (in the form YY/MM/DD HH:MM:SS).

8. Blank.

9. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one horizontal tab character. A
blank line terminates each entry.

The p-file is used to pass information resulting from a get with an -e option along to delta. Its contents
are also used to prevent a subsequent execution of get with an -e option for the same SID until delta is
executed or the joint edit flag, j , (see admin(1)) is set in the SCCS file. The p-file is created in the direc-
tory containing the SCCS file and the effective user must have write permission in that directory. Its mode
is 644 and it is owned by the effective user. The format of the p-file is: the gotten SID, followed by a blank,
followed by the SID that the new delta will have when it is made, followed by a blank, followed by the login
name of the real user, followed by a blank, followed by the date-time the get was executed, followed by a
blank and the -i option argument if it was present, followed by a blank and the -x option argument if it
was present, followed by a new-line. There can be an arbitrary number of lines in the p-file at any time; no
two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its contents are the binary (2
bytes) process ID of the command (i.e., get) that created it. The z-file is created in the directory contain-
ing the SCCS file for the duration of get . The same protection restrictions as those for the p-file apply for
the z-file. The z-file is created mode 444.

SEE ALSO
admin(1), delta(1), prs(1), sccshelp(1), what(1), sccsfile(4).

STANDARDS CONFORMANCE
get : SVID2, SVID3, XPG2, XPG3, XPG4

Section 1−−322 − 5 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

getaccess(1) getaccess(1)

NAME
getaccess - list access rights to file(s)

SYNOPSIS
getaccess [-u user] [-g user] group [, group] ...] [-n] file ...

getaccess -r [-n] file ...

DESCRIPTION
getaccess lists for the specified files the effective access rights of the caller (that is, for their effective
user ID, effective group ID, and supplementary groups list). By default, the command prints a symbolic
representation of the user’s access rights to the named file: r or - for read/no read, w or - for write/no
write, and x or - for execute/no execute (for directories, search/no search), followed by the file name.

Options
getaccess recognizes the following options and command-line arguments:

-u user List access for the given user instead of the caller. A user can be a known user name,
a valid ID number, or @, representing the file’s owner ID. If information about more
than one file is requested, the value of @ can differ for each.

This option sets the user ID only. The access check is made with the caller’s effective
group ID and supplementary group IDs unless -g is also specified.

-g group [, group] ...]
List access for the given group(s) instead of the caller’s effective group ID and supple-
mentary groups list. A group can be a known group name, a valid ID number, or @,
representing the file’s group ID. If information about more than one file is requested,
the value of @ can differ for each.

-r List access using the caller’s real user ID, group ID, and supplementary groups list,
instead of effective ID values.

-n List access rights numerically (octal digits 0..7 instead of rwx) for each file requested.
The bit values R_OK, W_OK, and X_OKare defined in the file <unistd.h >.

Checking access using access control lists is described in acl(5) and aclv(5).

In addition, the write bit is cleared for files on read-only file systems or shared-text programs being exe-
cuted. The execute bit is not turned off for shared-text programs open for writing because it is not possible
to ascertain whether a file open for writing is a shared-text program.

Processes with appropriate privileges have read and write access to all files. However, write access is
denied for files on read-only file systems or shared-text programs being executed. Execute access is allowed
if and only if the file is not a regular file or the execute bit is set in any of the file’s ACL entries.

To use getaccess successfully, the caller must have search access in every directory component of the
path name of the file. getaccess verifies search access first by using the caller’s effective IDs, regard-
less of the user and group IDs specified. This is distinct from the case in which the caller can search the
path but the user for whom access is being checked does not have access to the file.

Note: a file name argument of - has no special meaning (such as standard input) to getaccess .

EXTERNAL INFLUENCES
Environment Variables

LANGdetermines the language in which messages are displayed.

If LANGis not specified or is set to the empty string, a default of "C" (see lang(5)) is used instead of LANG.
If any internationalization variable contains an invalid setting, getaccess behaves as if all internation-
alization variables are set to "C". See environ(5).

RETURN VALUE
getaccess returns one of the following values:

0 Successful completion.

1 getaccess was invoked incorrectly or encountered an unknown user or group name. An
appropriate message is printed to standard error.

HP-UX Release 11i: December 2000 − 1 − Section 1−−323

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

getaccess(1) getaccess(1)

2 A file is nonexistent or unreachable (by the caller). getaccess prints an appropriate mes-
sage to standard error, continues, then returns a value of 2 upon completion.

EXAMPLES
The following command prints the caller’s access rights to file1 using the file’s group ID instead of the
caller’s effective group ID and groups list.

getaccess -g@ file1

Here’s how to check access by user ggd in groups red and 19 to all files in the current directory, with
access rights expressed as octal values.

getaccess -u ggd -g red,19 -n .* *

Here’s how to list access rights for all files under mydir .

find mydir -print | sort | xargs getaccess

AUTHOR
getaccess was developed by HP.

FILES
/etc/passwd
/etc/group

SEE ALSO
chacl(1), getacl(1), lsacl(1), setacl(1), getaccess(2), glossary(9).

Section 1−−324 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

getacl(1) getacl(1)

NAME
getacl - list access control lists (ACLs) for files (JFS File Systems only)

SYNOPSIS
/usr/bin/getacl [-ad] file...

DESCRIPTION
For each argument that is a regular file, special file, or named pipe, getacl displays the owner, group,
and the Access Control List (ACL). For each directory argument, getacl displays the owner, group, and
the ACL and/or the default ACL. Only directories contain default ACLs.

With the -a option specified, the filename, owner, group, and the ACL of the file will be displayed. With
the -d option specified, the filename, owner, group, and the default ACL of the file, if it exists, will be
displayed. With options not specified, the filename, owner, group, and both the ACL, and the default ACL,
if it exists, will be displayed.

This command may be executed on a file system that does not support ACLs. It will report the ACL con-
sisting of only the owning user, owning group, class and other entries, based on the permission bits.

When multiple files are specified on the command line, a blank line will separate the ACL for each file. The
format of an ACL is:

file: filename
owner: uid
group: gid
user:: perm
user: uid: perm
group:: perm
group: gid: perm
class: perm
other: perm
default:user:: perm
default:user: uid: perm
default:group:: perm
default:group: gid: perm
default:class: perm
default:other: perm

The first three lines show the filename, the file owner, and the file owning group. Note that when only the
-d option is specified, and the file has no default ACL, only these three lines will be displayed.

The user entry without a user ID indicates the permissions that will be granted to the owner of the file.
One or more additional user entries indicate the permissions that will be granted to the specified users.
The group entry without a group identifier indicates the permissions that will be granted to the owning
group of the file. One or more additional group entries indicate the permissions that will be granted to
the specified groups. The other entry indicates the permissions that will be granted to others.

The default entries (default:user , default:group , and default:other) may only exist for
directories, and indicate the default user, group, and other entries that will be added to a file created within
the directory.

The uid is a login name, or a user ID if there is no entry for the uid in the system’s password file; gid is a
group name, or a group ID if there is no entry for the gid in the system’s group file; and perm is a three
character string composed of the letters representing the separate discretionary access rights: r (read), w
(write), x (execute/search), or the placeholder character -. The perm will be displayed in the following
order: rwx. Ifapermissionis not ACL entry, the placeholder character will appear.

The ACL entries will be displayed in the order in which they will be evaluated when an access check is per-
formed. The default ACL entries which may exist on a directory have no effect on access checks.

The file owner permission bits represent the access that the owning user ACL entry has. The file group
class permission bits represent the most access that any additional user entry, additional group entry, or
the owning group entry may grant. The file other permission bits represent the access that the other ACL
entry has. If a user invokes the chmod command and changes the file group class permission bits, the
access granted by the additional ACL entries may be restricted.

In order to indicate that the file group class permission bits restrict an ACL entry, getacl will display,
after each affected entry, text in the form #effective: perm, where perm will show only the

HP-UX Release 11i: December 2000 − 1 − Section 1−−325

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

getacl(1) getacl(1)

permissions actually granted.

EXAMPLES
Given file filea , with an ACL six entries long, the command

$ getacl filea

would print:

file: filea
owner: fletcher
group: us
user::rwx
user:spy:---
user:archer:rw-
group::r--
class:rw-
other:---

Given file filea , with an ACL six entries long, after the command chmod 700 filea was issued, the
command

$ getacl filea

would print:

file: filea
owner: fletcher
group: us
user::rwx
user:spy:---
user:archer:rw- #effective:---
group::r-- #effective:---
class:---
other:---

Given directory fileb , with an ACL containing default entries, the command

$ getacl -d fileb

would print:

file: fileb
owner: fletcher
group: us
default:user::rwx
default:user:spy:---
default:group::r--
default:other:---

Given directory fileb , the command

$ getacl fileb

would print:

file: fileb
owner: fletcher
group: us
user::rwx
user:spy:---
user:archer:rw-
group::r--
other:---
default:user::rwx
default:user:spy:---
default:group::r--
default:other:---

Section 1−−326 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

getacl(1) getacl(1)

NOTICES
The output from getacl will be in the correct format for input to the setacl command. If the output
from getacl is redirected to a file, the file may be used as input to setacl . In this way, a user may
easily assign one file’s ACL to another file.

FILES
/etc/passwd for user IDs
/etc/group for group IDs

SEE ALSO
acl(2), aclsort(3C), chmod(1), ls(1), setacl(1).

HP-UX Release 11i: December 2000 − 3 − Section 1−−327

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

getconf(1) getconf(1)

NAME
getconf - get system configuration values

SYNOPSIS
getconf [-v specification] system_var

getconf [-v specification] system_var pathname

DESCRIPTION
The getconf command provides an interface to the confstr(3C), pathconf(2), and sysconf(2) library rou-
tines and system calls.

The system_var argument specifies the configuration value desired in confstr() , pathconf() , or
sysconf() . Use the first synopsis form, for inquiries involving confstr() , or sysconf() (in the
first table below). Use the second synopsis form, for inquiries involving pathconf() (in the second table
below). For inquiries involving pathconf() the pathname operand should be specified.

Options
getconf recognizes the following option:

-v specification Return configuration variables corresponding to a particular compilation environ-
ment supported by HP-UX. If the -v option is not specified, specification defaults
to XBS5_ILP32_OFF32. See table below for possible specifications and meanings.

Specification int long pointer off_t
XBS5_ILP32_OFF32 32 32 32 32
XBS5_ILP32_OFFBIG 32 32 32 >=64
XBS5_LP64_OFF64 32 64 64 64
XBS5_LPBIG_OFFBIG >=32 >=64 >=64 >=64

EXTERNAL INFLUENCES
Environment Variables

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_MESSAGESis not specified in the environment or is set to the empty string, the value of LANGis
used as a default for each unspecified or empty variable. If LANGis not specified or is set to the empty
string, a default of "C" (see lang(5)) is used instead of LANG.

If any internationalization variable contains an invalid setting, getconf behaves as if all internationali-
zation variables are set to "C". See environ(5).

International Code Set Support
Single-byte and multi-byte character code sets are supported.

RETURN VALUE
The error codes returned by getconf are:

0 Success. A value corresponding to the operand was returned.
1 One or more missing operands.
2 Operand was not recognized.
3 pathname either invalid or inaccessible.

EXAMPLES
Request the number of intervals per second:

getconf CLK_TCK

Request the maximum value of a file’s link count:

getconf LINK_MAX /etc/passwd

Other supported inquiries include the following:

ARG_MAX _BC_BASE_MAX BC_DIM_MAX

Section 1−−328 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

getconf(1) getconf(1)

BS_SCALE_MAX BC_STRING_MAX CHARCLASS_NAME_MAX
CHAR_BIT CHAR_MAX CHAR_MIN
CHILD_MAX CLK_TCK COLL_WEIGHTS_MAX
CPU_CHIP_TYPE CS_MACHINE_IDENT CS_PARTITION_IDENT
CS_PATH CS_MACHINE_SERIAL EXPR_NEST_MAX
HW_CPU_SUPP_BITS HW_32_64_CAPABLE INT_MAX
INT_MIN KERNEL_BITS LINE_MAX
LONG_BIT LONG_MAX LONG_MIN
MACHINE_IDENT MACHINE_MODEL MACHINE_SERIAL
MB_LEN_MAX NGROUPS_MAX NL_ARGMAX
NL_LANGMAX NL_MSGMAX NL_NMAX
NL_SETMAX NL_TEXTMAX NZERO
OPEN_MAX PARTITION_IDENT PATH
_POSIX_ARG_MAX _POSIX_JOB_CONTROL _POSIX_NGROUPS_MAX
_POSIX_OPEN_MAX _POSIX_SAVED_IDS _POSIX_SSIZE_MAX
_POSIX_STREAM_MAX _POSIX_TZNAME_MAX _POSIX_VERSION
POSIX_ARG_MAX POSIX_CHILD_MAX POSIX_JOB_CONTROL
POSIX_LINK_MAX POSIX_MAX_CANON POSIX_MAX_INPUT
POSIX_NAME_MAX POSIX_NGROUPS_MAX POSIX_OPEN_MAX
POSIX_PATH_MAX POSIX_PIPE_BUF POSIX_SAVED_IDS
POSIX_SSIZE_MAX POSIX_STREAM_MAX POSIX_TZNAME_MAX
POSIX_VERSION POSIX2_BC_BASE_MAX POSIX2_BC_DIM_MAX
POSIX2_BC_SCALE_MAX POSIX2_BC_STRING_MAX POSIX2_C_BIND
POSIX2_C_DEV POSIX2_C_VERSION POSIX2_CHAR_TERM
POSIX_CHILD_MAX POSIX2_COLL_WEIGHTS_MAX POSIX2_EXPR_NEST_MAX
POSIX2_FORT_DEV POSIX2_FORT_RUN POSIX2_LINE_MAX
POSIX2_LOCALEDEF POSIX2_RE_DUP_MAX POSIX2_SW_DEV
POSIX2_UPE POSIX2_VERSION SC_PASS_MAX
SC_XOPEN_VERSION SCHAR_MAX SCHAR_MIN
SHRT_MAX SHRT_MIN SSIZE_MAX
STREAM_MAX RE_DUP_MAX TMP_MAX
TZNAME_MAX UCHAR_MAX UINT_MAX
ULONG_MAX USHRT_MAX WORD_BIT
XOPEN_VERSION XOPEN_XCU_VERSION XOPEN_XPG2
XOPEN_XPG3 XOPEN_XPG4
XBS5_ILP32_OFF32_CFLAGS XBS5_ILP32_OFF32_LDFLAGS
XBS5_ILP32_OFF32_LIBS XBS5_ILP32_OFF32_LINTFLAGS
XBS5_ILP32_OFFBIG_CFLAGS XBS5_ILP32_OFFBIG_LDFLAGS
XBS5_ILP32_OFFBIG_LIBS XBS5_ILP32_OFFBIG_LINTFLAGS
XBS5_LP64_OFF64_CFLAGS XBS5_LP64_OFF64_LDFLAGS
XBS5_LP64_OFF64_LIBS XBS5_LP64_OFF64_LINTFLAGS

Supported inquiries requiring the second parameter include:

LINK_MAX MAX_CANON MAX_INPUT
NAME_MAX PATH_MAX PIPE_BUF
_POSIX_CHOWN_RESTRICTED _POSIX_LINK_MAX _POSIX_MAX_CANON
_POSIX_MAX_INPUT _POSIX_NO_TRUNC _POSIX_NAME_MAX
_POSIX_PATH_MAX _POSIX_PIPE_BUF _POSIX_VDISABLE
POSIX_CHOWN_RESTRICTED POSIX_NO_TRUNC POSIX_VDISABLE

AUTHOR
getconf was developed by HP and POSIX.

SEE ALSO
pathconf(2), sysconf(2), confstr(3C).

STANDARDS CONFORMANCE
getconf : POSIX.2, XPG4

HP-UX Release 11i: December 2000 − 2 − Section 1−−329

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

getopt(1) getopt(1)

NAME
getopt - parse command options

SYNOPSIS
getopt optstring args

DESCRIPTION
getopt is used to break up options in command lines for easy parsing by shell procedures and to check for
legal options. optstring is a string of recognized option letters (see getopt(3C)). If a letter is followed by a
colon, the option is expected to have an argument which may or may not be separated from it by white
space.

The positional parameters ($1 $2 ...) of the shell are reset so that each option is preceded by a - and is in
its own positional parameter; each option argument is also parsed into its own positional parameter.

getopt recognizes two hyphens (- -) to delimit the end of the options. If absent, getopt places -- at
the end of the options.

The most common use of getopt is in the shell’s set command (see the example below) where
getopt converts the command line to a more easily parsed form. getopt writes the modified com-
mand line to the standard output.

EXTERNAL INFLUENCES
Environment Variables

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_MESSAGESis not specified in the environment or is set to the empty string, the value of LANGis
used as a default for each unspecified or empty variable.

If LANGis not specified or is set to the empty string, a default of "C" (see lang(5)) is used instead of LANG.
If any internationalization variable contains an invalid setting, getopt behaves as if all internationaliza-
tion variables are set to "C". See environ(5).

International Code Set Support
Single-byte and multi-byte character code sets are supported.

DIAGNOSTICS
getopt prints an error message on the standard error when it encounters an option letter not included in
optstring.

EXAMPLES
The following code fragment processes the arguments for a command that can take the options a or b, and
the option o which requires an argument:

set -- ‘getopt abo: $*‘

if [$? -ne 0]; then
echo $USAGE
exit 2

fi

while [$# -gt 0]; do
case $1 in
-a | -b)

FLAG=$1
shift
;;

-o)
OARG=$2
shift 2
;;

--)
shift
break
;;

esac

Section 1−−330 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

getopt(1) getopt(1)

done

This code accepts any of the following as equivalent:

cmd -aoarg file file
cmd -a -o arg file file
cmd -oarg -a file file
cmd -a -oarg -- file file

WARNINGS
getopt option arguments must not be null strings nor contain embedded blanks.

SEE ALSO
sh(1), getopt(3C).

HP-UX Release 11i: December 2000 − 2 − Section 1−−331

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

getopts(1) getopts(1)

NAME
getopts - parse utility (command) options

SYNOPSIS
getopts optstring name [arg ...]

DESCRIPTION
getopts is used to retrieve options and option-arguments from a list of parameters.

Each time it is invoked, getopts places the value of the next option in the shell variable specified by the
name operand and the index of the next argument to be processed in the shell variable OPTIND. When-
ever the shell is invoked, OPTIND is initialized to 1.

When the option requires an option-argument, getopts places it in the shell variable OPTARG. If no
option was found, or if the option that was found does not have an option-argument, OPTARGis unset.

If an option character not contained in the optstring operand is found where an option character is
expected, the shell variable specified by name is set to the question-mark (?) character. In this case, if the
first character in optstring is a colon (:), the shell variable OPTARGis set to the option character found,
but no output is written to standard error; otherwise, the shell variable OPTARGis unset and a diagnostic
message is written to standard error. This condition is considered to be an error detected in the way argu-
ments were presented to the invoking application, but is not an error in getopts processing.

If an option-argument is missing:

• If the first character of optstring is a colon, the shell variable specified by name is set to the colon
character and the shell variable OPTARGis set to the option character found.

• Otherwise, the shell variable specified by name is set to the question-mark character, the shell
variable OPTARGis unset, and a diagnostic message is written to the standard error. This condi-
tion is considered to be an error detected in the way arguments are presented to the invoking
application, but is not an error in getopts processing; a diagnostic message is written as stated,
but the exit status is zero.

When the end of options is encountered, getopts exits with a return value greater than zero. The shell
variable OPTIND is set to the index of the first nonoption-argument, where the first - - argument is con-
sidered to be an option argument if there are no other non-option arguments appearing before it, or the
value $# + 1 if there are no nonoption-arguments; the name variable is set to the question-mark character.
Any of the following identifies the end of options: the special option - - , finding an argument that does not
begin with a - , or encountering an error.

The shell variables OPTIND and OPTARGare local to the caller of getopts and are not exported by
default.

The shell variable specified by the name operand, OPTIND, and OPTARGaffect the current shell execution
environment.

Operands
The following operands are supported:

optstring A string containing the option characters recognized by the utility invoking
getopts . If a character is followed by a colon (:), the option will be expected to
have an argument, which should be supplied as a separate argument. Applications
should specify an option character and its option-argument as separate arguments,
but getopts will interpret the characters following an option character requiring
arguments as an argument whether or not this is done. An explicit null option-
argument need not be recognised if it is not supplied as a separate argument when
getopts is invoked. The characters question-mark (?) and colon (:) must not be
used as option characters by an application. The use of other option characters that
are not alphanumeric produces unspecified results. If the option-argument is not sup-
plied as a separate argument from the option character, the value in OPTARGwill be
stripped of the option character and the - . The first character in optstring will deter-
mine how getopts will behave if an option character is not known or an option-
argument is missing.

name The name of a shell variable that is set by getopts to the option character that was
found.

Section 1−−332 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

getopts(1) getopts(1)

getopts by default parses positional parameters passed to the invoking shell procedures. If args are
given, they are parsed instead of the positional parameters.

EXTERNAL INFLUENCES
Environment Variable

The following environment variable affects the execution of the getopts utility:

OPTIND Used by getopts as the index of the next argument to be processed.

ERRORS
Whenever an error is detected and the first character in the optstring operand is not a colon (:), a diagnos-
tic message will be written to standard error with the following information in an unspecified format:

• The invoking program name will be identified in the message. The invoking program name will be
the value of the shell special parameter 0 at the time the getopts utility is invoked. A name
equivalent to:

basename "$0"

may be used.

• If an option is found that was not specified in optstring, this error will be identified and the invalid
option character will be identified in the message.

• If an option requiring an option-argument is found, but an option-argument is not found, this error
will be identified and the invalid option character will be identified in the message.

EXAMPLES
Since getopts affects the current shell execution environment, it is generally provided as a shell regular
built-in. If it is called in a subshell or separate utility execution environment such as one of the following:

(getopts abc value "$@")
nohup getopts ...
find -exec getopts ...\;

it does not affect the shell variables in the caller’s environment.

Note that shell functions share OPTIND with the calling shell even though the positional parameters are
changed. Functions that use getopts to parse their arguments should save the value of OPTIND on
entry and restore it before returning. However, there will be cases when a function must change OPTIND
for the calling shell.

The following example script parses and displays its arguments:

aflag=
bflag=

while getopts ab: name
do

case $name in
a)

aflag=1;;
b)

bflag=1
bval="$OPTARG";;

?)
printf "Usage: %s: [-a] [-b value] args\n" $0
exit 2;;

esac
done

if [! -z "$aflag"] ; then
printf "Option -a specified\n"

fi
if [! -z "$bflag"] ; then

printf "Option -b "%s" specified\n" "$bval"
fi
shift $(($OPTIND -1))
printf "Remaining arguments are: %s\n" "$*"

HP-UX Release 11i: December 2000 − 2 − Section 1−−333

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

getopts(1) getopts(1)

SEE ALSO
getopt(1), ksh(1), sh-posix(1), sh(1), getopt(3C).

STANDARDS CONFORMANCE
getopts : XPG4, POSIX.2

Section 1−−334 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

getprivgrp(1) getprivgrp(1)

NAME
getprivgrp - get special attributes for group

SYNOPSIS
getprivgrp [-g group_name]

DESCRIPTION
getprivgrp lists the access privileges of privileged groups set by setprivgrp (see setprivgrp (1M)).
If group_name is supplied, access privileges are listed for that group only. If the caller is not a member of
group_name, no information is displayed. If -g is used, getprivgrp lists access privileges that have
been granted to all groups. Otherwise, access privileges are listed for all privileged groups to which the
caller belongs.

The super-user is a member of all groups. Access privileges include RTPRIO, RTSCHED, MLOCK, CHOWN,
LOCKRDONLY, SETRUGID, and SERIALIZE .

AUTHOR
getprivgrp was developed by HP.

SEE ALSO
setprivgrp(1M), getprivgrp(2), privgrp(4).

HP-UX Release 11i: December 2000 − 1 − Section 1−−335

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

gprof(1) gprof(1)

NAME
gprof - display call graph profile data

SYNOPSIS
gprof [options] [a.out [gmon.out ...]] [shared_library shared_library_profile]

DESCRIPTION
The gprof command produces an execution profile of C++, C, Pascal, and FORTRAN programs. The
effect of called routines is incorporated into the profile of each caller. Profile data is taken from the call
graph profile file (gmon.out default) that is created by programs compiled with the -G option of aCC, CC,
cc , pc , and f77 . That option also links in versions of the library routines that are compiled for profiling.
The symbol table in the named object file (a.out default) is read and correlated with the call graph profile
file. If more than one profile file is specified, gprof output shows the sum of the profile information in the
given profile files.

First, a flat profile is given, similar to that provided by prof (see prof(1)). This listing gives the total exe-
cution times and call counts for each function in the program, sorted by decreasing time.

Next, these times are propagated along the edges of the call graph. gprof discovers all cycles in the call
graph. All calls made into the cycle share the time of that cycle. A second listing shows the functions
sorted according to the time they represent including the time of their call graph descendants. Below each
function entry is shown its (direct) call graph children, and how their times are propagated to this function.
A similar display above the function shows how the time of this function and the time of its descendants are
propagated to its (direct) call graph parents.

Cycles are also shown, with an entry for the cycle as a whole and a listing of the members of the cycle, each
with their contributions to the time and call counts of the cycle.

Shared Library Profiling (32-bit only)
Support for gprof profiling of shared libraries is available on 32-bit systems only.

To profile shared libraries, set the environment variable LD_PROFILE to the path of the shared library to
be profiled. (See HP-UX Linker and Libraries Online User’s Guide for details.) Do not use the -G option to
compile programs for shared libraries profiling. Do not link the executable gcrt0.o or mcrt0.o . This
turns on profiling of a.out , which is not compatible with profiling of shared libraries. You can either
profile your executable or a shared library, but not both.

At the termination of the program, a profile file with the name of the shared library prepended to it is gen-
erated by a run-time library. To get the complete listing, provide the gprof command with names of the
shared library and the profile file for the shared library as arguments.

Options
The gprof command recognizes the following options:

-a Suppress printing statically declared functions. If this option is given, all relevant
information about the static function (such as time samples, calls to other functions,
and calls from other functions) belongs to the function loaded just before the static
function in the a.out file.

-b Suppress printing a description of each field in the profile.

-e name Suppress printing the graph profile entry for routine name and all its descendants
(unless they have other ancestors that are not suppressed). More than one -e option
can be given. Only one name can be given with each -e option.

-E name Suppress printing the graph profile entry for routine name (and its descendants) as -
e above, and also exclude the time spent in name (and its descendants) from the total
and percentage time computations. -E mcount -E mcleanup is the default.

-f name Print only the graph profile entry of the specified routine name and its descendants.
More than one -f option can be given. Only one name can be given with each -f
option.

-F name Print only the graph profile entry of the routine name and its descendants (as -f
above) and also use only the times of the printed routines in total time and percentage
computations. More than one -F option can be given. Only one name can be given
with each -F option. The -F option overrides the -E option.

Section 1−−336 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

gprof(1) gprof(1)

-s Produce a profile file gmon.sum that represents the sum of the profile information in
all specified profile files. This summary profile file can be given to subsequent execu-
tions of gprof (probably also with a -s option) to accumulate profile data across
several runs of an a.out file.

-z Display routines that have zero usage (as indicated by call counts and accumulated
time).

The name of the file created by a profiled program is controlled by the environment variable GPROFDIR.
If GPROFDIRis not set, gmon.out is produced in the current directory when the program terminates. If
GPROFDIR=string , string/ pid.progname is produced, where progname consists of argv[0] with any
path prefix removed, and pid is the program’s process ID. If GPROFDIRis set to a null string, no profiling
output is produced.

EXAMPLES
To profile libc.sl :

$ cat > test.c
main()
{
printf("hello world\n");
}

$ cc test.c -lc

$ ldd a.out
/usr/lib/libc.2 => /usr/lib/libc.2
/usr/lib/libdld.2 => /usr/lib/libdld.2
/usr/lib/libc.2 => /usr/lib/libc.2

$ export LD_PROFILE=/usr/lib/libc.2

$./a.out
hello world

$ unset LD_PROFILE

$ ls libc.2.profile
libc.2.profile

$ ll libc.2.profile
-rw-rw-r-- 1 user1 lang 606464 May 19 10:24 libc.2.profile

$ gprof /usr/lib/libc.2 libc.2.profile

WARNINGS
Beware of quantization errors. The granularity of the sampling is shown, but remains statistical at best. It
is assumed that the time for each execution of a function can be expressed by the total time for the func-
tion, divided by the number of times the function is called. Thus the time propagated along the call graph
arcs to parents of that function is directly proportional to the number of times that arc is traversed.

Parents that are not profiled have the time of their profiled children propagated to them, but they appear to
be spontaneously invoked in the call graph listing, and do not have their time propagated further. Simi-
larly, signal catchers, even though profiled, appear to be spontaneous (although for more obscure reasons).
Any profiled children of signal catchers should have their times propagated properly unless the signal
catcher was invoked during the execution of the profiling routine, in which case all is lost.

The profiled program must call exit() (see exit(2)) or return normally, for the profiling information to be
saved in the gmon.out file.

The following limitations exist for gprof shared library profiling:

• Local, static, and hidden functions are not profiled.

• Shared libraries built with -B symbolic are not profiled.

• Any function calls made from library initializers are not collected.

Set LD_PROFILE to the exact string with which you call shl_load . If the library is implicitly loaded,
LD_PROFILE must match the path encoded in the a.out . You can find this value by running the ldd
command on the executable.

HP-UX Release 11i: December 2000 − 2 − Section 1−−337

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

gprof(1) gprof(1)

DEPENDENCIES
gprof cannot be used with dynamically linked executables (built with ld -A in pre HP-UX 10.20
releases).

AUTHOR
gprof was developed by the University of California, Berkeley.

FILES
a.out* Default object file.
gmon.out* Default dynamic call graph and profile.
gmon.sum* Summarized dynamic call graph and profile.
/usr/lib/gprof.callg* Call graph description.
/usr/lib/gprof.flat* Flat profile description.
/usr/lib/libgprof32.sl gprof 32-bit shared library profiler

SEE ALSO
cc_bundled(1), prof(1), exit(2), profil(2), crt0(3), monitor(3C).

gprof: A Call Graph Execution Profiler; Graham, S.L., Kessler, P.B., McKusick, M.K.;

Proceedings of the SIGPLAN ’82 Symposium on Compiler Construction; SIGPLAN Notices; Vol. 17, No. 6,
pp. 120-126, June 1982.

HP-UX Linker and Libraries Online User’s Guide (See the ld +help option).

Section 1−−338 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

grep(1) grep(1)

NAME
grep, egrep, fgrep - search a file for a pattern

SYNOPSIS
Plain call with pattern

grep [-E -F] [-c -l -q] [-bhinsvwx] pattern [file ...]

Call with (multiple) −−e pattern
grep [-E -F] [-c -l -q] [-bhinsvwx] -e pattern ... [-e pattern] ... [file ...]

Call with −−f file
grep [-E -F] [-c -l -q] [-bhinsvwx] [-f pattern_ file] [file ...]

Obsolescent:
egrep [-cefilnsv] [expression] [file ...]

fgrep [-cefilnsvx] [strings] [file ...]

DESCRIPTION
The grep command searches the input text files (standard input default) for lines matching a pattern.
Normally, each line found is copied to the standard output. grep supports the Basic Regular Expression
syntax (see regexp(5)). The -E option (egrep) supports Extended Regular Expression (ERE) syntax (see
regexp(5)). The -F option (fgrep) searches for fixed strings using the fast Boyer-Moore string searching
algorithm. The -E and -F options treat newlines embedded in the pattern as alternation characters. A
null expression or string matches every line.

The forms egrep and fgrep are maintained for backward compatibility. The use of the -E and -F
options is recommended for portability.

Options
-E Extended regular expressions. Each pattern specified is a sequence of one or

more EREs. The EREs can be separated by newline characters or given in
separate -e expression options. A pattern matches an input line if any ERE in
the sequence matches the contents of the input line without its trailing newline
character. The same functionality is obtained by using egrep .

-F Fixed strings. Each pattern specified is a sequence of one or more strings.
Strings can be separated by newline characters or given in separate -e expres-
sion options. A pattern matches an input line if the line contains any of the
strings in the sequence. The same functionality is obtained by using fgrep .

-b Each line is preceded by the block number on which it was found. This is useful
in locating disk block numbers by context. Block numbers are calculated by
dividing by 512 the number of bytes that have been read from the file and round-
ing down the result.

-c Only a count of matching lines is printed.

-e expression Same as a simple expression argument, but useful when the expression begins
with a hyphen (-). Multiple -e options can be used to specify multiple patterns;
an input line is selected if it matches any of the specified patterns.

-f pattern_ file The regular expression (grep and grep -E) or strings list (grep -F) is taken
from the pattern_ file.

-h Suppress printing of filenames when searching multiple files.

-i Ignore uppercase/lowercase distinctions during comparisons.

-l Only the names of files with matching lines are listed (once), separated by new-
lines. If standard input is searched, a path name of (standard input) will
be written, in the POSIX locale. In other locales, (standard input) may be
replaced by something more appropriate in those locales.

-n Each line is preceded by its relative line number in the file starting at 1. The
line number is reset for each file searched. This option is ignored if -c , -b , -l ,
or -q is specified.

HP-UX Release 11i: December 2000 − 1 − Section 1−−339

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

grep(1) grep(1)

-q (Quiet) Do not write anything to the standard output, regardless of matching
lines. Exit with zero status upon finding the first matching line. Overrides any
options that would produce output.

-s Error messages produced for nonexistent or unreadable files are suppressed.

-v All lines but those matching are printed.

-w Select only those lines containing matches that form whole words. The test is
that the matching substring must either be at the beginning of the line, or pre-
ceded by a non-word constituent character. Similarly, it must be either at the
end of the line or followed by a non-word constituent character. Word-constituent
characters are letters, digits, and the underscore.

-x (eXact) Matches are recognized only when the entire input line matches the fixed
string or regular expression.

The file name is output in all the cases in which output is generated if there are more than one input file,
unless the -h option is specified. Care should be taken when using the characters $, * , [, ˆ , | , (,) , and \
in expression , because they are also meaningful to the shell. It is safest to enclose the entire expression
argument in single quotes (’ ...’).

EXTERNAL INFLUENCES
Environment Variables

LANGdetermines the locale to use for the locale categories when both LC_ALL and the corresponding
environment variable (beginning with LC_) do not specify a locale. If LANGis not specified or is set to the
empty string, a default of C (see lang(5)) is used.

LC_ALL determines the locale to use to override any values for locale categories specified by the settings of
LANGor any environment variables beginning with LC_.

LC_COLLATEdetermines the collating sequence used in evaluating regular expressions.

LC_CTYPE determines the interpretation of text as single byte and/or multi-byte characters, the
classification of characters as letters, the case information for the -i option, and the characters matched
by character class expressions in regular expressions.

LC_MESSAGESdetermines the language in which messages are displayed.

If any internationalization variable contains an invalid setting, the commands behave as if all international-
ization variables are set to C. See environ(5).

International Code Set Support
Single-byte and multi-byte character code sets are supported.

RETURN VALUE
Upon completion, grep returns one of the following values:

0 One or more matches found.
1 No match found.
2 Syntax error or inaccessible file (even if matches were found).

EXAMPLES
In the Bourne shell (sh(1)) the following example searches two files, finding all lines containing occurrences
of any of four strings:

grep -F ’if
then
else
fi’ file1 file2

Note that the single quotes are necessary to tell grep -F when the strings have ended and the file names
have begun.

For the C shell (see csh(1)) the following command can be used:

grep -F ’if\ then\ else\ fi’ file1 file2

To search a file named address containing the following entries:

Section 1−−340 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

grep(1) grep(1)

Ken 112 Warring St. Apt. A
Judy 387 Bowditch Apt. 12
Ann 429 Sixth St.

the command:

grep Judy address

prints:

Judy 387 Bowditch Apt. 12

To search a file for lines that contain either a Dec or Nov, use either of the following commands:

grep -E ’[Dd]ec|[Nn]ov’ file
egrep -i ’dec|nov’ file

Search all files in the current directory for the string xyz :

grep xyz *

Search all files in the current directory subtree for the string xyz , and ensure that no error occurs due to
file name expansion exceeding system argument list limits:

find . -type f -print |xargs grep xyz

The previous example does not print the name of files where string xyz appears. To force grep to print
file names, add a second argument to the grep command portion of the command line:

find . -type f -print |xargs grep xyz /dev/null

In this form, the first file name is that produced by find , and the second file name is the null file.

WARNINGS
(XPG4 only.) If the -q option is specified, the exit status will be zero if an input line is selected, even if an
error was detected. Otherwise, default actions will be performed.

If the -w option is specified with non-word constituent characters, then the output is unexpected.

SEE ALSO
sed(1), sh(1), regcomp(3C), environ(5), lang(5), regexp(5).

STANDARDS CONFORMANCE
grep : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

egrep : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

fgrep : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 3 − Section 1−−341

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

g

groups(1) groups(1)

NAME
groups - show group memberships

SYNOPSIS
groups [-p] [-g] [-l] [user]

DESCRIPTION
groups shows the groups to which the caller or the optionally specified user belong. If invoked with no
arguments, groups prints the current access list returned by getgroups() (see getgroups(2)).

Each user belongs to a group specified in the password file /etc/passwd and possibly to other groups as
specified in the files /etc/group and /etc/logingroup . A user is granted the permissions of those
groups specified in /etc/passwd and /etc/logingroup at login time. The permissions of the
groups specified in /etc/group are normally available only with the use of newgrp (see newgrp(1)). If
a user name is specified with no options, groups prints the union of all these groups.

The -p , -g , and -l options limit the printed list to those groups specified in /etc/passwd ,
/etc/group , and /etc/logingroup , respectively. If a user name is not specified with any of these
options, cuserid() is called to determine the default user name (see cuserid(3S)).

The printed list of groups is sorted in ascending collation order (see Environment Variables below).

EXTERNAL INFLUENCES
Environment Variables

LC_COLLATEdetermines the order in which the output is sorted.

If LC_COLLATE is not specified in the environment or is set to the empty string, the value of LANG is
used as a default. If LANGis not specified or is set to the empty string, a default of ‘‘C’’ (see lang(5)) is
used instead of LANG. If any internationalization variable contains an invalid setting, groups behaves as
if all internationalization variables are set to ‘‘C’’ (see environ(5)).

EXAMPLES
Check file /etc/logingroup and display all groups to which user tim belongs:

groups -l tim

AUTHOR
groups was developed by the University of California, Berkeley.

FILES
/etc/group
/etc/logingroup
/etc/passwd

SEE ALSO
id(1), newgrp(1), getgroups(2), initgroups(3C), cuserid(3S), group(4).

Section 1−−342 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

h

head(1) head(1)

NAME
head - give first few lines

SYNOPSIS
head [-c -l] [-n count] [file ...]

Obsolescent:
head [- count] [file ...]

DESCRIPTION
head prints on standard output the first count lines of each of the specified files, or of the standard input.
If count is omitted it defaults to 10.

If multiple files are specified, head outputs before each file a line of this form:

==> file <==

Options
-c The quantity of output is measured in bytes.

- count The number of units of output. This option is provided for backward compatibility (see -n
below) and is mutually exclusive of all other options.

-l The quantity of output is measured in lines; this is the default.

-n count The number of lines (default) or bytes output. count is an unsigned decimal integer. If -n
(or - count) is not given, the default quantity is 10. This option provides the same func-
tionality as the - count option, but in a more standard way. Use of the -n option is recom-
mended where portability between systems is important.

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of text within file as single and/or multi-byte characters.

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_CTYPEor LC_MESSAGESis not specified in the environment or is set to the empty string, the
value of LANGis used as a default for each unspecified or empty variable. If LANGis not specified or is
set to the empty string, a default of "C" (see lang(5)) is used instead of LANG.

If any internationalization variable contains an invalid setting, head behaves as if all internationalization
variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

WARNINGS
The length of the input lines is limited to {LINE_MAX} bytes.

SEE ALSO
tail(1), cat(1), more(1), pg(1).

STANDARDS CONFORMANCE
head : SVID3, XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 1 − Section 1−−343

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

h

hostname(1) hostname(1)

NAME
hostname - set or display name of current host system

SYNOPSIS
hostname [name_of_host]

DESCRIPTION
The hostname command displays the name of the current host, as given in the gethostname() sys-
tem call (see gethostname(2)). Users who have appropriate privileges can set the hostname by giving the
argument name_of_host ; this is usually done in the startup script /sbin/init.d/hostname . The
name_of_host argument is restricted to MAXHOSTNAMELENcharacters as defined in <sys/param.h> .

The system might be known by other names if networking products are supported. See the node manager
documentation supplied with your system.

WARNINGS
If the name_of_host argument is specified, the resulting host name change lasts only until the system is
rebooted. To change the host name permanently, run the special initialization script /sbin/set_parms
(see Using Your HP Workstation).

Many types of networking services are supported on HP-UX, each of which uses a separately assigned sys-
tem name and naming convention. To ensure predictable system behavior, it is essential that system
names (also called host names or node names) be assigned in such a manner that they do not create
conflicts when the various networking facilities interact with each other.

The system does not rely on a single system name in a specific location, partly because different services
use dissimilar name formats as explained below. The hostname and uname commands assign system
names as follows:

Node Name Command name Format Used By

Internet name hostname name sys[. x. y. z...] ARPA and NFS Services
UUCP name uname -S name sys uucp and related programs

where sys represents the assigned system name. It is strongly recommended that sys be identical for all
commands and locations and that the optional . x. y. z... follow the specified notation for the particular
ARPA/NFS environment.

Internet names are also frequently called host names or domain names (which are different from NFS
domain names). Refer to hostname(5) for more information about Internet naming conventions.

Whenever the system name is changed in any file or by the use of any of the above commands, it should
also be changed in all other locations as well. Other files or commands in addition to those above (such as
/etc/uucp/Permissions if used to circumvent uname, for example) may contain or alter system
names. To ensure correct operation, they should also use the same system name.

System names are normally assigned by the /sbin/init.d/hostname script at start-up, and should
not be altered elsewhere.

AUTHOR
hostname was developed by the University of California, Berkeley.

SEE ALSO
uname(1), gethostname(2), sethostname(2), uname(2), hostname(5).

Using Your HP Workstation

Section 1−−344 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

h

hp(1) hp(1)

NAME
hp - handle special functions of HP 2640 and HP 2621-series terminals

SYNOPSIS
hp [-e] [-m]

DESCRIPTION
hp supports special functions of the Hewlett-Packard HP 2640 and HP 2621 series of terminals, with the
primary purpose of producing accurate representations of most nroff output. A typical use is:

nroff -h files ... | hp

Regardless of the hardware options on a given terminal, hp tries to do sensible things with underlining
and reverse line-feeds. If the terminal has the ‘‘display enhancements’’ feature, subscripts and superscripts
can be indicated in distinct ways. If it has the ‘‘mathematical-symbol’’ feature, Greek and other special
characters can be displayed.

Options
hp recognizes the following options:

-e Specify that your terminal has the ‘‘display enhancements’’ feature, to make maximal use of
the added display modes. Overstruck characters are presented in the Underline mode.
Superscripts are shown in Half-bright mode, and subscripts in Half-bright, Underlined
mode. If this flag is omitted, hp assumes that your terminal lacks the ‘‘display enhance-
ments’’ feature. In this case, all overstruck characters, subscripts, and superscripts are
displayed in Inverse Video mode; that is, dark-on-light, rather than light-on-dark.

-m Request minimization of output by removing new-lines. Any contiguous sequence of 3 or
more new-lines is converted into a sequence of only 2 new-lines; that is, any number of suc-
cessive blank lines produces only a single blank output line. This allows you to retain more
actual text on the screen.

DIAGNOSTICS
line too long

The representation of a line exceeds 1,024 characters.

RETURN VALUE
hp returns zero for normal termination, and 2 for all errors.

WARNINGS
An ‘‘overstriking sequence’’ is defined as a printing character followed by a backspace followed by another
printing character. In such sequences, if either printing character is an underscore, the other printing
character is shown underlined or in Inverse Video; otherwise, only the first printing character is shown
(again, underlined or in Inverse Video). Nothing special is done if a backspace is adjacent to an ASCII con-
trol character. Sequences of control characters (e.g., reverse line-feeds, backspaces) can make text ‘‘disap-
pear’’; in particular, tables generated by tbl that contain vertical lines will often be missing the lines of
text that contain the ‘‘foot’’ of a vertical line, unless the input to hp is piped through col (see col(1)).

Although some terminals do support numerical superscript characters, no attempt is made to display them.

SEE ALSO
col(1), neqn(1), nroff(1), tbl(1).

HP-UX Release 11i: December 2000 − 1 − Section 1−−345

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

h

hyphen(1) hyphen(1)

NAME
hyphen - find hyphenated words

SYNOPSIS
hyphen [files]

DESCRIPTION
hyphen finds all the hyphenated words ending lines in files and prints them on the standard output. If no
arguments are given, the standard input is used; thus, hyphen can be used as a filter.

EXAMPLES
Prepare an nroff hyphenation proofreading file for textfile.

mm textfile | hyphen

WARNINGS
hyphen cannot cope with hyphenated italics (i.e., underlined) words; it often misses them completely or
mangles them.

hyphen occasionally gets confused, but with no ill effects other than spurious extra output.

SEE ALSO
mm(1), nroff(1).

Section 1−−346 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

i

iconv(1) iconv(1)

NAME
iconv - code set conversion

SYNOPSIS
iconv -f fromcode -t tocode [file ...]

DESCRIPTION
iconv converts the encoding of characters in the input files from the fromcode code set to the tocode code
set, and writes the results on standard output. If no input files are given, iconv reads from standard
input. If - appears as an input file name, iconv reads standard input at that point. - - can be used to
delimit the end of options (see getopt(3C)).

Options
iconv recognizes the following options:

-f fromcode Identify the code set corresponding to option argument fromcode as the code set that
the input will be converted ‘‘from’’.

-t tocode Identify the code set corresponding to option argument tocode as the code set that the
input will be converted ‘‘to’’.

The fromcode and tocode names can be any of the base and alias names listed in the iconv configuration file,
/usr/lib/nls/iconv/config.iconv . See iconv(3C) for details and the configuration file for a list
of supported code set names.

EXTERNAL INFLUENCES
Environment Variables

LANGprovides a default value for the internationalization variables that are unset or null. If LANG is
unset or null, the default value of "C" (see lang(5)) is used. If any of the internationalization variables con-
tains an invalid setting, iconv will behave as if all internationalization variables are set to "C". See
environ(5).

LC_ALL If set to a non-empty string value, overrides the values of all the other internationalization vari-
ables.

LC_CTYPEdetermines the interpretation of text as single and/or multi-byte characters, the classification
of characters as printable, and the characters matched by character class expressions in regular expres-
sions. During translation of the file, this variable is superseded by the use of the fromcode option-argument.

LC_MESSAGESdetermines the locale that should be used to affect the format and contents of diagnostic
messages written to standard error and informative messages written to standard output.

NLSPATHdetermines the location of message catalogues for the processing of LC_MESSAGES.

International Code Set Support
Single and multi-byte character code sets are supported.

WARNINGS
If an input character does not have a valid equivalent in the code set selected by the -t option (the "to"
code set), it is mapped to the "galley character", if it has been defined for that conversion. (see genxlt(1) and
iconv(3C)).

If an input character does not belong to the code set selected by the -f option (the "from" code set), the
command terminates.

EXAMPLES
Convert the contents of file foo from code set Roman8 to ISO 8859/1 and store the results in file bar .

iconv -f roman8 -t iso8859_1 foo > bar

FILES
/usr/lib/nls/iconv/config.iconv iconv configuration file

AUTHOR
iconv was developed by HP.

HP-UX Release 11i: December 2000 − 1 − Section 1−−347

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

i

iconv(1) iconv(1)

SEE ALSO
getopt(3C), iconv(3C).

STANDARDS CONFORMANCE
iconv : XPG2, XPG3, XPG4

Section 1−−348 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

i

id(1) id(1)

NAME
id - print user and group IDs and names

SYNOPSIS
id [-u -g -G] [-nr] [-P] [user]

DESCRIPTION
The id command writes a message to standard output, giving the user and group IDs and names for the
process. If the effective and real IDs are different, both are printed.

If the process has supplementary group affiliations (see groups(1)), the supplementary group affiliations are
also written.

If the user operand is specified, and the effective user ID of the process is superuser, the user and group
IDs of the selected user are written. In this case, effective IDs are assumed to be identical to real IDs.

Options
The following options modify the behavior described above.

-g Display only the group ID. The default is the effective group ID; to modify, use the -r option. If
the process has supplementary group affiliations that are different from the effective group ID
(or the real ID if the -r option is used), display each such affiliation on the same line. The
default is decimal format; to modify, use the -n option.

-G Output all different group IDs (effective, real, and supplementary) only, using the format
"%u\n". If there is more than one distinct group affiliation, output each such affiliation, using the
format " %u", before the <newline> is output.

-n With A -u , -g , or -G , display the ID name instead of the ID number.

-r With -u , -g , or -G , display the real ID instead of the effective ID.

-u Display only the user ID. The default is the effective user ID; to modify, use the -r option. The
default is decimal format; to modify, use the -n option.

-P Display the process resource group ID. See HP Process Resource Manager in DEPENDENCIES.

EXAMPLES
To display the current user and group data:

id

produces:

uid=1834(allanp) gid=20(users)

To display the group ID number for the current process:

id -g

produces:

20

To display the group name for the current process:

id -gn

produces:

users

To display the user and group data for another user:

id ralford

produces:

uid=329(ralford) gid=20(users)

if the effective user ID of the process is superuser. Otherwise, it produces the data for the invoking pro-
cess.

HP-UX Release 11i: December 2000 − 1 − Section 1−−349

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

i

id(1) id(1)

AUTHOR
id was developed by HP and AT&T.

DEPENDENCIES
HP Process Resource Manager

The -P option requires that the optional HP Process Resource Manager (PRM) software be installed and
configured. See prmconfig(1) for a description of how to configure HP PRM, and prmconf(4) for the
definition of the process resource group.

SEE ALSO
groups(1), logname(1), getuid(2).

HP Process Resource Manager: prmconfig(1), prmconf(4) in HP Process Resource Manager User’s Guide.

STANDARDS CONFORMANCE
id : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

Section 1−−350 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

i

ident(1) ident(1)

NAME
ident - identify files in RCS

SYNOPSIS
ident file ...

DESCRIPTION
ident searches the named files for all occurrences of the pattern $keyword: ...$, where keyword is one of
the following:

Author Log
Date Revision
Header Source
Locker State

These patterns are normally inserted automatically by the RCS co command, but can also be inserted
manually (see co(1)).

ident works on text files as well as object files. For example, if the C program in file f.c contains:

char rcsid[] = "$Header: Header information $";

and f.c is compiled into f.o , the command:

ident f.c f.o

prints:

f.c:
$Header: Header information $

f.o:
$Header: Header information $

AUTHOR
ident was developed by Walter F. Tichy.

SEE ALSO
ci(1), co(1), rcs(1), rcsdiff(1), rcsintro(5), rcsmerge(1), rlog(1), rcsfile(4).

HP-UX Release 11i: December 2000 − 1 − Section 1−−351

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

i

idlookup(1) idlookup(1)

NAME
idlookup - identify the user of a particular TCP connection

SYNOPSIS
idlookup host-or-ip-number local-port foreign-port

DESCRIPTION
idlookup can be used to identify the user at the remote end of a TCP connection, assuming the host at
the other end is running an Identification Server.

host-or-ip-number is the name of the host at the other end of the connection, or its IP address.

local-port and foreign-port are the port numbers, or service names of the ports at the two ends of the con-
nection.

WARNING
Note that the references to local-port and foreign-port follow the terminology in RFC931, and are from the
point of view of the server rather than the user.

AUTHOR
idlookup was originally written by Peter Eriksson. The manual page was originally written by Dave
Sheild.

SEE ALSO
sendmail(1M), identd(1M), RFC931.

Section 1−−352 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

i

ied(1) ied(1)

NAME
ied - input editor and command history for interactive programs

SYNOPSIS
ied [-dirt] [-h file] [-s size] [-p prompt] [-k charmap] utility [arguments ...]

DESCRIPTION
ied is a utility command that is intended to act as an interface between the user and an interactive pro-
gram such as bc, bs, or Bourne shell, providing most of the line editing and history functionality found in
the Korn shell. ied interprets the utility name as the command to be executed, and passes arguments as
the arguments to the utility. Subsequent input to utility then has access to editing and history functions
very similar to those provided by ksh.

ied monitors the state of the pty it uses to run the command, and, whenever the application it is running,
changes the state from the state of the tty when ied started, ied becomes ‘‘transparent’’. This allows
programs to do shell escapes to screen-smart programs. In general, ied should not in any way interfere
with any action taken by any program for which it provides a front end. This includes Korn shell itself: in
this case ied would provide history for any application that was run by ksh , and ksh would provide its
own independent history. In a useful extreme case, ied can be used as a front end to the login shell
(which might be ksh or csh). In this case, all applications that use normal line editing gain line editing
and history, sharing a single history. The shell would continue to have its own independent history if it
provides such a mechanism.

When ied is in its transparent mode, no history is saved. In particular the ex mode of vi does not use
normal line editing (rather, it simulates it) and ied cannot provide history in this case. The Subject:
and address line editing of mailx also cannot be edited with ied .

Options
Several options and command-line arguments control ied ’s operation:

-d Debug mode. Print information about the operation of the program. It is best used to
determine if a program puts ied into transparent mode unexpectedly.

-h filename Keep the history in a file named filename. If a file of that name already exists and is a
history file, the latter part of it (the last size lines as specified by the -s option) is
used as the initial value of the history. If the -h option is not used, the environment
variable IEDHISTFILE is used to supply the name. If neither are present an
unnamed temporary file is used, and no initial value is provided.

-i Force interactive mode. Normally ied simply exec s the command to which it is
asked to be a front end when the standard input is not a tty (this allows aliases to be
used for commands used in shells without interfering with their operation). This
option forces ied to remain as a front end, and all editing functions are in place.
This permits a utility that behaves differently in interactive and batch modes to be
driven from a pipe or file in interactive mode. This is particularly useful in testing
commands that make this distinction.

-k charmap charmap is a file of 256 or fewer lines. The line number in the file is the ordinal of a
character as seen as input by ied , and the character on the line is the character gen-
erated as output (and also used as editing characters). This allows remapping of (ordi-
nary) keys such as for a Dvorak keyboard. Characters must start in column one of
each line, and be represented as 1-4 characters followed by a space or the new-line
character for the next line. Characters after the space are ignored as comments.
Single-character entries represent themselves. Two-character entries where the first
character is a circumflex (ˆ) converts the second character to the corresponding con-
trol character. Two-character sequences where the first character is backslash (\) use
the C language conventions:

\n newline \s space
\\ escape \0 null
\r return \f form feed

HP-UX Release 11i: December 2000 − 1 − Section 1−−353

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

i

ied(1) ied(1)

\t tab \v vertical tab
\b backspace

Three- and four-character sequences must be \ nn or \ nnn, giving the octal value for
the character. If charmap is less than 256 lines long, the remaining characters are
mapped to themselves.

-p prompt Many commands do not prompt when ready for input. ied approximates a prompt-
ing mechanism for such commands. This is not always perfectly successful, but for
many commands it helps. In the worst case, the prompt is interspersed with output
in the wrong location. prompt is a string as used in the format argument to
printf(3S). The only %conversions that can be included are up to one instance of %d
which is converted to the sequential number of the command, and any number of
occurrences of %%which is treated as a literal %character. Prompting is suppressed
when ied is operating in transparent mode.

-r This sets "non-raw" mode. Normally ied uses its own editing capabilities when read-
ing simple text. This causes ied to use tty line discipline most of the time. The
disadvantage of the default mode is that more context switches and general processing
are required. The advantage is that ied is more transparent. For example, to
specifically send an end-of-file in the non-raw mode requires that the end-of-file char-
acter (usually Ctrl-D) be followed by a carriage return. Similarly the ‘‘literal next’’
function (Ctrl-V) cannot escape the line-erase and line-kill functions in non-raw mode.

-s size This option specifies the size of the history buffer. When ied is started with an
existing history file, approximately the last size lines are available to the history
mechanism (the number is not guaranteed to be exactly size). Other lines in the file
are retained until such time as ied is started on that history file and it exceeds
approximately 4K bytes in size, at which time ied discards older entries at the
beginning of the file until it is near 4 Kbytes in size. Since this occurs only at startup,
history files can grow to be quite large between restarts. Larger values of size make
the process image larger.

If -s is not specified, the value of the environment variable IEDHISTSIZE is used.
If neither is specified, a default is used.

-t Set transparent mode. This forces ied to permanently be in transparent mode (as
discussed above). It is primarily useful with -i for some classes of automated pro-
cessing. In particular, it is useful for driving a command if the command takes as
input what ied would interpret as editing characters. Thus with the appropriate
combinations of -i and -t , it is possible to drive an editor such as vi or a screen-
smart application from a batch file.

Should something go wrong with ied , the SIGQUIT signal, repeated 3 times, usually aborts ied . The
exception is the case of a fully transparent application, where ied must be killed from another window or
terminal. This is really relevant only when there is no way to direct the serviced process to terminate
itself.

The editing capabilities of ied are essentially those found in ksh . Only those that differ from ksh are
described below. As in ksh , the style of editing is determined from the environment variable VISUAL , or
from EDITOR if VISUAL is not specified. The value examined should end in vi , emacs , or gmacs to
specify an editor type. If it does not, ied does no editing, and history is not accessible.

In vi mode:

J Join lines. Considering the most recently edited line (which is empty immedi-
ately after a line is sent to the application) to be the ‘‘last line’’ of the history, the
current line being displayed from the history is appended to the end of the last
line, and the position in the history is reset to be at the last line which is then
displayed. A space is inserted between the old and new text on the last line.
The cursor is left on that space. Because ied ’s understanding of line continua-
tion is minimal, this is useful for editing long statements.

v Not supported.

V Not supported.

Sends nothing to the application, but inserts the line in the history (useful for
adding comments to history file).

Section 1−−354 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

i

ied(1) ied(1)

<esc>,*,= (Filename expansion). Not supported.

@ Macro expansion. Not supported.

Note however that ksh has a rarely-used function _ that substitutes words
from the previous line (this is not the macro $_ , but rather an editor command).
If a preceding count is given, it uses the countth word of the last line. This is
much more useful with ied .

In emacs/gmacs mode:

M-* , M-= , M-<esc>
(filename expansion) Not supported.

Note that the command M-. (and it’s synonym M-_) provide the same func-
tionality as the vi mode _ command.

Macro expansion. Not supported.

^O Although supported, it may not always appear correctly on the screen. The ˆL
command can be used to redraw the line. See below for the discussion on
prompting.

EXAMPLES
Add interactive editing to the bc command:

ied bc

Execute vi on testfile using comands taken from script :

cat script | ied -i -t vi testfile

Note that without the use of ied , vi would misbehave because its standard input would not be a terminal
device. In this case the -t is not required because vi puts itself in raw mode, but for an application that
does not, -t might be required.

The command line

ied -i -t grep ’ˆx:’ data_file | tee x_lines

searches the file data_file for lines beginning with x: , sending one copy to the terminal and a second
to file x_lines , just like the command line

grep ’ˆx:’ data_file | tee x_lines

The difference is that in the command line without ied , grep writes directly to a pipe, and thus buffers
its output. If data_file is very large and not many lines match the pattern, output to the terminal is
delayed. By using ied , the output of grep goes to a pty instead, which causes grep to output each line
as it is ready.

WARNINGS
Since ied cannot know everything about every application, it is possible that it can become confused, with
either the timing or the prompt being out of phase with the application. Since the use of ied is never
required, it is the user’s choice to determine whether the application is more usable with or without ied .
In general, however, programs that do not confuse ied are usually also the most likely to benefit from its
use.

ied tries to intuit the currently active prompt when it is not providing one itself. However, this is not
always successful. Even when it is successful, the timing of ied and the serviced command may occasion-
ally confuse the output. The ˆL commands in both emacs and vi modes redraw the edit line in a consistent
fashion that can be used to create the next command.

AUTHOR
ied was developed by HP.

SEE ALSO
ksh(1).

HP-UX Release 11i: December 2000 − 3 − Section 1−−355

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

i

insertmsg(1) insertmsg(1)

NAME
insertmsg - use findstr(1) output to insert calls to catgets(3C)

SYNOPSIS
insertmsg [-h] [-n number] [-i amount] [-s number] stringlist

DESCRIPTION
insertmsg examines the file stringlist, which is assumed to be the output of findstr after subsequent
editing to remove any strings that do not need to be localized (see findstr(1)). If the -h option is specified,
insertmsg places the following lines at the beginning of each file named in stringlist:

#ifndef NLS
#define catgets(i,sn,mn,s) (s)
#else NLS
#define NL_SETN number
#include <nl_types.h>
#endif NLS

where number is a set number defined by the -s option; the default is 1. For each string in stringlist,
insertmsg surrounds the string in the corresponding file with an expression of the form:

(catgets(catd,NL_SETN, msg_num," default string"))

The default string is the original string referenced by the line in stringlist, and msg_num is replaced by the
message number assigned to that string. The assigned message numbers begin with the number defined by
the -n option and are incremented by the amount defined by the -i option. The default is 1 for both the
starting message number and the increment. If name.c is the file to be modified, as specified within the
stringlist file, insertmsg places the modified source in nl_ name.c . The user must then manually edit the
file nl_ name.c to insert the following statements:

nl_catd catd;
catd = catopen(" appropriate message catalog",0);

The data type nl_catd is defined in <nl_types.h > and catd is a parameter to the calls to catgets ,
which are inserted for each string from stringlist.

insertmsg also sends to the standard output a file that can be used as input to gencat (see gencat(1)).

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of text as single- and/or multi-byte characters.

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_CTYPEor LC_MESSAGESis not specified in the environment or is set to the empty string, the
value of LANGis used as a default for each unspecified or empty variable. If LANGis not specified or is
set to the empty string, a default of "C" (see lang(5)) is used instead of LANG. If any internationalization
variable contains an invalid setting, insertmsg behaves as if all internationalization variables are set to
"C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

DIAGNOSTICS
If insertmsg does not find opening or closing double quotes where required in the strings file, it prints
insertmsg exiting : lost in strings file and aborts. If this happens, check the strings
file to ensure that the lines that have been kept there have not been altered.

WARNINGS
If the -h option is not used, it may be necessary to manually add the following statement to the file
created by insertmsg :

#include <nl_types.h>

insertmsg inserts a pointer to a static area that is overwritten on each call.

The insertmsg command is HP proprietary, not portable to other vendors’ systems, and will not be pro-
vided in future HP-UX releases.

Section 1−−356 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

i

insertmsg(1) insertmsg(1)

AUTHOR
insertmsg was developed by HP.

SEE ALSO
findstr(1), gencat(1), catgets(3C), catopen(3C).

HP-UX Release 11i: December 2000 − 2 − Section 1−−357

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

i

iostat(1) iostat(1)

NAME
iostat - report I/O statistics

SYNOPSIS
iostat [-t] [interval [count]]

DESCRIPTION
iostat iteratively reports I/O statistics for each active disk on the system. Disk data is arranged in a
four-column format:

Column Heading Interpretation
device Device name
bps Kilobytes transferred per second
sps Number of seeks per second
msps Milliseconds per average seek

If two or more disks are present, data is presented on successive lines for each disk.

To compute this information, seeks, data transfer completions, and the number of words transferred are
counted for each disk. Also, the state of each disk is examined HZ times per second (as defined in
<sys/param.h >) and a tally is made if the disk is active. These numbers can be combined with the
transfer rates of each device to determine average seek times for each device.

With the advent of new disk technologies, such as data striping, where a single data transfer is spread
across several disks, the number of milliseconds per average seek becomes impossible to compute accu-
rately. At best it is only an approximation, varying greatly, based on several dynamic system conditions.
For this reason and to maintain backward compatibility, the milliseconds per average seek (msps) field is
set to the value 1.0.

Options
iostat recognizes the following options and command-line arguments:

-t Report terminal statistics as well as disk statistics. Terminal statistics include:

tin Number of characters read from terminals.
tout Number of characters written to terminals.
us Percentage of time system (active processors) has spent in user mode.
ni Percentage of time system (active processors) has spent in user mode run-

ning low-priority (nice) processes.
sy Percentage of time system (active processors) has spent in system mode.
id Percentage of time system (active processors) has spent idling.

interval Display successive lines which are summaries of the last interval seconds. The first line
reported is for the time since a reboot and each subsequent line is for the last interval
only.

count Repeat the statistics count times.

EXAMPLES
Show current I/O statistics for all disks:

iostat

Display I/O statistics for all disks every 10 seconds until INTERRUPT or QUIT is pressed:

iostat 10

Display I/O statistics for all disks every 10 seconds and terminate after 5 successive readings:

iostat 10 5

Display I/O statistics for all disks every 10 seconds, also show terminal and processor statistics, and ter-
minate after 5 successive readings:

iostat -t 10 5

WARNINGS
Users of iostat must not rely on the exact field widths and spacing of its output, as these will vary
depending on the system, the release of HP-UX, and the data to be displayed.

Section 1−−358 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

i

iostat(1) iostat(1)

AUTHOR
iostat was developed by the University of California, Berkeley, and HP.

FILES
/usr/include/sys/param.h

SEE ALSO
vmstat(1).

HP-UX Release 11i: December 2000 − 2 − Section 1−−359

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

i

ipcrm(1) ipcrm(1)

NAME
ipcrm - remove a message queue, semaphore set, or shared memory identifier

SYNOPSIS
ipcrm [option]...

DESCRIPTION
The ipcrm command removes one or more specified message queue, semaphore set, or shared memory
identifiers.

Options
The identifiers are specified by the following options:

-m shmid Remove the shared memory identifier shmid from the system. The shared memory
segment and data structure associated with it are destroyed after the last detach.

-q msqid Remove the message queue identifier msqid from the system and destroy the message
queue and data structure associated with it.

-s semid Remove the semaphore identifier semid from the system and destroy the set of sema-
phores and data structure associated with it.

-M shmkey Remove the shared memory identifier, created with key shmkey, from the system.
The shared memory segment and data structure associated with it are destroyed after
the last detach.

-Q msgkey Remove the message queue identifier, created with key msgkey, from the system and
destroy the message queue and data structure associated with it.

-S semkey Remove the semaphore identifier, created with key semkey, from the system and des-
troy the set of semaphores and data structure associated with it.

The details of the removals are described in msgctl(2), shmctl(2), and semctl(2). The identifiers and keys
can be found by using ipcs (see ipcs(1)).

SEE ALSO
ipcs(1), msgctl(2), msgget(2), msgop(2), semctl(2), semget(2), semop(2), shmctl(2), shmget(2), shmop(2).

STANDARDS CONFORMANCE
ipcrm : SVID2, SVID3

Section 1−−360 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

i

ipcs(1) ipcs(1)

NAME
ipcs - report status of interprocess communication facilities

SYNOPSIS
ipcs [-mqs] [-abcopt] [-C core] [-N namelist]

DESCRIPTION
ipcs displays certain information about active interprocess communication facilities. With no options, ipcs
displays information in short format for the message queues, shared memory segments, and semaphores
that are currently active in the system.

Options
The following options restrict the display to the corresponding facilities.

(none) This is equivalent to -mqs .

-m Display information about active shared memory segments.

-q Display information about active message queues.

-s Display information about active semaphores.

The following options add columns of data to the display. See "Column Description" below.

(none) Display default columns: for all facilities: T, ID , KEY, MODE, OWNER, GROUP.

-a Display all columns, as appropriate. This is equivalent to -bcopt .

-b Display largest-allowable-size information: for message queues: QBYTES; for shared
memory segments: SEGSZ; for semaphores: NSEMS.

-c Display creator’s login name and group name: for all facilities: CREATOR, CGROUP.

-o Display information on outstanding usage: for message queues: CBYTES, QNUM; for
shared memory segments: NATTCH.

-p Display process number information: for message queues: LSPID , LRPID ; for
shared memory segments: CPID, LPID .

-t Display time information: for all facilities: CTIME; for message queues: STIME,
RTIME; for shared memory segments: ATIME, DTIME; for semaphores: OTIME.

The following options redefine the sources of information.

-C core Use core in place of /dev/kmem . core can be a core file or a directory created by
savecrash or savecore .

-N namelist Use file namelist or the namelist within core in place of /stand/vmunix . It opens
a crash dump for reading. Please refer to cr_open(3) for more details.

Column Descriptions
The column headings and the meaning of the columns in an ipcs listing are given below. The columns are
printed from left to right in the order shown below.

T Facility type:

m Shared memory segment
q Message queue
s Semaphore

ID The identifier for the facility entry.

KEY The key used as an argument to msgget() , semget() , or shmget() to create
the facility entry. (Note: The key of a shared memory segment is changed to
IPC_PRIVATE when the segment has been removed until all processes attached to
the segment detach it.)

MODE The facility access modes and flags: The mode consists of 11 characters that are inter-
preted as follows:

The first two characters can be:

HP-UX Release 11i: December 2000 − 1 − Section 1−−361

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

i

ipcs(1) ipcs(1)

R A process is waiting on a msgrcv() .
S A process is waiting on a msgsnd() .
D The associated shared memory segment has been removed. It will disap-

pear when the last process attached to the segment detaches it.
C The associated shared memory segment is to be cleared when the first

attach is executed.
- The corresponding special flag is not set.

The next 9 characters are interpreted as three sets of three characters each. The first
set refers to the owner’s permissions, the next to permissions of others in the group of
the facility entry, and the last to all others.

Within each set, the first character indicates permission to read, the second character
indicates permission to write or alter the facility entry, and the last character is
currently unused.

r Read permission is granted.
w Write permission is granted.
a Alter permission is granted.
- The indicated permission is not granted.

OWNER The login name of the owner of the facility entry.

GROUP The group name of the group of the owner of the facility entry.

CREATOR The login name of the creator of the facility entry.

CGROUP The group name of the group of the creator of the facility entry.

CBYTES The number of bytes in messages currently outstanding on the associated message
queue.

QNUM The number of messages currently outstanding on the associated message queue.

QBYTES The maximum number of bytes allowed in messages outstanding on the associated
message queue.

LSPID The process ID of the last process to send a message to the associated message queue.

LRPID The process ID of the last process to receive a message from the associated message
queue.

STIME The time the last msgsnd() message was sent to the associated message queue.

RTIME The time the last msgrcv() message was received from the associated message
queue.

CTIME The time when the associated facility entry was created or changed.

NATTCH The number of processes attached to the associated shared memory segment.

SEGSZ The size of the associated shared memory segment.

CPID The process ID of the creating process of the shared memory segment.

LPID The process ID of the last process to attach or detach the shared memory segment.

ATIME The time the last shmat() attach was completed to the associated shared memory
segment.

DTIME The time the last shmdt() detach was completed on the associated shared memory
segment.

NSEMS The number of semaphores in the set associated with the semaphore entry.

OTIME The time the last semop() semaphore operation was completed on the set associated
with the semaphore entry.

WARNINGS
ipcs produces only an approximate indication of actual system status because system processes are con-
tinually changing while ipcs is acquiring the requested information.

Do not rely on the exact field widths and spacing of the output, as these will vary depending on the system,
the release of HP-UX, and the data to be displayed.

Section 1−−362 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

i

ipcs(1) ipcs(1)

FILES
/dev/kmem Kernel virtual memory
/etc/group Group names
/etc/passwd User names
/stand/vmunix System namelist

SEE ALSO
msgop(2), semop(2), shmop(2).

STANDARDS CONFORMANCE
ipcs : SVID2, SVID3

HP-UX Release 11i: December 2000 − 3 − Section 1−−363

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

j

join(1) join(1)

NAME
join - relational database operator

SYNOPSIS
join [options] file1 file2

DESCRIPTION
join forms, on the standard output, a join of the two relations specified by the lines of file1 and file2. If
file1 or file2 is - , the standard input is used.

file1 and file2 must be sorted in increasing collating sequence (see Environment Variables below) on the
fields on which they are to be joined; normally the first in each line.

The output contains one line for each pair of lines in file1 and file2 that have identical join fields. The out-
put line normally consists of the common field followed by the rest of the line from file1, then the rest of the
line from file2.

The default input field separators are space, tab, or new-line. In this case, multiple separators count as one
field separator, and leading separators are ignored. The default output field separator is a space.

Some of the below options use the argument n. This argument should be a 1 or a 2 referring to either
file1 or file2, respectively.

Options
-a n In addition to the normal output, produce a line for each unpairable line in file n, where n is 1

or 2.

-e s Replace empty output fields by string s.

-j m Join on field m of both files. The argument m must be delimited by space characters. This
option and the following two are provided for backward compatibility. Use of the -1 and -2
options (see below) is recommended for portability.

-j1 m Join on field m of file1.

-j2 m Join on field m of file2.

-o list Each output line comprises the fields specified in list, each element of which has the form
n. m, where n is a file number and m is a field number. The common field is not printed
unless specifically requested.

-t c Use character c as a separator (tab character). Every appearance of c in a line is significant.
The character c is used as the field separator for both input and output.

-v file_number
Instead of the default output, produce a line only for each unpairable line in file_number,
where file_number is 1 or 2.

-1 f Join on field f of file 1. Fields are numbered starting with 1.

-2 f Join on field f of file 2. Fields are numbered starting with 1.

EXTERNAL INFLUENCES
Environment Variables

LC_COLLATEdetermines the collating sequence join expects from input files.

LC_CTYPEdetermines the alternative blank character as an input field separator, and the interpretation
of data within files as single and/or multi-byte characters. LC_CTYPE also determines whether the
separator defined through the -t option is a single- or multi-byte character.

If LC_COLLATE or LC_CTYPE is not specified in the environment or is set to the empty string, the
value of LANGis used as a default for each unspecified or empty variable. If LANGis not specified or is
set to the empty string, a default of ‘‘C’’ (see lang(5)) is used instead of LANG. If any internationalization
variable contains an invalid setting, join behaves as if all internationalization variables are set to ‘‘C’’
(see environ(5)).

International Code Set Support
Single- and multi-byte character code sets are supported with the exception that multi-byte-character file
names are not supported.

Section 1−−364 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

j

join(1) join(1)

EXAMPLES
The following command line joins the password file and the group file, matching on the numeric group ID,
and outputting the login name, the group name, and the login directory. It is assumed that the files have
been sorted in the collating sequence defined by the LC_COLLATEor LANGenvironment variable on the
group ID fields.

join -1 4 -2 3 -o 1.1 2.1 1.6 -t: /etc/passwd /etc/group

The following command produces an output consisting all possible combinations of lines that have identical
first fields in the two sorted files sf1 and sf2, with each line consisting of the first and third fields from
sorted_file1 and the second and fourth fields from sorted_file2 :

join -j1 1 -j2 1 -o 1.1,2.2,1.3,2.4 sorted_file1 sorted_file2

WARNINGS
With default field separation, the collating sequence is that of sort -b ; with -t , the sequence is that of a
plain sort.

The conventions of join , sort , comm, uniq , and awk are incongruous.

Numeric filenames may cause conflict when the -o option is used immediately before listing filenames.

AUTHOR
join was developed by OSF and HP.

SEE ALSO
awk(1), comm(1), sort(1), uniq(1).

STANDARDS CONFORMANCE
join : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 2 − Section 1−−365

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kdestroy(1) kdestroy(1)

NAME
kdestroy - destroy Kerberos tickets

SYNOPSIS
kdestroy [-q] [-c cache_filename]

DESCRIPTION
The kdestroy utility destroys the user’s active Kerberos authorization tickets by writing zeros to the
specified credentials cache that contains them. If the credentials cache is not specified, the default creden-
tials cache is destroyed.

Options
-q Run quietly. Normally kdestroy beeps if it fails to destroy the user’s tickets. The

-q flag suppresses this behavior.

-c cache_filename Use cache_filename as the credentials ticket cache name and location. If this option is
not used, the default cache name and location is used.

The default credentials cache may vary between systems. If the KRB5CCNAMEenvironment variable is set,
its value is used to name the default ticket cache.

Most installations recommend that you place the kdestroy command in your .logout file, so that your
tickets are destroyed automatically when you log out.

Note
For DCE operations use /opt/dce/bin/kdestroy .

Environment
kdestroy uses the following environment variable:

KRB5CCNAME Location of the credentials ticket cache.

WARNINGS
Only the tickets in the specified credentials cache are destroyed. Separate ticket caches are used to hold
root instance and password changing tickets. Even these should be destroyed. It is recommended that to
keep all user tickets in a single credentials cache.

FILES
/tmp/krb5cc_ {uid} Default credentials cache. {uid} is the decimal UID of the user.

AUTHOR
kdestroy was developed by the Massachusetts Institute of Technology.

SEE ALSO
kerberos(9), kinit(1), klist(1).

Section 1−−366 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kermit(1) kermit(1)
(HP-UX C-Kermit)

NAME
kermit - C-Kermit 7.0 communications software for serial and network connections: modem dialing, file
transfer and management, terminal connection, character-set translation, numeric and alpha paging, and
script programming

SYNOPSIS
kermit [command-file] [options ...]

DESCRIPTION
Kermit is a family of file transfer, management, and communication software programs from the Kermit
Project at Columbia University available for most computers and operating systems. The version of Kermit
for Hewlett-Packard HP-UX, called C-Kermit, supports both serial connections (direct or dialed) and
TCP/IP connections.

C-Kermit can be thought of as a user-friendly and powerful alternative to cu , tip , uucp , ftp , telnet ,
rlogin , expect , and even your shell; a single package for both network and serial communications,
offering automation, convenience, and language features not found in the other packages, and having a
great deal in common with its cousins, C-Kermit on other UNIX platforms, Kermit 95 for Windows 95, Win-
dows 98, Windows NT and 2000, and OS/2; MS-DOS Kermit for PCs with DOS and Windows 3.x, and IBM
Mainframe Kermit-370 for VM/CMS, MVS/TSO, and CICS. C-Kermit itself also runs on Digital VMS, Data
General AOS/VS, Stratus VOS, OS-9, QNX, Plan 9, the Commodore Amiga, and elsewhere. Together, C-
Kermit, Kermit 95, MS-DOS Kermit, and IBM Mainframe Kermit offer a consistent and nearly universal
approach to inter-computer communications.

C-Kermit 7.0 is Copyright (C) 1985, 2000 by the Trustees of Columbia University in the City of New York.
For use and redistribution rights, see the C-Kermit COPYING.TXT file or give the C-Kermit COPYRIGHT
command (summary: no license is required for own use; no license is required for distribution with Open
Source operating systems; a license is required for certain other forms of redistribution).

C-Kermit 7.0 is included with HP-UX by Hewlett-Packard in partnership with the Kermit Project at Colum-
bia University.

C-Kermit 6.0 is thoroughly documented in the book Using C-Kermit by Frank da Cruz and Christine M.
Gianone, Digital Press, Second Edition, 1997; see REFERENCES at the end of this manual page. This
manual page is not a substitute for the book. If you are a serious user of C-Kermit, particularly if you plan
to write C-Kermit script programs, you should purchase the manual. Book sales are the primary source of
funding for the nonprofit Kermit Project.

Any new features added since the most recent edition of the book was published are documented in the
online file ckermit2.upd until such time as the Third Edition of the book is ready. Hints, tips, limitations,
restrictions are listed in ckcker.txt (general C-Kermit) and ckuker.bwr (UNIX-specific); see FILES below.
Please consult all of these references before reporting problems or asking for technical support.

Kermit software is available for hundreds of different computers and operating systems from Columbia
University. For best file-transfer results, please use C-Kermit in conjunction with real Columbia University
Kermit software on other computers, such as Kermit 95 for Windows 95 and NT or MS-DOS Kermit for
DOS 3.x or Windows. See CONTACTS below.

MODES OF OPERATION
C-Kermit can be used in two "modes": remote and local. In remote mode, you connect to the HP-UX sys-
tem from a desktop computer and transfer files between your desktop computer and HP-UX C-Kermit. In
that case, connection establishment (dialing, TELNET connection, etc.) is handled by the Kermit program
on your desktop computer.

In local mode, C-Kermit establishes a connection to another computer by direct serial connection, by dial-
ing a modem, or by making a network connection. When used in local mode, C-Kermit gives you a terminal
connection to the remote computer, using your actual terminal, emulator, or UNIX workstation terminal
window or console driver for specific terminal emulation.

C-Kermit also has two types of commands: the familiar UNIX-style command-line options, and an interac-
tive dialog with a prompt. Command-line options give you access to a small but useful subset of C-
Kermit’s features for terminal connection and file transfer, plus the ability to pipe files into or out of Kermit
for transfer.

Interactive commands give you access to dialing, script programming, character-set translation, and, in
general, detailed control and display, as well as automation, of all C-Kermit’s features. Interactive com-
mands can also be collected into command files or macros. C-Kermit’s command and script language is

HP-UX Release 11i: December 2000 − 1 − Section 1−−367

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kermit(1) kermit(1)
(HP-UX C-Kermit)

portable to many and diverse platforms.

STARTING C-KERMIT
You can start C-Kermit by typing /usr/bin/kermit , or just kermit if your PATH includes
/usr/bin , possibly followed by command-line options. If there are no "action options" on the command
line (explained below), C-Kermit starts in interactive command mode; you will see a greeting message and
then the "C-Kermit>" prompt. If you do include action options on the command line, C-Kermit takes the
indicated actions and then exits directly back to UNIX. Either way, C-Kermit executes the commands in
its initialization file, /usr/share/lib/kermit/ckermit.ini , before it executes any other com-
mands, unless you have included the ‘ -Y ’ (uppercase) command-line option, which means to skip the ini-
tialization file, or you have included the ‘ -y filename ’ option to specify an alternative initialization file.

FILE TRANSFER
Here is the most common scenario for Kermit file transfer. Many other methods are possible, most of them
more convenient, but this basic method should work in all cases.

• Start Kermit on your local computer and establish a connection to the remote computer. If C-
Kermit is on your local computer, use the sequence SET MODEM TYPE modem-name , SET LINE
device-name , SET SPEED bits-per-second , and DIAL phone-number if you are dialing; SET LINE
and SPEED for direct connections; SET NETWORK network-type and SET HOST host-name-or-
address for network connections.

• SET any other necessary communication parameters, such as PARITY, DUPLEX, and FLOW-
CONTROL.

• Give the CONNECT command.

• Log in to the remote computer.

• Start Kermit on the remote computer, give it any desired SET commands for file-, communication-,
or protocol-related parameters. If you will be transferring binary files, give the command SET
FILE TYPE BINARY to the Kermit program that will be sending them.

• To download a file or file group, give the remote Kermit a SEND command, following by a
filename or "wildcard" file specification, for example:

send oofa.txt # (send one file)
send oofa.* # (send a group of files)

To upload a file or files, give the remote Kermit a RECEIVE command. The sending Kermit will
tell the receiving Kermit the name (and other attributes) of each file.

• Escape back to the Kermit program on your local (desktop) computer. If your local computer is
running C-Kermit, type Ctrl-\c (Control-backslash followed by the letter ’c’) (on NeXT worksta-
tions, use Ctrl-] c). If MS-DOS or Kermit 95, use Alt-x (hold down the Alt key, press ’x’). Now you
should see your local Kermit program’s prompt.

• If you will be transferring binary files, give the command SET FILE TYPE BINARY to the Kermit
program that is sending the files.

• If you are downloading files, tell the local Kermit program to RECEIVE. If you are uploading,
give your local Kermit program a SEND command, specifying a filename or wildcard file
specification. In other words, tell the remote Kermit program what to do first, SEND or
RECEIVE, then escape back to the local Kermit and give it the opposite command, RECEIVE or
SEND.

• When the transfer is complete, give a CONNECT command. Now you are talking to Kermit on the
remote computer again. Type EXIT to get back to the command prompt on the remote computer.
When you are finished using the remote computer, log out and then (if necessary) escape back to
Kermit on your local computer. Then you can make another connection or EXIT from the local
Kermit program.

Note that other methods can be used to simplify the file-transfer process: client/server operation, in
which all commands are given to the client and passed on automatically to the server, and autodownload
(and upload), in which the remote Kermit initiates file transfers automatically through your terminal emu-
lator.

The file transfer protocol defaults in C-Kermit 7.0, unlike those for earlier releases, favor speed over
robustness, on the assumption that connections in these times are usually reliable (over TCP/IP and/or

Section 1−−368 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kermit(1) kermit(1)
(HP-UX C-Kermit)

error-correcting modems with hardware flow control). If you experience file transfer failures, use the CAU-
TIOUS or ROBUST commands to choose more conservative (and therefore slower) protocol settings. For
fine tuning of performance, you can choose specific packet lengths, window sizes, and control-character
prefixing strategies as explained in Chapter 12 of the manual, Using C-Kermit .

If you are accessing a remote host where C-Kermit resides via Telnet or other connection that is
guaranteed reliable from end to end, and both Kermits support it (C-Kermit 7.0 does), a new "streaming"
form of the Kermit protocol is used automatically to give ftp-like speeds (the limiting factor being the over-
head from the remote Telnet or Rlogin server and/or PTY driver).

OTHER FEATURES
C-Kermit includes features too numerous to be explained in a man page. For further information about
connection establishment, modem dialing, networks, terminal connection, key mapping, logging, file
transfer options and features, troubleshooting, client/server operation, character-set translation during ter-
minal connection and file transfer, "raw" up- and downloading of files, macro construction, script program-
ming, convenience features, and shortcuts, plus numerous tables, examples, and illustrations, please con-
sult Using C-Kermit .

GETTING HELP
C-Kermit has extensive built-in help. You can find out what commands exist by typing ? at the C-Kermit>
prompt. You can type HELP at the C-Kermit> prompt for "getting-started" message, or HELP followed by
the name of a particular command for information about that command, for example:

help send
help set file

You can type ? anywhere within a command to get brief help about the current command field. You can
also type the INTRO command to get a brief introduction to C-Kermit, and the MANUAL command to
access this (or another) manual page. Finally, you can use the SUPPORT command for instructions on
obtaining technical support.

ENTERING COMMANDS
You can use upper or lower case for interactive-mode commands, but remember that UNIX filenames are
case-sensitive. You can abbreviate commands as long as the abbreviation matches only one possibility.
While typing a command, you can use the following editing characters:

Delete, Backspace, or Rubout erases the rightmost character.
Ctrl-W erases the rightmost "word".
Ctrl-U erases the current command line.
Ctrl-R redisplays the current command.
Ctrl-P recalls a previous command (scrolls back in command buffer).
Ctrl-N scrolls forward in a scrolled-back command buffer.
Ctrl-C cancels the current command.
Tab, Esc, or Ctrl-I tries to complete the current keyword or filename.
? gives help about the current field.

To enter the command and make it execute, press the Return or Enter key.

BACKSLASH NOTATION
Within an interactive command, the \ character (backslash) is a prefix used to enter special quantities,
including ordinary characters that would otherwise be illegal. At the end of a line, \ or - (dash) makes the
next line a continuation of the current line. Other than that, the character following the \ identifies what
the special quantity is:

% A user-defined simple (scalar) variable such as \%a or \%1
& an array reference such as \&a[3]
$ an environment variable such as \$(TERM)
v (or V) a built-in variable such as \v(time)
f (or F) a function such as \Fsubstring(\%a,3,2)
s (or S) compact substring notation, macronames, like \s(foo[3:12])
: compact substring notation, all variables, like \:(a[3:12])
d (or D) a decimal (base 10) number (1 to 3 digits, 0..255) such as \d27
o (or O) an octal (base 8) number (1 to 3 digits, 0..377) such as \o33
x (or X) a hexadecimal (base 16) number (2 digits, 00..ff) like \x1b

HP-UX Release 11i: December 2000 − 3 − Section 1−−369

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kermit(1) kermit(1)
(HP-UX C-Kermit)

\ the backslash character itself
b (or B) the BREAK signal (OUTPUT command only)
l (or L) a Long BREAK signal (OUTPUT only)
n (or N) a NUL (0) character (OUTPUT only)
a decimal digit a 1-, 2-, or 3-digit decimal number, such as \27
{} used for grouping, e.g. \{27}123
anything else: following character taken literally.

Note that numbers turn into the character with that binary code (0-255), so you can use \7 for a bell, \13
for carriage return, \10 for linefeed. For example, to have C-Kermit send a BELL to your screen, type:

echo \7

COMMAND LIST
The commands most commonly used, and important for beginners to know, are marked with "*":

Program Management:
BACK Return to previous directory.
BROWSE Invoke Web browser.

* CD Change Directory
PWD Print Working Directory.
CHECK See if the given feature is configured.
CLOSE Close a connection or a log or other local file.
COMMENT Introduce a full-line comment.
COPYRIGHT Display copyright notice.
DATE Display date and time.

* EXIT Leave the program, return to UNIX.
* HELP Display a help message for a given command.
* INTRO Print a brief introduction to C-Kermit.

KERMIT Give command-line options at the prompt.
LOG Open a log file -- debugging, packet, session, transaction.
PUSH Invoke local system’s interactive command interpreter.
QUIT Synonym for EXIT.
REDO Re-execute a previous command.
RUN Run a program or system command.
SET COMMAND Command-related parameters: bytesize, recall buffer size.
SET PROMPT The C-Kermit programs’ interactive command prompt.
SET EXIT Items related to C-Kermit’s action upon exit or SET LINE/HOST.
SHOW EXIT Display SET EXIT parameters.
SHOW FEATURES Show features that C-Kermit was built with.
SHOW VERSIONS Show version numbers of each source module.
SUPPORT Find out how to get technical support.
SUSPEND Suspend Kermit (use only if shell supports job control!).

* SHOW Display values of SET parameters.
* TAKE Execute commands from a file.

VERSION Display the C-Kermit program version number.
Z Synonym for SUSPEND.

* Ctrl-C Interrupt a C-Kermit command in progress.
Ctrl-Z Synonym for SUSPEND.
; or # Introduce a full-line or trailing comment.
! or @ Synonym for RUN.
< Synonym for REDIRECT.

Connection Establishment and Release:
* DIAL Dial a telephone number.

PDIAL Partially dial a telephone number.
* LOOKUP Lookup a phone number, test dialing rules.

ANSWER Wait for a phone call and answer it when it comes.
* HANGUP Hang up the phone or network connection.

EIGHTBIT Shortcut to set all i/o to 8 bits.
PAD Command for X.25 PAD (SunOS / Solaris / VOS only).
PING Check status of remote TCP/IP host.

Section 1−−370 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kermit(1) kermit(1)
(HP-UX C-Kermit)

REDIAL Dial the most recently DIALed number again.
LOG CONNECTIONS Keep a record of each connection.
REDIRECT Redirect standard i/o of command to communication connection.
PIPE Make a connection through an external command or program.
SET CARRIER Treatment of carrier on terminal connections.

* SET DIAL Parameters related to modem dialing.
* SET FLOW Communication line flow control: AUTO, RTS/CTS, XON/XOFF, etc.
* SET HOST Specify remote network host name or address.
* SET LINE Specify serial communication device name, like /dev/cul0p0.

SET PORT Synonym for SET LINE.
* SET MODEM TYPE Specify type of modem on SET LINE device, like USR.
* SET NETWORK Network type, X.25 (SunOS / Solaris / VOS only) or TCP/IP.

SET TCP Specify TCP protocol options (advanced).
SET TELNET Specify TELNET protocol options.
SET X.25 Specify X.25 connection parameters (SunOS / Solaris / VOS only).
SET PAD X.25 X.3 PAD parameters (SunOS / Solaris / VOS only).

* SET PARITY Character parity (none, even, etc.) for communications.
* SET SPEED Serial communication device speed, e.g. 2400, 9600, 57600.

SET SERIAL Set serial communications data size, parity, stop bits.
SET STOP-BITS Set serial communications stop bits.
SHOW COMM Display all communications settings.
SHOW CONN Display info about current connection.
SHOW DIAL Display SET DIAL values.
SHOW MODEM Display modem type, signals, etc.
SHOW NETWORK Display network-related items.

* TELNET = SET NETWORK TCP/IP, SET HOST ..., CONNECT.
RLOGIN Makes an RLOGIN connection (requires privilege).
TELOPT Send a TELNET option negotiation (advanced).
CLOSE Close the current connection.

Terminal Connection:
* C Special abbreviation for CONNECT.
* CONNECT Establish a terminal connection to a remote computer.

LOG SESSION Record terminal session.
SET COMMAND Bytesize between C-Kermit and your keyboard and screen.

* SET DUPLEX Specify which side echoes during CONNECT.
SET ESCAPE Prefix for "escape commands" during CONNECT.
SET KEY Key redefinitions in CONNECT mode.
SET TERMINAL Terminal connection items: bytesize, character-set, echo, etc.
SHOW ESCAPE Display current CONNECT-mode escape character.
SHOW KEY Display keycode and assigned value or macro.
SHOW TERMINAL Display SET TERMINAL items.

* Ctrl-\ CONNECT-mode escape character, followed by another character:
C to return to C-Kermit> prompt.
B to send BREAK signal.
? to see other options.

File Transfer:
ADD SEND-LIST Add a file specification to the SEND-LIST.
ADD BINARY-PATTERNS Add a pattern to the binary file pattern list.
ADD TEXT-PATTERNS Add a pattern to the text file pattern list.
ASSOCIATE A file character-set with a transfer character-set.
LOG SESSION Download a file with no error checking.

* SEND Send a file or files.
MSEND Multiple SEND - accepts a list of files, separated by spaces.
MOVE SEND and then delete source file(s) if successful.
MMOVE Multiple MOVE - accepts a list of files, separated by spaces.
MAIL SEND a file to other Kermit, to be delivered as e-mail.
RESEND Continue a incomplete SEND.
PSEND Send part of a file.

* RECEIVE Passively wait for files to arrive from other Kermit.

HP-UX Release 11i: December 2000 − 5 − Section 1−−371

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kermit(1) kermit(1)
(HP-UX C-Kermit)

* R Special abbreviation for RECEIVE.
* S Special abbreviation for SEND.

GET Ask server to send the specified file(s).
MGET Like GET but accepts a list of files.
REGET Continue a incomplete download from a server.
G Special abbreviation for GET.
FAST Shortcut for fast file-transfer settings.
CAUTIOUS Shortcut for medium file-transfer settings.
ROBUST Shortcut for conservative file-transfer settings.
SET ATTRIB Control transmission of file attributes.

* SET BLOCK Choose error-checking level, 1, 2, or 3.
SET BUFFERS Size of send and receive packet buffers.
SET PREFIX Which control characters to "unprefix" during file transfer.
SET DELAY How long to wait before sending first packet.
SET DESTINATION DISK, PRINTER, or SCREEN for incoming files.

* SET FILE Transfer mode (type), character-set, collision action, etc.
* SET RECEIVE Parameters for inbound packets: packet-length, etc.

SET REPEAT Repeat-count compression parameters.
SET RETRY Packet retransmission limit.
SET SEND Parameters for outbound packets: length, etc.
SET HANDSHAKE Communication line half-duplex packet turnaround character.
SET LANGUAGE Enable language-specific character-set translations.
PATTERNS Turn off filename-pattern-based text/binary mode switching.
SET SESSION-LOG File type for session log, text or binary.
SET TRANSFER File transfer parameters: character-set, display, etc.
SET TRANSMIT Control aspects of TRANSMIT command execution.
SET UNKNOWN Specify handling of unknown character sets.

* SET WINDOW File transfer packet window size, 1-31.
SHOW ATTRIB Display SET ATTRIBUTE values.
SHOW CONTROL Display control-character prefixing map.

* SHOW FILE Display file-related settings.
SHOW PROTOCOL Display protocol-related settings.
SHOW LANGUAGE Display language-related settings.
SHOW TRANSMIT Display SET TRANSMIT values.

* STATISTICS Display statistics about most recent file transfer.
TRANSMIT Send a file with no error checking.
XMIT Synonym for TRANSMIT.

SEND Command switches:
/AS-NAME: Name to send file under.
/AFTER: Send files modified after date-time.
/BEFORE: Send files modified before date-time.
/BINARY Send in binary mode.
/COMMAND Send from standard output of a command.
/DELETE Delete file after successfully sending.
/EXCEPT: Don’t send files whose names match given pattern(s).
/FILTER: Pass file contents through given filter program.
/FILENAMES: Specify how to send filenames.
/LARGER-THAN: Send files larger than given size.
/LIST: Send files whose names are listed in given file.
/MAIL: Send file(s) as e-mail to given address.
/MOVE-TO: Move source file to given directory after successfully sending.
/NOT-AFTER: Send files modified not after given date-time.
/NOT-BEFORE: Send files modified not before given date-time.
/PATHNAMES: Specify how to send pathnames.
/PRINT: Send files to be printed.
/PROTOCOL: Send files using given protocol.
/QUIET Don’t display file-transfer progress.
/RECOVER Recover interrupted transfer from point of failure.
/RECURSIVE Send a directory tree.
/RENAME-TO: Rename files as specified after successfully sending.

Section 1−−372 − 6 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kermit(1) kermit(1)
(HP-UX C-Kermit)

/SMALLER-THAN: Send files smaller than given size.
/STARTING-AT: Send file starting at given byte number.
/SUBJECT: Subject for SEND /MAIL.
/TEXT Send in text mode.

GET and RECEIVE Command switches:
/AS-NAME: Store incoming file under given name.
/BINARY Receive in binary mode if transfer mode not specified.
/COMMAND: Send incoming file data to given command.
/EXCEPT: Don’t accept incoming files whose names match.
/FILENAMES: How to treat incoming file names.
/FILTER: Filter program for incoming file data.
/MOVE-TO: Where to move a file after successful receipt.
/PATHNAMES: How to treat incoming path names.
/PROTOCOL: Protocol to use for receiving (RECEIVE only).
/RENAME-TO: New name for file after successful receipt.
/QUIET: Suppress file-transfer display.
/TEXT Receive in text mode if transfer mode not specified.

Switches only for GET:
/DELETE Tells server to delete each file after successful transmission.
/RECOVER Resume interrupted file transfer from point of failure.
/RECURSIVE Tells server to send a directory tree.

File Management:
* CD Change Directory.
* PWD Display current working directory.

COPY Copy a file.
* DELETE Delete a file or files.
* DIRECTORY Display a directory listing.

EDIT Edit a file.
MKDIR Create a directory.
PRINT Print a local file on a local printer.
PURGE Remove backup files.
RENAME Change the name of a local file.
RMDIR Remove a directory.
SET PRINTER Choose printer device.
SPACE Display current disk space usage.
SHOW CHARACTER-SETS Display character-set translation info.
TRANSLATE Translate a local file’s character set.
TYPE Display a file on the screen.
TYPE /PAGE Display a file on the screen, pausing after each screenful.
XLATE Synonym for TRANSLATE.

Client/Server Operation:
BYE Terminate a remote Kermit server and log out its job.
DISABLE Disallow access to selected features during server operation.
E-PACKET Send an Error packet.
ENABLE Allow access to selected features during server operation.
FINISH Instruct a remote Kermit server to exit, but not log out.
G Special abbreviation for GET.
GET Get files from a remote Kermit server.
QUERY (Same as REMOTE QUERY)
RETRIEVE Like GET but server deletes files after.
REMOTE xxx Command for server, can be redirected with > or |.
REMOTE ASSIGN (RASG) Assign a variable.
REMOTE CD (RCD) Tell remote Kermit server to change its directory.
REMOTE COPY (RCOPY) Tell server to copy a file.
REMOTE DELETE (RDEL) Tell server to delete a file.
REMOTE DIR (RDIR) Ask server for a directory listing.
REMOTE EXIT (REXIT) Ask the server program to exit.

HP-UX Release 11i: December 2000 − 7 − Section 1−−373

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kermit(1) kermit(1)
(HP-UX C-Kermit)

REMOTE HELP (RHELP) Ask server to send a help message.
REMOTE HOST (RHOST) Ask server to ask its host to execute a command.
REMOTE KERMIT (RKER) Send an interactive Kermit command to the server.
REMOTE LOGIN Authenticate yourself to a remote Kermit server.
REMOTE LOGOUT Log out from a Kermit server previously LOGIN’d to.
REMOTE MKDIR (RMKDIR) Tell the server to create a directory.
REMOTE PRINT (RPRINT) Print a local file on the server’s printer.
REMOTE PWD (RPWD) Ask server to reveal its current (working) directory.
REMOTE QUERY (RQUERY) Get value of a variable.
REMOTE RENAME (RRENAME) Tell server to rename a file.
REMOTE RMDIR (RRMDIR) Tell server to remove a directory.
REMOTE SET Send a SET command to a remote server.
REMOTE SPACE Ask server how much disk space it has left.
REMOTE TYPE Ask server to display a file on your screen.
REMOTE WHO Ask server for a "who" or "finger" listing.
SERVER Be a Kermit server.
SET SERVER Parameters for server operation.
SHOW SERVER Show SET SERVER, ENABLE/DISABLE items.

Script programming:
ASK Prompt the user, store user’s reply in a variable.
ASKQ Like ASK, but does not echo (useful for passwords).
ASSERT Evaluate condition and set SUCCESS/FAILURE accordingly.
ASSIGN Assign an evaluated string to a variable or macro.
CLEAR Clear communication device input buffer or other item.
CLOSE Close the connection, or a log or other file.
DECLARE Declare an array.
DECREMENT Subtract one (or other number) from a variable.
DEFINE Define a variable or macro.
DO Execute a macro ("DO" can be omitted).
ECHO Display text on the screen.
ELSE Used with IF.
END A command file or macro.
EVALUATE An arithmetic expression.
FAIL Set FAILURE.
FOPEN Open a local file.
FREAD Read from a file opened with FOPEN.
FWRITE Write to an FOPEN’d file.
FSEEK Seeks to given position in FOPEN’d file.
FCLOSE Close an FOPEN’d file.
FOR Execute commands repeatedly in a counted loop.
FORWARD GOTO in the forward direction only.
GETC Issue a prompt, get one character from keyboard.
GETOK Ask question, get Yes or No answer, set SUCCESS or FAILURE.
GOTO Go to a labeled command in a command file or macro.
IF Conditionally execute the following command.
INCREMENT Add one (or other number) to a variable.
INPUT Match characters from another computer against a given text.
LOCAL Declares local variables in a macro.
MINPUT Like INPUT, but allows several match strings.
MSLEEP Sleep for given number of milliseconds.
OPEN Open a local file for reading or writing.
OUTPUT Send text to another computer.
O Special abbreviation for OUTPUT.
PAUSE Do nothing for a given number of seconds.
READ Read a line from a local file into a variable.
REINPUT Reexamine text previously received from another computer.
RETURN Return from a user-defined function.
SCREEN Screen operations - clear, position cursor, etc.
SCRIPT Execute a UUCP-style login script.
SET ALARM Set a timer to be used with IF ALARM; SHOW ALARM shows it.

Section 1−−374 − 8 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kermit(1) kermit(1)
(HP-UX C-Kermit)

SET CASE Treatment of alphabetic case in string comparisons.
SET COMMAND QUOTING turns on/off interpretation of backslash notation.
SET COUNT For counted loops.
SET INPUT Control behavior of INPUT command.
SET MACRO Control aspects of macro execution.
SET TAKE Control aspects of TAKE file execution.
SHIFT Shift macro arguments left the given number of places.
SHOW ARGUMENTS Display arguments to current macro.
SHOW ARRAYS Display information about active arrays.
SHOW COUNT Display current COUNT value.
SHOW FUNCTIONS List names of available \f() functions.
SHOW GLOBALS List defined global variables \%a..\%z.
SHOW MACROS List one or more macro definitions.
SHOW SCRIPTS Show script-related settings.
SHOW VARIABLES Display values all \v() variables.
SLEEP Sleep for given number of seconds.
SORT Sort an array (many options).
STATUS Show SUCCESS or FAILURE of previous command.
STOP Stop executing macro or command file, return to prompt.
SUCCEED Set SUCCESS.
SWITCH Execute selected command(s) based on value of variable.
TAKE Execute commands from a file.
UNDEFINE Undefine a variable.
WAIT Wait for the specified modem signals.
WHILE Execute commands repeatedly while a condition is true.
WRITE Write material to a local file.
WRITE-LINE Write a line (record) to a local file.
WRITELN Synonym for WRITE-LINE.
XECHO Like ECHO but no CRLF at end.
XIF Extended IF command.

BUILT-IN VARIABLES
Built-in variables are referred to by \v(name), can be used in any command, usually used in script pro-
gramming. They cannot be changed. Type SHOW VARIABLES for a current list.

\v(argc) Number of arguments in current macro
\v(args) Number of program command-line arguments
\v(blockcheck) Current SET BLOCK-CHECK type
\v(browser) Current Web browser
\v(browsopts) Current Web browser options
\v(browsurl) Most recent Web browser site (URL)
\v(byteorder) Hardware byte order
\v(charset) Current file character-set
\v(cmdbufsize) Size of command buffer
\v(cmdfile) Name of current command file, if any
\v(cmdlevel) Current command level
\v(cmdsource) Where command are currently coming from, macro, file, etc.
\v(cols) Number of screen columns
\v(connection) Connection type: serial, tcp/ip, etc.
\v(count) Current COUNT value
\v(cps) Speed of most recent file transfer in chars per second
\v(cpu) CPU type C-Kermit was built for
\v(crc16) 16-bit CRC of most recent file transfer
\v(ctty) Device name of controlling terminal
\v(d$ac) SET DIAL AREA-CODE value
\v(d$cc) SET DIAL COUNTRY-CODE value
\v(d$ip) SET DIAL INTL-PREFIX value
\v(d$lc) SET DIAL LD-PREFIX value
\v(d$px) SET DIAL PBX-EXCHANGE value
\v(date) Date as 8 Feb 1993
\v(day) Day of week

HP-UX Release 11i: December 2000 − 9 − Section 1−−375

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kermit(1) kermit(1)
(HP-UX C-Kermit)

\v(dialcount) Current value of DIAL retry counter
\v(dialnumber) Phone number most recently dialed
\v(dialresult) Most recent dial result message or code from modem
\v(dialstatus) Return code from DIAL command (0 = OK, 22 = BUSY, etc)
\v(dialsuffix) Current SET DIAL SUFFIX value
\v(dialtype) Code for type of call most recently placed
\v(directory) Current/default directory
\v(download) Current download directory if any
\v(editor) Your preferred editor
\v(editfile) File most recently edited
\v(editopts) Options for editor
\v(errno) Current "errno" (system error number) value
\v(errstring) Error message string associated with errno
\v(escape) Decimal ASCII value of CONNECT-mode escape character
\v(evaluate) Result of most recent EVALUATE command
\v(exitstatus) Current EXIT status (0 = good, nonzero = something failed)
\v(filename) Name of file currently being transferred
\v(filenumber) Number of file currently being transferred (1 = first, etc)
\v(filespec) Filespec given in most recent SEND/RECEIVE/GET command
\v(fsize) Size of file most recently transferred
\v(ftype) SET FILE TYPE value (text, binary)
\v(herald) C-Kermit’s program herald
\v(home) Home directory
\v(host) Computer host name (computer where C-Kermit is running)
\v(hwparity) SET PARITY HARDWARE setting (if any)
\v(input) Current INPUT buffer contents
\v(inchar) Character most recently INPUT
\v(incount) How many characters arrived during last INPUT
\v(inidir) Directory where initialization file was found
\v(inmatch) [M]INPUT material that matched given \fpattern().
\v(instatus) Status of most recent INPUT command
\v(intime) How long it took most recent INPUT to succeed (msec)
\v(inwait) Most recent [M]INPUT time limit
\v(ipaddress) IP address of C-Kermit’s computer if known
\v(kbchar) Keyboard character that interrupted PAUSE, INPUT, etc.
\v(line) Current communications device, set by LINE or HOST
\v(local) 0 if in remote mode, 1 if in local mode
\v(lockdir) UUCP lockfile directory on this platform
\v(lockpid) Process ID found in lockfile when port is in use
\v(maclevel) Current macro stack level
\v(macro) Name of currently executing macro, if any
\v(math_e) Floating-point constant e
\v(math_pi) Floating-point constant pi
\v(math_precision) Floating point number precision (digits)
\v(minput) Result of most recent MINPUT command
\v(model) Computer hardware model if known
\v(modem) Current modem type
\v(m_aa_off) Modem command to turn autoanswer off
\v(m_aa_on) Modem command to turn autoanswer on
\v(m_xxxxx) (many other modem commands)
\v(m_sig_xx) Value of modem signal xx
\v(name) Name by which C-Kermit was called (kermit, wermit, etc)
\v(ndate) Current date as 19930208 (yyyymmdd)
\v(nday) Numeric day of week (0 = Sunday)
\v(newline) System-independent newline character or sequence
\v(ntime) Current local time in seconds since midnight (noon = 43200)
\v(osname) Operating System name
\v(osrelease) Operating System release
\v(osversion) Operating System version
\v(packetlen) Current SET RECEIVE PACKET-LENGTH value
\v(parity) Current parity setting

Section 1−−376 − 10 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kermit(1) kermit(1)
(HP-UX C-Kermit)

\v(pexitstat) Exit status of most recently forked process
\v(pid) C-Kermit’s process ID
\v(platform) Specific machine and/or operating system
\v(program) Name of this program ("C-Kermit")
\v(protocol) Currently selected file transfer protocol
\v(p_8bit) Current 8th-bit prefix (Kermit protocol)
\v(p_ctl) Current control-character prefix (Kermit protocol)
\v(p_rpt) Current repeat-count prefix (Kermit protocol)
\v(query) Result of most recent REMOTE QUERY command
\v(return) Most recent RETURN value
\v(rows) Number of rows on the terminal screen
\v(sendlist) Number of entries in SEND-LIST
\v(serial) Serial port settings in 8N1 format
\v(speed) Current speed, if known, or "unknown"
\v(startup) Current directory when C-Kermit was started
\v(status) 0 or 1 (SUCCESS or FAILURE of previous command)
\v(sysid) Code for platform ID of C-Kermit’s computer (U1=UNIX)
\v(system) UNIX (name of operating system family)
\v(terminal) Terminal type
\v(test) C-Kermit test version, if any (e.g. Beta.10)
\v(textdir) Where C-Kermit thinks its text files are
\v(tfsize) Total size of file group most recently transferred
\v(time) Time as 13:45:23 (hh:mm:ss)
\v(tmpdir) Temporary directory
\v(trigger) Most recent string to trigger return from CONNECT
\v(ttyfd) File descriptor of current communication device
\v(ty_xx) Used internally by TYPE
\v(userid) User ID of person running C-Kermit
\v(version) Numeric version of Kermit, e.g. 501190.
\v(window) Current window size (SET WINDOW value)
\v(xferstatus) Status of most recent file transfer
\v(xfermsg) Error message, if any, terminating most recent transfer
\v(xfer_xxx) Various statistics from last file transfer.
\v(xprogram) C-Kermit
\v(xversion) Same as \v(version)

BUILT-IN FUNCTIONS
Builtin functions are invoked as \Fname(args), can be used in any command, and are usually used in script
programs. Type SHOW FUNCTIONS for a current list. Type "help function <name>" for a description of
the arguments and return value, for example, help function basename .

COMMAND LINE OPTIONS
C-Kermit accepts commands (or "options") on the command line, in the time-honored UNIX style. Alpha-
betic case is significant. All options are optional. If one or more action options are included, Kermit exits
immediately after executing the command-line options, otherwise it enters interactive command mode.

kermit [filename] [- x arg [- x arg]...[- yyy]...]]
where:

filename is the name of a command file to execute,

- x is an option requiring an argument,

- y an option with no argument.

Actions:
-s files send files
-s - send files from stdin
-r receive files
-k receive files to stdout
-x enter server mode
-O like -x but exits after one transaction
-f finish remote server

HP-UX Release 11i: December 2000 − 11 − Section 1−−377

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kermit(1) kermit(1)
(HP-UX C-Kermit)

-g files get remote files from server (quote wildcards)
-G files like -g but sends file to standard output
-a name alternate file name, used with -s, -r, -g
-c connect (before file transfer), used with -l or -j
-n connect (after file transfer), used with -l or -j

Settings:
-l line communication line device (to make a serial connection)
-l n open file descriptor of communication device
-j host TCP/IP network host name (to make a network connection)
-J host connect like TELNET, exit when connection closes
-l n open file descriptor of TCP/IP connection (n = number)
-X X.25 network address
-Z open file descriptor of X.25 connection
-o n X.25 closed user group call info
-u X.25 reverse-charge call
-q quiet during file transfer
-I connection is reliable (e.g. TCP or X.25)
-8 8-bit clean
-0 100% transparency in CONNECT mode (and no escaping back)
-i transfer files in binary mode
-T transfer files in text mode
-P send/accept literal path (file) names
-b bps serial line speed, e.g. 1200
-m name modem type, e.g. hayes
-p x parity, x = e,o,m,s, or n
-t half duplex, xon handshake
-e n receive packet-length
-v n window size
-L used with -s to select recursive directory transfer
-Q Quick file-transfer settings
-w write over files of same name, do not backup old file
-D n delay n seconds before sending a file
-V "manual mode" = SET FILE PATTERNS OFF, SET TRANSFER MODE

MANUAL.

Other:
-y name alternate init file name
-Y Skip init file
-R Advise C-Kermit it will be used only in remote mode
-d log debug info to file debug.log
-S Stay, do not exit, after action command
-C "cmds" Interactive-mode commands, comma-separated
-z Force foreground operation
-B Force background (batch) operation
-h print command-line option help screen
= Ignore all text that follows
-- Same as =

COMMAND LINE EXAMPLES
Remote-mode example (C-Kermit is on the far end):

kermit -v 4 -i -s oofa.bin

sends file oofa.bin in binary mode (-i) using a window size of 4 (-v 4).

Local-mode example (C-Kermit makes the connection):

kermit -l /dev/tty0p0 -b 19200 -c -r -n

makes a 19200-bps direct connection out through /dev/tty0p0, CONNECTs (-c) so you can log in and,
presumably start a remote Kermit program and tell it to send a file, then it RECEIVEs the file (-r), then it
CONNECTs back (-n) so you can finish up and log out.

Section 1−−378 − 12 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kermit(1) kermit(1)
(HP-UX C-Kermit)

For dialing out, you must specify a modem type, and you might have to use a different device name:

kermit -m hayes -l /dev/cul0p0 -b 2400 -c -r -n

FILES
$HOME/.mykermrc Your personal C-Kermit customization file.
$HOME/.kdd Your personal dialing directory.
$HOME/.ksd Your personal services directory.
/usr/share/lib/kermit/READ.ME Overview of HP-UX C-Kermit, please read
/usr/share/lib/kermit/COPYING.TXT Copyright, permissions, disclaimer
/usr/share/lib/kermit/ckermit.ini System-wide initialization file
/usr/share/lib/kermit/ckermod.ini Sample customization file
/usr/share/lib/kermit/ckermit.kdd Sample dialing directory
/usr/share/lib/kermit/ckermit.ksd Sample services directory
/usr/share/lib/kermit/ckermit2.txt Updates to "Using C-Kermit" 2nd Ed
/usr/share/lib/kermit/ckcbwr.txt C-Kermit "beware" file - hints & tips
/usr/share/lib/kermit/ckubwr.txt UNIX-specific beware file
/usr/share/lib/kermit/ck*.txt Other plain-text documentation
/usr/share/lib/kermit/ckedemo.ksc Macros from "Using C-Kermit"
/usr/share/lib/kermit/ckevt.ksc Ditto
/usr/share/lib/kermit/ckepager.ksc Alpha pager script
/var/spool/locks/LCK..* UUCP lockfiles

To make personalized customizations, copy the file /usr/share/lib/kermit/ckermod.ini
file to your home directory, make any desired changes, and rename it to .mykermrc .

You may also create a personalized dialing directory like the sample one in
/usr/share/lib/kermit/ckermit.kdd . Your personalized dialing directory should be stored in
your home directory as .kdd and your personal network directory as .knd . See Chapters 5 and 6 of
Using C-Kermit for details.

And you may also create a personalized services directory like the sample one in
/usr/share/lib/kermit/ckermit.ksd . Your personalized services directory should be stored in
your home directory as .ksd . See Chapter 7 of Using C-Kermit for instructions.

The demonstration files illustrate C-Kermit’s script programming constructs; they are discussed in chapters
17-19 of the book. You can run them by typing the appropriate TAKE command at the C-Kermit> prompt,
for example: take /usr/share/lib/kermit/ckedemo.ini .

AUTHORS
Frank da Cruz, Columbia University, with contributions from hundreds of other volunteer programmers all
over the world. See Acknowledgements in Using C-Kermit .

REFERENCES
Frank da Cruz and Christine M. Gianone,

Using C-Kermit , Second Edition, 1997, 622 pages, Digital Press / Butterworth-Heinemann, 225 Wild-
wood Street, Woburn, MA 01801, USA. ISBN 1-55558-164-1. (In the USA, call +1 800 366-2665 to
order Digital Press books.) Also available in a German edition from Verlag Heinze Heise, Hannover.

Frank da Cruz,
Kermit, A File Transfer Protocol, Digital Press / Butterworth-Heinemann, Woburn, MA, USA (1987).
ISBN 0-932376-88-6. The Kermit file transfer protocol specification.

Christine M. Gianone,
Using MS-DOS Kermit , Digital Press / Butterworth-Heinemann, Woburn, MA, USA (1992). ISBN 1-
5558-082-3. Also available in a German edition from Heise, and a French edition from Heinz Schiefer
& Cie, Versailles.

Kermit News,
Issues 4 (1990) and 5 (1993), Columbia University, for detailed discussions of Kermit file transfer per-
formance.

DIAGNOSTICS
The diagnostics produced by C-Kermit itself are intended to be self-explanatory. In addition, every com-
mand returns a SUCCESS or FAILURE status that can be tested by IF FAILURE or IF SUCCESS. In
addition, the program itself returns an exit status code of 0 upon successful operation or nonzero if any of

HP-UX Release 11i: December 2000 − 13 − Section 1−−379

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kermit(1) kermit(1)
(HP-UX C-Kermit)

various operations failed.

BUGS
See the comp.protocols.kermit.* newsgroups on Usenet for discussion, or the files, ckcker.bwr and
ckuker.bwr, for a list of bugs, hints, tips. etc. Report bugs via e-mail to kermit-
support@columbia.edu . Visit http://www.columbia.edu/kermit/support.html for
details about tech support.

CONTACTS
For more information about Kermit software and documentation, visit the Kermit Web site:

http://www.columbia.edu/kermit/

Or write to:

The Kermit Project
Columbia University
612 West 115th Street
New York, NY 10025-7221
USA

Or send e-mail to kermit@columbia.edu . Or call +1 212 854-3703. Or fax +1 212 663-8202.

Section 1−−380 − 14 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

keylogin(1) keylogin(1)

NAME
keylogin - decrypt and store secret key with keyserv

SYNOPSIS
/usr/bin/keylogin [-r]

DESCRIPTION
The keylogin command prompts for a password, and uses it to decrypt the user’s secret key. The key
may be found in the /etc/publickey file (see publickey(4)) or the NIS map ‘‘publickey.byname’’ or the
NIS+ table ‘‘cred.org_dir’’ in the user’s home domain. The sources and their lookup order are specified in
the /etc/nsswitch.conf file (see nsswitch.conf(4)). Once decrypted, the user’s secret key is stored by
the local key server process, keyserv(1M). This stored key is used when issuing requests to any secure RPC
services, such as NIS+. The program keylogout(1) can be used to delete the key stored by keyserv .

keylogin will fail if it cannot get the caller’s key, or the password given is incorrect. For a new user or
host, a new key can be added using newkey(1M), nisaddcred(1M), or nisclient(1M).

Options
-r Update the /etc/.rootkey file. This file holds the unencrypted secret key of the super-user.

Only the super-user may use this option. It is used so that processes running as super-user can issue
authenticated requests without requiring that the administrator explicitly run keylogin as super-
user at system startup time (see keyserv(1M)). The -r option should be used by the administrator
when the host’s entry in the publickey database has changed, and the /etc/.rootkey file has
become out-of-date with respect to the actual key pair stored in the publickey database. The permis-
sions on the /etc/.rootkey file are such that it may be read and written by the super-user but by
no other user on the system.

AUTHOR
keylogin was developed by Sun Microsystems, Inc.

FILES
/etc/.rootkey Super-user’s secret key

SEE ALSO
chkey(1), keylogout(1), login(1), keyserv(1M), newkey(1M), nisaddcred(1M), nisclient(1M), publickey(4),
nsswitch.conf(4).

HP-UX Release 11i: December 2000 − 1 − Section 1−−381

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

keylogout(1) keylogout(1)

NAME
keylogout - delete stored secret key with keyserv

SYNOPSIS
/usr/bin/keylogout [-f]

DESCRIPTION
keylogout deletes the key stored by the key server process keyserv(1M). Further access to the key is
revoked; however, current session keys may remain valid until they expire or are refreshed.

Deleting the keys stored by keyserv will cause any background jobs or scheduled at(1) jobs that need
secure RPC services to fail. Since only one copy of the key is kept on a machine, it is a bad idea to place a
call to this command in your .logout file since it will affect other sessions on the same machine.

Options
-f Force keylogout to delete the secret key for the super-user. By default, keylogout by the

super-user is disallowed because it would break all RPC services that are started by the super-user.

AUTHOR
keylogout was developed by Sun Microsystems, Inc.

SEE ALSO
at(1), chkey(1), login(1), keylogin(1), keyserv(1M), newkey(1M), publickey(4).

Section 1−−382 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

keysh(1) keysh(1)

NAME
keysh - context-sensitive softkey shell

SYNOPSIS
keysh

DESCRIPTION
keysh is an extension of the standard Korn-shell (for a description of the basic Korn-shell functionality,
see ksh(1)).

keysh uses hierarchical softkey menus and context-sensitive help to aid users in building command-lines,
combining the power of the Korn-shell with the ease-of-use of a menu system.

And keysh is entirely data-driven, allowing its menus and help to be easily extended as needed.

Note that during keysh invocation, the environment variable $TERMmust specify the terminal type, as
defined in the terminfo(4) database (see ENVIRONMENT VARIABLES below).

COMMAND ENTRY
keysh continually parses the command-line and always presents the user with an appropriate set of
current choices on the softkey labels.

The user can select these softkeys to create readable softkey commands on the command-line. keysh
automatically translates these softkey commands into equivalent HP-UX commands prior to executing
them.

Alternatively, the user can ignore the softkeys altogether in favor of entering the traditional HP-UX com-
mands directly, as when using the Korn-shell.

During command entry, keysh ordinarily displays a status-line near the bottom of the screen. This
status-line contains information such as the host name, current directory, and time and date.

Whenever the user must perform an action to complete the current softkey command, keysh temporarily
displays a prompt message in place of the status-line. This message briefly describes the required action.

Softkey Types
keysh presents four basic softkey types:

--Help-- Selecting the --Help-- softkey causes keysh to display help information associ-
ated with the next selected softkey, rather than actually performing its action.

--More-- If there are more current choices than there are softkeys, keysh breaks the choices
into banks and displays a special --More-- softkey along with the first bank.
Selecting the --More-- softkey causes keysh to display the next bank of softkeys
in sequence, eventually cycling back to the first.

<param> parameter softkeys are displayed as a name enclosed between a pair of less-than and
greater-than symbols. They indicate that the user-supplied text (such as a file name)
should be entered into the command-line at that point, rather than actually selecting
the softkey. (Actually selecting the softkey only causes keysh to display a hint mes-
sage on the status line; the command-line remains unchanged.)

option All other softkeys are option softkeys that can be used to insert the corresponding
command or option name into the command-line.

Softkeys can be selected from left to right.

Editing The Command-Line
keysh supports the normal Korn-shell command-line editing modes. In addition, keysh also recognizes
the cursor movement and editing keys found on most terminals, as defined in the terminfo(4) database.
These include:

<Clear display> Clear the screen and command-line. If the screen is scrolled, clear only from the cur-
sor position to the end of scrolling memory.

<Clear line> Clear from the cursor position to the end of the command-line.

<Delete line> Clear the entire command-line.

HP-UX Release 11i: December 2000 − 1 − Section 1−−383

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

keysh(1) keysh(1)

<Insert line> Translate any softkey commands in the current command-line and then edit the
result.

<Delete char> Delete the character under the cursor.

<Insert char> Toggle between insert and overwrite modes.

<Up/Down arrow> Recall the previous/next command from the history buffer.

<Left/Right arrow> Move the cursor left/right.

<Home up/down> Move the cursor to the beginning/end of the command-line.

<Tab> If no <Insert line> key is present, perform the <Insert line> function (see above).
Otherwise, if no --Help-- softkey is present, perform the --Help-- function
(also see above). Otherwise, perform the normal tab function.

<Backtab> Move the cursor to the beginning of the previous word.

<Ctrl-L> Redraw the lower lines of the screen and restore any necessary terminal modes.

Visible Softkey Commands
If the visibles configuration option is enabled (see CONFIGURATION below), keysh displays a list of
configured softkey commands on the softkey labels whenever it is expecting a new command. This is the
the top-level softkey menu.

If the user selects one of these softkey commands, keysh inserts its command name into the command-
line then displays a sub-menu listing the command’s major parameters and/or options.

The user can then (from left to right) select option softkeys and/or enter text in place of parameter softkeys.
keysh automatically navigates the hierarchical softkey menu, always presenting the user with an
appropriate set of current choices on the softkey labels.

Note that keysh automatically redisplays the top-level softkey menu when it detects that a command
separator (such as a pipe or semi-colon) has been entered, thus allowing the user to use softkeys for subse-
quent commands on the command-line as well as the first.

Invisible Softkey Commands
If the invisibles configuration option is enabled (see CONFIGURATION below) and keysh recognizes
a traditional HP-UX command being entered, it gives the user one last chance to use the softkeys by again
presenting an appropriate set of current choices on the softkey labels. As with the top-level softkey menu
options, the user can choose to ignore the softkeys in favor of entering the traditional HP-UX options
directly.

Backup Softkeys
If the backups configuration option is enabled (see CONFIGURATION below), keysh displays the backup
softkeys and programs the terminal function keys appropriately whenever it has no other softkeys to
display (such as when a command is running). These provide the traditional static softkey control which
many users may be used to.

Traditional HP-UX Commands
If the user enters a traditional HP-UX command when keysh is displaying its top-level softkey menu,
keysh simply displays the backup softkeys and allows the user to proceed.

If keysh subsequently detects a command separator, it again redisplays the top-level softkey menu.

Softkey Command Syntax Errors
Many softkey commands present the user with a set of softkey options from which exactly one (or at least
one) must be selected. If the user fails to do this, keysh treats it as a syntax error, displaying an error
message and not accepting the command until the error has been corrected.

Similarly, many softkey commands require that the user enter one or more softkey parameters before the
command is semantically complete. If the user fails to do this, keysh again treats it as a syntax error.

Softkey Command Redirections
The user can append redirection symbols (such as a less-than or greater-than symbol followed by a file
name) following a softkey command. These are appended verbatim to the translated HP-UX command.

Section 1−−384 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

keysh(1) keysh(1)

USING KEYSH WITH TERMINAL SESSION MANAGER
When operating under the Terminal Session Manager (see tsm(1)), keysh displays the tsm softkeys
instead of the backup softkeys. If desired, this interaction can be overridden by setting the $KEYTSM
environment variable (see ENVIRONMENT VARIABLES below).

When operating under tsm , keysh also automatically displays the tsm window number in the status-
line.

CONFIGURATION
All keysh configuration functions are accessed through the top-level Keysh_config softkey command
or kc built-in command. These functions include:

• adding, placing, and deleting softkeys,
• specifying backup softkeys,
• selecting global options,
• selecting status-line items,
• restarting keysh,
• writing configuration changes, and
• undoing other configuration changes.

Each time the user changes keysh ’s configuration, keysh automatically updates the user’s
$HOME/.keyshrc file. Upon subsequent invocations, keysh automatically reconfigures itself as
configured previously.

Adding, Placing, And Deleting Softkeys
Any of the standard softkeys (see STANDARD SOFTKEY DEFINITIONS below) can be added to the top-level
softkey menu using the kc softkey add command. If desired, an alternate softkey label may be
specified (usually in place of a cryptic HP-UX command name) using the with_label option.

By default, added softkeys are placed at the end of the last --More-- bank of the top-level softkey menu.
This placement can be overridden using the and_place option of the kc softkey add command or
using the kc softkey move command.

In addition to the standard softkeys, custom softkeys can also be added from custom softkey files using the
from_user or from_file options. For a description of the softkey file format, see softkeys(4).

Note that any time a softkey is added from a particular softkey file, all of the remaining softkeys from that
file are automatically loaded for use as invisible softkey commands. All softkeys from a file can also be
loaded for use as invisible softkey commands using the kc softkey add invisibles command.

Any of the softkeys in the top-level softkey menu can be deleted using the kc softkey delete com-
mand.

Specifying Backup Softkeys
Backup softkeys are typically specified in the user’s $HOME/.softkeys file. The basic backup softkey
definition line resembles:

backup softkey " <softkey>" literal " <string>";

Where <softkey> is the softkey label to display and <string> is the text string to program the terminal func-
tion key with. A maximum of eight backup softkeys can be specified.

Note that backup softkeys must be explicitly added using the kc softkey add backups command
before keysh can program them.

Selecting Global Options
Various global options can be configured using the kc option command, including:

backups Enable or disable the programming of the backup softkeys.

help Enable or disable the --Help-- softkey.

invisibles Enable or disable the recognition of invisible softkey commands.

prompts Enable or disable the automatic generation of prompt messages. When enabled,
keysh displays a prompt message whenever the user must perform an action to com-
plete the current softkey command. This message briefly describes the required
action.

HP-UX Release 11i: December 2000 − 3 − Section 1−−385

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

keysh(1) keysh(1)

selectors Enable or disable the use of keyboard selectors. When enabled, keysh displays an
upper-case selector character in each softkey label. Typing the unquoted (upper-case)
character selects the softkey just as if its corresponding function key had been
pressed. Quoting the selector character in any way restores its traditional meaning.
Selector keys are intended to be used on terminals that do not support a sufficient
number of softkeys.

translations
Enable or disable the display of HP-UX command translations.

visibles Enable or disable the presentation and recognition of visible softkey commands.

Selecting Status-Line Items
Various information items can be configured into the status-line displayed at the bottom of the screen using
the kc status_line command, including:

host_name The host name.

user_name The user name.

current_dir
The current directory.

mail_status
The mail status based on the $MAIL environment variable (i.e., No mail , You
have mail , or You have new mail).

date The date.

time The time of day.

In addition, the $KEYSHenvironment variable, if set, is always displayed first in the status-line.

Restarting Keysh
keysh can be forced to reread the $HOME/.keyshrc file with the kc restart command. This com-
mand is typically used to update a keysh to a new configuration specified in another window.

keysh can also be forced to remove the $HOME/.keyshrc file and restart from the default user
configuration with the kc restart default command.

Writing Configuration Changes
keysh can be forced to rewrite the $HOME/.keyshrc file with the kc write command.

Undoing Other Configuration Changes
keysh can also be forced to rewrite the $HOME/.keyshrc file with its original contents, thus undoing
all configuration changes made since keysh was invoked, using the kc undo command.

Scaling Keysh Functionalities
keysh provides a scalable set of functionalities which can be tailored to suit personal preferences.

For users who are familiar with the HP-UX command names (though not necessarily with the command
options) or for users who prefer to usually have the tsm softkeys visible, the command kc options
visibles off prevents keysh from displaying its top-level softkey menu while waiting for a com-
mand; instead, it displays the backup softkeys or tsm softkeys, as appropriate. (keysh start-up time can
then be decreased significantly by editing the $HOME/.keyshrc file and removing the lines which add
visible softkeys.)

For users who are also familiar with the HP-UX command options, the command kc options
invisibles off prevents keysh from displaying softkey menus for invisible softkey commands, also.

And for users who have no need for the backup softkeys, the command kc options backups off
prevents keysh from ever programming the backup softkeys.

Note that if visibles , invisibles , and backups are all turned off, keysh performs no softkey
processing at all. keysh effectively transforms into a Korn-shell which displays a status-line and recog-
nizes the cursor movement and editing keys.

Section 1−−386 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

keysh(1) keysh(1)

EXAMPLES
To add the od (see od(1)) softkey to the end of the top-level softkey menu and label it Octal_dump ,

kc softkey add od with_label Octal_dump

To add the paste(1) softkey to the beginning of the top-level softkey menu and label it Paste ,

kc softkey add paste and_place as_first_softkey

To add the custom emacs softkey from the file ˜rpt/.softkeys to the top-level softkey menu immedi-
ately before the ls (see ls(1)) softkey,

kc softkey add emacs from_user rpt and_place before_softkey ls

To add all invisible softkeys from the file ˜rpt/.softkeys ,

kc softkey add invisibles from_user rpt

To add the backup softkeys from the file $HOME/.softkeys ,

kc softkey add backups

To delete the Edit_file softkey from the top-level softkey menu,

kc softkey delete Edit_file

To disable the --Help-- softkey,

kc options help off

To configure the user name into the status-line,

kc status_line user_name on

To configure the exit-value of the last command executed into the status-line,

KEYSH="\${?#0}"

To list the ten largest files in the current directory,

ls long_format | Sort_lines numerically reverse_order \
starting_at_fiel d 5 | head

STANDARD SOFTKEY DEFINITIONS
Copy_files , Move_files , Print_files , Set_file_attribs , Switch .

adjust , ar , bdf , cal , cancel , cat , cd , cdb , chatr , chgrp , chmod, chown , cmp, col , comm,
cpio , cut , dd , df , diff , dircmp , disable , du , elm , enable , exit , find , fold , grep , head ,
jobs , kill , lp , lpstat , ls , mailx , make, man, mkdir , more , nm, nroff , od , paste , pg , pr ,
ps , remsh , rlogin , rm, rmdir , sdiff , set , shar , sort , tail , tar , tee , touch , tr , umask ,
uname, vi , wc, who, write , xd , xdb .

ENVIRONMENT VARIABLES
TERM Specifies the terminal type, as defined in the terminfo(4) database. This variable must be

either part of keysh ’s invocation environment or it must be set within one of the standard
Korn-shell start-up files.

COLUMNS Specifies the number of columns in the terminal screen if different than the terminfo(4)
default.

LINES Specifies the number of lines in the terminal screen if not the same as the terminfo(4)
default.

PAGER Specifies the preferred pager to be used to display help. The default is more (see
more(1)).

TZ Specifies the time-zone to be used for time and date representations on the status-line. The
default is en_US.roman8 .

KEYBEL Specifies the character sequence sent to the terminal by keysh to ring the bell. The
default is ˆG .

KEYENV Specifies an alternate keysh configuration file. The default is $HOME/.keyshrc .

KEYESC Specifies the maximum allowable delay between characters (in milliseconds) if they are to
be treated as part of a terminal escape sequence. The default is 350 ms.

HP-UX Release 11i: December 2000 − 5 − Section 1−−387

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

keysh(1) keysh(1)

KEYKSH If set, specifies that keysh should mimic the behavior of the Korn-shell as closely as possi-
ble. No softkeys or status-line are displayed. This mode is particularly useful over slow
modem lines.

KEYLOC If set, specifies that keysh should leave the terminal keypad in local mode while com-
mands are being entered. This mimics the behavior of the Korn-shell.

KEYPS1 If set, specifies that keysh should not reset the initial values of $PS1, $PS2, and $PS3.
Note that $PS1 must be a constant character string in order for keysh to recognize it
and provide subsequent softkey assistance.

KEYSH Specifies arbitrary text to be included in the keysh status-line.

KEYSIM If set, specifies that keysh should always simulate softkey labels and not use the built-in
labels on HP terminals.

KEYTSM If set, specifies that keysh should not use the tsm softkeys when tsm is running. In
this case, the user can either use the tsm hotkey , the backup softkeys, or the Switch
softkey command (see STANDARD SOFTKEY DEFINITIONS above) to switch tsm windows.

KSH DIFFERENCES
keysh is an extension of ksh(1) with the following exceptions:

Screen Updates
keysh optimizes its display output to take advantage of available terminal capabilities. Unlike the Korn-
shell which often has to redraw large portions of the command-line, keysh can simply insert or delete
characters at the appropriate screen position.

This makes keysh significantly faster over slow modem lines, especially if the $KEYKSHenvironment
variable is set (see ENVIRONMENT VARIABLES above).

Emacs-Mode Editing
The new <ESC>v command performs the function of the vi-mode v command.

An initial ˆN command recalls the history line following the history line executed as the previous com-
mand. This provides an easy mechanism to repeat a sequence of history commands.

gmacs editing mode is not supported; emacs editing mode follows the GNU emacs (18.54) definition of
ˆT .

The ˆ@ and <ESC>n ˆK commands are not supported.

The M-<letter> and M-] <letter> alias functions are not supported (in lieu of true softkey support).

Vi-Mode Editing
The new o command performs the function of the emacs-mode ˆO command.

An initial j command recalls the history line following the history line executed as the previous command.
This provides an easy mechanism to repeat a sequence of history commands.

The | command is not supported.

The @<letter> alias function is not supported (in lieu of true softkey support).

The u command performs an emacs-style nested undo; u<space> performs a traditional vi-style undo.

WARNINGS
keysh requires that the $TERMenvironment variable be set appropriately in your $HOME/.profile
file. It also requires that $LINES and $COLUMNSbe set appropriately if running on a non-standard size
terminal. Otherwise, an error message or a garbled screen display results.

keysh requires that option softkeys be selected from left to right. When editing a command-line, it is pos-
sible to back up and insert a softkey out-of-order -- resulting in a command error.

keysh initializes $PS1, $PS2, and $PS3 and types them read-only — do not change them. Instead, use
$KEYSHto display additional status information.

keysh normally maintains the $HOME/.keyshrc file without user intervention; however, start-up
errors may occasionally occur and persist. In this case, either execute the command kc restart
default (to remove the file and revert to the default user configuration) or execute the command kc
write (to rewrite the file with the current configuration).

Section 1−−388 − 6 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

keysh(1) keysh(1)

keysh assumes that HP-UX commands are not heavily aliased; otherwise unexpected command transla-
tions may occur.

keysh neglects the effects of the Korn-shell expansion mechanisms when counting command-line parame-
ters, causing it to occasionally underestimate the true number of parameters specified. The <ESC>*
emacs-mode or vi-mode editing command can often be used to pre-expand these parameters.

The <ESC>v emacs-mode editing command and v vi-mode editing command cannot be used to edit (pre-
translated) softkey commands, since no subsequent command translation can occur.

Adding a large number of softkeys can cause keysh to overflow a 1-Mbyte Korn-shell data size limitation,
causing disconcerting behavior.

keysh can only program the function keys on terminals whose terminfo(4) entry defines the pfkey capa-
bility; similarly, it can only use hardware softkey labels on terminals whose terminfo(4) entry defines the
pln capability (along with specifying lh equal to 2).

The default value for $KEYESCwas chosen to provide reasonable response in both local and networked
environments. If keysh misinterprets quickly typed emacs-mode or vi-mode editing commands as terminal
escape sequences, it may be necessary to decrease this value.

Specifying a \n (new-line) in the literal key sequence for a backup softkey causes undesired results on HP
terminals; use a \r (carriage-return) instead.

keysh does not display tsm softkeys when simulating softkey labels.

A limited number of environment variables and arguments are exported to the pager when displaying help.

EXTERNAL INFLUENCES
Environment Variables

LANGdetermines the language in which softkeys and messages are displayed.

LC_TIME determines the format and contents of date and time strings in the status-line.

International Code Set Support
Single-byte character code sets are supported.

AUTHOR
keysh was developed by HP and AT&T.

FILES
/usr/bin/keysh main executable
/usr/lib/keysh/builtins Keysh_config softkey definition file
/usr/lib/keysh/$LANG/softkeys standard softkey definitions file
/usr/lib/keysh/$LANG/keyshrc default user configuration file
/usr/lib/nls/$LANG/keysh.cat message catalog
$HOME/.keyshrc user configuration file
$HOME/.softkeys user softkey definitions file

SEE ALSO
ksh(1), tsm(1), softkeys(4), terminfo(4).

HP-UX Release 11i: December 2000 − 7 − Section 1−−389

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kill(1) kill(1)

NAME
kill - send a signal to a process; terminate a process

SYNOPSIS
kill [-s signame] pid ...

kill [-s signum] pid ...

kill -l

Obsolescent Versions:
kill - signame pid ...

kill - signum pid ...

DESCRIPTION
The kill command sends a signal to each process specified by a pid process identifier. The default signal
is SIGTERM, which normally terminates processes that do not trap or ignore the signal.

pid is a process identifier, an unsigned or negative integer that can be one of the following:

> 0 The number of a process.

= 0 All processes, except special system processes, whose process group ID is equal to the process
group ID of the sender.

=-1 All processes, except special system processes, if the user has appropriate privileges. Otherwise,
all processes, except special system processes, whose real or effective user ID is the same as the
user ID of the sending process.

<-1 All processes, except special system processes, whose process group ID is equal to the absolute
value of pid and whose real or effective user ID is the same as the user of the sending process.

Process numbers can be found with the ps command (see ps(1)) and with the built-in jobs command
available in some shells.

Options
kill recognizes the following options:

-l (ell) List all values of signame supported by the implementation. No signals are sent
with this option. The symbolic names of the signals (without the SIG prefix) are
written to standard output, separated by spaces and newlines.

-s signame Send the specified signal name. The default is SIGTERM, number 15 . signame
can be specified in upper- and/or lowercase, with or without the SIG prefix. These
values can be obtained by using the -l option. The symbolic name SIGNULL
represents signal value zero. See "Signal Names and Numbers" below.

-s signum Send the specified decimal signal number. The default is 15 , SIGTERM. See "Sig-
nal Names and Numbers" below.

- signame (Obsolescent.) Equivalent to -s signame.

- signum (Obsolescent.) Equivalent to -s signum.

Signal Names and Numbers
The following table describes a few of the more common signals that can be useful from a terminal. For a
complete list and a full description, see the header file <signal.h> and the manual entry signal(5).

signum signame Name Description
0 SIGNULL Null Check access to pid
1 SIGHUP Hangup Terminate; can be trapped
2 SIGINT Interrupt Terminate; can be trapped
3 SIGQUIT Quit Terminate with core dump; can be trapped
9 SIGKILL Kill Forced termination; cannot be trapped

15 SIGTERM Terminate Terminate; can be trapped

Section 1−−390 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kill(1) kill(1)

24 SIGSTOP Stop Pause the process; cannot be trapped
25 SIGTSTP Terminal stop Pause the process; can be trapped
26 SIGCONT Continue Run a stopped process

SIGNULL (0), the null signal, invokes error checking but no signal is actually sent. This can be used to
test the validity or existence of pid.

SIGTERM (15), the (default) terminate signal, can be trapped by the receiving process, allowing the
receiver to execute an orderly shutdown or to ignore the signal entirely. For orderly operations, this is the
perferred choice.

SIGKILL (9), the kill signal, forces a process to terminate immediately. Since SIGKILL cannot be
trapped or ignored, it is useful for terminating a process that does not respond to SIGTERM.

The receiving process must belong to the user of the sending process, unless the user has appropriate
privileges.

As a single special case, the continue signal SIGCONT can be sent to any process that is a member of the
same session as the sending process.

RETURN VALUE
Upon completion, kill returns with one of the following values:

0 At least one matching process was found for each pid operand, and the specified signal was suc-
cessfully processed for at least one matching process.

>0 An error occurred.

EXAMPLES
The command:

kill 6135

signals process number 6135 to terminate. This gives the process an opportunity to exit gracefully (remov-
ing temporary files, etc.).

The following equivalent commands:

kill -s SIGKILL 6135
kill -s KILL 6135
kill -s 9 6135
kill -SIGKILL 6135
kill -KILL 6135
kill -9 6135

terminate process number 6135 abruptly by sending a SIGKILL signal to the process. This tells the ker-
nel to remove the process immediately.

WARNINGS
If a process hangs during some operation (such as I/O) so that it is never scheduled, it cannot die until it is
allowed to run. Thus, such a process may never go away after the kill. Similarly, defunct processes (see
ps(1)) may have already finished executing, but remain on the system until their parent reaps them (see
wait(2)). Using kill to send signals to them has no effect.

Some non-HP-UX implementations provide kill only as a shell built-in command.

DEPENDENCIES
This manual entry describes the external command /usr/bin/kill and the built-in kill command of
the POSIX shell (see sh-posix(1)). Other shells, such as C and Korn (see csh(1) and ksh(1) respectively),
also provide kill as a built-in command. The syntax for and output from these built-ins may be different.

SEE ALSO
csh(1), ksh(1), ps(1), sh(1), sh-bourne(1), sh-posix(1), kill(2), wait(2), signal(5).

STANDARDS CONFORMANCE
kill : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 2 − Section 1−−391

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kinit(1) kinit(1)

NAME
kinit - obtain and cache the Kerberos ticket-granting ticket

SYNOPSIS
kinit [-l life_time] [-s start_time] [-v] [-p] [-f] [-k [-t keytab_filename]] [-r renewable_life]
[-R] [-c cache_filename] [-S service-name] [principal]

DESCRIPTION
kinit obtains and caches an initial ticket-granting ticket for the principal.

Options
-l life_time Requests a ticket with the lifetime value defined in life_time . The value for life_time

must be followed immediately by one of the following delimiters:

s seconds
m minutes
h hours
d days

For example, as in kinit -l 90m for 90 minutes. You cannot mix units; a value of
3h30m will result in an error.

If the -l option is not specified, the default ticket lifetime (configured by each site) is
used. Specifying a ticket lifetime longer than the maximum ticket lifetime (configured
by each site) results in a ticket with the maximum lifetime.

-s start_time Requests a postdated ticket, valid starting at start_time . The format for start_time is
the same as the -l option, one of the following: seconds, minutes, hours, or days.
Postdated tickets are issued with the invalid flag set, and need to be fed back to the
Kerberos KDC (Key Distribution Center) before use.

-v Requests that the ticket granting ticket in the cache (with the invalid flag set) be
passed to the KDC for validation. If the ticket is within its requested time range, the
cache is replaced with the validated ticket.

-p Requests proxiable tickets.

-f Requests forwardable tickets.

-r renewable_life Requests renewable tickets, with a total lifetime of renewable_life. The format for
renewable_life is the same as the -l option, one of the following: seconds, minutes,
hours, or days.

-R Requests renewal of the ticket-granting ticket. Note that an expired ticket cannot be
renewed, even if the ticket is still within its renewable life.

-k [-t keytab_filename]
Requests a host ticket, obtained from a key in the local host’s keytab file. The name
and location of the keytab file may be specified with the -t keytab_filename option;
otherwise the default name and location will be used.

-c cache_filename Uses cache_filename as the credentials ticket cache name and location. If this option is
not used, the default cache name and location are used.

The default credentials cache may vary between systems. If the KRB5CCNAME
environment variable is set, its value is used to name the default ticket cache. Any
existing contents of the cache are destroyed by kinit .

-S service_name Specifies an alternate service name to use when getting initial tickets.

principal Uses the principal name from an existing cache if there is one.

Note
For DCE operations use /opt/dce/bin/kinit .

Environment
kinit uses the following environment variable:

KRB5CCNAME Location of the credentials ticket cache.

Section 1−−392 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kinit(1) kinit(1)

FILES
/tmp/krb5cc_ {uid} Default credentials cache. {uid} is the decimal UID of the user.

/etc/krb5.keytab Default location for the local host’s keytab file.

AUTHOR
kinit was developed by the Massachusetts Institute of Technology.

SEE ALSO
kdestroy(1), kerberos(9), klist(1), libkrb5(3).

HP-UX Release 11i: December 2000 − 2 − Section 1−−393

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

klist(1) klist(1)

NAME
klist - list cached Kerberos tickets

SYNOPSIS
klist [-e] [[-c] [-f] [-s] [cache_filename]] [-k [-t] [-K] [keytab_filename]]

DESCRIPTION
klist lists the Kerberos principal and Kerberos tickets held in a credentials cache, or the keys held in a
keytab file.

Options
-e Displays the encryption types of the session key and the ticket for each credential in the creden-

tial cache, or each key in the keytab file.

-c List tickets held in a credentials cache. This is the default if neither -c nor -k is specified.

-f Shows the flags present in the credentials, using the following abbreviations:

F Forwardable
f forwarded
P Proxiable
p proxy
D postdateable
d postdated
R Renewable
I Initial
i invalid

-s Causes klist to run silently (produce no output), but still sets the exit status depending on
whether it finds the credentials cache. The exit status is ‘0’ if klist finds a credentials cache,
and the exit status is ‘1’ if it does not.

-k List keys held in a keytab file.

-t Display the time entry timestamps for each keytab entry in the keytab file.

-K Display the value of the encryption key of the keytab entry in the keytab file.

If cache_filename or keytab_filename is not specified, klist will display the credentials in the default
credentials cache or keytab file as appropriate. If the KRB5CCNAMEenvironment variable is set, its value
is used to name the default ticket cache.

Note
For DCE operations use /opt/dce/bin/klist .

Environment
klist uses the following environment variable:

KRB5CCNAMELocation of the credentials (ticket) cache.

FILES
/tmp/krb5cc_ {uid} Default credentials cache. {uid} is the decimal UID of the user.

/etc/krb5.keytab Default location of the keytab file.

AUTHOR
klist was developed by the Massachusetts Institute of Technology.

SEE ALSO
kdestroy(1), kerberos(9), kinit(1).

Section 1−−394 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kpasswd(1) kpasswd(1)

NAME
kpasswd - change a user’s Kerberos password

SYNOPSIS
kpasswd [principal]

DESCRIPTION
The kpasswd command is used to change a Kerberos principal’s password. kpasswd prompts for the
current Kerberos password, which is used to obtain a changepw ticket from the KDC (Key Distribution
Center) for the user’s Kerberos realm. If kpasswd successfully obtains the changepw ticket, the user is
prompted twice for the new password, and the password is changed.

If the principal is governed by a policy that specifies the length and/or number of character classes required
in the new password, the new password must conform to the policy. The five character classes are lower
case, upper case, numbers, punctuation, and all other characters.

Options
principal Changes the password for the Kerberos principal, principal. kpasswd uses the principal

name from an existing cache if there is one. If not, the principal is derived from the identity
of the user invoking the kpasswd command.

Note
kpasswd looks first for kpasswd_server = host:port in the [realms] section of the krb5.conf
file under the current realm. If that is missing, kpasswd looks for the admin_server entry, and substi-
tutes 464 for the port.

FILES
/etc/krb5.conf Kerberos configuration file.

AUTHOR
kpasswd was developed by the Massachusetts Institute of Technology.

SEE ALSO
kerberos(9), krb5.conf(4).

HP-UX Release 11i: December 2000 − 1 − Section 1−−395

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

NAME
ksh, rksh - shell, the standard/restricted command programming language

SYNOPSIS
ksh [-aefhikmnoprstuvx] [+aefhikmnoprstuvx] [- o option] ... [+ o option] ... [- c
string] [arg ...]

rksh [-aefhikmnoprstuvx] [+aefhikmnoprstuvx] [- o option] ... [+ o option] ... [- c
string] [arg ...]

DESCRIPTION
ksh is a command programming language that executes commands read from a terminal or a file. rksh
is a restricted version of the command interpreter ksh , used to set up login names and execution environ-
ments whose capabilities are more controlled than those of the standard shell. See Invoking ksh and Spe-
cial Commands sections later in this entry for details about command line options and arguments, particu-
larly the set command.

Definitions
metacharacter

One of the following characters:

; & () | < > new-line space tab

blank A tab or space character.

identifier A sequence of letters, digits, or underscores starting with a letter or underscore. Identifiers
are used as names for functions and named parameters.

word A sequence of characters separated by one or more non-quoted metacharacters .

command A sequence of characters in the syntax of the shell language. The shell reads each com-
mand and carries out the desired action, either directly or by invoking separate utilities.

special command
A command that is carried out by the shell without creating a separate process. Often
called ‘‘built-in commands’’. Except for documented side effects, most special commands
can be implemented as separate utilities.

The # character is interpreted as the beginning of a comment. See Quoting below.

Commands
A simple-command is a sequence of blank-separated words that can be preceded by a parameter assign-
ment list. (See Environment below). The first word specifies the name of the command to be executed.
Except as specified below, the remaining words are passed as arguments to the invoked command. The
command name is passed as argument 0 (see exec(2)). The value of a simple-command is its exit status if
it terminates normally, or (octal) 200+status if it terminates abnormally (see signal(5) for a list of status
values).

A pipeline is a sequence of one or more commands separated by | . The standard output of each com-
mand except the last is connected by a pipe (see pipe(2)) to the standard input of the next command. Each
command is run as a separate process; the shell waits for the last command to terminate. The exit status
of a pipeline is the exit status of the last command in the pipeline.

A list is a sequence of one or more pipelines separated by ; , &, &&, or || , and optionally terminated by ; ,
&, or |& . Of these five symbols, ; , &, and |& have equal precedence. && and || have a higher but also
equal precedence. A semicolon (;) causes sequential execution of the preceding pipeline; an ampersand (&)
causes asynchronous execution of the preceding pipeline (that is, the shell does not wait for that pipeline to
finish). The symbol |& causes asynchronous execution of the preceding command or pipeline with a two-
way pipe established to the parent shell (known as a co-process). The standard input and output of the
spawned command can be written to and read from by the parent shell using the -p option of the special
commands read and print described later. The symbol && (||) causes the list following it to be exe-
cuted only if the preceding pipeline returns a zero (non-zero) value. An arbitrary number of new-lines can
appear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. Unless otherwise stated, the value
returned by a command is that of the last simple-command executed in the command.

Section 1−−396 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

for identifier [in word ...] do list done
Each time for is executed, identifier is set to the next word taken from the in word list.
If in word ... is omitted, for executes the do list once for each positional parameter set
(see Parameter Substitution below). Execution ends when there are no more words in the
list.

select identifier [in word...] do list done
A select command prints on standard error (file descriptor 2), the set of words, each
preceded by a number. If in word ... is omitted, the positional parameters are used
instead (see Parameter Substitution below). The PS3 prompt is printed and a line is read
from the standard input. If this line starts with the number of one of the listed words, the
value of the parameter identifier is set to the word corresponding to this number. If this
line is empty, the selection list is printed again. Otherwise the value of the parameter
identifier is set to null. The contents of the line read from standard input is saved in the
parameter REPLY. The list is executed for each selection until a break or end-of-file
(eof) is encountered.

case word in [[(] pattern [| pattern] ...) list ;;] ... esac
A case command executes the list associated with the first pattern that matches word.
The form of the patterns is identical to that used for file name generation (see File Name
Generation below).

if list then list [elif list then list] ... [else list] fi
The list following if is executed and, if it returns a zero exit status, the list following the
first then is executed. Otherwise, the list following elif is executed and, if its value is
zero, the list following the next then is executed. Failing that, the else list is executed.
If no else list or then list is executed, if returns a zero exit status.

while list do list done
until list do list done

A while command repeatedly executes the while list, and if the exit status of the last
command in the list is zero, executes the do list; otherwise the loop terminates. If no
commands in the do list are executed, while returns a zero exit status; until can be
used in place of while to negate the loop termination test.

(list) Execute list in a separate environment. If two adjacent open parentheses are needed for
nesting, a space must be inserted to avoid arithmetic evaluation as described below.

{ list ;} Execute list, but not in a separate environment. Note that { is a keyword and requires a
trailing blank to be recognized.

[[expression]]
Evaluates expression and returns a zero exit status when expression is true. See Condi-
tional Expressions below, for a description of expression . Note that [[and]] are key-
words and require blanks between them and expression .

function identifier { list ;}
identifier () { list ;}

Define a function referred to by identifier. The body of the function is the list of commands
between { and } (see Functions below).

time pipeline pipeline is executed and the elapsed time, user time, and system time are printed on stan-
dard error. Note that the time keyword can appear anywhere in the pipeline to time the
entire pipeline. To time a particular command in a pipeline, see time(1).

The following keywords are recognized only as the first word of a command and when not quoted:

if then else elif fi case esac for while
until do done { } function select time [[]]

Comments
A word beginning with # causes that word and all subsequent characters up to a new-line to be ignored.

Aliasing
The first word of each command is replaced by the text of an alias, if an alias for this word has been
defined. An alias name consists of any number of characters excluding metacharacters, quoting charac-
ters, file expansion characters, parameter and command substitution characters, and =. The replacement
string can contain any valid shell script, including the metacharacters listed above. The first word of each

HP-UX Release 11i: December 2000 − 2 − Section 1−−397

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

command in the replaced text, other than any that are in the process of being replaced, is tested for addi-
tional aliases. If the last character of the alias value is a blank, the word following the alias is also checked
for alias substitution. Aliases can be used to redefine special built-in commands, but cannot be used to
redefine the keywords listed above. Aliases can be created, listed, and exported with the alias command
and can be removed with the unalias command. Exported aliases remain in effect for subshells but
must be reinitialized for separate invocations of the shell (see Invoking ksh below).

Aliasing is performed when scripts are read, not while they are executed. Therefore, for it to take effect,
alias must be executed before the command referring to the alias is read.

Aliases are frequently used as a shorthand for full path names. An option to the aliasing facility allows the
value of the alias to be automatically set to the full path name of the corresponding command. These
aliases are called tracked aliases. The value of a tracked alias is defined the first time the identifier is
read and becomes undefined each time the PATH variable is reset. These aliases remain tracked so that
the next reference redefines the value. Several tracked aliases are compiled into the shell. The -h option
of the set command converts each command name that is an identifier into a tracked alias.

The following exported aliases are compiled into the shell but can be unset or redefined:

autoload=’typeset -fu’
false=’let 0’
functions=’typeset -f’
hash=’alias -t -’
history=’fc -l’
integer=’typeset -i’
nohup=’nohup ’
r=’fc -e -’
stop=’kill -STOP’
suspend=’kill -STOP $$’
true=’:’
type=’whence -v’

Tilde Substitution
After alias substitution is performed, each word is checked to see if it begins with an unquoted ˜ . If it does,
the word up to a / is checked to see if it matches a user name in the /etc/passwd file. If a match is
found, the ˜ and the matched login name are replaced by the login directory of the matched user. This is
called a tilde substitution. If no match is found, the original text is left unchanged. A ˜ , alone or before a
/ , is replaced by the value of the HOMEparameter. A ˜ followed by a + or - is replaced by the value of
the parameter PWDand OLDPWD, respectively. In addition, tilde substitution is attempted when the value
of a parameter assignment begins with a ˜ .

Command Substitution
The standard output from a command enclosed in parenthesis preceded by a dollar sign ($(command))
or a pair of back single quotes (accent grave) (` command`) can be used as part or all of a word; trailing
new-lines are removed. In the second (archaic) form, the string between the quotes is processed for special
quoting characters before the command is executed (see Quoting below). The command substitution
$(cat file) can be replaced by the equivalent but faster $(<file) . Command substitution of most
special commands (built-ins) that do not perform I/O redirection are carried out without creating a separate
process. However, command substitution of a function creates a separate process to execute the function
and all commands (built-in or otherwise) in that function.

An arithmetic expression enclosed in double parenthesis preceded by a dollar sign ($((expression))) is
replaced by the value of the arithmetic expression within the double parenthesis (see Arithmetic Evaluation
below for a description of arithmetic expressions).

Parameter Substitution
A parameter is an identifier, one or more digits, or any of the characters * , @, #, ?, - , $, and ! . A
named parameter (a parameter denoted by an identifier) has a value and zero or more attributes. Named
parameters can be assigned values and attributes by using the typeset special command. Attributes
supported by ksh are described later with the typeset special command. Exported parameters pass
values and attributes to the environment.

The shell supports a limited one-dimensional array facility. An element of an array parameter is refer-
enced by a subscript. A subscript is denoted by a [followed by an arithmetic expression (see Arithmetic
Evaluation below) followed by a] . To assign values to an array, use set -A name value The value

Section 1−−398 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

of all subscripts must be in the range of 0 through 1023 . Arrays need not be declared. Any reference to a
named parameter with a valid subscript is legal and an array is created if necessary. Referencing an array
without a subscript is equivalent to referencing the first element.

The value of a named parameter can also be assigned by writing:

name=value [name=value] ...

If the -i integer attribute is set for name, the value is subject to arithmetic evaluation as described below.

Positional parameters, parameters denoted by a number, can be assigned values with the set special com-
mand. Parameter $0 is set from argument zero when the shell is invoked.

The character $ is used to introduce substitutable parameters .

${ parameter} Substitute the value of the parameter, if any. Braces are required when param-
eter is followed by a letter, digit, or underscore that should not be interpreted as
part of its name or when a named parameter is subscripted. If parameter is one
or more digits, it is a positional parameter. A positional parameter of more than
one digit must be enclosed in braces. If parameter is * or @all the positional
parameters, starting with $1 , are substituted (separated by a field separator
character). If an array identifier with subscript * or @is used, the value for
each element is substituted (separated by a field separator character). The shell
reads all the characters from ${ to the matching } as part of the same word
even if it contains braces or metacharacters.

${# parameter} If parameter is * or @, the number of positional parameters is substituted.
Otherwise, the length of the value of the parameter is substituted.

${# identifier[*]} Substitute the number of elements in the array identifier.

${ parameter:- word}
If parameter is set and is non-null, substitute its value; otherwise substitute
word.

${ parameter:= word}
If parameter is not set or is null, set it to word; then substitute the value of the
parameter. Positional parameters cannot be assigned in this way.

${ parameter:? word}
If parameter is set and is non-null, substitute its value; otherwise, print word
and exit from the shell. If word is omitted, a standard message is printed.

${ parameter:+ word}
If parameter is set and is non-null, substitute word; otherwise substitute noth-
ing.

${ parameter#pattern}
${ parameter##pattern}

If the shell pattern matches the beginning of the value of parameter , the value of
this substitution is the value of the parameter with the matched portion deleted;
otherwise the value of this parameter substituted. In the former case, the smal-
lest matching pattern is deleted; in the latter case, the largest matching pattern
is deleted.

${ parameter%pattern}
${ parameter%%pattern}

If the shell pattern matches the end of the value of parameter , the value of
parameter with the matched part is deleted; otherwise substitute the value of
parameter . In the former, the smallest matching pattern is deleted; in the
latter, the largest matching pattern is deleted.

In the above, word is not evaluated unless it is used as the substituted string. Thus, in the following
example, pwd is executed only if d is not set or is null:

echo ${d:-$(pwd)}

If the colon (:) is omitted from the above expressions, the shell only checks to determine whether or
not parameter is set.

HP-UX Release 11i: December 2000 − 4 − Section 1−−399

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

The following parameters are set automatically by the shell:

The number of positional parameters in decimal.
- Options supplied to the shell on invocation or by the set command.
? The decimal value returned by the last executed command.
$ The process number of this shell.
_ Initially, the value of _ is an absolute pathname of the shell or script being executed

as passed in the environment . Subsequently it is assigned the last argument of the
previous command. This parameter is not set for commands which are asynchronous.
This parameter is also used to hold the name of the matching MAIL file when check-
ing for mail.

! The process number of the last background command invoked.
COLUMNS If this variable is set, its value is used to define the width of the edit window for the

shell edit modes and for printing select lists. In a windowed environment, if the
shell detects that the window size has changed, the shell updates the value of
COLUMNS.

ERRNO The value of errno as set by the most recently failed system call. This value is sys-
tem dependent and is intended for debugging purposes.

LINENO The line number of the current line within the script or function being executed.
LINES If this variable is set, the value is used to determine the column length for printing

select lists. select lists print vertically until about two-thirds of LINES lines
are filled. In a windowed environment, if the shell detects that the window size has
changed, the shell updates the value of LINES .

OLDPWD The previous working directory set by the cd command.
OPTARG The value of the last option argument processed by the getopts special command.
OPTIND The index of the last option argument processed by the getopts special command.
PPID The process number of the parent of the shell.
PWD The present working directory set by the cd command.
RANDOM Each time this parameter is evaluated, a random integer, uniformly distributed

between 0 and 32767, is generated. The sequence of random numbers can be initial-
ized by assigning a numeric value to RANDOM.

REPLY This parameter is set by the select statement and by the read special command
when no arguments are supplied.

SECONDS Each time this parameter is referenced, the number of seconds since shell invocation
is returned. If this parameter is assigned a value, the value returned upon reference
is the value that was assigned plus the number of seconds since the assignment.

The following parameters are used by the shell:

CDPATH The search path for the cd command.
EDITOR If the value of this variable ends in emacs , gmacs , or vi and the VISUAL variable

is not set, the corresponding option is turned on (see set in Special Commands
below).

ENV If this parameter is set, parameter substitution is performed on the value to generate
the path name of the script to be executed when the shell is invoked (see Invoking ksh
below). This file is typically used for alias and function definitions.

FCEDIT The default editor name for the fc command.
FPATH The search path for function definitions. This path is searched when a function with

the -u attribute is referenced and when a command is not found. If an executable
file is found, then it is read and executed in the current environment.

IFS Internal field separators, normally space, tab, and new-line that are used to separate
command words resulting from command or parameter substitution, and for separat-
ing words with the special command read . The first character of the IFS parame-
ter is used to separate arguments for the "$*" substitution (see Quoting below).

HISTFILE If this parameter is set when the shell is invoked, its value is the path name of the file
that is used to store the command history. The default value is
$HOME/.sh_history . If the user has appropriate privileges and no HISTFILE
is given, then no history file is used (see Command Re-entry below).

HISTSIZE If this parameter is set when the shell is invoked, the number of previously entered
commands accessible to this shell will be greater than or equal to this number. The
default is 128 .

HOME The default argument (home directory) for the cd command.

Section 1−−400 − 5 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

MAIL If this parameter is set to the name of a mail file and the MAILPATH parameter is
not set, the shell informs the user of arrival of mail in the specified file.

MAILCHECK This variable specifies how often (in seconds) the shell checks for changes in the
modification time of any of the files specified by the MAILPATH or MAIL parame-
ters. The default value is 600 seconds. When the time has elapsed the shell checks
before issuing the next prompt.

MAILPATH A list of file names separated by colons (:). If this parameter is set, the shell informs
the user of any modifications to the specified files that have occurred within the last
MAILCHECKseconds. Each file name can be followed by a ? and a message to be
printed, in which case the message undergoes parameter and command substitution
with the parameter $_ defined as the name of the changed file. The default message
is you have mail in $_ .

PATH The search path for commands (see Execution below). The user cannot change PATH
if executing rksh (except in the .profile file).

PS1 The value of this parameter is expanded for parameter substitution, to define the pri-
mary prompt string which, by default, is $ followed by a space character. The char-
acter ! in the primary prompt string is replaced by the command number (see Com-
mand Re-entry below). To include a ! in the prompt, use !! .

PS2 Secondary prompt string, by default > followed by a space character.
PS3 Selection prompt string used within a select loop, by default #? followed by a

space character.
PS4 The value of this variable is expanded for parameter substitution and precedes each

line of an execution trace. If PS4 is unset, the execution trace prompt is + followed
by a space character.

SHELL The path name of the shell is kept in the environment. When invoked, the shell is
restricted if the value of this variable contains an r in the basename.

TMOUT If set to a value greater than zero, the shell terminates if a command is not entered
within the prescribed number of seconds after issuing the PS1 prompt.

VISUAL Invokes the corresponding option when the value of this variable ends in emacs ,
gmacs, or vi (see set in Special Commands below).

The shell gives default values to PATH, PS1, PS2, MAILCHECK, TMOUT, and IFS . HOME, SHELL, ENV,
and MAIL are never set automatically by the shell (although HOME, SHELL, and MAIL are set by
login(1)).

Blank Interpretation
After parameter and command substitution, the results of substitution are scanned for field separator char-
acters (found in IFS), and split into distinct arguments where such characters are found. ksh retains
explicit null arguments (or ’ ’) but removes implicit null arguments (those resulting from parameters that
have no values).

File Name Generation
Following substitution, each command word is processed as a pattern for file name expansion unless the
-f option has been set . The form of the patterns is the Pattern Matching Notation defined by regexp(5).
The word is replaced with sorted file names matching the pattern. If no file name is found that matches
the pattern, the word is left unchanged.

In addition to the notation described in regexp(5), ksh recognizes composite patterns made up of one or
more pattern lists separated from each other with a | . Composite patterns can be formed with one or more
of the following:

?(pattern-list) Optionally matches any one of the given patterns.

*(pattern-list) Matches zero or more occurrences of the given patterns.

+(pattern-list) Matches one or more occurrences of the given patterns.

@(pattern-list) Matches exactly one of the given patterns.

!(pattern-list) Matches anything, except one of the given patterns.

Quoting
Each of the metacharacters listed above (See Definitions above) has a special meaning to the shell and
causes termination of a word unless quoted. A character can be quoted (i.e., made to stand for itself) by
preceding it with a \ . The pair \ new-line is ignored. All characters enclosed between a pair of single quote
marks (’ ’), are quoted. A single quote cannot appear within single quotes. Inside double quote marks

HP-UX Release 11i: December 2000 − 6 − Section 1−−401

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

(" "), parameter and command substitution occurs and \ quotes the characters \ , ` , " , and $. $* and
$@have identical meanings when not quoted or when used as a parameter assignment value or as a file
name. However, when used as a command argument, "$*" is equivalent to "$1 d $2d ..." , where d is the
first character of the IFS parameter, whereas "$ @" is equivalent to "$1" "$2" Inside back single
quote (accent grave) marks (` `) \ quotes the characters \ , ` , and $. If the back single quotes occur
within double quotes, \ also quotes the character " .

The special meaning of keywords or aliases can be removed by quoting any character of the keyword. The
recognition of function names or special command names listed below cannot be altered by quoting them.

Arithmetic Evaluation
The ability to perform integer arithmetic is provided with the special command let . Evaluations are per-
formed using long arithmetic. Constants take the form [base#]n, where base is a decimal number between
two and thirty-six representing the arithmetic base and n is a number in that base. If base is omitted, base
10 is used.

An arithmetic expression uses the same syntax, precedence, and associativity of expression of the C
language. All the integral operators, other than ++, - - , ?: , and , are supported. Variables can be refer-
enced by name within an arithmetic expression without using the parameter substitution syntax. When a
variable is referenced, its value is evaluated as an arithmetic expression.

An internal integer representation of a variable can be specified with the -i option of the typeset spe-
cial command. Arithmetic evaluation is performed on the value of each assignment to a variable with the
-i attribute. If you do not specify an arithmetic base, the first assignment to the variable determines the
arithmetic base. This base is used when parameter substitution occurs.

Since many of the arithmetic operators require quoting, an alternative form of the let command is pro-
vided. For any command beginning with ((, all characters until the matching)) are treated as a quoted
expression. More precisely, ((...)) is equivalent to let " ..." .

Prompting
When used interactively, the shell prompts with the value of PS1 before reading a command. If at any
time a new-line is typed and further input is needed to complete a command, the secondary prompt (the
value of PS2) is issued.

Conditional Expressions.
A conditional expression is used with the [[compound command to test attributes of files and to com-
pare strings. Word splitting and file name generation are not performed on the words between [[and]] .
Each expression can be constructed from one or more of the following unary or binary expressions:

-a file True if file exists.
-b file True if file exists and is a block special file.
-c file True if file exists and is a character special file.
-d file True if file exists and is a directory.
-f file True if file exists and is an ordinary file.
-g file True if file exists and is has its setgid bit set.
-h file True if file exists and is a a symbolic link.
-k file True if file exists and is has its sticky bit set.
-n string True if length of string is non-zero.
-o option True if option named option is on.
-p file True if file exists and is a fifo special file or a pipe.
-r file True if file exists and is readable by current process.
-s file True if file exists and has size greater than zero.
-t fildes True if file descriptor number fildes is open and associated with a terminal dev-

ice.
-u file True if file exists and is has its setuid bit set.
-w file True if file exists and is writable by current process.
-x file True if file exists and is executable by current process. If file exists and is a

directory, the current process has permission to search in the directory.
-z string True if length of string is zero. -L file True if file exists and is a symbolic link.
-O file True if file exists and is owned by the effective user ID of this process.
-G file True if file exists and its group matches the effective group ID of this process.
-S file True if file exists and is a socket.
file1 -nt file2 True if file1 exists and is newer than file2.

Section 1−−402 − 7 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

file1 -ot file2 True if file1 exists and is older than file2.
file1 -ef file2 True if file1 and file2 exist and refer to the same file.
string = pattern True if string matches pattern.
string != pattern True if string does not match pattern.
string1 < string2 True if string1 comes before string2 based on ASCII value of their characters.
string1 > string2 True if string1 comes after string2 based on ASCII value of their characters.
exp1 -eq exp2 True if exp1 is equal to exp2.
exp1 -ne exp2 True if exp1 is not equal to exp2.
exp1 -lt exp2 True if exp1 is less than exp2.
exp1 -gt exp2 True if exp1 is greater than exp2.
exp1 -le exp2 True if exp1 is less than or equal to exp2.
exp1 -ge exp2 True if exp1 is greater than or equal to exp2.

A compound expression can be constructed from these primitives by using any of the following, listed in
decreasing order of precedence.

(expression) True, if expression is true. Used to group expressions.
! expression True if expression is false.
expression1 && expression2 True, if expression1 and expression2 are both true.
expression1 || expression2 True, if either expression1 or expression2 is true.

Input/Output
Before a command is executed, its input and output can be redirected using a special notation interpreted
by the shell. The following can appear anywhere in a simple-command or can precede or follow a command
and are not passed on to the invoked command. Command and parameter substitution occurs before word
or digit is used, except as noted below. File name generation occurs only if the pattern matches a single file
and blank interpretation is not performed.

<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor 1). If the file does not exist, it is
created. If the file exists, and the noclobber option is on, an error occurs; other-
wise, the file is truncated to zero length.

>| word Sames as >, except that it overrides the noclobber option.

>>word Use file word as standard output. If the file exists, output is appended to it (by first
searching for the end-of-file); otherwise, the file is created.

<>word Open file word for reading and writing as standard input. If the file does not exist it
is created.

<<[-]word The shell input is read up to a line that matches word, or to an end-of-file. No param-
eter substitution, command substitution, or file name generation is performed on
word. The resulting document, called a here-document, becomes the standard
input. If any character of word is quoted, no interpretation is placed upon the charac-
ters of the document. Otherwise, parameter and command substitution occurs,
\ new-line is ignored, and \ must be used to quote the characters \ , $, ` , and the
first character of word. If - is appended to <<, all leading tabs are stripped from
word and from the document.

<&digit The standard input is duplicated from file descriptor digit (see dup(2)).

>&digit The standard output is duplicated to file descriptor digit (see dup(2)).

<&- The standard input is closed.

>&- The standard output is closed.

<&p The input from the co-process is moved to standard input.

>&p The output to the co-process is moved to standard output.

If one of the above is preceded by a digit, the file descriptor number cited is that specified by the digit
(instead of the default 0 or 1). For example:

... 2>&1

means file descriptor 2 is to be opened for writing as a duplicate of file descriptor 1.

HP-UX Release 11i: December 2000 − 8 − Section 1−−403

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

Redirection order is significant because the shell evaluates redirections referencing file descriptors in terms
of the currently open file associated with the specified file descriptor at the time of evaluation. For exam-
ple:

... 1>fname 2>&1

first assigns file descriptor 1 (standard output) to file fname , then assigns file descriptor 2 (standard error)
to the file assigned to file descriptor 1; i.e., fname. On the other hand, if the order of redirection is reversed
as follows:

... 2>&1 1>fname

file descriptor 2 is assigned to the current standard output (user terminal unless a different assignment is
inherited). File descriptor 1 is then reassigned to file fname without changing the assignment of file
descriptor 2.

The input and output of a co-process can be moved to a numbered file descriptor allowing other commands
to write to them and read from them using the above redirection operators. If the input of the current co-
process is moved to a numbered file descriptor, another co-process can be started.

If a command is followed by & and job control is inactive, the default standard input for the command is
the empty file /dev/null . Otherwise, the environment for the execution of a command contains the file
descriptors of the invoking shell as modified by input/output specifications.

Environment
The environment (see environ(5)) is a list of name-value pairs passed to an executed program much like a
normal argument list. The names must be identifiers and the values are character strings. The shell
interacts with the environment in several ways. When invoked, the shell scans the environment and
creates a parameter for each name found, gives it the corresponding value, and marks it export . Executed
commands inherit the environment. If the user modifies the values of these parameters or creates new
ones by using the export or typeset -x commands, the values become part of the environment. The
environment seen by any executed command is thus composed of any name-value pairs originally inherited
by the shell whose values can be modified by the current shell, plus any additions which must be noted in
export or typeset -x commands.

The environment for any simple-command or function can be augmented by prefixing it with one or more
parameter assignments. A parameter assignment argument takes the form identifier=value. For example,

TERM=450 cmd args

and

(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is concerned except for special commands listed below
that are preceded by a percent sign).

If the -k option is set, all parameter assignment arguments are placed in the environment, even if they
occur after the command name. The following echo statement prints a=b c . After the -k option is set,
the second echo statement prints only c :

echo a=b c
set -k
echo a=b c

This feature is intended for use with scripts written for early versions of the shell, and its use in new
scripts is strongly discouraged. It is likely to disappear someday.

Functions
The function keyword (described in the Commands section above) is used to define shell functions.
Shell functions are read and stored internally. Alias names are resolved when the function is read. Func-
tions are executed like commands, with the arguments passed as positional parameters (see Execution
below).

Functions execute in the same process as the caller except that command substitution of a function creates
a new process. Functions share all files and present working directory with the caller. Traps caught by the
caller are reset to their default action inside the function. If a function does not catch or specifically ignore
a trap condition, the function terminates and the condition is passed on to the caller. A trap on EXIT set
inside a function is executed after the function completes in the environment of the caller. Ordinarily, vari-
ables are shared between the calling program and the function. However, the typeset special command

Section 1−−404 − 9 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

used within a function defines local variables whose scope includes the current function and all functions it
calls.

The special command return is used to return from function calls. Errors within functions return con-
trol to the caller.

Function identifiers can be listed with the +f option of the typeset special command. Function
identifiers and the associated text of the functions can be listed with the -f option. Functions can be
undefined with the -f option of the unset special command.

Ordinarily, functions are unset when the shell executes a shell script. The -xf option of the typeset
command allows a function to be exported to scripts that are executed without reinvoking the shell. Func-
tions that must be defined across separate invocations of the shell should be placed in the ENVfile.

Jobs
If the monitor option of the set command is turned on, an interactive shell associates a job with each
pipeline. It keeps a table of current jobs, printed by the jobs command, and assigns them small integer
numbers. When a job is started asynchronously with &, the shell prints a line resembling:

[1] 1234

indicating that job number 1 was started asynchronously and had one (top-level) process whose process ID
was 1234.

If you are running a job and want to do something else, type the suspend character (usually ˆZ (Ctrl-Z)) to
send a STOP signal to the current job. The shell then indicates that the job has been ‘Stopped’, and prints
another prompt. The state of this job can be manipulated by using the bg command to put it in the back-
ground, running other commands (while it is stopped or running in the background), and eventually res-
tarting or returning the job to the foreground by using the fg command. A ˆZ takes effect immediately
and resembles an interrupt, since pending output and unread input are discarded when ˆZ is typed.

A job run in the background stops if it tries to read from the terminal. Background jobs normally are
allowed to produce output, but can be disabled by giving the stty tostop command. If the user sets
this tty option, background jobs stop when trying to produce output.

There are several ways to refer to jobs in the shell. A job can be referred to by the process ID of any process
in the job or by one of the following:

%number The job with the given number.
%string Any job whose command line begins with string.
%?string Any job whose command line contains string.
%% Current job.
%+ Equivalent to %%.
%- Previous job.

The shell learns immediately when a process changes state. It informs the user when a job is blocked and
prevented from further progress, but only just before it prints a prompt.

When the monitor mode is on, each background job that completes triggers any trap set for CHLD.

Attempting to leave the shell while jobs are running or stopped produces the warning, You have
stopped (running) jobs . Use the jobs command to identify them. An immediate attempt to
exit again terminates the stopped jobs; the shell does not produce a warning the second time.

Signals
The INT and QUIT signals for an invoked command are ignored if the command is followed by & and the
monitor option is off. Otherwise, signals have the values inherited by the shell from its parent, with the
exception of signal 11 (but see also the trap command below).

Execution
Substitutions are made each time a command is executed. If the command name matches one of the Spe-
cial Commands listed below, it is executed within the current shell process. Next, ksh checks the com-
mand name to determine whether it matches one of the user-defined functions. If it does, ksh saves the
positional parameters and then sets them to the arguments of the function call. The positional parameter
0 is set to the function name. When the function completes or issues a return , ksh restores the posi-
tional parameter list and executes any trap set on EXIT within the function. The value of a function is the
value of the last command executed. A function is executed in the current shell process. If a command
name is not a special command or a user-defined function, ksh creates a process and attempts to

HP-UX Release 11i: December 2000 − 10 − Section 1−−405

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

execute the command using exec (see exec(2)).

The shell parameter PATHdefines the search path for the directory containing the command. Alternative
directory names are separated by a colon (:). The default path is /usr/bin: (specifying /usr/bin
and the current directory in that order). Note that the current directory is specified by a null path name
which can appear immediately after the equals sign, between colon delimiters, or at the end of the path list.
The search path is not used if the command name contains a / . Otherwise, each directory in the path is
searched for an executable file. If the file has execute permissions but is not a directory or an executable
object code file, it is assumed to be a script file, which is a file of data for an interpreter. If the first two
characters of the script file are #! , exec (see exec(2)) expects an interpreter path name to follow. exec
then attempts to execute the specified interpreter as a separate process to read the entire script file. If a
call to exec fails, /usr/bin/ksh is spawned to interpret the script file. All non-exported aliases, func-
tions, and named parameters are removed in this case. If the shell command file does not have read per-
mission, or if the setuid and/or setgid bits are set on the file, the shell executes an agent to set up the per-
missions and execute the shell with the shell command file passed down as an open file. A parenthesized
command is also executed in a sub-shell without removing non-exported quantities.

Command Re-entry
The text of the last HISTSIZE (default 128) commands entered from a terminal device is saved in a his-
tory file. The file $HOME/.sh_history is used if the HISTFILE variable is not set or writable. A
shell can access the commands of all interactive shells that use the same named HISTFILE . The special
command fc is used to list or edit a portion of this file. The portion of the file to be edited or listed can be
selected by number or by giving the first character or characters of the command. A single command or
range of commands can be specified. If no editor program is specified as an argument to fc , the value of
the FCEDIT parameter is used. If FCEDIT is not defined, /usr/bin/ed is used. The edited com-
mand is printed and re-executed upon leaving the editor. The editor name - is used to skip the editing
phase and to re-execute the command. In this case a substitution parameter of the form old=new can be
used to modify the command before execution. For example, if r is aliased to fc -e - , typing r
bad=good c re-executes the most recent command that starts with the letter c and replaces the first
occurrence of the string bad with the string good .

The history file will be trimmed when all of the following conditions occurs:

Its size is greater than four kilobytes.

The number of commands in it is more than HISTSIZE .

The file has not been modified in the last ten minutes.

The user has write permission for the directory in which the history file resides.

If any one of the above conditions does not occur, the history file will not be trimmed. When the history file
is trimmed, the latest HISTSIZE commands will be available in the history file.

Special Commands
The following simple-commands are executed in the shell process. They permit input/output redirection.
Unless otherwise indicated, file descriptor 1 is the default output location and the exit status, when there
are no syntax errors, is zero. Commands that are preceded by % or %% are treated specially in the follow-
ing ways:

1. Variable assignment lists preceding the command remain in effect when the command completes.
2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. Words following a command preceded by %% that are in the format of a variable assignment are

expanded with the same rules as a variable assignment. This means that tilde substitution is per-
formed after the = sign and word splitting and file name generation are not performed.

% : [arg ...] The command only expands parameters. A zero exit code is returned.

% . file [arg ...]
Read and execute commands from file and return. The commands are executed in the
current shell environment. The search path specified by PATHis used to find the directory
containing file. If any arguments arg are given, they become the positional parameters.
Otherwise the positional parameters are unchanged. The exit status is the exit status of
the last command executed. It is not necessary that the execute permission bit be set for
file.

Section 1−−406 − 11 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

%% alias [-tx] [name[=value] ...]
alias with no arguments prints the list of aliases in the form name=value on standard
output. An alias is defined for each name whose value is given. A trailing space in value
causes the next word to be checked for alias substitution. The -t option is used to set and
list tracked aliases. The value of a tracked alias is the full path name corresponding to the
given name. The value of a tracked alias becomes undefined when the value of PATH is
reset, but the alias remains tracked. Without the -t option, for each name in the argu-
ment list for which no value is given, the name and value of the alias is printed. The -x
option is used to set or print exported aliases. An exported alias is defined across sub-shell
environments. Alias returns true unless a name is given for which no alias has been
defined.

bg [job ...] Puts the specified jobs into the background. The current job is put in the background if job
is unspecified. See Jobs for a description of the format of job.

% break [n] Exit from the enclosing for , while , until , or select loop, if any. If n is specified,
break n levels.

% continue [n]
Resume the next iteration of the enclosing for , while , until , or select loop. If n is
specified, resume at the n-th enclosing loop.

cd [-L -P] [arg]
cd old new This command can take either of two forms. In the first form it changes the current direc-

tory to arg. If arg is - the directory is changed to the previous directory. The -L option
(default) preserves logical naming when treating symbolic links. cd -L .. moves the
current directory one path component closer to the root directory. The -P option
preserves the physical path when treating symbolic links. cd -P .. changes the work-
ing directory to the parent directory of the current directory. The shell parameter HOMEis
the default arg. The parameter PWDis set to the current directory. The shell parameter
CDPATHdefines the search path for the directory containing arg. Alternative directory
names are separated by a colon (:). If CDPATHis null or undefined, the default value is
the current directory. Note that the current directory is specified by a null path name
which can appear immediately after the equal sign or between the colon delimiters any-
where else in the path list. If arg begins with a / , the search path is not used. Otherwise,
each directory in the path is searched for arg. See also cd(1).

The second form of cd substitutes the string new for the string old in the current directory
name, PWDand tries to change to this new directory.

The cd command cannot be executed by rksh .

echo [arg ...]
See echo(1) for usage and description.

% eval [arg ...]
Reads the arguments as input to the shell and executes the resulting command(s).

% exec [arg ...]
Parameter assignments remain in effect after the command completes. If arg is given, the
command specified by the arguments is executed in place of this shell without creating a
new process. Input/output arguments can appear and affect the current process. If no
arguments are given, the effect of this command is to modify file descriptors as prescribed
by the input/output redirection list. In this case, any file descriptor numbers greater than 2
opened with this mechanism are closed when invoking another program.

% exit [n] Causes the shell to exit with the exit status specified by n. If n is omitted, the exit status is
that of the last command executed. An end-of-file also causes the shell to exit, except when
a shell has the ignoreeof option set (see set below).

%% export [name [=value] ...]
The given names are marked for automatic export to the environment of subsequently exe-
cuted commands.

fc [-e ename] [-nlr] [first [last]]
fc -e - [old=new] [command]

In the first form, a range of commands from first to last is selected from the last HIST-
SIZE commands typed at the terminal. The arguments first and last can be specified as a

HP-UX Release 11i: December 2000 − 12 − Section 1−−407

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

number or string. A given string is used to locate the most recent command. A negative
number is used to offset the current command number. The -l option causes the com-
mands to be listed on standard output. Otherwise, the editor program ename is invoked on
a file containing these keyboard commands. If ename is not supplied, the value of the
parameter FCEDIT (default /usr/bin/ed) is used as the editor. Once editing has
ended, the commands (if any) are executed. If last is omitted, only the command specified
by first is used. If first is not specified, the default is the previous command for editing and
−16 for listing. The -r option reverses the order of the commands and the -n option
suppresses command numbers when listing. In the latter, the command is re-executed
after the substitution old=new is performed.

fg [job ...] Brings each job into the foreground in the order specified. If no job is specified, the current
job is brought into the foreground. See Jobs for a description of the format of job.

getopts optstring name [arg ...]
Checks arg for legal options. If arg is omitted, the positional parameters are used. An
option argument begins with a + or a - . An option not beginning with + or - , or the argu-
ment - - ends the options. optstring contains the letters that getopts recognizes. If a
letter is followed by a : , that option is expected to have an argument. The options can be
separated from the argument by blanks.

getopts places the next option letter it finds inside variable name each time it is invoked
with a + preceding it when arg begins with a +. The index of the next arg is stored in
OPTIND. The option argument, if any, gets stored in OPTARG.

A leading : in optstring causes getopts to store the letter of an invalid option in
OPTARG, and to set name to ? for an unknown option and to : when a required option is
missing. Otherwise, getopts prints an error message. The exit status is non-zero when
there are no more options. See also getopts(1).

jobs [-lnp] [job ...]
Lists information about each given job; or all active jobs if job is omitted. The -l option
lists process ids in addition to the normal information. The -n option only displays jobs
that have stopped or exited since last notified. The -p option causes only the process
group to be listed. See Jobs for a description of the format of job.

kill [- sig] process ...
Sends either the TERM (terminate) signal or the specified signal to the specified jobs or
processes. Signals are given either by number or name (as given in signal(5), stripped of
the prefix SIG). The signal names are listed by kill -l . No default exists; merely typ-
ing kill does not affect the current job. If the signal being sent is TERM(terminate) or
HUP(hangup), the job or process is sent a CONT(continue) signal when stopped. The pro-
cess argument can be either a process ID or job. If the first argument to kill is a nega-
tive integer, it is interpreted as a sig argument and not as a process group. See also kill(1).

let arg ... Each arg is a separate arithmetic expression to be evaluated. See Arithmetic Evaluation
above, for a description of arithmetic expression evaluation. The exit status is 0 if the value
of the last expression is non-zero, and 1 otherwise.

% newgrp [arg ...]
Equivalent to exec newgrp arg

print [-Rnprsu [n]] [arg ...]
The shell output mechanism. With no options or with option - or - - the arguments are
printed on standard output as described by echo(1). Raw mode, -R or -r , ignores the
escape conventions of echo. The -R option prints all subsequent arguments and options
other than -n . The -p option causes the arguments to be written onto the pipe of the pro-
cess spawned with |& instead of standard output. The -s option causes the arguments to
be written onto the history file instead of standard output. The -u option can be used to
specify a one-digit file descriptor unit number n on which the output is to be placed. The
default is 1. If the option -n is used, no new-line character is added to the output.

pwd [-L -P]
With no arguments prints the current working directory (equivalent to print -r -
$PWD). The -L option (default) preserves the logical meaning of the current directory and
-P preserves the physical meaning of the current directory if it is a symbolic link. See the
special cd command, cd(1), ln(1)), and pwd(1).

Section 1−−408 − 13 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

read [-prsu [n]] [name] [?prompt] [name ...]
The shell input mechanism. One line is read and broken up into words using the charac-
ters in IFS as separators. In -r raw mode, \ at the end of a line does not signify line
continuation. The first word is assigned to the first name, the second word to the second
name, etc., with remaining words assigned to the last name. The -p option causes the
input line to be taken from the input pipe of a process spawned by the shell using |& . If
the -s option is present, the input is saved as a command in the history file. The option
-u can be used to specify a one-digit file descriptor unit to read from. The file descriptor
can be opened with the exec special command. The default value of n is 0. If name is
omitted, REPLYis used as the default name. The return code is 0, unless an end-of-file is
encountered. An end-of-file with the -p option causes cleanup for this process so that
another process can be spawned. If the first argument contains a ?, the remainder of this
word is used as a prompt when the shell is interactive. If the given file descriptor is open
for writing and is a terminal device, the prompt is placed on this unit. Otherwise the
prompt is issued on file descriptor 2. The return code is 0, unless an end-of-file is encoun-
tered. See also read(1).

%% readonly [name[=value] ...]
The given names are marked read-only and these names cannot be changed by subsequent
assignment.

% return [n]
Causes a shell function to return to the invoking script with the return status specified by
n. If n is omitted, the return status is that of the last command executed. Only the low 8
bits of n are passed back to the caller. If return is invoked while not in a function or
executing a script by the . (dot) built-in command, it has the same effect as an exit com-
mand.

set [±aefhkmnopstuvx | ±o option] ... [±A name] [arg ...]
The following options are used for this command:

-A Array assignment. Unset the variable name and assign values sequentially
from the list arg. If +A is used, the variable name is not unset first.

-a All subsequent defined parameters are automatically exported.
-e If the shell is non-interactive and if a command fails, execute the ERRtrap,

if set, and exit immediately. This mode is disabled while reading profiles.
-f Disables file name generation.
-h Each command whose name is an identifier becomes a tracked alias when

first encountered.
-k All parameter assignment arguments (not just those that precede the com-

mand name) are placed in the environment for a command.
-m Background jobs are run in a separate process group and a line is printed

upon completion. The exit status of background jobs is reported in a comple-
tion message. This option is turned on automatically for interactive shells.

-n Read commands and check them for syntax errors, but do not execute them.
The -n option is ignored for interactive shells.

-o The -o argument takes any of several option names, but only one option can
be specified with each -o option. If none is supplied, the current option set-
tings are printed. The -o argument option names follow:

allexport Same as -a .
bgnice All background jobs are run at a lower priority.
errexit Same as -e .
emacs Activates an emacs- style in-line editor for command

entry.
gmacs Activates a gmacs- style in-line editor for command

entry.
ignoreeof The shell does not exit on end-of-file. The command

exit must be used.
keyword Same as -k .
markdirs All directory names resulting from file name generation

have a trailing / appended.
monitor Same as -m.
noclobber Prevents redirection > from truncating existing files.

Requires >| to truncate a file when turned on.

HP-UX Release 11i: December 2000 − 14 − Section 1−−409

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

noexec Same as -n .
noglob Same as -f .
nolog Do not save function definitions in history file.
nounset Same as -u .
privileged Same as -p .
verbose Same as -v .
trackall Same as -h .
vi Activates the insert mode of a vi- style in-line editor

until you press the ESC key which puts you in move mode.
A return sends the line.

viraw Each character is processed as it is typed in vi mode.
xtrace Same as -x .

-p Disables processing of the $HOME/.profile file and uses the file
/etc/suid_profile instead of the ENVfile. This mode is on whenever
the effective uid (gid) is not equal to the real uid (gid). Turning this off causes
the effective uid and gid to be set to the real uid and gid.

-s Sort the positional parameters.
-t Exit after reading and executing one command.
-u Treat unset parameters as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.
- Turns off -x and -v options and stops examining arguments for options.
- - Do not change any of the options; useful in setting $1 to a value beginning

with - . If no arguments follow this option, the positional parameters are
unset.

Using + instead of - before a option causes the option to be turned off. These options can
also be used when invoking the shell. The current set of options can be examined by using
$- .

Unless -A is specified, the remaining arg arguments are positional parameters and are
assigned consecutively to $1 , $2 , If neither arguments nor options are given, the
values of all names are printed on the standard output.

% shift [n] The positional parameters from $n+1 ... are renamed $1 ... ; default n is 1. The parame-
ter n can be any arithmetic expression that evaluates to a non-negative number less than or
equal to $# .

test [expr] Evaluate conditional expression expr. See test(1) for usage and description. The arithmetic
comparison operators are not restricted to integers. They allow any arithmetic expression.
Four additional primitive expressions are allowed:

-L file True if file is a symbolic link.
file1 -nt file2 True if file1 is newer than file2.
file1 -ot file2 True if file1 is older than file2.
file1 -ef file2 True if file1 has the same device and i-node number as file2.

% times Print the accumulated user and system times for the shell and for processes run from the
shell.

% trap [arg] [sig ...]
arg is a command read and executed when the shell receives signal(s) sig. (Note that arg is
scanned once when the trap is set and once when the trap is taken.) Each sig can be given
as a number or name of the signal. Trap commands are executed in signal number order.
Any attempt to set a trap on a signal that was ignored upon entering the current shell has
no effect. If arg is omitted or is - , all traps for sig are reset to their original values. If arg
is the null string, this signal is ignored by the shell and by the commands it invokes. If sig
is DEBUG, arg is executed after each command. If sig is ERR, arg is executed whenever a
command has a non-zero exit code. If sig is 0 or EXIT and the trap statement is exe-
cuted inside the body of a function, the command arg is executed after the function com-
pletes. If sig is 0 or EXIT for a trap set outside any function, the command arg is exe-
cuted on exit from the shell. The trap command with no arguments prints a list of com-
mands associated with each signal number.

%% typeset [±LRZfilrtux [n]] [name[= value]] ...
Parameter assignments remain in effect after the command completes. When invoked

Section 1−−410 − 15 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

inside a function, a new instance of the parameter name is created. The parameter value
and type are restored when the function completes. The following list of attributes can be
specified:

-L Left justify and remove leading blanks from value. If n is non-zero, it defines
the width of the field. Otherwise, it is determined by the width of the value of
first assignment. When the name is assigned, the value is filled on the right
with blanks or truncated, if necessary, to fit into the field. Leading zeros are
removed if the -Z option is also set. The -R option is turned off.

-R Right justify and fill with leading blanks. If n is non-zero, it defines the width of
the field. Otherwise, it is determined by the width of the value of first assign-
ment. The field is left-filled with blanks or truncated from the end if the param-
eter is reassigned. The -L option is turned off.

-Z Right justify and fill with leading zeros if the first non-blank character is a digit
and the -L option has not been set. If n is non-zero, it defines the width of the
field. Otherwise, it is determined by the width of the value of first assignment.

-f Cause name to refer to function names rather than parameter names. No
assignments can be made to the name declared with the typeset statement.
The only other valid options are -t (which turns on execution tracing for this
function) and -x (which allows the function to remain in effect across shell pro-
cedures executed in the same process environment).

-i Parameter is an integer. This makes arithmetic faster. If n is non-zero, it
defines the output arithmetic base; otherwise the first assignment determines
the output base.

-l Convert all uppercase characters to lowercase. The uppercase -u option is
turned off.

-r Any given name is marked "read only" and cannot be changed by subsequent
assignment.

-t Tag the named parameters. Tags are user definable and have no special mean-
ing to the shell.

-u Convert all lowercase characters to uppercase characters. The lowercase -l
option is turned off.

-x Mark any given name for automatic export to the environment of subsequently
executed commands.

Using + instead of - causes these options to be turned off. If no name argu-
ments are given but options are specified, a list of names (and optionally the
values) of the parameters that have these options set is printed. Using +
instead of - retains the values to be printed. If neither names nor options are
given, the names and attributes of all parameters are printed.

ulimit [n] If n is given, impose a size limit of n 512 byte blocks on files written by child processes (files
of any size can be read). If n is not given, the current limit is printed.

umask [mask]
The user file-creation mask is set to mask (see umask(2)). mask can either be an octal
number or a symbolic value as described in chmod(1). If a symbolic value is given, the new
umask value is the complement of the result of applying mask to the complement of the
previous umask value. If mask is omitted, the current value of the mask is printed. See
also umask(1).

unalias name ...
The parameters given by the list of names are removed from the alias list.

unset [-f] name ...
The parameters given by the list of names are unassigned; that is, their values and attri-
butes are erased. Read-only variables cannot be unset. If the -f option is set, names
refer to function names. Unsetting ERRNO, LINENO, MAILCHECK, OPTARG, OPTIND,
RANDOM, SECONDS, TMOUT, and _ removes their special meaning even if they are subse-
quently assigned to.

% wait [job] Wait for the specified job to terminate or stop, and report its status. This status becomes
the return code for the wait command. If job is not given, wait waits for all currently
active child processes to terminate or stop. The termination status returned is that of the
last process. See Jobs for a description of the format of a job.

HP-UX Release 11i: December 2000 − 16 − Section 1−−411

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

whence [-pv] name ...
For each name, indicate how it would be interpreted if used as a command name. The -v
option produces a more verbose report. The -p option does a path search for name even if
name is an alias, a function, or a reserved word.

Invoking ksh
If the shell is invoked by exec (see exec(2)), and the first character of argument zero ($0) is - , the shell is
assumed to be a login shell and commands are read first from /etc/profile . The expression
${HOME:-.}/.profile is then evaluated and an attempt to open the resulting filename is made. If
the file is opened successfully, the file is read. Next, commands are read from the file named by performing
parameter substitution on the value of the environment parameter ENV, if the file exists. If the -s option
is not present and arg is, a path search is performed on the first arg to determine the name of the script to
execute. When running ksh with arg, the script arg must have read permission and any setuid and getgid
settings are ignored. Commands are then read as described below. The following options are interpreted
by the shell when it is invoked:

-c string If the -c option is present, commands are read from string.
-s If the -s option is present or if no arguments remain, commands are read from the

standard input. Shell output, except for the output of some of the Special Commands
listed above, is written to file descriptor 2.

-i If the -i option is present or if the shell input and output are attached to a terminal,
the shell is interactive. In this case SIGTERM is ignored (so that kill 0 does not
kill an interactive shell) and SIGINT +1 is caught and ignored (so that wait is inter-
ruptible). In all cases, SIGQUIT is ignored by the shell. (See signal(5).)

-r If the -r option is present, the shell is a restricted shell.

The remaining options and arguments are described under the set command above.

rksh Only
rksh is used to set up login names and execution environments where capabilities are more controlled
than those of the standard shell. The actions of rksh are identical to those of ksh , except that the follow-
ing are forbidden:

• Changing directory (see cd(1))
• Setting the value of SHELL, ENV, or PATH
• Specifying path or command names containing /
• Redirecting output (>, >| , <>, and >>)

The restrictions above are enforced after the .profile and ENVfiles are interpreted.

When a command to be executed is found to be a shell procedure, rksh invokes ksh to execute it. Thus,
the end-user is provided with shell procedures accessible to the full power of the standard shell, while being
restricted to a limited menu of commands. This scheme assumes that the end-user does not have write and
execute permissions in the same directory.

When a shell procedure is invoked from rksh , the shell interpreter specified with the #! magic inherits
all the restricted features of rksh . So, the shell procedures written for execution under rksh with the
intent of utilizing the full power of the standard shell should not specify an interpreter with #! .

These rules effectively give the writer of the .profile file complete control over user actions, by per-
forming guaranteed set-up actions and leaving the user in an appropriate directory (probably not the login
directory).

The system administrator often sets up a directory of commands (usually /usr/rbin) that can be safely
invoked by rksh . HP-UX systems provide a restricted editor red (see ed(1)), suitable for restricted users.

COMMAND-LINE EDITING
In-line Editing Options

Normally, each command line typed at a terminal device is followed by a new-line (carriage-return or line-
feed). If either the emacs , gmacs , or vi option is set, the user can edit the command line. An editing
option is automatically selected each time the VISUAL or EDITOR variable is assigned a value ending in
either of these option names.

The editing features require that the user’s terminal accept Return as carriage return without line feed and
that a space character must overwrite the current character on the screen. ADM terminal users should set
the ‘‘space/advance’’ switch to ‘‘space’’. Hewlett-Packard terminal users should set the straps to
‘‘bcGHxZ etX’’.

Section 1−−412 − 17 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

The editing modes enable the user to look through a window at the current line. The default window width
is 80, unless the value of COLUMNSis defined. If the line is longer than the window width minus two, a
mark displayed at the end of the window notifies the user. The mark is a >, <, or * if the line extends
respectively on the right, left, or both side(s) of the window. As the cursor moves and reaches the window
boundaries, the window is centered about the cursor.

The search commands in each edit mode provide access to the history file. Only strings are matched, not
patterns, although a leading ˆ in the string restricts the match to begin at the first character in the line.

Emacs Editing Mode
This mode is invoked by either the emacs or gmacs option. Their sole difference is their handling of ˆT .
To edit, the user moves the cursor to the point needing correction and inserts or deletes characters or
words. All editing commands are control characters or escape sequences. The notation for control charac-
ters is circumflex (ˆ) followed by the character. For example, ˆF is the notation for Ctrl-F. This is entered
by pressing the f key while holding down the Ctrl (control) key. The Shift key is not pressed. (The nota-
tion ˆ? indicates the DEL (delete) key.)

The notation for escape sequences is M- followed by a character. For example, M-f (pronounced Meta f) is
entered by depressing ESC (ASCII 033) followed by f . M-F would be the notation for ESC followed by Shift
(capital) F.

All edit commands operate from any place on the line (not only at the beginning). Neither the Return nor
the Line Feed key is entered after edit commands, except when noted.

ˆF Move cursor forward (right) one character.
M-f Move cursor forward one word. (The editor’s idea of a word is a string of characters consist-

ing of only letters, digits and underscores.)
ˆB Move cursor backward (left) one character.
M-b Move cursor backward one word.
ˆA Move cursor to start of line.
ˆE Move cursor to end of line.
ˆ] char Move cursor forward to character char on current line.
M-ˆ] char Move cursor backward to character char on current line.
ˆXˆX Interchange the cursor and mark.
erase (User defined erase character as defined by the stty(1) command, usually ˆH or #.) Delete

previous character.
ˆD Delete current character.
eof End-of-file character, normally ˆD , terminates the shell if the current line is null.
M-d Delete current word.
M-ˆH (Meta-backspace) Delete previous word.
M-h Delete previous word.
M-ˆ? (Meta-DEL) Delete previous word (if interrupt character is ˆ? (DEL, the default) this com-

mand does not work).
ˆT Transpose current character with next character in emacs mode. Transpose two previous

characters in gmacs mode.
ˆC Capitalize current character.
M-c Capitalize current word.
M-l Change the current word to lowercase.
ˆK Delete from the cursor to the end of the line. If preceded by a numerical parameter whose

value is less that the current cursor position, delete from the given position up to the cur-
sor. If preceded by a numerical parameter whose value is greater than the current cursor
position, from the cursor up to the given position.

ˆW Kill from the cursor to the mark.
M-p Push the region from the cursor to the mark on the stack.
kill (User-defined kill character, as defined by the stty(1) command, usually ˆG or @.) Kill the

entire current line. If two kill characters are entered in succession, all subsequent consecu-
tive kill characters cause a line feed (useful when using paper terminals).

ˆY Restore last item removed from line (yank item back to the line).
ˆL Line feed and print current line.
ˆ @ (Null character) Set mark.
M-space (Meta space) Set mark.
ˆJ (New line) Execute the current line.
ˆM (Return) Execute the current line.

HP-UX Release 11i: December 2000 − 18 − Section 1−−413

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

ˆP Fetch previous command. Each time ˆP is entered, the next previous command in the his-
tory list is accessed.

ˆN Fetch next command. Each time ˆN is entered the next command in the history list is
accessed.

M-< Fetch the least recent (oldest) history line.
M-> Fetch the most recent (youngest) history line.
ˆR string Reverse search history for a previous command line containing string. If a parameter of

zero is given, the search is forward. string is terminated by a Return or New-Line. If
string is preceded by a ˆ , the matched line must begin with string. If string is omitted, the
next command line containing the most recent string is accessed. In this case a parameter
of zero reverses the direction of the search.

ˆO Operate - Execute the current line and fetch from the history file the next line relative to
current line.

M-digits (Escape) Define numeric parameter, the digits are taken as a parameter to the next com-
mand. The commands that accept a parameter are ˆF , ˆB , erase, ˆC , ˆD , ˆK , ˆR , ˆP , ˆN ,
^] , M-. , M-_, M-b, M-c , M-d, M-f , M-h, M-l and M-ˆH .

M-letter Softkey. User’s alias list is searched for an alias by the name _letter and if an alias of this
name is defined, its value is inserted on the input queue. This letter must not be one of the
above meta-functions.

M-. The last word of the previous command is inserted on the line. If preceded by a numeric
parameter, the value of this parameter determines which word to insert rather than the
last word.

M-_ Same as M-. .
M-* Attempt file-name generation on the current word.
M-ESC File-name completion. Replaces the current word with the longest common prefix of all

filenames matching the current word with an asterisk appended. If the match is unique, a
/ is appended if the file is a directory and a space is appended if the file is not a directory.

M-= List files matching current word pattern as if an asterisk were appended.
ˆU Multiply parameter of next command by 4.
\ Escape next character. Editing characters, the user’s erase, kill and interrupt (normally

^?) characters can be entered in a command line or in a search string if preceded by a \ .
The \ removes the next character’s editing features (if any).

ˆV Display version of the shell.
M-# Insert a # at the beginning of the line and execute it. This causes a comment to be

inserted in the history file.

Vi Editing Mode
There are two typing modes. Entering a command puts you into input mode. To edit, the user enters
control mode by pressing ESC and moves the cursor to the point needing correction, then inserts or deletes
characters or words. Most control commands accept an optional repeat count prior to the command.

In vi mode on most systems, canonical processing is initially enabled and the command is echoed again if
the speed is 1200 baud or greater and contains any control characters, or if less than one second has
elapsed since the prompt was printed. The ESC character terminates canonical processing for the
remainder of the command and the user can then modify the command line. This scheme has the advan-
tages of canonical processing with the type-ahead echoing of raw mode.

Setting the viraw option always disables canonical processing on the terminal. This mode is implicit for
systems that do not support two alternate end-of-line delimiters, and can be helpful for certain terminals.

Input Edit Commands
By default the editor is in input mode.

erase Delete previous character. (erase is a user-defined erase character, as defined by the stty(1)
command, usually ˆH or #.)

ˆW Delete the previous blank separated word.
ˆD Terminate the shell.
ˆV Escape next character. Editing characters, erase or kill characters can be entered in a com-

mand line or in a search string if preceded by a ˆV . ˆV removes the next character’s edit-
ing features (if any).

\ Escape the next erase or kill character.

Section 1−−414 − 19 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

Motion Edit Commands
These commands move the cursor. The designation [count] causes a repetition of the command the cited
number of times.

[count]l Cursor forward (right) one character.
[count]w Cursor forward one alphanumeric word.
[count]W Cursor to the beginning of the next word that follows a blank.
[count]e Cursor to end of word.
[count]E Cursor to end of the current blank-delimited word.
[count]h Cursor backward (left) one character.
[count]b Cursor backward one word.
[count]B Cursor to preceding blank separated word.
[count]| Cursor to column count. Default is 1.
[count]f c Find the next character c in the current line.
[count]Fc Find the previous character c in the current line.
[count]t c Equivalent to f followed by h.
[count]Tc Equivalent to F followed by l .
[count]; Repeats the last single character find command, f , F, t , or T.
[count], Reverses the last single character find command.
0 Cursor to start of line.
^ Cursor to first nonblank character in line.
$ Cursor to end of line.

Search Edit Commands
These commands access your command history.

[count]k Fetch previous command. Each time k is pressed, the next earlier command in
the history list is accessed.

[count]- Equivalent to k .
[count]j Fetch next command. Each time j is entered, the next later command in the his-

tory list is accessed.
[count]+ Equivalent to j .
[count]G The command number count is fetched. The default is the first command in the

history list.
/ string Search backward through history for a previous command containing string.

string is terminated by a "Return" or "New-line". If string is preceded by a ˆ , the
matched line must begin with string. If string is null, the previous string is used.

?string Same as / but search in the forward direction.
n Search for next match of the last pattern to / or ? commands.
N Search for next match of the last pattern to / or ?, but in reverse direction.

Search history for the string entered by the previous / command.
Text Modification Edit Commands

These commands modify the line.
a Enter input mode and enter text after the current character.
A Append text to the end of the line. Equivalent to $a .
[count]cmotion
c [count]motion Move cursor to the character position specified by motion , deleting all characters

between the original cursor position and new position, and enter input mode. If
motion is c , the entire line is deleted and input mode entered.

C Delete the current character through the end of line and enter input mode.
Equivalent to c$.

S Equivalent to cc .
D Delete the current character through end of line. Equivalent to d$.
[count]dmotion
d[count]motion Move cursor to the character position specified by motion , deleting all characters

between the original cursor position and new position. If motion is d, the entire
line is deleted.

i Enter input mode and insert text before the current character.
I Insert text before the beginning of the line. Equivalent to the two-character

sequence 0i .
[count]P Place the previous text modification before the cursor.
[count]p Place the previous text modification after the cursor.
R Enter input mode and replace characters on the screen with characters you type in

overlay fashion.

HP-UX Release 11i: December 2000 − 20 − Section 1−−415

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

[count]r c Replace the current character with c.
[count]x Delete current character.
[count]X Delete preceding character.
[count]. Repeat the previous text modification command.
[count]˜ Invert the case of the current character and advance the cursor.
[count]_ Causes the count word of the previous command to be appended at the current cur-

sor location and places the editor in input mode at the end of the appended text.
The last word is used if count is omitted.

* Appends an * to the current word and attempts file name generation. If no match
is found, the bell rings. If a match is found, the word is replaced by the matching
string and the command places the editor in input mode.

ESC
\ Attempt file name completion on the current word. Replaces the current word

with the longest common prefix of all filenames matching the current word with an
asterisk appended. If the match is unique, a / is appended if the file is a directory
and a space is appended if the file is not a directory.

Other Edit Commands
[count]ymotion
y [count]motion Yank current character through character that motion would move the cursor to

and puts them into the delete buffer. The text and cursor are unchanged.
Y Yanks from current position to end of line. Equivalent to y$.
u Undo the last text modifying command.
U Undo all the text modifying commands performed on the line.
[count]v Returns the command fc -e ${VISUAL:-${EDITOR:-vi}} count in the

input buffer. If count is omitted, the current line is used.
^L Line feed and print current line. Has effect only in control mode.
^J (New line) Execute the current line, regardless of mode.
^M (Return) Execute the current line, regardless of mode.
Equivalent to I# followed by Return. Sends the line after inserting a # in front

of the line and after each new-line. Useful for inserting the current command line
in the history list without executing it.

= List the filenames that match the current word if an asterisk were appended to it.
@letter The user’s alias list is searched for an alias by the name _letter and if an alias of

this name is defined, its value is inserted on the input queue for processing.

EXTERNAL INFLUENCES
Environment Variables

LC_COLLATE determines the collating sequence used in evaluating pattern matching notation for file name
generation.

LC_CTYPE determines the classification of characters as letters, and the characters matched by character
class expressions in pattern matching notation.

If LC_COLLATE or LC_CTYPE is not specified in the environment or is set to the empty string, the value of
LANG is used as a default for each unspecified or empty variable. If LANG is not specified or is set to the
empty string, a default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable con-
tains an invalid setting, ksh behaves as if all internationalization variables are set to "C". See environ(5).

International Code Set Support
Single-byte character code sets are supported.

RETURN VALUE
Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero exit status. Other-
wise, the shell returns the exit status of the last command executed (also see the exit command above).
If the shell is being used non-interactively, execution of the shell file is abandoned. Runtime errors
detected by the shell are reported by printing the command or function name and the error condition. If
the line number on which the error occurred is greater than one, the line number is also printed in brackets
([]) after the command or function name.

WARNINGS
File descriptors 10 and 54 through 60 are used internally by the Korn Shell. Applications using these and
forking a subshell should not depend upon them surviving in the subshell or its descendants.

Section 1−−416 − 21 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

If a command which is a tracked alias is executed, and a command with the same name is installed in a
directory in the search path before the directory where the original command was found, the shell contin-
ues to load and execute the original command. Use the -t option of the alias command to correct this
situation.

If you move the current directory or one above it, pwd may not give the correct response. Use the cd
command with a full path name to correct this situation.

Some very old shell scripts contain a caret (ˆ) as a synonym for the pipe character (|). Note however,
ksh does not recognize the caret as a pipe character.

If a command is piped into a shell command, all variables set in the shell command are lost when the com-
mand completes.

Using the fc built-in command within a compound command causes the entire command to disappear
from the history file.

The built-in command . file reads the entire file before any commands are executed. Therefore, alias
and unalias commands in the file do not apply to any functions defined in the file.

Traps are not processed while the shell is waiting for a foreground job. Thus, a trap on CHLDis not exe-
cuted until the foreground job terminates.

The export built-in command does not handle arrays properly. Only the first element of an array is
exported to the environment .

Background processes started from a non-interactive shell cannot be accessed by using job control com-
mands.

In an international environment, character ordering is determined by the setting of LC_COLLATE, rather
than by the binary ordering of character values in the machine collating sequence. This brings with it cer-
tain attendant dangers, particularly when using range expressions in file name generation patterns. For
example, the command,

rm [a-z]*

might be expected to match all file names beginning with a lowercase alphabetic character. However, if
dictionary ordering is specified by LC_COLLATE, it would also match file names beginning with an uppercase
character (as well as those beginning with accented letters). Conversely, it would fail to match letters col-
lated after z in languages such as Danish or Norwegian.

The correct (and safe) way to match specific character classes in an international environment is to use a
pattern of the form:

rm [[:lower:]]*

This uses LC_CTYPE to determine character classes and works predictably for all supported languages and
codesets. For shell scripts produced on non-internationalized systems (or without consideration for the
above dangers), it is recommended that they be executed in a non-NLS environment. This requires that
LANG, LC_COLLATE, etc., be set to "C" or not set at all.

Be aware that the value of the IFS variable in the user’s environment affects the behavior of scripts.

ksh implements command substitution by creating a pipe between itself and the command. If the root file
system is full, the substituted command cannot write to the pipe. As a result, the shell receives no input
from the command, and the result of the substitution is null. In particular, using command substitution for
variable assignment under such circumstances results in the variable being silently assigned a NULL value.

AUTHOR
ksh was developed by AT&T.

FILES
/etc/passwd to find home directories
/etc/profile read to set up system environment
/etc/suid_profile security profile
$HOME/.profile read to set up user’s custom environment
/tmp/sh ∗ for here-documents

HP-UX Release 11i: December 2000 − 22 − Section 1−−417

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ksh(1) ksh(1)

SEE ALSO
cat(1), cd(1), echo(1), env(1), getopts(1), kill(1), pwd(1), read(1), test(1), time(1), umask(1), vi(1), dup(2),
exec(2), fork(2), gtty(2), pipe(2), stty(2), signal(5), umask(2), ulimit(2), wait(2), rand(3C), a.out(4), profile(4),
environ(5), lang(5), regexp(5).

Section 1−−418 − 23 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

ktutil(1) ktutil(1)

NAME
ktutil - Kerberos keytab file maintenance utility

SYNOPSIS
ktutil

DESCRIPTION
The ktutil command invokes a subshell from which an administrator can read, write, or edit entries in
a Kerberos V5 keytab or V4 srvtab file.

ktutil Commands
list Display the current key list. Alias: l

read_kt keytab_filename Read the Kerberos V5 keytab file, keytab_filename, into the current key
list. Alias: rkt

read_st srvtab_filename Read the Kerberos V4 srvtab file, srvtab_filename, into the current key list.
Alias: rst

write_kt keytab_filename Write the current key list into the Kerberos V5 keytab file,
keytab_filename. Alias: wkt

write_st srvtab_filename Write the current key list into the Kerberos V4 srvtab file, srvtab_filename.
Alias: wst

clear_list Clear the current key list. Alias: clear

delete_entry slot Delete the entry in slot number slot from the current key list. Alias:
delete

list_requests Display a listing of available commands. Aliases: lr , ?

quit Quit or exit from ktutil . Aliases: exit , q

FILES
/etc/krb5.keytab Default location of the keytab file.

/etc/srvtab Default location of the srvtab file

AUTHOR
ktutil was developed by the Massachusetts Institute of Technology.

SEE ALSO
kerberos(5).

HP-UX Release 11i: December 2000 − 1 − Section 1−−419

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

k

kvno(1) kvno(1)

NAME
kvno - print key version numbers of Kerberos principals

SYNOPSIS
kvno [-e etype] service1 , [service2 , ...]

DESCRIPTION
kvno acquires a service ticket for the specified Kerberos principals and prints out the key version numbers
of each principal.

Options
-e etype Specifies the encryption type which will be requested for the session key of all the services

named on the command line. This is useful in certain backward compatibility situations. The
value of etype can be one of DES-CBC-CRC, DES-CBC-RAW or DES-CBC-MD4.

service1 ,service2 Service name(s) or principal name(s).

Environment Variables
kvno uses the following environment variable:

KRB5CCNAMELocation of the credentials ticket cache.

FILES
/tmp/krb5cc_ {uid} Default location of the credentials cache. {uid} is the decimal UID of the user.

AUTHOR
kvno was developed by FundsXpress, INC.

SEE ALSO
kdestroy(1), kerberos(5), kinit(1), krb5.conf(4), libkrb5(3).

Section 1−−420 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

last(1) last(1)

NAME
last, lastb - indicate last logins of users and ttys

SYNOPSIS
/usr/bin/last [-R] [- number] [-f file] [name ...] [tty ...]

/usr/bin/lastb [-R] [- number] [-f file] [name ...] [tty ...]

DESCRIPTION
The last command searches backwards through the file /var/adm/wtmp (which contains a record of all
logins and logouts) for information about a user, a tty, or any group of users and ttys. Arguments specify
names of users or ttys of interest. The names of ttys can be given fully or abbreviated. For example, last
0 is the same as last tty0 . If multiple arguments are given, the information that applies to any of the
arguments is printed. For example, last root console lists all of root ’s sessions as well as all ses-
sions on the console terminal. The last command prints the sessions of the specified users and ttys, most
recent first, indicating when the session began, the duration of the session, and the tty on which the session
took place. last indicates if the session is still in progress or if it was cut short by a reboot.

The pseudo-user reboot logs each time the system reboots. Thus, last reboot is a useful command
for evaluating the relative time between system reboots.

If last is interrupted, it indicates how far the search has progressed in wtmp. If interrupted by a quit
signal (generated by a Ctrl-\), last indicates how far the search has progressed, then continues the
search.

The lastb command searches backwards through the database file /var/adm/btmp to display bad
login information. Access to /var/adm/btmp should be restricted to users with appropriate privileges
(owned by and readable only by root) because it may contain password information.

Options
The last and lastb commands recognize the following options and arguments:

(none) If no arguments are specified, last prints a record of all logins and logouts in reverse
order, most recent first.

-R When used with last and lastb , -R displays the user’s host name as it is stored in the
files /var/adm/wtmp and /var/adm/btmp , respectively. The host name is displayed
between the tty name and the user’s login time.

- number Limits the report to number of lines.

-f file Use file as the name of the accounting file instead of /var/adm/wtmp or
/var/adm/btmp .

AUTHOR
last was developed by the University of California, Berkeley and HP.

FILES
/var/adm/btmp Bad login database
/var/adm/wtmp Login database

SEE ALSO
login(1), utmp(4).

HP-UX Release 11i: December 2000 − 1 − Section 1−−421

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lastcomm(1) lastcomm(1)

NAME
lastcomm - show last commands executed in reverse order

SYNOPSIS
lastcomm [commandname] ... [username] ... [terminalname] ...

DESCRIPTION
lastcomm gives information on previously executed commands. If no arguments are specified,
lastcomm prints information about all the commands recorded in the accounting file,
/var/adm/pacct during the current accounting file’s lifetime. If called with arguments, only account-
ing entries with a matching command name, user name, or terminal name are printed. For example, to
produce a listing of all executions of commands named a.out by user root on terminal ttyd0 use:

lastcomm a.out root ttyd0

For each process entry, the following are printed.

• Name of the user who ran the process.

• Flags, as accumulated by the accounting facilities in the system.

• Command name under which the process was called.

• Amount of cpu time used by the process (in seconds).

• What time the process started.

Flags are encoded as follows:

S Command was executed by a user who has appropriate privileges.

F Command ran after a fork, but without a following exec .

D Command terminated with the generation of a core file.

X Command was terminated with the signal SIGTERM.

FILES
/var/adm/pacct current file for per-process accounting

AUTHOR
lastcomm was developed by the University of California, Berkeley.

SEE ALSO
last(1), acct(4), acctsh(1M), core(4).

Section 1−−422 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ld(1) ld(1)

NAME
ld - link editor

SYNOPSIS
The link editor. Common options:

ld [-bdmnqrstvxzEGIOPQVZ] [-a search] [-c filename] [-dynamic]
[-e epsym] [-h symbol] . . . [-l x file] ... [-l: library]
[-m] [-noshared] [-o outfile] [-u symbol] . . . [-y symbol] . . .
[-B bind] [-D offset] [-L dir] . . . [-R offset] [-Pd] [-PD file] [-PF file] [+b path_list]
[+compat] [+copyobjdebug] [+df file]
[+e symbol] [+ee symbol] [+fb] [+fbu] [+gst]
[+gstsize size] [+h internal_name] [+help] [+k] [+n]
[+nocopyobjdebug] [+noobjdebug] [+objdebugonly] [+pd size]
[+pgm name] [+pi size] [+s] [+std] [+tools] [+v[no]shlibunsats]
[+vallcompatwarnings] [+v[no]compatwarnings] [+FP flag]
[+I symbol] [+O[no]fastaccess] [+O[no]procelim] [+Oreusedir= dir]
[+Oselectivepercent n] [+Oselectivesize size] [+OselectiveO3]
[+Ostaticprediction]

32 Bit (SOM) Link Editor options:
ld [-NST] [-A name] [-C n] [-Fl] [-Fw] [-Fz] [+cdp oldpath:newpath]

[+cg pathname] [+dpv] [+filter shared_library_path]
[+gstbuckets size] [+nosmartbind] [+plabel_cache flag]

64 Bit (ELF) Link Editor options:
ld [-k filename] [+fini function] [+ild] [+ildnowarn] [+ildpad percentage] [+ildrelink]

[+init function] [+interp file] [+[no]allowunsats] [+[no]forceload]
[+hideallsymbols] [+nodefaultmap] [+noenvvar] [+nodynhash]
[+nosectionmerge] [+paddata pagesize] [+padtext pagesize] [+pdzero]
[+stripunwind] [+vtype type]

DESCRIPTION
ld takes one or more object files or libraries as input and combines them to produce a single (usually exe-
cutable) file. In doing so it resolves references to external symbols, assigns final addresses to procedures
and variables, revises code and data to reflect new addresses (a process called "relocation"), and updates
symbolic debug information when present in the file. By default, ld produces an executable file that can
be run by the HP-UX loader exec() (see exec(2)). Alternatively, the linker can generate a relocatable file
that is suitable for further processing by ld (see -r below). It can also generate a shared library (see -b
below). The linker marks the output file non-executable if there are any duplicate symbols or any
unresolved external references remain. ld may or may not generate an output file (see +k option) if any
other errors occur during its operation.

ld recognizes three kinds of input files: object files created by the compilers, assembler, or linker (also
known as .o files), shared libraries created by the linker, and archives of object files (called archive
libraries). An archive library contains a table of all the externally-visible symbols from its component object
files. (The archiver command ar(1) creates and maintains this index.) ld uses this table to resolve refer-
ences to external symbols.

ld processes files in the same order as they appear on the command line. It includes code and data from
an archive library element if and only if that object module provides a definition for a currently unresolved
reference within the user’s program. It is common practice to list libraries following the names of all sim-
ple object files on the command line.

Code and data from shared libraries is never copied into an executable program. The dynamic loader
/usr/lib/dld.sl on 32-bit links is invoked at startup time by the startup file crt0.o if a program
uses shared libraries. Identical copies of crt0.o can be found in either /usr/ccs/lib/crt0.o or
/opt/langtools/lib/crt0.o . For 64-bit mode, the dynamic loader is
/usr/lib/pa20_64/dld.sl and is invoked by exec for those programs that use shared libraries.
crt0.o is not required in shared bound links. The dynamic loader attaches each required library to the
process and resolves all symbolic references between the program and its libraries.

The text segment of a shared library is shared among all processes that use the library; each process using
the library receives its own copy of the data segment. If pxdb -s on has been run on the executable
that loads the library, the text segment of a shared library is mapped privately for each process running the

HP-UX Release 11i: December 2000 − 1 − Section 1−−423

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ld(1) ld(1)

executable. ld recursively examines the dependencies of shared libraries used by a program that was
created by ld . If ld does not find a supporting shared library at the path recorded in the dependency list
of a shared library, and if the dependency is the result of an -l argument used when the shared library
was created, ld will search all the directories that it would search for a library that was specified with -l
(see -L and LPATH).

Environment Variables
Arguments can be passed to the linker through the LDOPTSenvironment variable as well as on the com-
mand line. The linker gets the value of LDOPTSand places its contents before any arguments on the com-
mand line.

The LD_PXDB environment variable defines the full execution path for the debug preprocessor pxdb .
The default value is /opt/langtools/bin/pxdb . ld invokes pxdb on its output file if that file is
executable and contains debug information. To defer invocation of pxdb until the first debug session, set
LD_PXDBto /bin/true .

The LPATH environment variable can be used to specify default directories to search for library files. See
the -l option.

Options
The common ld options are listed first, followed by the options supported only in a 32-bit linker, and then
the options only supported in a 64-bit linker.

-a search Specify whether shared or archive libraries are searched with the -l option. The
value of search should be one of archive , shared , archive_shared ,
shared_archive , or default . This option can appear more than once, inter-
spersed among -l options, to control the searching for each library. The default is to
use the shared version of a library if one is available, or the archive version if not.

If either archive or shared is active, only the specified library type is accepted.

If archive_shared is active, the archive form is preferred, but the shared form is
allowed.

If shared_archive is active, the shared form is preferred but the archive form is
allowed.

-b Create a shared library rather than a normal executable file. Object files processed
with this option must contain position-independent code (PIC). See the discussion
of PIC in cc(1), CC(1) (part of the optional C++ compiler documentation), f77(1), pc(1),
as(1), and Linker and Libraries Online User Guide.

-c filename Read ld options from a file. Each line contains zero or more arguments separated by
white space. Each line in the file, including the last line, must end with a newline
character. A # character implies that the rest of the line is a comment. To escape a
character, use the sequence ## .

-d Force definition of ‘‘common’’ storage; that is, assign addresses and sizes, for -r out-
put.

-e epsym Set the default entry point address for the output file to be that of the symbol epsym .
(This option only applies to executable files.)

-h symbol Prior to writing the symbol table to the output file, mark this name as ‘‘local’’ so that
it is no longer externally visible. This ensures that this particular entry will not clash
with a definition in another file during future processing by ld .

More than one symbol can be specified, but -h must precede each one. If used when
building a shared library or program, this option prevents the named symbol from
being visible to the dynamic loader.

-l x Search a library lib x.a or lib x.sl , where x is one or more characters. The
current state of the -a option determines whether the archive (.a) or shared (.sl)
version of a library is searched. Because a library is searched when its name is
encountered, the placement of a -l is significant. By default, 32-bit libraries are
located in /usr/lib and /usr/ccs/lib . 64-bit libraries are located in
/usr/lib/pa20_64 . If the environment variable LPATH is present in the user’s
environment, it should contain a colon-separated list of directories to search. These
directories are searched instead of the default directories, but -L options can still be

Section 1−−424 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ld(1) ld(1)

used. If a program uses shared libraries, the dynamic loader /usr/lib/dld.sl
for 32-bit or /usr/lib/pa20_64/dld.sl for 64-bit will attempt to load each
library from the same directory in which it was found at link time (see the +s and
+b options).

-l: library Search the library specified. Similar to the -l option except the current state of the
-a option is not important. The library name can be any valid filename. (Note that
previous releases required that the library name contain the prefix lib and end with
a suffix of .a or .sl .)

-m This option produces a load map on the standard output.

-n This option is accepted but ignored by the 64-bit ld . Generate an executable output
file with file type SHARE_MAGIC. This is the default. This option is incompatible
with -N and -q .

-o outfile Produce an output object file named outfile (a.out if -o outfile is not specified).

-q This option is ignored for 64-bit links. Generate an executable output file with file
type DEMAND_MAGIC. This option is incompatible with -n , -N , and -Q .

-r Retain relocation information in the output file for subsequent re-linking. The ld
command does not report undefined symbols. This option cannot be used when build-
ing a shared library (-b) or in conjunction with -A or +ild incremental linking
options.

-s Strip the output file of all symbol table, relocation, and debug support information.
This might impair or prevent the use of a symbolic debugger on the resulting pro-
gram. This option is incompatible with -r . (The strip(1) command also removes this
information.) This option is incompatible with +ild . (The incremental linking
requires the parts of the output load module which are stripped out with -s option.)

-t Print a trace (to standard output) of each input file as ld processes it.

-u symbol Enter symbol as an undefined symbol in the symbol table. The resulting unresolved
reference is useful for linking a program solely from object files in a library. More
than one symbol can be specified, but each must be preceded by -u .

-v Display verbose messages during linking. For each library module that is loaded, the
linker indicates which symbol caused that module to be loaded.

-x Strip local symbols from the output file. This reduces the size of the output file
without impairing the effectiveness of object file utilities. This option is incompatible
with the -r option. This option is incompatible with the +ild option. (The incre-
mental linking requires the parts of the output load module which are stripped out
with the -x option.

Note: use of -x might affect the use of a debugger.

-y symbol Indicate each file in which symbol appears. More than one symbol can be specified,
but each must be preceded by -y .

-z Arrange for run-time dereferencing of null pointers to produce a SIGSEGV signal.
(This is the complement of the -Z option.)

-B bind Select run-time binding behavior of a program using shared libraries or the binding
preference in building a shared library. The most common values for bind are:

deferred
Bind addresses on first reference rather than at program start-up time. This is
the default.

immediate
Bind addresses of all symbols immediately upon loading the library. Commonly
followed by -B nonfatal to allow procedure calls that cannot be resolved at
program start-up to be resolved on first reference.

Since -B nonfatal suppresses messages about unresolved symbols, also
specify -B verbose to display those messages.

See the example below.

HP-UX Release 11i: December 2000 − 3 − Section 1−−425

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ld(1) ld(1)

nonfatal
If also using -B immediate , for code symbols that could not be bound at pro-
gram startup, defer binding them until they are referenced. See description of
-B immediate above.

Since -B nonfatal suppresses messages about unresolved symbols, also
specify -B verbose to display those messages.

restricted
Causes the search for a symbol definition to be restricted to those symbols that
were visible when the library was loaded.

symbolic
Used only when building a shared library (with the -b option), this option
causes all unresolved symbols inside a library to be resolved internally if possi-
ble. By default, unresolved symbols are resolved to the most visible definition in
the library or outside of the library.

verbose
Display verbose messages when binding symbols. This is the default except when
-B nonfatal is specified. In that case, -B verbose must be explicitly
specified to get verbose messages.

See the +help option or the HP-UX Linker and Libraries User’s Guide manual for
more information on the uses of binding modes.

-D offset Set the origin (in hexadecimal) for the data segment.

When used with the +ild option, if you change the offset after the initial incremental
link, the linker performs an initial incremental link automatically.

-E This option is accepted but ignored by the 64-bit ld . Mark all symbols defined by a
program for export to shared libraries. By default, ld marks only those symbols that
are actually referenced by a shared library seen at link time.

-G Strip all unloadable data from the output file. This option is typically used to strip
debug information.

-I Instrument the code to collect profile information upon execution. The profile data
gathered during program execution can be used in conjunction with the -P option.
32-bit programs linked with this option should use the startup file
/opt/langtools/lib/icrt0.o . This option should not be used with the -P ,
-A , -O , +ild , or +O options.

-L dir Search for lib x.a or lib x.sl in dir before looking in default locations. More than
one directory can be specified, but each must be preceded by -L . The -L option is
effective only if it precedes the -l option on the command line.

-O Turn on linker optimizations. Currently the optimizations include the elimination of
unnecessary ADDIL instructions from the code in the executable file (32-bit only),
and the removal of dead procedures.

-O is passed to the linker by the compilers when the +O4 compiler option is selected.

This option is incompatible with the +ild option.

For more details on linker optimizations refer to the +help option or the HP-UX
Linker and Libraries User’s Guide manual.

-P Examine the data file produced by an instrumented program (see the -I option) to
perform profile based optimizations on the code. This option should not be used with
the -A or +ild options.

-Q Ignored for 64-bit links. Generate an executable output file with file type
EXEC_MAGICor SHARE_MAGIC, depending on whether -N or -n is specified.
This is the default. This option is incompatible with -q .

-R offset Set the origin (in hexadecimal) for the text (i.e., code) segment.

When used with the +ild option, if you change the offset after the initial incremen-
tal link, the linker performs an initial incremental link automatically.

Section 1−−426 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ld(1) ld(1)

-V Output a message giving information about the version of ld being used.

-Z Allow run-time dereferencing of null pointers. See the discussions of -Z and pointers
in cc(1). (This is the complement of the -z option.)

-Pd Reorder debuggable functions. Ordinarily -P does not reorder functions from .o
files with debugging information, because reordering renders them non-debuggable.
This option overrides this and reorders the functions.

-PD filename Save link order file generated by fdp during linking with -P option into user-
specified file. This option is incompatible with the +ild option.

-PF filename Indicate to the linker to use the specified file for the linker file instead of generating it
using /usr/ccs/bin/fdp . This option is incompatible with the +ild option.

-dynamic This allows the linker to create a program which can use shared libraries. This is the
default for 64-bit links unless +compat is used. In 32-bit mode, the linker creates a
static executable if there are no shared libraries on the link line.

-noshared This option forces the linker to create a fully archive bound program.

+b path_list Specify a colon-separated list of directories (embedded path) to be searched at pro-
gram run-time to locate shared libraries needed by the executable output file that
were specified with either the -l or -l: option. An argument consisting of a single
colon (:) indicates that ld should build the list using all the directories specified by
the -L option and the LPATHenvironment variable (see the +s option).

+compat This option is ignored for 32-bit links. This option turns on compatibility mode in the
linker — 64-bit links mimic behavior of 32-bit links).

+copyobjdebug
Copy objdebug space.

+df file Used together with the -P option, this option specifies that file should be used as the
profile database file. The default value is flow.data . See the discussion of the
FLOW_DATAenvironment variable for more information. This option is incompatible
with the +ild option.

+e symbol When building a shared library or program, mark the symbol for export to the
dynamic loader. Only symbols explicitly marked are exported. When building a
shared library, calls to symbols that are not exported are resolved internally.

+ee symbol This option is similar to the +e option in that it exports a symbol. However, unlike
the +e option, +ee does not alter the visibility of any other symbol in the file. In a
32-bit link or +compat mode 64-bit link, it has the effect of exporting the specified
symbol without hiding any of the symbols exported by default. In a 64 +std link, all
symbols are exported by default, so +ee is not necessary to make a symbol visible.
However, it has the additional side effect of identifying the symbol as necessary, so
that it will not be removed when using dead code elimination (+Oprocelim). Of
course, +ee still retains its export behavior if an option such as +hideallsymbols
is also given.

+fb Instructs the linker to run the fastbind tool on the executable it has produced. The
executable should be linked with shared libraries. For more details refer to fast-
bind(1), the +help option, or the HP-UX Linker and Libraries User’s Guide manual.
This option is incompatible with the +ild option.

+fbu Pass the -u option to the fastbind tool. For more details refer to fastbind(1), the
+help option, or the HP-UX Linker and Libraries User’s Guide manual. This option
is incompatible with the +ild option.

+gst Enable the global symbol table hash mechanism, used to look up values of symbol
import/export entries. The +gst and related options provide performance enhance-
ments through use of global symbol table which improves searching for exported sym-
bols. See dld.sl(5) and the HP-UX Linker and Libraries Online User Guide for more
information.

+gstsize size
Request a particular hash array size using the global symbol table hash mechanism.
The default value is 1103. The value can be overridden at runtime by setting the

HP-UX Release 11i: December 2000 − 5 − Section 1−−427

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ld(1) ld(1)

_HP_DLDOPTSenvironment variable to the value -symtab_size prime number.
You can set the value using chatr +gstsize size file.

+h internal_name
When building a shared library, record internal_name as the name of the library.
When the library is used to link another executable file (program or shared library),
this internal_name is recorded in the library list of the resulting output file instead of
the file system pathname of the input shared library.

That is, if +h is not used, the shared library does not have an internal name and when
an executable is built with the shared library, the linker records the library name that
it looks at.

If internal_name is a fully-qualified pathname, it is recorded as is in the library list
of any executable file it is subsequently linked against. internal_name is a relative
pathname or no directory component was specified, internal_name is appended to
the file system directory component of the input shared library in the library list of
any executable file it is subsequently linked against.

If more than one +h option is seen on the link line, the first one is used and a warning
message is emitted.

+help Starts the help window utility HP-UX Linker and Libraries Online User Guide which
comes with some HP compilers. (You must be running the X window system and your
DISPLAY environment variable must be set to the name of your workstation or X ter-
minal.) For more information, refer to the HP-UX Linker and Libraries User’s Guide
manual. See manuals(5) for ordering information.

+k Direct the linker to only create an executable if there were no errors encountered dur-
ing the link. If there were errors found (system errors or unresolved references), the
output file will be removed.

+n Causes the linker to load all object modules before searching any archive or shared
libraries. Then it searches the archive and shared libraries specified on the command
line in left to right order. Repeats the left to right search of the libraries on the com-
mand line until there are no more unsatisfied symbols, or the last search added no
new definitions. This option is useful if two libraries are specified that have symbol
dependencies on each other.

+nocopyobjdebug
Do not copy objdebug space. Use this option (with -r object files on the link line) to
suppress the default behavior of copying LINKMAP space to the executable file .

+noobjdebug
Override the +objdebug compiler option, and copy all debug information to the
executable file.

When used with -g , +objdebug leaves debug information in the object files instead
of copying it to the executable file at link time, resulting in shorter link times and
smaller executables. The compile-time default, +noobjdebug , copies the debug
information to the executable file.

When you specify -g when compiling, the compiler places symbolic debugging infor-
mation into the object files. By default, the linker calls pxdb which compacts this
debug information and copies it to the executable file. When +objdebug was used
at compile time, the linker leaves the debug information in the object files. To debug
the executable file, the HP WDB debugger must have access to the object files. If you
move the object files, use HP WDB’s objdir command to tell it where the object files
are. (The HP DDE debugger does not support this option.) The +objdebug option
reduces link time and the size of the executable file by avoiding this copying of debug
information.

The compile-time default is +noobjdebug . If the linker detects any object files that
were compiled with +objdebug , it leaves the debug information in those files. Any
object files not compiled with +objdebug have their debug information copied into
the executable file. You can leave debug information in some object files and not in
others.

Section 1−−428 − 6 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ld(1) ld(1)

When archive members are not compiled with +objdebug (and they contain debug
information, that is, they were compiled with -g), the debug information from the
archive members is copied into the a.out by default. The linker does not copy debug
information from shared libraries into the a.out , regardless of whether they are
compiled with +objdebug or +noobjdebug .

Use the +noobjdebug option when linking to explicitly tell the linker to copy all
debug information to the executable file, even from files compiled with +objdebug .

+objdebugonly
Ignore debug information from non-objdebug objects or archives and proceed in
+objdebug mode. This option can be passed from the C or C++ compiler command
line as -Wl,+objdebugonly . If you are debugging only files compiled with the
+objdebug option, +objdebugonly can improve link time by instructing the
linker to bypass the processing of debug information from files compiled with
+noobjdebug . With the +objdebugonly option, the linker suppresses the call
to pxdb .

+pd size Request a particular virtual memory page size that should be used for data. Sizes of
4K, 16K, 64K, 256K , 1M, 4M, 16M, 64M, 256M, D, and L are supported. A size of D
allows the kernel to choose what page size should be used. A size of L will result in
using the largest page size available. The actual page size may vary if the requested
size cannot be fulfilled.

+pgm name Used together with the -P option, this option specifies that name should be used as
the look-up name in the profile database file. The default is the basename of the out-
put file (specified by the -o option.) This option is incompatible with the +ild
option.

+pi size Request a particular virtual memory page size that should be used for instructions.
See the +pd option for additional information.

+s Indicates that at run-time, the shared library loader can use the environment variable
SHLIB_PATH and LD_LIBRARY_PATH (64-bit only) to locate shared libraries
needed by the executable output file that were specified with either the -l or -l:
option. The environment variables should be set to a colon-separated list of direc-
tories. If both +s and +b are used, their relative order on the command line indi-
cates which path list will be searched first (see the +b option).

+std This option is ignored for 32-bit links. Turns on standard mode, which is the default
in 64-bit mode. Options turned on with this option are: -dynamic . Options turned
off or ignored when this option is specified are: +compat ,+noenvvar ,-
noshared .

+vallcompatwarnings
This option is accepted but ignored by the 64-bit ld . Show more detail for any warn-
ings about compatibility issues. By default, only a terse message is printed. See the
WARNINGSsection below for further details.

+v[no]compatwarnings
This option is accepted but ignored by the 64-bit ld . Enable [disable] printing warn-
ings about compatibility issues between systems. This includes any functionality
which may change in future releases. The default is +vcompatwarnings . See the
WARNINGSsection below for further details.

+v[no]shlibunsats
Enable [disable] printing a list of unsatisfied symbols used by shared libraries. The
default is +vnoshlibunsats . Some unsatisfied symbols reported by the linker are
not required at run time because the modules which reference the symbols are not
used.

+FP flag Specify how the environment for floating-point operations should be initialized at pro-
gram start-up. By default, all behaviors are disabled. The following flags are sup-
ported (upper case flag enables; lower case flag disables):

V (v) Trap on invalid floating-point operations

Z (z) Trap on divide by zero

HP-UX Release 11i: December 2000 − 7 − Section 1−−429

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ld(1) ld(1)

O (o) Trap on floating-point overflow

U (u) Trap on floating-point underflow

I (i) Trap on floating-point operations that produce inexact results.

D (d) Enable sudden underflow (flush to zero) of denormalized values.

Note: Enabling sudden underflow is an undefined operation on PA-RISC
1.0-based systems, but it is defined on all subsequent versions of PA-RISC.
Selecting this flag enables sudden underflow only if it is available on the
processor being used at run-time.

To dynamically change these settings at run-time, see fesettrapenable(3M).

+I symbol Specify the name of the initializer function when building a shared library. A shared
library may have multiple initializers specified. Initializers are executed in the order
that they are specified. You can specify more than one initializer, but each must be
preceded by +I . For more details on the initializer function, refer to the +help
option or the HP-UX Linker and Libraries User’s Guide manual.

+O[no]fastaccess
Enable [disable] fast access to global data. The linker rearranges the data to further
reduce the number of ADDIL instructions in the executable.

This optimization may reveal some subtle programming errors related to assumptions
about data layout. This optimization can occur at optimization levels 2, 3 and 4. The
default is +Onofastaccess at optimization levels 2 and 3, and +Ofastaccess
at optimization level 4.

Using the +Ofastaccess option in the presence of debug information generates a
warning message and can cause corruption of the debug information. Avoid using
+Ofastaccess with the -g option.

This option is accepted but ignored by the 64-bit ld .

+O[no]procelim
Enable [disable] the elimination of procedures that are not referenced by the applica-
tion. The default is +Onoprocelim . Procedure elimination can occur at any optim-
ization level, including level 0. For more details refer to the +help option or the
HP-UX Linker and Libraries User’s Guide manual. This option is incompatible with
the +ild option.

+Oreusedir= dir
Specify the name of the directory to use as the reuse repository for the object code
reuse feature. This directory holds the compiled object files for reuse. dir can be an
absolute or relative path to directory where you invoked the linker. The
+Oreusedir option shortens link time by not recompiling intermediate object code
to object code when using +O4 or profile-based optimization.

+Oselectivepercent n
Instructs the interprocedural optimizer driver to pass the first n percent of the object
files to the high level optimizer for interprocedural optimizations such as inlining.

+Oselectivesize size
Instructs the interprocedural optimizer driver to pass the first k routines to the high
level optimizer for interprocedural optimization where the size of k routines are
approaching but less than size.

+OselectiveO3
Instructs the interprocedural optimizer driver to compile the routines not included in
the +O4 list to be compiled at +O3.

+Ostaticprediction
Meaningful only on PA 2.0 architecture, this option sets the branch prediction bit in
the output executable file’s auxiliary header.

32 Bit Link Editor Options
-A name This option specifies incremental loading. Linking is arranged so that the resulting

object can be read into an already executing program. The argument name specifies a

Section 1−−430 − 8 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ld(1) ld(1)

file whose symbol table provides the basis for defining additional symbols. Only newly
linked material is entered into the text and data portions of a.out , but the new sym-
bol table reflects all symbols defined before and after the incremental load. Also, the
-R option can be used in conjunction with -A , which allows the newly linked segment
to commence at the corresponding address. The default starting address is the old
value of _end . The -A option is incompatible with -r and -b . Also note that a
program that dynamically loads code with ld -A cannot use shared libraries. See
the +help option or the HP-UX Linker and Libraries User’s Guide manual for a
description of this option.

-C n Set the maximum parameter-checking level to n. The default maximum is 3. See the
language manuals for the meanings of the parameter-checking level.

-Fl Force load all member objects of an archive library. If you do not use -Fl , the linker
only loads the needed archive members. This option is useful for creating a shared
library from an archive library, or when you need to load archive member that define
symbols needed by shared libraries.

-Fw Don’t emit unwind tables. Do not use this option if your compiler or tools require
unwind tables.

-Fz Disable the linker feature that translates some calls to $$dyncall_external to
calls to $$dyncall .

-N Generate an executable output file with file type EXEC_MAGIC. This option is incom-
patible with -n and -q . This option causes the data to be placed immediately follow-
ing the text, and makes the text writable. Files of this type cannot be shared.

-S Generate an Initial Program Loader (IPL) auxiliary header for the output file, instead
of the default HP-UX auxiliary header.

-T Save the load data and relocation information in temporary files instead of in memory
during linking. This option reduces the virtual memory requirements of the linker. If
the TMPDIR environment variable is set, the temporary files are created in the
specified directory, rather than in /var/tmp .

+cdp oldpath:newpath
Replace the recorded path for a shared library in the a.out . In 32-bit mode, ld
records the absolute path names of any shared libraries searched at link time in the
a.out file. When the program begins execution, the dynamic loader attaches any
shared libraries that were searched at link time. Although you can use the +b and/or
+s linker options to direct the dynamic loader to directories to search for the shared
libraries, the dynamic loader, as a last resort, searches for the shared libraries in its
absolute, recorded path in the a.out . You can specify more than one shared library
oldpath:newpath, but each must be preceded by the +cdp option.

+cg pathname Specify the use of pathname as the code generator for compiling ISOMs to SOMs. See
the discussion of profile based optimization in the HP-UX Linker and Libraries Online
User’s Guide for more information.

+dpv Display verbose messages regarding procedures which have been removed due to dead
procedure elimination. The symbol name, input object file, and the size (in bytes) of
the deleted procedure are displayed. The total size (in bytes) of the deleted pro-
cedures is also displayed.

+filter shared_library_path
Enables the shared library filter mechanism, which allows you divide a large library
into a "filter" and several "implementation" libraries for more efficient organization of
shared libraries. shared_library_path specifies the location of the filter library. See
the HP-UX Linker and Libraries User’s Guide for more information.

+gstbuckets size
Request a particular number of buckets per entry using the global symbol table hash
mechanism. The default value is 3. The value can be overridden at runtime by set-
ting the _HP_DLDOPTSenvironment variable to the value -symtab_buckets
number. You can set the value using chatr +gstbuckets size file.

+nosmartbind
Disable SmartBind when binding a shared library. With this option enabled, the

HP-UX Release 11i: December 2000 − 9 − Section 1−−431

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ld(1) ld(1)

linker places all symbols in the link into a single SmartBind module instead of placing
each .o file in its own module.

+plabel_cache
Enable the plabel caching mechanism. Use this option with the +gst option.

This option is only effective with C++. In C++ applications, the dynamic loader needs
to repetitively access PLABEL information (import stub). In order to make this access
faster, the dynamic loader uses the global symbol table structure to also contain PLA-
BEL entries. This behavior is enabled when the PLABEL_CACHE flag is set in the
dl_header structure (enabled ld +plabel_cache enable a.out or chatr
+plabel_cache enable a.out).

64-bit Link Editor Options
-k filename filename specifies a mapfile that describes the output file memory map.

The user specified mapfile specifications are permitted with the +ild option. But you
should not modify the mapfile after the initial incremental link. If the mapfile is
modified after the initial link, an initial incremental link is performed automatically.

Please refer to HP-UX Linker and Libraries User’s Guide guide for more information.
Also see +nodefaultmap .

+[no]allowunsats
+allowunsats Does not flag errors if the resulting output file has unsatisfied sym-
bols. This is the default for relocatable links and shared library builds. +noal-
lowunsats Flags an error if the resulting output file has unsatisfied symbols. This
is the default for program files.

+fini function_name
Specify the terminator function.

+ild Specify incremental linking.

If the output file does not exist, or if it was created without the +ild option, the
linker performs an initial incremental link. The output file produced is suitable for
subsequent incremental links. The incremental link option is valid for both executable
and shared library links.

The following options are compatible with the +ild option with limitations:

-D offset , -R offset
Set the origin for the data and text segments. If you change the offset after the
initial incremental link, the linker performs an initial incremental link automati-
cally.

-k mapfile
provide a non-default mapfile. The user specified mapfile specifications are per-
mitted with the +ild option. But you should not modify the mapfile after the
initial incremental link. If the mapfile is modified after the initial link, an initial
incremental link is performed automatically.

If you specify one of the following incompatible ld option with +ild , the linker emits
a warning message and ignores the +ild option.

-r create a relocatable object file.

Strip options:
-s and -x strip the output file. (The incremental linking requires the parts of
the output load module which are stripped out with these options.)

Optimization options:
-I , -O , -P , -PD , -PF , +df file, +fb , +fbu , +fbs , +pgm name, +Opro-
celim

+ildnowarn Suppress incremental-linking related warnings. By default, the linker issues all
incremental-linking related warnings. This option is ignored if used without +ild or
+ildrelink .

+ildpad percentage
Control the amount of padding percentage the incremental linker allocates, relative to

Section 1−−432 − 10 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ld(1) ld(1)

sizes of object file structures being padded. By default the linker allocates 25% of pad-
ding space. This option is ignored if used without +ild or +ildrelink .

+ildrelink Perform an initial incremental link, regardless of the output load module.

In certain situations (for example, internal padding space is exhausted) the incremen-
tal linker is forced to perform an initial incremental link. The +ildrelink option
allows you to avoid such unexpected initial incremental links by periodically rebuild-
ing the output file.

+init function_name
Specify the initializer function.

+interp file Change the dld path to use the argument as the "interpreter" program instead of
the dld.sl .

+[no]forceload
+forceload loads all object files from archive libraries. +noforceload is the
default — loads only the required object files from archive libraries. The mode that is
selected, either explicitly or by default, remains on until it is changed.

+hideallsymbols
This option is used to prevent all the symbols from being exported unless explicitly
exported with the +e .

+nodefaultmap
This option tells the linker not to use the default memory map. The user needs to
supply a mapfile through the -k linker option.

+nodynhash Disables the default linker behavior of the +gst option to create the .dynhash sec-
tion for executables or shared libraries. Use this option to eliminate generation of
pre-computed hash table information for a library or an executable that is rarely used
with the global symbol table lookup scheme or for which the overhead of storing pre-
computed hash values is too high. This option has no effect when used with the -r
option.

+noenvvar Instructs the dynamic loader to not look at the LD_LIBRARY_PATH and
SHLIB_PATH environment variables at runtime. This is turned on if ld +compat
is specified. This is turned off by default or if ld +std is specified. See +compat
or +std . Generally, this option is used for secure programs (e.g. setuid).

+nosectionmerge
Used with the -r option to allow procedures to be positioned independently. The
default is to merge all procedures into a single section.

+paddata pagesize
Pads the data segment to a multiple of pagesize with zeros. This can improve page
allocation, thus reduce TLB misses.

+padtext pagesize
Pads the text segment to a multiple of pagesize with zeros. This can improve page
allocation, thus reduce TLB misses.

+pdzero Generates a zero page of 4K bytes at the beginning of the data data segment. It also
sets the default starting address of the data segment to 0x8000000000000000. This
option improves performance by reducing TLB misses by allowing the kernel to allo-
cate bigger data pages.

+stripunwind
Do not output the unwind table. This creates smaller executable sizes. Use this
option if you do not need the unwind table for debugging or C++ exception handling.

+tools Request that the application be linked for profiling with CXperf.

+vtype type Produces verbose output about the link operation. type can have the following values:

files
Dump info about each object file loaded.

heap
Dump info about the size of the heap used by a link.

HP-UX Release 11i: December 2000 − 11 − Section 1−−433

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ld(1) ld(1)

libraries
Dump info about libraries searched.

procelim
Dump info about sections that have been rejected by the +Oprocelim option

sections
Dump info about each input section added to the output file.

symbols
Dump info about global symbols referenced/defined from/in the input files.

all Dumps all of the above info. Same as -v .

Defaults
Unless otherwise directed, ld names its output a.out . The -o option overrides this. Executable output
files are of type SHARE_MAGIC. The default state of -a is to search shared libraries if available, archive
libraries otherwise. The default bind behavior is deferred .

The default value of the -Z /-z option is -Z .

For 64-bit mode, +std is on by default.

Incremental linking with ld (64-bit Mode ONLY)
In the edit-compile-link-debug development cycle, link time is a significant component. The incremental
linker (available through the +ild and +ildrelink options) can reduce the link time by taking advan-
tage of the fact that you can reuse most of the previous version of the program and that the unchanged
object files do not need to be processed. The incremental linker allows you to insert object code into an out-
put file (executable or shared library) that you created earlier, without relinking the unmodified object files.
The time required to relink after the initial incremental link depends on the number of modules you
modify.

The linker performs the following different modes of linking:

• normal link: the default operation mode in which the linker links all modules.

• initial incremental link: the mode entered when you request an incremental link, but the output
module created by the incremental linker does not exist, or it exists but the incremental linker is
unable to perform an incremental update.

• incremental link: the mode entered when you request an incremental link, an output module created
by the incremental linker exists, and the incremental linker does not require an initial incremental
link.

Incremental links are usually much faster than regular links. On the initial link, the incremental linker
requires about the same amount of time that a normal link process requires, but subsequent incremental
links can be much faster than a normal link. A change in one object file in a moderate size link (tens of
files, several megabytes total) normally is about 10 times faster than a regular ld link. The incremental
linker perform as many incremental links as allocated padding space and other constrains permit. The cost
of the reduced link time is an increase in the size of the executable or shared library.

The incremental linker allocates padding space for all components of the output file. Padding makes
modules larger than those modules linked by ld . As object files increase in size during successive incre-
mental links, the incremental linker can exhaust the available padding. If this occurs, it displays a warning
message and does a complete initial incremental link of the module. When an object file changes, the incre-
mental linker not only replaces the content of that file in the executable or shared library being linked, but
also adjusts references to all symbols defined in the object file and referenced by other objects. This is done
by looking at relocation records saved in the incrementally linked executable or shared library.

On the initial incremental link, the linker processes the input object files and libraries in the same way as
the normal link. In addition to the normal linking process, the incremental linker saves information about
object files, global symbols, and relocations, and pads sections in the output file for expansion. On subse-
quent incremental links, the linker uses timestamps and file sizes to determine which object files have
changed, and updates those modules.

Under certain conditions, the incremental linker cannot perform incremental links. When this occurs, the
incremental linker automatically performs an initial incremental link to restore the process. In the follow-
ing situations, the linker automatically performs an initial incremental link of the output file:

Section 1−−434 − 12 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ld(1) ld(1)

• Changed linker command line, where the linker command line does not match the command line
stored in the output file. (With the exceptions of the verbose and tracing options)

• Any of the padding spaces have been exhausted.

• Modules have been modified by the ld -s or ld -x options or tools (for example, strip (1)). The
incremental linking requires the parts of the output load module which are stripped out with these
options.

• Incompatible incremental linker version, when you run a new version of the incremental linker on an
executable created by an older version.

• New working directory, where the incremental linker performs an initial incremental link if current
directory changes.

• Archive or shared libraries are added/removed to/from the linker command line.

• Objects are added/removed to/from the linker command line.

See the Online Linker and Libraries User’s Guide (ld +help) for more information.

Archive Library Processing

The incremental linker searches an archive library if there are unsatisfied symbols. It extracts all archive
members satisfying unsats and processes them as new object files. If an archive library is modified, the
linker replaces the modifed archive library.

An object file extracted from an archive library in the previous link remains in the output load module even
if all references to symbols defined in the object file have been removed. The linker removes these object
files when it performs the next initial incremental link.

Shared Library Processing

In an initial incremental link, the linker scans shared library symbol tables and resolves unsats the same
way it would in a regular link. In incremental links, the linker does not process shared libraries and their
symbol tables at all and does not report shared library unsats. The dynamic loader detects them at run
time. If any of the shared libraries on the command line was modified, the linker reverts to an initial incre-
mental link.

Performance

Performance of the incremental linker may suffer greatly if you change a high percentage of object files.

The incremental linker may not link small programs much faster, and the relative increase in size of the
executable is greater than that for larger programs.

Generally, the linker needs to scan through all shared libraries on a link line in order to determine all the
unsats, even in incremental links. This process may slow down incremental links. The incremental linker
does not scan shared libraries and leaves detection of shared library unsats to the dynamic loader.

Do not use the incremental linker to create final production modules. Because it reserves additional pad-
ding space, modules created by the incremental linker are considerably larger than those created in regular
links.

Notes

Any program that modifies an executable (for example, strip (1)), may affect the ability of ld to perform
an incremental link. When this happens, the incremental linker issues a message and performs an initial
incremental link.

Third-party tools that work on object files may have unexpected results on modules produced by the incre-
mental linker.

EXTERNAL INFLUENCES
Environment Variables

The following internationalization variables affect the execution of ld :

FLOW_DATA
An instrumented executable (see the -I option) writes out the profile data to a database file named
flow.data in the current directory. The name and location of this file can be specified by setting
FLOW_DATA to the desired path name. The profile data is stored in the database file under a look-up
name that is the same as the basename of the executable file specified at run-time. A single flow.data
file can hold profile data for multiple program files.

HP-UX Release 11i: December 2000 − 13 − Section 1−−435

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ld(1) ld(1)

LANG
Determines the locale category for native language, local customs and coded character set in the
absence of LC_ALL and other LC_* environment variables. If LANGis not specified or is set to the
empty string, a default of C (see lang(5)) is used instead of LANG.

LC_ALL
Determines the values for all locale categories and has precedence over LANG and other LC_*
environment variables.

LC_MESSAGES
Determines the locale that should be used to affect the format and contents of diagnostic messages
written to standard error.

LC_NUMERIC
Determines the locale category for numeric formatting.

LC_CTYPE
Determines the locale category for character handling functions.

NLSPATH
Determines the location of message catalogs for the processing of LC_MESSAGES.

If any internationalization variable contains an invalid setting, ld behaves as if all internationalization
variables are set to C. See environ(5).

In addition, the following environment variable affects ld :

TMPDIR
Specifies a directory for temporary files (see tmpnam(3S)).

DIAGNOSTICS
ld returns zero when the link is successful. A non-zero return code indicates that an error occurred.

EXAMPLES
Link part of a C program for later processing by ld . (Note the .o suffix for the output object file; this is
an HP-UX convention for indicating a linkable object file):

ld -r file1.o file2.o -o prog.o

On 32-bit, link a simple FORTRAN program for use with the dde symbolic debugger (see dde(1)). Output
file name is a.out since there is no -o option in the command line.

ld /usr/ccs/lib/crt0.o ftn.o -lcl -lisamstub \
-lc /opt/langtools/lib/end.o

To do this on 64-bit:

ld ftn.o -lcl -lisamstub \
-lc /opt/langtools/lib/pa20_64/end.o

On 64-bit, link a shared bound program in standard mode. Note that crt0.o is not specified because for
shared links, it is no longer necessary.

ld himom.o +std -lc

On 64-bit, link a compatibility mode program. crt0.o is included because this is an archive link.

ld /opt/langtools/lib/pa20_64/crt0.o himom.o +compat -a archive -lc

Create a shared library:

ld -b -o libfunc.sl func1.o func2.o func3.o

Create a shared library with an internal name:

ld -b -o libfoo1.1 foo1.o foo2.o +h libfoo1.1
ln -s libfoo1.1 libfoo1.sl
cc -g mytest.c -L. -lfoo1
chatr a.out
...

shared library list:
dynamic ./libfoo1.1

Section 1−−436 − 14 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ld(1) ld(1)

If you do not use +h , the shared library does not have an internal name. The linker does not check
whether .sl is a symbolic link. It records the library name that it looks at, if it does not have the internal
name.

chatr a.out
...

shared library list:
dynamic ./libfoo1.sl

On 32-bit, link a program with libfunc.sl but use the archive version of the C library. Specify the
immediate binding mode together with the nonfatal modifier and allow verbose diagnostics to be displayed:

ld /usr/ccs/lib/crt0.o -B immediate -B nonfatal -B verbose \
program.o -L . -lfunc -a archive -lc

To do this on 64-bit:

ld -B immediate -B nonfatal -B verbose \
program.o -L . -lfunc -a archive -lc

On 32-bit, link a Pascal program:

ld /usr/ccs/lib/crt0.o main.o -lcl -lm -lc

Note that in the above examples, /usr/ccs/lib/crt0.o can be replaced by
/opt/langtools/lib/crt0.o .

WARNINGS
ld recognizes several names as having special meanings. The symbol _end is reserved by the linker to
refer to the first address beyond the end of the program’s address space. Similarly, the symbol _edata
refers to the first address beyond the initialized data, and the symbol _etext refers to the first address
beyond the program text. The symbols end , edata , and etext are also defined by the linker, but only if
the program contains a reference to these symbols and does not define them (see end(3C) for details). On
32-bit, the symbol __tdsize is the total thread local storage size required by the program or shared
library.

On 64-bit, the linker defines a few more symbols. The symbol __TLS_SIZE is the total thread local
storage size. The symbol _FPU_STATUS is the initial status of the FPU status register. The symbol
__SYSTEM_ID is the largest architecture revision level used by any compilation unit.

The linker treats a user definition of any of the symbols listed here as an error.

Through its options, the link editor gives users great flexibility. However, those who invoke the linker
directly must assume some added responsibilities. Input options should ensure the following properties for
programs:

• When the link editor is called through cc(1), a start-up routine is linked with the user’s program.
This routine calls exit(2) after execution of the main program. If users call ld directly, they must
ensure that the program always calls exit() rather than falling through the end of the entry
routine.

• When linking for use with the symbolic debugger dde, the user must ensure that the program con-
tains a routine called main . Also, the user must link in the file
/opt/langtools/lib/end.o on 32-bit and /opt/langtools/lib/pa20_64/end.o
on 64-bit as the last file named on the command line.

There is no guarantee that the linker will pick up files from archive libraries and include them in the final
program in the same relative order that they occur within the library.

The linker emits warnings where ever it detects any compatibility issues. Among other things, these issues
include architectural ones, as well as functionality that may change over time. Some of these include:

• Linking a PA 2.0 object file, which will not run on a PA 1.x system.

• Incremental loading with the -A option.

• Procedure call parameter and return type checking, including the -C option.

• Symbols with the same name but different types, such as CODE and DATA.

• Checking of unsatisfied symbols by the linker, which sometimes skips certain object files from an
archived library. This warning is only given if the -v option is also provided.

HP-UX Release 11i: December 2000 − 15 − Section 1−−437

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ld(1) ld(1)

• Versioning of objects within a shared library.

These messages can be turned off with the +vnocompatwarnings option.

As noted in the Options section, certain options no longer exist in a 64-bit linker. They are:
• -q
• -A
• -C
• -E
• -Q
• -S
• -T
• -X
• +dpv

Some restrictions exist for 64-bit mode with executables built with shared libraries and with S-bit set
(through +s enabled). The behavior of 64-bit executables does not match the behavior of equivalent 32-bit
executables or executables built with +compat . For any setuid or setgid programs, dld disables any
dynamic library searching through environment variables, SHLIB_PATH for 32-bit and 64-bit mode, and
LD_LIBRARY_PATHfor 64-bit mode. If a library only exists in the directory specified in SHLIB_PATH
(or LD_LIBRARY_PATH), you get the runtime error "library not found" if the program is a setuid program
(that is, uid not equal to euid or gid not equal to eguid) and it depends on that library. dld uses the
dynamic path lookup (with SHLIB_PATH) only if the following conditions are satisfied: getuid ()
== geteuid () && getgid () == getegid () . That is, if the uid or gid does not match its
effective counterpart, dld searches only the recorded library path. As a result, dld does not check the
SHLIB_PATH which causes the runtime error "library not found".

AUTHOR
ld was developed by AT&T, the University of California, Berkeley, and HP.

FILES
/usr/lib/lib* 32-bit system archive and shared libraries

/usr/lib/pa20_64/lib* 64-bit system archive and shared libraries

/usr/ccs/lib* 32-bit development archive and shared libraries

/opt/langtools/lib/pa20_64 64-bit development object files, archive and shared libraries

a.out output file

/usr/lib/dld.sl 32-bit dynamic loader

/usr/lib/pa20_64/dld.sl 64-bit dynamic loader

/opt/langtools/lib/end.o for use with the 32-bit dde debugger

/opt/langtools/lib/pa20_64/end.o
for use with the 64-bit dde debugger

/usr/ccs/lib/crt0.o 32-bit run-time startup file

/opt/langtools/lib/crt0.o Identical to /usr/ccs/lib/crt0.o

/opt/langtools/lib/pa20_64/crt0.o
64-bit run-time startup file

/usr/ccs/lib/dyncall.o 32-bit only. Used with -A option links

/opt/langtools/lib/mcrt0.o 32-bit run-time startup with profiling (see prof(1))

/opt/langtools/lib/pa20_64/mcrt0.o
64-bit run-time startup with profiling

/usr/lib/milli.a 32-bit millicode library automatically searched by ld

/usr/lib/pa20_64/milli.a 64-bit millicode library automatically searched by ld

/opt/langtools/lib/gcrt0.o run-time start-up with profiling (see gprof(1))

/opt/langtools/lib/pa20_64/gcrt0.o
64-bit run-time start-up with profiling (see gprof(1))

Section 1−−438 − 16 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ld(1) ld(1)

/opt/langtools/lib/icrt0.o 32-bit run-time start-up with profiling (see discussion of profile
based optimization above.)

/opt/langtools/lib/pa20_64/icrt0.o
64-bit run-time start-up with profiling (see discussion of profile
based optimization above.)

/usr/lib/nls/$LANG/ld.cat message catalog

/var/tmp/ld* temporary files

flow.data file containing profile data generated by running an instru-
mented executable

/usr/ccs/bin/fdp program for creating the procedure link order from a profile
database file created by an instrumented executable; forked by
the -P option

/opt/langtools/lbin/ucomp PA-RISC code generator

SEE ALSO
Profiling and Debugging Tools:

adb(1) absolute debugger
gprof(1) display call graph profile data
prof(1) display profile data
dde(1) C, C++, FORTRAN, and Pascal symbolic debugger

System Tools:
aCC(1) invoke the HP-UX aC++ compiler
ar(1) create archived libraries
CC(1) invoke the HP-UX C++ compiler
cc(1) invoke the HP-UX C compiler
chatr(1) change program’s internal attributes
exec(2) execute a file
f77(1) invoke the HP-UX FORTRAN 77 compiler
f90(1) invoke the HP-UX Fortran 90 compiler
fastbind(1) invoke the fastbind tool
nm(1) print name list of object file
pc(1) invoke the HP-UX Pascal compiler
strip(1) strip symbol and line number information from an object file

Miscellaneous:
a.out(4) assembler, compiler, and linker output
ar(4) archive format
crt0(3) execution startup routine
dld.sl(5) dynamic loader
end(3C) symbol of the last locations in program

Texts and Tutorials:
HP-UX Linker and Libraries Online User Guide

(See the +help option)
HP-UX Linker and Libraries User’s Guide

(See manuals(5) for ordering information)

STANDARDS CONFORMANCE
ld : SVID2, SVID3, XPG2, XPG4

HP-UX Release 11i: December 2000 − 17 − Section 1−−439

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ldd(1) ldd(1)

NAME
ldd - list dynamic dependencies of executable files or shared libraries

SYNOPSIS
ldd [-b] [-d] [-r] [-s] [-v] filename...

DESCRIPTION
ldd is a command that can list the dynamic dependencies of incomplete executable files or shared libraries.

ldd lists verbose information about dynamic dependencies and symbol references. If the object file is an
executable file, ldd lists all shared libraries that would be loaded as a result of executing the file. If it is a
shared library, ldd lists all shared libraries that would be loaded as a result of loading the library.

ldd uses the same algorithm as the dynamic loader (/usr/lib/dld.sl and
/usr/lib/pa20_64/dld.sl) to locate the shared libraries at runtime. See "Dynamic Path List" in
dld.sl(5) for more information.

Options
ldd recognizes the following options:

-b PA32-only. Used in conjunction with -d and/or -r to force dld.sl to bind all dependent
libraries and report unsats. By default, the smartbind mechanism in dld.sl only binds
libraries whose symbols are explicitly referenced.

-d Check reference to data symbols.

-r Check reference to data and code symbols.

-s Display the search path used to locate the shared libraries.

-v Display all dependency relationships.

EXTERNAL INFLUENCES
Environment Variables

ldd uses the following environment variables to locate shared libraries.

LD_LIBRARY_PATH
64-bit mode: A colon-separated list of path names which defines the search path for shared libraries at
runtime. See "Dynamic Path List" in dld.sl(5) for more information.

SHLIB_PATH
A colon-separated list of path names which defines the search path for shared libraries at runtime.
See "Dynamic Path List" in dld.sl(5) for more information.

The following internationalization variables affect the execution of ldd :

LANG
Determines the locale category for native language, local customs and coded character set in the
absence of LC_ALL and other LC_* environment variables. If LANGis not specified or is set to the
empty string, a default of C (see lang(5)) is used instead of LANG.

LC_ALL
Determines the values for all locale categories and has precedence over LANG and other LC_*
environment variables.

LC_MESSAGES
Determines the locale that should be used to affect the format and contents of diagnostic messages
written to standard error.

LC_NUMERIC
Determines the locale category for numeric formatting.

LC_CTYPE
Determines the locale category for character handling functions.

NLSPATH
Determines the location of message catalogs for the processing of LC_MESSAGES.

If any internationalization variable contains an invalid setting, ldd behaves as if all internationalization
variables are set to C. See environ(5).

Section 1−−440 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ldd(1) ldd(1)

DIAGNOSTICS
ldd prints the record of shared library path names to stdout. The optional list of symbol resolution prob-
lems are printed to stderr.

ldd returns zero when the operation is successful. A non-zero return code indicates that an error
occurred.

EXAMPLES
By default ldd prints a simple dynamic path information. This consists of the dependencies recorded in the
executable (or the shared library) followed by the physical location where these libraries are found.

ldd a.out
./libx.sl => ./libx.sl
libc.2 => /lib/pa20_64/libc.2
libdl.1 => /lib/pa20_64/libdl.1

The -v option causes ldd to print dependency relationship along with the dynamic path information.

ldd -v a.out
find library=./libx.sl; required by a.out

./libx.sl => ./libx.sl
find library=libc.2; required by a.out

libc.2 => /lib/pa20_64/libc.2
find library=libdl.1; required by /lib/pa20_64/libc.2

libdl.1 => /lib/pa20_64/libdl.1

The -r option to ldd causes it to analyze all symbol references and print information about unsatisfied
code and data symbols.

ldd -r a.out
./libx.sl => ./libx.sl
libc.2 => /lib/pa20_64/libc.2
libdl.1 => /lib/pa20_64/libdl.1
symbol not found: val1 (./libx.sl)
symbol not found: count (./libx.sl)
symbol not found: func1 (./libx.sl)

WARNINGS
ldd does not list shared libraries explicitly loaded using dlopen(3C) or shl_load(3X).

FILES
a.out output file
/usr/lib/dld.sl 32-bit PARISC dynamic loader
/usr/lib/pa20_64/dld.sl 64-bit PARISC dynamic loader
/usr/ccs/lib/lddstub 32-bit dummy executable loaded to check the dependencies

of shared libraries
/usr/ccs/lib/pa20_64/lddstub 64-bit dummy executable loaded to check the dependencies

of shared libraries
/usr/lib/nls/$LANG/ldd.cat message catalog

SEE ALSO
System Tools:

ld(1) invoke the link editor

Miscellaneous:
a.out(4) assembler, compiler, and linker output
dld.sl(5) dynamic loader

Texts and Tutorials:
HP-UX Linker and Libraries User’s Guide

HP-UX Release 11i: December 2000 − 2 − Section 1−−441

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

leave(1) leave(1)

NAME
leave - remind you when you have to leave

SYNOPSIS
leave [hhmm]

DESCRIPTION
The leave command waits until the specified time, then reminds you to leave. You are reminded 5
minutes and 1 minute before the actual time, at the time, and every minute thereafter. When you log off,
leave exits.

The time of day is in the form hhmm, where hh is a time in hours (which can range from 0 through 11 or 0
through 24 hours), and mm is the number of minutes after the specified hour. If the value of hh is greater
than 11 (24-hour clock time), the specified value is reduced by 12 to a new value in the range of 0 through
11, thus ensuring that the alarm time is always set to activate within the next 12 hours. For example, if
hhmm is 1350 and the current time is 4:00 PM (1600), the 1350 value is changed to 150 and the alarm is set
for 1:50 AM, nine hours and 50 minutes later. On the other hand, if it is 9:00 AM and hhmm is specified as
2200 (10:00 PM), the value used is converted to 1000 and the alarm is set for one hour later instead of 13
hours as specified.

If no argument is provided, leave prompts with

When do you have to leave?

A reply of newline causes leave to exit; otherwise the reply is assumed to be a time. This form is suitable
for inclusion in a .login or .profile file.

The leave command ignores interrupts, quits, and terminate signals. To get rid of it you should either log
off or use kill -9 giving its process ID.

EXAMPLES
The command

leave 1204

sends an alarm (a beep) to your terminal to remind you that you have to leave at 12:04 and reminds you
that you are late at one minute intervals after 12:04.

WARNINGS
The leave command checks to see if a user has logged out by checking the /etc/utmp file every 100
seconds. If a user logs out and logs back in to the same tty before leave makes its periodic check, leave
may not know that the user has logged out.

AUTHOR
leave was developed by the University of California, Berkeley.

FILES
/etc/utmp

SEE ALSO
calendar(1).

Section 1−−442 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lifcp(1) lifcp(1)

NAME
lifcp - copy to or from LIF files

SYNOPSIS
lifcp [-Txxx] [-Lxxx] [-vxxx] [-a] [-b] [-i xxx] [-r] [-t] file1 file2

lifcp [-Txxx] [-Lxxx] [-vxxx] [-a] [-b] [-ixxx] [-r] [-t] [file1 file2 ...] directory

DESCRIPTION
lifcp copies a LIF file to an HP-UX file, an HP-UX file to a LIF file, or a LIF file to another LIF file. It also
copies a list of (HP-UX/LIF) files to a (LIF/HP-UX) directory. The last name on the argument list is the
destination file or directory.

Options can be used singly or combined in any order before the file names. The space between option and
argument is optional.

-Txxx Used only when copying files to a LIF volume. This option forces the file type of the LIF
directory entry to be set to the argument given. The argument can be decimal, octal or
hex, using standard "C" notation.

-Lxxx Used only when copying files to a LIF volume. This option will set the "last volume flag"
to xxx (0 or 1). The default "last volume flag" is 1.

-vxxx Used only when copying files to a LIF volume. This option sets the "volume number" to
xxx . The default "volume number" is one.

-a This option forces a ASCII mode of copying regardless of the file type. When copying in
ASCII mode from HP-UX to LIF the default file type is BINARY (1). (For details on
available modes of copying refer to lif(4)). This option has no effect when copying from
LIF to LIF.

-b This option forces a BINARY mode of copying regardless of the file type. When copying
in BINARY mode from HP-UX to LIF the default file type is BINARY (-2). (For details
on available modes of copying refer to lif(4)). This option has no effect when copying from
LIF to LIF.

-ixxx Used only when copying files to a LIF volume. This option sets the "implementation" field
of the LIF directory entry to the argument given. The argument value can be decimal,
octal or hex, using standard "C" notation. The "implementation" field can only be set for
file types -2001 to -100000 (octal). The "implementation" field is set to zero for all inter-
change file types and for file types -2 to -200 (octal). Note that the "implementation"
value controls the attributes of the LIF file with regard to protection and record sizes.
lifls -l or lifls -i can be used to determine the "implementation" value of a file.

-r Forces RAW mode copying regardless of file type. When copying in RAW mode from HP-
UX to LIF the default file type is BIN (-23951). -T option overrides the default file type.
(various modes of copying are explained in lif(4).) -r option has no effect in LIF to LIF
copy operations.

-t causes HP-UX file names to be translated to a name acceptable by a LIF utility; that is,
all lowercase letters are converted to uppercase and all other characters except numerics
are changed to an underscore (_). If the HP-UX file name starts with a nonletter, the file
name is preceded by the capital letter X. Thus, for example, if two files named colon (:)
and semicolon (;), were copied, both of them would be translated to X_. File names are
truncated to a maximum of 10 characters. When copying a LIF file to an HP-UX or LIF
file, -t has no effect. Omitting -t causes an error to be generated if an improper name is
used.

HP-UX Release 11i: December 2000 − 1 − Section 1−−443

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lifcp(1) lifcp(1)

The default copying modes when copying from LIF to HP-UX are summarized in the following table:

File Type Default Copying Mode
ASCII ASCII
BINARY BINARY
BIN RAW
other RAW

When copying from HP-UX to LIF, the default copying mode is ASCII and an ASCII file is created.

When copying from LIF to LIF, if no options are specified, then all the LIF directory fields and file contents
are duplicated from source to destination.

A LIF file name is recognized by the embedded colon (:) delimiter (see lif(4) for LIF file naming conven-
tions). A LIF directory is recognized by a trailing colon. If an HP-UX file name containing a colon is used,
the colon must be escaped with two backslash characters (\\) (the shell removes one of them).

The file name - (dash) is interpreted to mean standard input or standard output, depending on its position
in the argument list. This is particularly useful if the data requires nonstandard translation. When copy-
ing from standard input, if no other name can be found, the name "STDIN" is used.

LIF file naming conventions are known only to the LIF utilities. Since file name expansion is done by the
shell, this mechanism cannot be used for expanding LIF file names.

Do not mount the special file while using lifcp.

DIAGNOSTICS
lifcp returns exit code 0 if the file is copied successfully. Otherwise it prints a diagnostic and returns
nonzero.

EXAMPLES
Copy HP-UX file abc to LIF file CDE on LIF volume lifvol which is actually an HP-UX file initialized to be
a LIF volume:

lifcp abc lifvol:CDE

Copy all the HP-UX files in the current directory to the LIF volume lifvol which is present in the parent
directory. File names are translated to appropriate LIF file names.

lifcp -t ∗∗ ../lifvol:

Copy all the HP-UX object files in the current directory to the LIF volume lifvol. Copying mode is RAW
and LIF file types are set to -5555.

lifcp -r -T -5555 -t ∗∗.o lifvol:

Copy all the object files in the current directory to the LIF volume lifvol. Copying mode is BINARY and
LIF BINARY files are created.

lifcp -r -T 0xffffe961 -i 0x20200080 bdat lifvol:BDAT

Copy a BDAT file, without a password, from a BASIC WorkStation to an HP-UX LIF volume lifvol. Note
that -i controls protection and record size attributes. The file type for a BDAT file is -5791 (or 0xffffe961)
and its record size is 256 bytes per record.

lifcp -b ∗∗.o lifvol:

Copy all files in the current directory to the LIF volume lifvol in the root directory. Copying mode is RAW
and LIF file types are set to BIN.

lifcp -r -t ∗∗ /lifvol:

Copy file abc: to LIF file CDE in lifvol.

lifcp abc\\: lifvol:CDE

Copy files abc and def to LIF files ABC and DEF within lifvol.

lifcp -t abc def lifvol:

Copy LIF file ABC within lifvol to file ABC within current directory.

Section 1−−444 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lifcp(1) lifcp(1)

lifcp lifvol:ABC .

Copy standard input to LIF file A_FILE on LIF volume /dev/dsk/c0t6d0.

lifcp - /dev/dsk/c0t6d0:A_FILE

Copy LIF file ABC in lifvol to LIF file CDE on /dev/dsk/c0t6d0 .

lifcp lifvol:ABC /dev/dsk/c0t6d0:CDE

Copy the output of pr to the LIF file ABC.

pr abc | lifcp - lifvol:ABC

Copy the output of pr to the LIF volume lifvol. LIF file STDIN is created since no files names are
specified.

pr abc | lifcp - lifvol:

Copy LIF file ABC in lifvol to standard output.

lifcp lifvol:ABC -

Copy all files in current directory to LIF files of the same name on LIF volume lifvol (may cause errors if
file names in the current directory do not obey LIF naming conventions!).

lifcp ∗∗ ../lifvol:

DEPENDENCIES
Series 700/800

The following option is also supported:

-Knnn forces each file copied in to begin on a nnn × 1024-byte boundary from the begin-
ning of the volume. This is useful when files are used for Series 700/800 boot
media. This option has no effect when copying from a LIF volume.

AUTHOR
lifcp was developed by the Hewlett-Packard Company.

SEE ALSO
lifinit(1), lifls(1), lifrename(1), lifrm(1), lif(4).

HP-UX Release 11i: December 2000 − 3 − Section 1−−445

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lifinit(1) lifinit(1)

NAME
lifinit - write LIF volume header on file

SYNOPSIS
lifinit [-v nnn] [-d nnn] [-n string] [-s nnn] [-l nnn] [-e nnn] file

DESCRIPTION
lifinit writes a LIF volume header on a volume or file.

Options
lifinit recognizes the following options and command-line arguments which can appear in any order:

-v nnn Sets volume size to nnn bytes. If nnn is not a multiple of 256, it is rounded down to the
next such multiple.

-d nnn Sets directory size to nnn file entries. If nnn is not an integer multiple of 8, it is rounded
up to next such multiple.

-n string Sets the volume name to be string. If the -n option is not specified, the volume name is
set to the last component of the path name specified by file. A legal LIF volume name is 6
characters long and is limited to uppercase letters (A-Z), digits (0-9) and the underscore
character (_). The first character (if any) must be a letter. The utility automatically per-
forms translation to create legal LIF volume names. Therefore, all lowercase letters are
converted to uppercase, and all other characters except numeric and underscore are
replaced with a capital letter X. If the volume name does not start with a letter, the
volume name is preceded by a capital letter X. The volume name is also right-padded with
spaces or truncated as needed to be six characters long. If -n is used with no string, the
default volume name is set to 6 spaces.

-s nnn set the initial system load (ISL) start address to nnn in the volume label. This is useful
when building boot media for Series 700/800 systems.

-l nnn specifies the length in bytes of the ISL code in the LIF volume.

-e nnn set the ISL entry point to nnn bytes from the beginning of the ISL. For example, specify-
ing -e3272 means that the ISL entry point is 3272 (decimal) bytes from the beginning of
the ISL object module.

-K nnn forces the directory start location to be the nearest multiple of nnn × 1024 bytes from the
beginning of the volume. This is necessary for booting Series 700/800 systems from LIF
media.

If file does not exist, a regular HP-UX disk file is created and initialized.

The default values for volume size are 256 kilobytes for regular files, and the actual capacity of the device
for device files.

The default directory size is a function of the volume size. A percentage of the volume size is allocated to
the volume directory as follows:

Volume Size Directory Size
< 2MB ~1.3%
> 2MB ~0.5%

Each directory entry occupies 32 bytes of storage. The actual directory space is subject to the rounding
rules stated above.

Do not mount the special file while using lifinit .

RETURN VALUE
lifinit returns exit code 0 if the volume is initialized successfully. Otherwise it prints a diagnostic mes-
sage and returns nonzero.

EXAMPLES
Initialize file x to be a LIF volume containing 500000 bytes with 10 directory file entries:

lifinit -v500000 -d10 x

Initialize device /dev/rdsk/c0t6d0 as a LIF volume using default initialization conditions (device
must not be a mounted file system device):

Section 1−−446 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lifinit(1) lifinit(1)

lifinit /dev/rdsk/c0t6d0

WARNINGS
To prevent media corruption, do not terminate lifinit once it has started executing.

AUTHOR
lifinit was developed by HP.

SEE ALSO
lifcp(1), lifls(1), lifrename(1), lifrm(1), lif(4).

HP-UX Release 11i: December 2000 − 2 − Section 1−−447

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lifls(1) lifls(1)

NAME
lifls - list contents of a LIF directory

SYNOPSIS
lifls [option] name

DESCRIPTION
lifls lists the contents of a LIF directory on standard output. The default output format lists file names
in multiple columns (similar to ls(1), except unsorted) if standard output is a character special file. If stan-
dard output is not a tty device, the output format is one file name per line. name is a path name to an HP-
UX file containing a LIF volume and optional file name. If name is a volume name, the entire volume is
listed. If name is of the form volume : file, only the file is listed. The following options are available, and
only one option should be specified with a given command:

-l List in long format, giving volume name, volume size, directory start, directory size, file type,
file size, file start, "implementation" field (in hex), date created, last volume, and volume
number.

-C Force multiple column output format regardless of standard output type.

-L Return the content of the "last volume flag" in decimal.

-i Return the content of the "implementation" field in hex.

-v Return the content of the "volume number" in decimal.

-b blist
Report only on files using block numbers specified on the command line in blist, a comma
separated list of block numbers in DEV_BSIZE units.

Do not mount the special file while using lifls .

DIAGNOSTICS
lifls returns zero if the directory was listed successfully. Otherwise it prints a diagnostic and returns
nonzero.

EXAMPLES
lifls -C /dev/rdsk/c0t6d0

AUTHOR
lifls was developed by HP.

SEE ALSO
lifcp(1), lifinit(1), lifrename(1), lifrm(1), lif(4).

Section 1−−448 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lifrename(1) lifrename(1)

NAME
lifrename - rename LIF files

SYNOPSIS
lifrename oldfile newfile

DESCRIPTION
oldfile is a full LIF file specifier (see lif(4) for details) for the file to be renamed (e.g. liffile:A_FILE).
newfile is new name to be given to the file (only the file name portion). This operation does not include copy
or delete. Old file names must match the name of the file to be renamed, even if that file name is not a
legal LIF name.

Do not mount the special file while using lifrename .

DIAGNOSTICS
lifrename returns zero if the file name is changed successfully. Otherwise it prints a diagnostic and
returns nonzero.

EXAMPLES
lifrename liffile:A_FILE B_FILE
lifrename /dev/dsk/c0t6d0:ABC CDE

AUTHOR
lifrename was developed by HP.

SEE ALSO
lifcp(1), lifinit(1), lifls(1), lifrm(1), lif(4).

HP-UX Release 11i: December 2000 − 1 − Section 1−−449

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lifrm(1) lifrm(1)

NAME
lifrm - remove a LIF file

SYNOPSIS
lifrm file1 ... filen

DESCRIPTION
lifrm removes one or more entries from a LIF volume. File name specifiers are as described in lif(4).

Do not mount the special file while using lifrm .

DIAGNOSTICS
lifrm returns zero if the file is removed successfully. Otherwise it prints a diagnostic and returns
nonzero.

EXAMPLES
lifrm liffile:MAN
lifrm /dev/rdsk/c0t6d0:F

AUTHOR
lifrm was developed by HP.

SEE ALSO
lifcp(1), lifinit(1), lifls(1), lifrename(1), lif(4).

Section 1−−450 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

line(1) line(1)

NAME
line - read one line from user input

SYNOPSIS
line [-t timeout]

DESCRIPTION
line copies one line (up to a new-line) from the standard input and writes it on the standard output. It
returns an exit code of 1 on EOF and always prints at least a new-line. It is often used within shell files to
read from the user’s terminal.

Options
line recognizes the following command-line option:

-t timeout Timeout after timeout seconds where timeout is an integer value (if a non-integer value is
specified, it is converted to an integer; i.e., rounded down). A blank is required between
-t and the timeout argument. This option is not documented in POSIX and other indus-
try standards, and should not be used in portable applications.

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

EXAMPLES
The following lines in a shell script prompt for a file name and display information about the file:

echo ’Enter file name: \c’
reply=‘line‘
ls -l $reply

To limit the response time to 10 seconds, use the form:

reply=‘line -t 10‘

then test for no response. If no response occurs before timeout expires, a default behavior should be pro-
vided.

WARNINGS
This command is likely to be withdrawn from X/Open standards. Applications using this command might
not be portable to other vendors’ systems. As an alternative read is recommended.

SEE ALSO
sh(1), read(2).

STANDARDS CONFORMANCE
line : SVID2, SVID3, XPG2, XPG3

HP-UX Release 11i: December 2000 − 1 − Section 1−−451

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

listusers(1) listusers(1)

NAME
listusers - display user login data

SYNOPSIS
listusers [-g groups] [-l logins]

DESCRIPTION
The listusers command displays data concerning user logins. The output shows the user login and the
/etc/passwd comment field value (e.g., user name, etc.). The default displays data about all user
logins.

Options
The listusers command supports the following options:

-g groups Display all users belonging to groups, sorted by login. A comma separated list
specifies multiple groups.

-l logins Display the requested logins. A comma separated list specifies multiple logins.

A user login has a UID of 100 or greater.

When the -l and -g options are combined, a user login is only displayed once, even though the login may
belong to multiple specified groups.

EXAMPLES
List all user logins.

listusers

List all user logins in the group cmds and the users bob , john and otto , removing all duplicates.

listusers -g cmds -l bob,john,otto

FILES
/etc/passwd
/etc/group

SEE ALSO
passwd(1), logins(1M), group(4), passwd(4).

STANDARDS COMPLIANCE
listusers : SVID3

Section 1−−452 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ln(1) ln(1)

NAME
ln - link files and directories

SYNOPSIS
ln [-f] [-i] [-s] file1 new_file

ln [-f] [-i] [-s] file1 [file2 ...] dest_directory

ln [-f] [-i] [-s] directory1 [directory2 ...] dest_directory

DESCRIPTION
The ln command links:

• file1 to a new or existing new_file,

• file1 to a new or existing file named file1 in existing dest_directory,

• file1, file2, ... to new or existing files of the same name in existing dest_directory,

• directory1, directory2, ... to new directories of the same name in existing dest_directory,

• or it creates symbolic links between files or between directories.

If links are to dest_directory, corresponding file or directory names in that directory are linked to file1,
file2, ..., or directory1, directory2, ..., etc., as appropriate. If two or more existing files or directories
(excluding destination file name new_file) are specified, the destination must be a directory. If new_file
already exists as a regular file (or link to another file), its contents (or the existing link) and its ACL are
destroyed only if the -f option is specified. The ACL on the new_file after the link is the same as that of
the source_file file.

If the -f and -i options are specified and the link being created is the name of an existing link or ordinary
file and the access permissions of the file forbid writing, ln asks permission to overwrite the file. If the
access permissions of the directory forbid writing, ln aborts and returns with the error message:

cannot unlink new_file

(even if the file is an ordinary file and not a link to another file). When asking for permission to overwrite
an existing file or link, ln prints the mode (see chmod(2) and Access Control Lists below), followed by the
first letters of the words yes and no in the current native language, prompting for a response, and reading
one line from the standard input. If the response is affirmative and is permissible, the operation occurs; if
not, the command proceeds to the next source file, if any.

Hard links are created with the same ownerships and permissions as the file or directory to which they are
linked. If ownership or permissions are changed on a link or file, the same changes appear on correspond-
ing hard links. The ln command does not permit hard links to a directory.

Symbolic links are created with the ownership of the creator and the permissions are of the creator’s
current umask. Once created, the symbolic link ownership and permissions will not change, since the mode
and ownership of the symbolic link is ignored by the system.

If file1 is a file and new_file is a link to an existing file or an existing file with other links, new_file is disas-
sociated from the existing file and links and linked to file1. When ln creates a link to a new or existing file
name, ownerships and permissions are always identical to those for the file to which it is linked. If chown ,
chgrp , or chmod is used to change ownership or permissions of a file or link, the change applies to the
file and all associated links. The last modification time and last access time of the file and all associated
links are identical (see chown(1) and chmod(1)).

For a discussion of symbolic links, see symlink(4).

Options
The ln command recognizes the following options:

-f Force existing destination path names to be removed to allow the link.

-i Write a prompt to the standard error output requesting confirmation for each link that would
overwrite an existing file. This option takes effect only if used in conjunction with the -f
option.

-s Cause ln to create symbolic links instead of the usual hard links. A symbolic link contains
the name of the file to which it is linked. The referenced file is used when an open() opera-
tion is performed on the link (see open(2)). A stat() on a symbolic link returns the linked-

HP-UX Release 11i: December 2000 − 1 − Section 1−−453

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ln(1) ln(1)

to file; an lstat() must be performed to obtain information about the link (see stat(2)). A
readlink() call can be used to read the contents of the symbolic link (see readlink(2)).
Symbolic links may span file systems and refer to directories.

Access Control Lists (ACLs)
If optional ACL entries are associated with new_file, ln displays a plus sign (+) after the access mode when
asking permission to overwrite the file.

If new_file is a new file, it inherits the access control list of file1, altered to reflect any difference in owner-
ship between the two files (see acl(5) and aclv(5)). In JFS file systems, new files created by ln do not
inherit their parent directory’s default ACL entries (if any), but instead retain their original ACLs.

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of text as single byte and/or multibyte characters.

LANGand LC_CTYPEdetermine the local language equivalent of y (for yes/no queries).

LANGdetermines the language in which messages are displayed.

If LC_CTYPEis not specified in the environment or is set to the empty string, the value of LANGis used as
a default for each unspecified or empty variable. If LANGis not specified or is set to the empty string, a
default of C (see lang(5)) is used instead of LANG. If any internationalization variable contains an invalid
setting, ln behaves as if all internationalization variables are set to C. See environ(5).

International Code Set Support
Single byte and multibyte character code sets are supported.

EXAMPLES
The following command creates file1 and file2 in dest_dir , which are linked back to the original
files file1 and file2 :

ln -f file1 file2 dest_dir

If file1 and/or file2 exists in the destination directory, it is removed and replaced by a link to file1
or file2 , respectively. If existing file file1 or file2 is a link to another file or a file with links, the
existing file remains. Only the link is broken and replaced by a new link to file1 or file2 .

WARNINGS
ln does not create hard links across file systems.

DEPENDENCIES
NFS

Access control lists of networked files are summarized (as returned in st_mode by stat()), but not
copied to the new file. When using ln on such files, a + is not printed after the mode value when asking
for permission to overwrite a file.

AUTHOR
ln was developed by AT&T, the University of California, Berkeley and HP.

SEE ALSO
cp(1), cpio(1), mv(1), rm(1), link(1M), readlink(2), stat(2), symlink(2), symlink(4), acl(5), aclv(5).

STANDARDS CONFORMANCE
ln : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

Section 1−−454 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

locale(1) locale(1)

NAME
locale - get locale-specific (NLS) information

SYNOPSIS
locale [-a [32 | 64] -A -m]

locale [-ck] name ...

DESCRIPTION
The locale command displays information about the current locale or about available locales.

When invoked without arguments, locale displays the name and actual or implied value of each of the
locale-related environment variables in the order shown below, one per line:

LANG
LC_CTYPE
LC_COLLATE
LC_MONETARY
LC_NUMERIC
LC_TIME
LC_MESSAGES
LC_ALL

An actual value is the value the variable actually has in the user’s environment. An implied value is
derived from the value of another variable. Implied values are displayed enclosed in double quotes, while
actual values are unquoted.

The determination of implied values is that if the variable LC_ALL is present and has a non-null value,
that is the actual value for LC_ALL, and all of the other variables take its value as an implied value. If
LC_ALL is not set, all of the LC_* variables that are set are shown with their value as an actual value.
Any that have no value are shown with the value of the LANGenvironment variable as their implied value.
LC_ALL is displayed as LC_ALL=\n if it has no value.

The locale command can take multiple arguments, which may be locale category names, locale key-
words, or the special word charmap (see localedef(1M) for a description of locale keywords and charmaps).
If an argument is a keyword, the value associated with that keyword in the current environment is
displayed and possibly other information, depending on selected options. If an argument is a category
name (i.e., LC_*), the values of all keywords defined in that category are displayed. If an argument is the
special word charmap , the charmap file (if any) that was used in the definition of the current locale is
displayed.

Non-printable characters are printed as hexadecimal values in the form,

\x hh

except that if a different escape character has been defined for the locale, it is displayed instead of the "\".

Options
The following options are available:

-a List all available locales. These are the possible meaningful values that can be assigned to
LANGor any of the LC_* variables on the system. They are dependent upon which locales
have been installed on the system. By default on a 32-bit system, the locales in
/usr/lib/nls/loc/locales are listed. By default on a 64-bit system, the locales in
/usr/lib/nls/loc/pa20_64/locales are listed. This option takes 32 (for ILP32,
32-bit int, long, pointer, 32-bit offset) or 64 (for LP64, 64-bit long, pointer, 64-bit offset) as
its argument.

-a Display 32-bit locales for 32-bit and 64-bit systems.

-a 32 Display 32-bit locales for 32-bit and 64-bit systems.

-a 64 Display only 64-bit locales on a 64-bit system. If executed on a 32-bit system, an
error message is returned.

-A List 32-bit locales on a 32-bit system. List both 32-bit and 64-bit bit locales on a 64-bit sys-
tem.

-m Display a list of available charmap files on the system. See localedef(1M) for a definition of
charmap files and their usage.

HP-UX Release 11i: December 2000 − 1 − Section 1−−455

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

locale(1) locale(1)

-c Display names of locale categories that have been selected either explicitly or by giving a
keyword contained therein. This option may be used with the -k option.

-k Display names of keywords that have been selected either explicitly or by providing their
containing category as an argument. Keyword names and values are displayed as:

<keyword>=<value>

Without the -k option, only the values are displayed. This option can be used with the -c
option.

name Specify the locale category name, locale keyword, or the special word charmap.

EXTERNAL INFLUENCES
Environment Variables

LANGprovides a default value for the internationalization variables that are unset or null. If LANGis unset
or null, the default value of "C" (see lang(5)) is used. If any of the internationalization variables contains an
invalid setting, locale will behave as if all internationalization variables are set to "C". See environ(5).

LC_ALL, when set to a non-empty string value, overrides the values of all other internationalization vari-
ables.

LC_CTYPEdetermines the interpretation of text as single and/or multi-byte characters, the classification
of characters as printable, and the characters matched by character class expressions in regular expres-
sions.

LC_MESSAGESdetermines the locale that should be used to affect the format and content of diagnostic
messages written to standard error, and informative messages written to standard output.

NLSPATHdetermines the location of message catalog for the processing of LC_MESSAGES.

International Code Set Support
Single- and multi-byte character code sets are supported.

RETURN VALUE
The locale command exits with one of the following values:

0 All requested information was found and displayed successfully.

>0 An error occurred in either finding or displaying the information.

EXAMPLES
If the locale environment variables are set as:

LANG=fr_FR.iso88591
LC_COLLATE=C

the command:

locale

gives the following output:

LANG=fr_FR.iso88591
LC_CTYPE="fr_FR.iso88591"
LC_COLLATE=C
LC_MONETARY="fr_FR.iso88591"
LC_NUMERIC="fr_FR.iso88591"
LC_TIME="fr_FR.iso88591"
LC_MESSAGES="fr_FR.iso88591"
LC_ALL=

The command:

LC_ALL=POSIX locale -ck decimal_point

produces:

LC_NUMERIC decimal_point="."

If LANGis set to POSIX and no other locale variables are set, the command:

Section 1−−456 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

locale(1) locale(1)

locale LC_NUMERIC

produces:

"."
""

""

which correspond to the keywords decimal_point, thousands_sep, grouping, and alt_digit.

SEE ALSO
localedef(1M), localeconv(3C), nl_langinfo(3C), setlocale(3C), charmap(4), localedef(4), environ(5), lang(5).

STANDARDS CONFORMANCE
locale : XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 3 − Section 1−−457

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lock(1) lock(1)

NAME
lock - reserve a terminal

SYNOPSIS
lock

DESCRIPTION
lock requests a password from the user, then prints LOCKEDon the terminal and refuses to relinquish
the terminal until the password is repeated. If the user forgets the password, the only recourse is to log in
elsewhere and kill the lock process.

Section 1−−458 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

logger(1) logger(1)

NAME
logger - make entries in the system log

SYNOPSIS
logger [-t tag] [-p pri] [-i] [-f file] [message ...]

DESCRIPTION
The logger command provides a program interface to the syslog() system log module (see
syslog(3C)).

A message can be given on the command line, which is logged immediately, or a file is read and each line is
logged. If no file or message is specified, the contents of the standard input are logged.

Options
The logger command recognizes the following command-line options and arguments:

-t tag Mark every line in the log with the specified tag. The default is the value returned by
getlogin() (see getlogin(3C)). If getlogin() returns NULL, syslog is the
default.

-p pri Enter the message with the specified priority. The priority can be specified numeri-
cally or as a facility. level pair. For example, -p local3.info logs the message
or messages as info rmational level in the local3 facility. The default is
user.notice .

-i Log the process ID of the logger process with each line.

-f file Log the contents of the specified file.

message The message to log; if not specified, the file specified by the -f option or standard
input is logged.

EXTERNAL INFLUENCES
Environment Variables

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_MESSAGESis not specified in the environment or is set to the empty string, the value of LANGis
used as a default for each unspecified or empty variable. If LANGis not specified or is set to the empty
string, a default of "C" (see lang(5)) is used instead of LANG.

If any internationalization variable contains an invalid setting, logger behaves as if all internationaliza-
tion variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

EXAMPLES
Send the message System rebooted to the syslogd daemon:

logger System rebooted

Send output from the users command (see users(1) to the syslogd daemon, marked as level info and
facility local0 . The message is tagged with the string USERS:

users | logger -p local0.info -t USERS

Send the message System going down immediately!!! to the syslog daemon, at the emerg
level and user facility:

logger -p user.emerg "System going down immediately!!!"

WARNINGS
The logger command has no effect if the syslogd daemon (see syslogd(1M)) is not running on the sys-
tem.

Messages written in locales other than the POSIX/C locale are not supported.

HP-UX Release 11i: December 2000 − 1 − Section 1−−459

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

logger(1) logger(1)

AUTHOR
logger was developed by the University of California, Berkeley.

SEE ALSO
syslogd(1M), getlogin(3C), syslog(3C).

STANDARDS CONFORMANCE
logger : XPG4, POSIX.2

Section 1−−460 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

login(1) login(1)

NAME
login - sign on; start terminal session

SYNOPSIS
login [name [env-var] ...]

DESCRIPTION
The login command is used at the beginning of each terminal session to properly identify a prospective
user. login can be invoked as a user command or by the system as an incoming connection is established.
login can also be invoked by the system when a previous user shell terminates but the terminal does not
disconnect.

If login is invoked as a command, it must replace the initial command interpreter (the user’s login shell).
This is accomplished with the shell command

exec login

The user’s login name is requested, if it is not specified on the command line, and the corresponding pass-
word is obtained, if required, with the following prompts:

login:
Password:

Terminal echo is turned off (where possible) during password entry to prevent written records of the pass-
word. If the account does not have a password, and the authentication profile for the account requires one,
login invokes pam_chauthtok() to establish one for the account. On a trusted system, login
displays the last successful and unsuccessful login times and terminal devices.

As a security precaution, some installations use an option that requires a second "dialup" password. This
occurs only for dialup connections, and is requested with the prompt:

dialup password:

Both passwords must be correct for a successful login (see dialups(4) for details on dialup security).

If password aging is activated, the user’s password may have expired. pam_chauthtok() is invoked to
change the password. In an untrusted environment, the user is required to re-login after a successful pass-
word change (see passwd(1)).

After three unsuccessful login attempts, a HANGUPsignal is issued. If a login is not successfully completed
within a certain period of time (for example, one minute), the terminal is silently disconnected.

After a successful login, the accounting files are updated, user and group IDs, group access list, and work-
ing directory are initialized, and the user’s command interpreter (shell) is determined from corresponding
user entries in the files /etc/passwd and /etc/logingroup (see passwd(4) and group(4)). If
/etc/passwd does not specify a shell for the user name, /usr/bin/sh is used by default. login
then forks the appropriate shell by using the last component of the shell path name preceded by a - (for
example, -sh or -ksh). When the command interpreter is invoked with its name preceded by a minus in
this manner, the shell performs its own initialization, including execution of profile, login, or other initiali-
zation scripts.

For example, if the user login shell is the Bourne, Korn, or POSIX shell (see sh-bourne(1), ksh(1), or sh-
posix(1), respectively), the shell executes the profile files /etc/profile and $HOME/.profile if they
exist (and possibly others as well). Depending on what these profile files contain, messages regarding mail
in the user’s mail file or any messages the user may have received since the user’s last login may be
displayed.

If the command name field is * , a chroot() to the directory named in the directory field of the entry is
performed. At that point, login is re-executed at the new level, which must have its own root structure,
including a /usr/bin/login command and an /etc/passwd file.

For the normal user, the basic environment variables (see environ(5)) are initialized to:

HOME=login_directory
LOGNAME=login_name
MAIL=/var/mail/ login_name
PATH=:/usr/bin
SHELL=login_shell

HP-UX Release 11i: December 2000 − 1 − Section 1−−461

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

login(1) login(1)

login_directory, login_name, and login_shell are taken from the corresponding fields of the passwd file
entry (see passwd(4)).

For superuser, PATHis set to:

PATH=:/usr/sbin:/usr/bin:/sbin

In the case of a remote login, the environment variable TERMis also set to the remote user’s terminal type.

The environment can be expanded or modified by supplying additional arguments to login , either at exe-
cution time or when login requests the user’s login name. The arguments can take either the form value
or varname=value, where varname is a new or existing environment variable name and value is a value to
be assigned to the variable.

An argument in the first form (without an equals sign) is placed in the environment as if it were entered in
the form

Ln=value

where n is a number starting at 0 that is incremented each time a new variable name is required.

An argument in the second form (with an equals sign) is placed into the environment without modification.

If the variable name (Ln or varname) already appears in the environment, the new value replaces the older
one.

There are two exceptions. The variables PATHand SHELL cannot be changed. This prevents users logged
in with restricted shell environments from spawning secondary shells that are not restricted.

Both login and getty understand simple single-character quoting conventions. Typing a backslash in
front of a character quotes it and allows the inclusion of such things as spaces and tabs.

If /var/adm/btmp is present, all unsuccessful login attempts are logged to that file. This feature is dis-
abled if the file is not present. The lastb command, (see last(1)), displays a summary of bad login
attempts for users with read access to btmp .

If the /etc/securetty file is present, login security is in effect, i.e., root is allowed to log in success-
fully only on the ttys listed in this file. Restricted ttys are listed by device name, one per line. Valid tty
names are dependent on the installation. An example is

console
tty01
ttya1
etc.

Note that this feature does not inhibit a normal user from using the su command (see su(1)).

HP-UX Smart Card Login
If the user account is configured to use a Smart Card, the user password is stored in the card. This pass-
word has characteristics identical to a normal password stored on the system.

In order to login using a Smart Card account, the card must be inserted into the Smart Card reader. The
user is prompted for a PIN (personal identification number) instead of a password during authentication.
The prompts are:

login:
Enter PIN:

The password is retrieved automatically from the Smart Card when a valid PIN is entered. Therefore, it is
not necessary to know the password, only the PIN.

The card is locked if an incorrect PIN is entered three consecutive times. It may be unlocked only by the
card issuer.

SECURITY FEATURES
On a trusted system, login prohibits a user from logging in if any of the following is true:

• The password for the account has expired and the user cannot successfully change the password.

• The password lifetime for the account has passed.

• The time between the last login and the current time exceeds the time allowed for login intervals.

Section 1−−462 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

login(1) login(1)

• The administrative lock on the account has been set.

• The maximum number of unsuccessful login attempts for the account has been exceeded.

• The maximum number of unsuccessful login attempts for the terminal has been exceeded.

• The administrative lock on the terminal has been set.

• The terminal has an authorized user list and the user is not on it.

• The terminal has time of day restrictions and the current time is not within the allowable period.

On a trusted system, login allows superuser to log in on the console unless /etc/securetty exists
and does not contain console .

Refer to the /etc/default/security file in the security(4) man page for detailed information on
configurable parameters that affect the behavior of this command. Currently supported parameters are:

ABORT_LOGIN_ON_MISSING_HOMEDIR

NOLOGIN

NUMBER_OF_LOGINS_ALLOWED

EXTERNAL INFLUENCES
Environment Variables

HOME User’s home directory.
MAIL Where to look for mail.
PATH Path to be searched for commands.
SHELL Which command interpreter is being used.
TERM User’s terminal type.
varname User-specified named variables.
Ln User-specified unnamed variables.

DIAGNOSTICS
The following diagnostics appear if the associated condition occurs:

.rhosts is a soft link

The personal equivalence file is a symbolic link.

Bad .rhosts ownership

The personal equivalence file is not owned by the local user or by a user with appropriate privileges.

Bad group id

setgid() failed (see setuid(2)).

Bad user id

setuid() failed (see setuid(2)).

Cannot open password file

Consult system administrator.

Locuser too long

The indicated string was too long for login ’s internal buffer.

Login incorrect

User name and password cannot be matched.

No /usr/bin/login or /etc/login on root

Attempted to log in to a subdirectory root that does not have a subroot login command. That is, the
passwd file entry had shell path * , but the system cannot find a login command under the given
home directory.

No directory

Consult system administrator.

No Root Directory

HP-UX Release 11i: December 2000 − 3 − Section 1−−463

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

login(1) login(1)

Attempted to log in to a subdirectory root that does not exist. That is, the passwd file entry had
shell path * , but the system cannot chroot() to the given home directory.

No shell

The user shell (/usr/bin/sh if shell name is null in /etc/passwd) could not be started with the
exec command. Consult system administrator.

No utmp entry. You must exec "login" from the lowest level "sh"

Attempted to execute login as a command without using the shell’s exec internal command or
from other than the initial shell. The current shell is terminated.

Remuser too long

The indicated string was too long for login ’s internal buffer.

Terminal type too long

The indicated string was too long for login ’s internal buffer.

Unable to change to directory name

Cannot chdir to the user’s home directory.

Your password has expired. Choose a new one

Password aging is enabled and the user’s password has expired.

WARNINGS
If /etc/group is linked to /etc/logingroup , and group membership for the user trying to log in is
managed by the Network Information Service (NIS), and no NIS server is able to respond, login waits
until a server does respond.

DEPENDENCIES
Pluggable Authentication Modules (PAM)

PAM is an Open Group standard for user authentication, password modification, and validation of accounts.
In particular, pam_authenticate() is invoked to perform all functions related to login . This
includes retrieving the password, validating the account, and displaying error messages.
pam_chauthtok() is invoked during password expiration or establishment.

HP Process Resource Manager
If the optional HP Process Resource Manager (PRM) software is installed and configured, the login shell is
launched in the user’s initial process resource group. If the user’s initial group is not defined, the shell runs
in the user default group (PRMID=1). See prmconfig(1) for a description of how to configure HP PRM, and
prmconf(4) for a description of how the user’s initial process resource group is determined.

AUTHOR
login was developed by AT&T and HP.

FILES
$HOME/.profile Personal profile (individual user initialization)
$HOME/.rhosts Personal equivalence file for the remote login server
/etc/d_passwd Dialup security encrypted passwords
/etc/dialups Lines which require dialup security
/etc/hosts.equiv System list of equivalent hosts allowing logins without passwords
/etc/logingroup Group file — defines group access lists
/etc/motd Message-of-the-day
/etc/passwd Password file — defines users, passwords, and primary groups
/etc/profile System profile (initialization for all users)
/etc/securetty List of valid ttys for root login
/etc/utmp Users currently logged in
/tcb/files/auth/*/* The trusted system password database
/var/adm/btmp History of bad login attempts
/var/adm/wtmp History of logins, logouts, and date changes
/var/mail/ login_name Mailbox for user login_name
/etc/default/security Security defaults configuration file

Section 1−−464 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

login(1) login(1)

SEE ALSO
csh(1), groups(1), ksh(1), last(1), mail(1), newgrp(1), passwd(1), sh(1), sh-bourne(1), sh-posix(1), su(1),
getty(1M), initgroups(3C), dialups(4), group(4), passwd(4), profile(4), security(4), utmp(4), environ(5).

HP Process Resource Manager
prmconfig(1), prmconf(4) in HP Process Resource Manager Users Guide.

Pluggable Authentication Modules (PAM)
pam_acct_mgmt(3), pam_authenticate(3), pam_chauthtok(3).

HP-UX Smart Card Login
scpin(1), scsync(1).

HP-UX Release 11i: December 2000 − 5 − Section 1−−465

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

logname(1) logname(1)

NAME
logname - get login name

SYNOPSIS
logname

DESCRIPTION
logname writes the user’s login name to standard output. The login name is equivalent to that returned
by getlogin() (see getlogin(3C)).

EXTERNAL INFLUENCES
Environment Variables

LANGdetermines the language in which diagnostic messages are displayed.

FILES
/etc/profile

SEE ALSO
env(1), login(1), getlogin(3C), logname(3C), environ(5).

STANDARDS CONFORMANCE
logname : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

Section 1−−466 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lorder(1) lorder(1)

NAME
lorder - find ordering relation for an object library

SYNOPSIS
lorder [files]

DESCRIPTION
The input consists of one or more object or archive library files (see ar(1)) placed on the command line or
read from standard input. The standard output is a list of pairs of object file names, meaning that the first
file of the pair refers to external identifiers defined in the second. Output can be processed by tsort to
find an ordering of a library suitable for one-pass access by ld (see tsort(1) and ld(1)). Note that the link
editor ld is capable of multiple passes over an archive in the archive format and does not require that
lorder be used when building an archive. Using the lorder command may, however, allow for a
slightly more efficient access of the archive during the link edit process.

The symbol table maintained by ar allows ld to randomly access symbols and files in the archive, making
the use of lorder unnecessary when building archive libraries (see ar(1)).

EXTERNAL INFLUENCES
Environment Variables

The following internationalization variables affect the execution of lorder :

LANG
Determines the locale category for native language, local customs and coded character set in the
absence of LC_ALL and other LC_* environment variables. If LANGis not specified or is set to the
empty string, a default of C (see lang(5)) is used instead of LANG.

LC_ALL
Determines the values for all locale categories and has precedence over LANG and other LC_*
environment variables.

LC_COLLATE
Determines the locale category for character collation.

LC_CTYPE
Determines the locale category for character handling functions.

LC_MESSAGES
Determines the locale that should be used to affect the format and contents of diagnostic messages
written to standard error.

LC_NUMERIC
Determines the locale category for numeric formatting.

NLSPATH
Determines the location of message catalogues for the processing of LC_MESSAGES.

If any internationalization variable contains an invalid setting, lorder behaves as if all internationaliza-
tion variables are set to C. See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

EXAMPLES
Build a new library from existing .o files:

ar cr library ‘lorder *.o | tsort‘

When creating libraries with so many objects that the shell cannot properly handle the *.o expansion, the
following technique may prove useful:

ls | grep ’.o$’ | lorder | tsort | xargs ar cq library

WARNINGS
Object files whose names do not end with .o are overlooked, even when contained in library archives.
Their global symbols and references are attributed to some other file.

HP-UX Release 11i: December 2000 − 1 − Section 1−−467

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lorder(1) lorder(1)

FILES
/var/tmp/*symref temporary files
/var/tmp/*symdef

SEE ALSO
System Tools:

ar(1) create archived libraries
ld(1) invoke the link editor

Miscellaneous:
tsort(1) produce an ordered list of items (topological sort)

STANDARDS CONFORMANCE
lorder : SVID2, SVID3, XPG2, XPG4

Section 1−−468 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lp(1) lp(1)

NAME
lp, lpalt, cancel - print/alter/cancel requests on an LP printer or plotter

SYNOPSIS
lp [-c] [-d dest] [-m] [-n number] [-o option] [-p priority] [-s] [-t title] [-w] [file ...]

lpalt id [-d dest] [-i] [-m] [-n number] [-o option] [-p priority] [-s] [-t title] [-w]

cancel [id ...] [printer ...] [-a] [-e] [-i] [-u user]

DESCRIPTION
The lp command queues files for printing. The lpalt command changes information in a queued
request. The cancel command deletes a queued request.

lp Command
The lp command arranges for the named files, file ..., and associated information (collectively called a
request) to be queued for output to a printer or plotter in the LP (line printer) subsystem. The process is
called printing, regardless of the actual output device.

lp associates a unique identifier with each request and writes it to standard output, using the message:

request id is dest- sequence (fileinfo)

The request ID is dest- sequence, which can be used later to alter, cancel, or find the status of the request
(see lpalt and cancel below, and lpstat(1)).

For example, in the following message,

request id is pr47lf8e-2410 (1 file)

the request ID is pr47lf8e-2410 .

lp Options and Arguments
lp recognizes the following options and arguments. The keyletter options can be specified in any order.
The file ... names must be last. Blanks are not permitted between a keyletter and its argument.

file ... Print each named file. If no file names are specified, standard input is assumed. The
hyphen symbol (-) also specifies standard input and can be intermixed on the command
line with file names. Files are printed in the same order in which they are specified.

-c Copy the named files to LP subsystem spooling directories.

Normally, the files are linked into a spool directory. The ownership and mode of the linked
files remain unchanged. If the -c option is given, or linking is not possible (perhaps
because the printer is not physically attached to the local system or cluster), the files are
copied into the spool directories. The ownership and mode of the copies are set to allow
read access to owner lp and group bin only.

If the files are linked rather than copied, any changes made to the named files after the
request is made but before it is printed will be reflected in the printed output. Standard
input is always copied instead of linked.

-d dest Select dest as the printer or class of printers that is to do the printing. If dest is a printer,
the request will be printed only on that specific printer. If dest is a class, the request will
be printed on the first available printer that is a member of the class. Under certain condi-
tions (printer unavailability, file space limitation, etc.), requests for a specific dest might not
be accepted (see accept(1M) and lpadmin(1M)).

If the -d option is omitted, dest is taken from the environment variable LPDEST. If that
variable is unset or empty, the default queue is used, if one has been defined. If there is no
default queue, or LPDESTis set but invalid, lp issues an error message and the request is
not queued. Printer and class names and the default queue are defined by your LP subsys-
tem administrator (see lpadmin(1M) and lpstat(1)).

-m Send a mail message (see mail(1)). to the user after the request has been printed. By
default, no mail is sent upon normal completion of the print request.

-n number Print number copies of the output. The default is 1.

-o option Specify a printer-dependent option. You can specify several printer options by repeating
the -o option. For information about the options that are available for a printer supported

HP-UX Release 11i: December 2000 − 1 − Section 1−−469

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lp(1) lp(1)

on your system, see the interface script for the printer name in the
/etc/lp/interface directory.

-p priority Set the priority of the print request. priority must be in the range 0 (lowest priority) to 7
(highest priority). The priority is used to select the next spooled file for the targeted
printer or class of printers. If the priority is less than the fence, the minimum priority set
for the printer, the print request is deferred until the fence is lowered or the priority is
raised. The default for a printer queue is the default priority set by the lpadmin or
lpfence command (see lpadmin(1M) and lpsched(1M)). The default for a class queue is
the highest default priority among printers in the class.

-s Suppress standard output messages from lp such as "request id is ...". Error mes-
sages are still displayed on standard error.

-t title Print title on the banner page of the output.

-w Write a message to the user’s terminal after the request has been printed. If the user is
not logged in or (for remote printing) if rlpdaemon (see rlpdaemon(1M)) is not running
on the user’s local system, mail will be sent instead.

lpalt Command
The lpalt command alters a request made by a previous lp command, if it is not currently printing. (To
requeue a currently printing request, use the disable command (see enable(1)) to stop the printer.)

lpalt Options
lpalt recognizes the following options and arguments, which can be specified in any order. Blanks are
not permitted between a keyletter and its argument.

id Specifies the request to be altered. id is a request ID returned by lp or lpalt .

-d dest Requeue the request to the named printer or class dest. A new unique request ID is written
to standard output.

-i Alter only local requests.

-m Send mail upon normal completion of the print request.

-n number Change the number of copies to number.

-o option Specify a printer-dependent option. You can specify several printer options by repeating
the -o option. All -o options from previous lp and lpalt commands for this request ID
are deleted.

-p priority Change the request’s priority to priority .

-s Suppress standard output messages from lpalt such as "request id is ...". Error
messages are still displayed on standard error.

-t title Change the title on the banner page of the output.

-w Write a message to the user’s terminal after the request has been printed. If the user is
not logged in or (for remote printing) if rlpdaemon (see rlpdaemon(1M)). is not running
on the user’s local system, mail will be sent instead.

cancel Command
The cancel command cancels requests that were made with the lp command, even if they are currently
printing. At least one id or printer must be specified.

The cancellation of a request that is currently printing frees the printer to print its next available request.

cancel Options and Arguments
cancel recognizes the following options and arguments, which can be specified in any order. Blanks are
not permitted between a keyletter and its argument.

id ... Specifies one or more requests. id is a request ID returned by lp or lpalt .

printer ... Specifies one or more printers. printer is the name of a printer, not a class. Either cancel
the request that is currently printing on each printer, or, if an -a , -e , or -u option is
specified, specify the printer on which to perform the corresponding operation.

Section 1−−470 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lp(1) lp(1)

-a Remove all requests the user owns on each printer. The owner is determined by the user’s
login name and the host name of the machine where the lp command was invoked.

-e Empty the spool queue of all requests for each printer. Only users with appropriate
privileges can use this option.

-i Cancel only local requests.

-u user Remove any requests belonging to user. You can repeat the -u option to specify more
users. Only users with appropriate privileges can use this option.

Printing Overview
A printer can print requests from one or two destination queues: its own private queue and an optional
class queue, which can serve one or more printers. The destination queues are set up with the lpadmin
command. The lp command places a printing request into a printer or class destination queue as directed
by a user. The lpsched scheduler directs the requests from the destination queues to the printers. The
accept and reject commands control whether lp can place requests in the destination queues. The
enable and disable commands control whether lpsched can send a queued request to a printer. If a
printer has two queues and one queue is rejecting requests, users can still direct requests to the other desti-
nation queue and have the requests printed. lpstat reports the current status of the destination queues
and the scheduler. See enable(1), lpstat(1), accept(1M), and lpadmin(1M).

EXTERNAL INFLUENCES
Environment Variables

LANGdetermines the locale to use for the locale categories when both LC_ALL and the corresponding
environment variable (beginning with LC_) do not specify a locale. If LANG is not set or is set to the
empty string, a default of "C" (see lang(5)) is used.

LC_ALL determines the locale to use to override any values for locale categories specified by the setting of
LANGor any environment variables beginning with LC_.

LC_CTYPEdetermines the locale for interpretation of sequences of bytes of text data as characters (e.g.,
single- verses multibyte characters in arguments and input files).

LC_MESSAGESdetermines the language in which messages are displayed.

LPDESTdetermines the output device or destination. If the LPDESTenvironment variable is not set, the
PRINTER environment variable is used. The -d dest option takes precedence over LPDEST. Results are
undefined when -d is not specified and LPDESTcontains a value that is not a valid device or destination
name.

PRINTER determines the output device or destination. If the LPDESTand PRINTER environment vari-
ables are not set, an unspecified output device is used. The -d dest option and the LPDESTenvironment
variable takes precedence over PRINTER. Results are undefined when -d is not specified, LPDEST is
unset, and PRINTER contains a value that is not a valid device or destination name.

If any internationalization variable contains an invalid setting, the commands behave as if all international-
ization variables are set to "C". See environ(5).

International Code Set Support
Single- and multibyte character code sets are supported.

RETURN VALUE
Exit values are:

0 Successful completion.
>0 Error condition occurred.

EXAMPLES
For a HP2934A printer named lp2 , configured with an interface script that defines the -c option to cause
the printer to print in a compressed mode, use the following command to print myfile with compressed
print on lp2 :

lp -dlp2 -oc myfile

lp can be used at the end of a pipeline to print the results of a previous command. It is commonly used
with the pr command (see pr(1)) to print formatted output. For a default printer, to format file .pro-
file into pages and print three copies of it:

HP-UX Release 11i: December 2000 − 3 − Section 1−−471

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lp(1) lp(1)

pr .profile | lp -n3

WARNINGS
A remote print request can be altered or canceled only by the user who requested it, and only from the sys-
tem from which the the original lp command was issued.

If the restrict cancel feature (see lpadmin(1M)) is enabled for the specified printer, a user can only alter or
cancel requests owned by the user.

For a remote system, lpalt cannot change dest and priority .

FILES
/etc/lp Directory of spooler configuration data
/etc/lp/interface Directory of active LP device interface scripts
/usr/lib/lp Directory of model and font file directories
/var/adm/lp Directory of spooler log files
/var/spool/lp Directory of LP spooling files and directories

SEE ALSO
enable(1), lpstat(1), mail(1), slp(1), accept(1M), lpadmin(1M), lpana(1M), lpsched(1M), rcancel(1M), rlp(1M),
rlpdaemon(1M), rlpstat(1M).

STANDARDS CONFORMANCE
lp : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

cancel : SVID2, SVID3, XPG4

Section 1−−472 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lpfilter(1) lpfilter(1)

NAME
lpfilter, divpage, fontdl, lprpp, plotdvr, printstat, reverse - filters invoked by lp interface scripts

SYNOPSIS
/usr/lbin/divpage [-p -l] [-h -q] [-n FontID] filename

/usr/lbin/fontdl [-n FontID] [-l] [-p] filename

/usr/lbin/lprpp [-i] [-o] [-e] [-l nn] [-n] [-p]

/usr/lbin/plotdvr -l request_id -u username [-e] [-f] [-i] filename

/usr/sbin/printstat -l request_id -u username filename

/usr/sbin/reverse [-l page_length]

Remarks
The structure of these filters is currently under review. They may become obsolete or be restructured in a
future release.

DESCRIPTION
Various filters are used by the lp subsystem to obtain specialized behavior for specific types of devices or
data. This entry describes currently supported filters.

A number of these filters use a specified username and filename to determine the location of the user who
originated the print message.

The filename is used to determine the hostname of the system where the request originated, and must have
the form [dirname]/d?A nnnhostname or [dirname]/dA nnnnhostname, where dirname is not a path
name, but only the name of the basename’s parent directory. filename meets this requirement when it is
set to $6 in the interface script for the printer.

divpage
Provides capabilities for printing multiple pages per sheet and selection of built-in fonts.

Options:

-p Set mode to portrait (default).

-l Set mode to landscape.

-h Print half pages (default).

-q Print quarter pages.

-n FontID Use font number FontID. Default is 0. Causes the string EC(FontIDX to be sent to the
printer.

fontdl
fontdl downloads the font contained in filename to a printer connected to standard output.

Options:

-n FontID Specifies the ID number by which the font will be referenced. Default is 0.

-l Specify landscape mode. Default is portrait.

-p Specifies proportional spacing. Default is fixed.

lprpp
This is a filter that converts backspace overstrike to line overprint with horizontal print positioning to
enhance bold print. This functionality is required on printers such as the LaserJet, which cannot produce
bold print by overstriking.

Options:

-i Converts <ANYCHAR> to <ANYCHAR><BACKSPACE>_ to italicize ANYCHAR.
Also properly italicizes overstruck (bold) characters. Does not work correctly for
"hashed-overstrike" such as:

<ANYCHAR><BACKSPACE><DIFFERENTCHAR><BACKSPACE>_

HP-UX Release 11i: December 2000 − 1 − Section 1−−473

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lpfilter(1) lpfilter(1)

-o Prints only the odd numbered pages. Used with -e for double-sided printing.

-e Print only the even numbered pages. Used with -o for double sided printing.

-l nn Specifies the page length, in lines. Default is 60 unless -n or -p is selected, in which
case it is 66.

-n Specifies nroff mode for printing output of the nroff command. Prints 66 lines per
page with the first line appearing on logical line 4 of the printer.

-p Specifies pr mode for printing output from the pr command. Prints 66 lines per page
with the first line appearing on logical line 3 of the printer.

plotdvr
HP-GL plotter filter. This filter scans the data for "PG" commands (paper feed). When this data is encoun-
tered, the filter strips it from the data stream and informs the requesting user of the need to change paper
in the plotter.

Options:

-l request_id Specifies the printer request ID and is used in various messages regarding the plot
request.

-u username The requesting user’s login name, used to communicate with the user regarding the
request.

-e Specifies the use of escape sequences, rather than HP-GL commands, to determine
plotter status.

-f Plot without stopping for paper changes. The "PG" commands are not stripped from
the data stream and the user is not notified of them. This option is used on plotters
capable of automatic page feed.

-i Prevents initialization of the plotter.

printstat
Interrogates an RS232 printer as to its status, and does not return until the printer is ready. If the printer
is off-line, out of paper, or disconnected, the submitter of the print request is notified of this condition
periodically until it is corrected. When the printer is ready to print, the command exits.

Standard input and standard output must both be connected to the serial printer device.

This program uses the send-status command EC?D1? to determine status. Not all serial printers respond
to this command. Only the following configurations support this command:

Printer Comments
LaserJet Not supported
LaserJetII Supported
LaserJetIID Requires HP 26013A module
LaserJetIIP Not supported
LaserJetIII Requires HP 26013A module
LaserJet2000 Not supported

Options:

-l request-id Print request ID used in various communications with the user.

-u username The requesting user’s login name, used to communicate with the user regarding the
request.

reverse
Prints the data appearing on the standard input in reverse page order to the standard output. This com-
mand can handle up to 2000 pages.

Options:

-l page_length
Specifies the page length, in lines. Default is 66.

Section 1−−474 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lpfilter(1) lpfilter(1)

DIAGNOSTICS
Error and diagnostic messages appear on the printed output, on the user’s terminal, or are mailed to the
user, depending on circumstances.

WARNINGS
There is little consistency in the interface to these filters.

SEE ALSO
lp(1), lpadmin(1M).

Managing Systems and Workgroups.

HP-UX Release 11i: December 2000 − 3 − Section 1−−475

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lpstat(1) lpstat(1)

NAME
lpstat - report line printer status information

SYNOPSIS
lpstat [-drst] [-a [list]] [-c [list]] [-o [list]] [-p [list]] [-u [list]] [-v [list]] [ID ...]

DESCRIPTION
The lpstat utility writes to standard output information about the current status of the line printer sys-
tem.

If no arguments are given, lpstat writes the status of all requests made to lp by the user that are still
in the output queue.

OPTIONS
The lpstat utility supports the XBD specification, Section 10.2, Utility Syntax Guidelines, except the
option-arguments are optional and cannot be presented as separate arguments.

Some of the options below can be followed by an optional list that can be in one of two forms: a list of items
separated from one another by a comma, or a quoted list of items separated from one another by a comma
or one or more blank characters, or combinations of both. See EXAMPLES.

The omission of a list following such options causes all information relevant to the option to be written to
standard output; for example:

lpstat -o

writes the status of all output requests that are still in the output queue.

-a [list] Write the acceptance status of destinations for output requests. The list argument is a
list of intermixed printer names and class names.

-c [list] Write the class names and their members. The list argument is a list of class names.

-d Write the system default destination for output requests.

-o [list] Write the status of output requests. The list argument is a list of intermixed printer
names, class names and request IDs.

-p [list] Write the status of printers. The list argument is a list of printer names.

-r Write the status of the line printer request scheduler.

-s Write a status summary, including the status of the line printer scheduler, the system
default destination, a list of class names and their members and a list of printers and
their associated devices.

-t Write all status information.

-u [list] Write the status of output requests for users. The list argument is a list of login names.

-v [list] Write the names of printers and the pathnames of the devices associated with them. The
list argument is a list of printer names.

OPERANDS
The following operand is supported:

ID A request ID, as returned by lp .

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables affect the execution of lpstat :

LANG Provide a default value for the internationalisation variables that are unset
or null. If LANG is unset or null, the corresponding value from the
implementation-specific default locale will be used. If any of the interna-
tionalisation variables contains an invalid setting, the utility will behave as

Section 1−−476 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lpstat(1) lpstat(1)

if none of the variables had been defined.

LC_ALL If set to a non-empty string value, override the values of all the other inter-
nationalisation variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text
data as characters (for example, single- as opposed to multi-byte characters
in arguments).

LC_MESSAGES Determine the locale that should be used to affect the format and contents
of diagnostic messages written to standard error, and informative messages
written to standard output.

LC_TIME Determine the format of date and time strings output when displaying line
printer status information with the -a , -o , -p , -t , or -u options.

NLSPATH Determine the location of message catalogues for the processing of
LC_MESSAGES.

TZ Determine the timezone used with date and time strings.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output is a text file containing the information described in OPTIONS, in an unspecified for-
mat.

STDERR
Used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The lpstat utility cannot reliably determine the status of print requests in all conceivable circumstances.
When the printer is under the control of another operating system or resides on a remote system across a
network, it need not be possible to determine the status of the print job after it has left the control of the
local operating system. Even on local printers, spooling hardware in the printer may make it appear that
the print job has been completed long before the final page is printed.

EXAMPLES
1. Obtain the status of two printers, the pathnames of two printers, a list of all class names and the

status of the request named HiPri-33:

lpstat -plaser1,laser4 -v"laser2 laser3" -c HiPri-33

2. Obtain user print job status using the obsolescent mixed blank and comma form:

lpstat -u"ddg,gmv, maw"

FUTURE DIRECTIONS
A version of lpstat that fully supports the XBD specification, Section 10.2, Utility Syntax Guidelines may
be introduced in a future issue.

HP-UX Release 11i: December 2000 − 2 − Section 1−−477

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lpstat(1) lpstat(1)

SEE ALSO
cancel(1), lp(1).

CHANGE HISTORY
First released in Issue 2.

Issue 3
The operation of this utility in an 8-bit transparent manner has been noted.

The operation of this utility in an internationalised environment has been described.

Issue 4
Format reorganised.

Exceptions to Utility Syntax Guidelines conformance noted.

Internationalised environment variable support mandated.

STANDARDS CONFORMANCE
lpstat : SVID2, SVID3, XPG2, XPG3, XPG4

Section 1−−478 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lpstat(1) lpstat(1)

HP-UX EXTENSIONS

DESCRIPTION
Any arguments that are not options are assumed to be request ids (as returned by lp). lpstat prints
the status of such requests. options can appear in any order and can be repeated and intermixed with
other arguments.

-i Inhibit the reporting of remote status.

-o [list] Also see the -i option.

-t Print all status information. Same as specifying -r , -s , -a , -p , -o . See the -i
option.

Security Restriction
Only users who have the lp subsystem authorization or the printqueue secondary subsystem authori-
zation can view the entire queue. Unauthorized users can view only their own jobs whose sensitivity levels
are dominated by the user’s current sensitivity level.

The allowmacaccess privilege allows viewing jobs at higher sensitivity levels.

EXAMPLES
Check whether your job is queued:

lpstat

Check the relative position of a queued job:

lpstat -t

Verify that the job scheduler is running:

lpstat -r

FILES
/var/spool/lp/*
/var/adm/lp/*
/etc/lp/*
/usr/lib/lp/*

SEE ALSO
enable(1), lp(1), rlpstat(1M).

STANDARDS CONFORMANCE
lpstat : SVID2, SVID3, XPG2, XPG3, XPG4

HP-UX Release 11i: December 2000 − 1 − Section 1−−479

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ls(1) ls(1)

NAME
ls, lc, l, ll, lsf, lsr, lsx - list contents of directories

SYNOPSIS
ls [-abcdefgilmnopqrstuxACFLR1] [names]

lc [-abcdefgilmnopqrstuxACFLR1] [names]

l [ls_options] [names]
ll [ls_options] [names]
lsf [ls_options] [names]
lsr [ls_options] [names]
lsx [ls_options] [names]

DESCRIPTION
For each directory argument, the ls command lists the contents of the directory. For each file argument,
ls repeats its name and any other information requested. The output is sorted in ascending collation order
by default (see Environment Variables below). When no argument is given, the current directory is listed.
When several arguments are given, the arguments are first sorted appropriately, but file arguments appear
before directories and their contents.

If you are a user with appropriate privileges, all files except . and .. are listed by default.

There are three major listing formats. The format chosen depends on whether the output is going to a
login device (determined by whether output device file is a tty device), and can also be controlled by option
flags. The default format for a login device is to list the contents of directories in multicolumn format, with
entries sorted vertically by column. (When individual file names (as opposed to directory names) appear in
the argument list, those file names are always sorted across the page rather than down the page in columns
because individual file names can be arbitrarily long.) If the standard output is not a login device, the
default format is to list one entry per line. The -C and -x options enable multicolumn formats, and the -m
option enables stream output format in which files are listed across the page, separated by commas. In
order to determine output formats for the -C , -x , and -m options, ls uses an environment variable,
COLUMNS, to determine the number of character positions available on each output line. If this variable is
not set, the terminfo database is used to determine the number of columns, based on the environment
variable TERM. If this information cannot be obtained, 80 columns is assumed.

The command lc functions the same as ls except that the lc default output is columnar, even if output is
redirected.

Options
ls recognizes the following options:

-a List all entries; usually entries whose names begin with a period (.) are not listed.

-b List nonprinting characters in the octal \ ddd notation.

-c Use time of last modification of the inode (file created, mode changed, etc.) for sorting (-t) or
printing (-l (ell)).

-d If an argument is a directory, list only its name (not its contents); often used with -l (ell) to get
the status of a directory.

-e List the extent attributes of the file. If any of the files has a extent attribute, this option lists the
extent size, space reserved and allocation flags. This option must be used with the -l (ell)
option.

-f Interpret each argument as a directory and list the name found in each slot. This option disables
-l (ell), -r , -s , and -t , and enables -a ; the order is the order in which entries appear in the
directory.

-g Same as -l (ell), except that only the group is printed (owner is omitted). If both -l (ell) and
-g are specified, the owner is not printed.

-i For each file, list the inode number in the first column of the report. When used in multicolumn
output, the number precedes the file name in each column.

-l (ell) List in long format, giving mode, number of links, owner, group, size in bytes, and time of
last modification for each file (see further DESCRIPTION and Access Control Lists below). If the
time of last modification is greater than six months ago, or any time in the future, the year is

Section 1−−480 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ls(1) ls(1)

substituted for the hour and minute of the modification time. If the file is a special file, the size
field contains the major and minor device numbers rather than a size. If the file is a symbolic
link, the filename is printed, followed by -> and the pathname of the referenced file.

-m Stream output format.

-n The same as -l , (ell) except that the owner’s UID and group’s GID numbers are printed, rather
than the associated character strings.

-o The same as -l , (ell) except that only the owner is printed (group is omitted). (If both -l (ell)
and -o are specified, the group is not printed).

-p Put a slash (/) after each file name if that file is a directory.

-q List nonprinting characters in file names as the character (?).

-r Reverse the order of sort to get reverse (descending) collation or oldest first, as appropriate.

-s List size in blocks, including indirect blocks, for each entry. The first entry listed is the total
number of blocks in the directory. When used in multicolumn output, the number of blocks pre-
cedes the file name in each column. The number of indirect blocks in a file is filesystem depen-
dent.

-t Sort by time modified (latest first) before sorting alphabetically.

-u Use time of last access instead of last modification for sorting (-t option) or printing (-l (ell)
option).

-x List multicolumn output with entries sorted across rather than down the page.

-A The same as -a , except that the current directory . and parent directory .. are not listed. For
a user with appropriate privileges, this flag defaults to on, and is turned off by -A .

-C List multicolumn output with entries sorted down the columns.

-F After each file name, put one of:

• A slash (/) if the file is a directory or a symbolic link to a directory.
• An asterisk (*) if the file is executable;
• An at-sign (@) if the file is a symbolic link to a file;
• A vertical bar (|) if the file is a fifo.

-L If the argument is a symbolic link, list the file or directory to which the link refers rather than
the link itself.

-R Recursively list subdirectories encountered.

-1 (one) List the file names in single column format regardless of the output device. This forces sin-
gle column format to the user’s terminal.

Specifying more than one of the options in the following mutually exclusive pairs is not considered an error:
-C and -l (ell), -m and -l (ell), -x and -l (ell), -C and -1 (one), and -c and -u .

ls is known by several shorthand-version names for the various formats:

l is equivalent to ls -m
ll is equivalent to ls -l (ell)
lsf is equivalent to ls -F
lsr is equivalent to ls -R
lsx is equivalent to ls -x

The shorthand notations are implemented as links to ls . Option arguments to the shorthand versions
behave exactly as if the long form above had been used with the additional arguments.

Mode Bits Interpretation (-l option)
The mode printed in listings produced by the -l (ell) option consists of 10 characters, for example,
-rwxr-xr-x .

The first character indicates the entry type:

b Block special file
c Character special file
d Directory

HP-UX Release 11i: December 2000 − 2 − Section 1−−481

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ls(1) ls(1)

l Symbolic link
n Network special file
p Fifo (also called a "named pipe") special file
s Socket
- Ordinary file

The next 9 characters are interpreted as three sets of three characters each which identify access and exe-
cution permissions for the owner, group, and others categories, as described in chmod(1). The - indicates
the permission is not granted. The various permissions can be put together in any combination, except that
the x , s , S, t , and T characters are mutually exclusive, as implied below.

-r-------- Read by owner
--w------- Write by owner
---x------ Execute (or search directory) by owner; do not set user ID on execution
---s------ Execute/search by owner; set user ID on execution
---S------ No execute/search by owner; set user ID on execution
----r----- Read by group
-----w---- Write by group
------x--- Execute/search by group; do not set group ID on execution
------s--- Execute/search by group; set group ID on execution
------S--- No execute/search by group; set group ID on execution
-------r-- Read by others
--------w- Write by others
---------x Execute/search by others; do not set sticky bit on execution
---------t Execute/search by others; set sticky bit on execution
---------T No execute/search by others; set sticky bit on execution

The mode characters are interpreted as follows:

- Deny all permissions in the corresponding position.

r Grant read permission to the corresponding user class.

w Grant write permission to the corresponding user class.

x Grant execute (or search in directory) permission to the corresponding user class.

s Grant execute (search) permission to the corresponding user class. Execute the file as if by the
owner (set user ID, SUID) or group (set group ID, SGID), as indicated by position.

S Deny execute (search) permission to the corresponding user class. Execute the file as if by the
owner (set user ID, SUID) or group (set group ID, SGID), as indicated by position.

t Grant execute (search) permission to others. The "sticky" (save text image) bit is set (see the
description of S_ISVTX in chmod(2)).

T Deny execute (search directory) permission to others. The "sticky" (save text image) bit is set.

When an option is specified that results in a listing of directory and/or file sizes in bytes or blocks (such as
the -s or -l (ell) option), a total count of blocks, including indirect blocks, is also printed at the beginning
of the listing.

Access Control Lists (ACLs)
If a file has optional ACL entries, the -l (ell) option displays a plus sign (+) after the file’s permissions.
The permissions shown are a summary representation of the file’s access control list, as returned by
stat() in the st_mode field (see stat(2)). To list the contents of an access control list, use the lsacl
command (see lsacl(1) and acl(5)) for HFS file systems, or the getacl command (see getacl(1) and aclv(5))
for JFS file systems.

EXTERNAL INFLUENCES
Environment Variables

If the COLUMNSvariable is set, ls uses the width provided in determining positioning of columnar output.

LANGdetermines the locale to use for the locale categories when both LC_ALL and the corresponding
environment variable (beginning with LC_) do not specify a locale. If LANGis not set or is null, it defaults
to C (see lang(5)).

LC_COLLATEdetermines the order in which the output is sorted.

Section 1−−482 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

ls(1) ls(1)

LC_CTYPEdetermines which characters are classified as nonprinting for the -b and -q options, and the
interpretation of single- and/or multibyte characters within file names.

LC_TIME determines the date and time strings output by the -g , -l (ell), -n , and -o options.

LC_MESSAGESdetermines the language in which messages (other than the date and time strings) are
displayed.

If any internationalization variable contains an invalid setting, they all default to C (see environ(5)).

International Code Set Support
Single- and multibyte character code sets are supported.

RETURN VALUE
ls exits with one of the following values:

0 All input files were listed successfully.

>0 ls was aborted because errors occurred when accessing files. The following conditions cause an
error:

• Specified file not found.
• User has no permission to read the directory.
• Process could not get enough memory.
• Invalid option specified.

EXAMPLES
Print a long listing of all the files in the current working directory (including the file sizes). List the most
recently modified (youngest) file first, followed by the next older file, and so forth, to the oldest. Files
whose names begin with a . are also printed.

ls -alst

WARNINGS
Setting options based on whether the output is a login (tty) device is undesirable because ls -s is very
different from ls -s | lp . On the other hand, not using this setting makes old shell scripts that used ls
almost inevitably fail.

Nonprinting characters in file names (without the -b or -q option) may cause columnar output to be
misaligned.

DEPENDENCIES
NFS

The -l (ell) option does not display a plus sign (+) after the access permission bits of networked files to
represent existence of optional access control list entries.

AUTHOR
ls was developed by AT&T, the University of California, Berkeley and HP.

FILES
/etc/group For group IDs for -l (ell) and -g .
/etc/passwd For user IDs for -l (ell) and -o .
/usr/share/lib/terminfo/?/* For terminal information.

SEE ALSO
chmod(1), find(1), getacl(1), lsacl(1), stat(2), acl(5), aclv(5).

STANDARDS CONFORMANCE
ls : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 4 − Section 1−−483

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

l

lsacl(1) lsacl(1)

NAME
lsacl - list access control lists (ACLs) of files

SYNOPSIS
/usr/bin/lsacl [-l] file...

DESCRIPTION
lsacl lists access control lists (ACLs) of one or more files in symbolic, ‘‘short’’ form, one file’s ACL per line
of output, followed by the file name; see acl(5) for ACL syntax.

Options
lsacl recognizes the following option:

-l Print ACLs in long form. Each file’s ACL can be more than one line long, and is always preceded
by file name, colon, and newline. Consecutive file names are separated by blank lines.

If a hyphen (-) is given as a file name argument, lsacl prints the ACL for the standard input. By
default, it prints the file name as - . For the -l option it prints a file name of <stdin> .

Unlike ls , lsacl cannot list ACLs of files in subdirectories automatically or list the ACL entries of the
files in the current directory by default. A good way to do the latter is:

lsacl *

or

lsacl .* *

EXTERNAL INFLUENCES
Environment Variables

LANGdetermines the language in which messages are displayed.

If LANGis not specified or is set to the empty string, a default of "C" (see lang(5)) is used instead of LANG.
If any internationalization variable contains an invalid setting, lsacl behaves as if all internationaliza-
tion variables are set to "C". See environ(5).

RETURN VALUE
If lsacl succeeds, it returns zero. If invoked incorrectly, it returns a value of 1. If lsacl is unable to
read the ACL for a specified file, it prints an error message to standard error, continues, and later returns a
value of 2.

EXAMPLES
List the ACL for the file dir/file1 :

lsacl dir/file1

List ACLs for all files in the current directory, in long form.

lsacl -l .* *

List ACLs for all files under mydir :

find mydir -print | sort | xargs lsacl

DEPENDENCIES
lsacl will fail when the target file resides on a file system which does not support ACLs.

NFS:
lsacl is not supported on remote files.

AUTHOR
lsacl was developed by HP.

SEE ALSO
chacl(1), getaccess(1), ls(1), getacl(2), acl(5).

Section 1−−484 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

m4(1) m4(1)

NAME
m4 - macro processor

SYNOPSIS
m4 [options] [file ...]

DESCRIPTION
m4 is a macro processor intended as a front end for Ratfor, C, and other languages. Each of the argument
files is processed in order; if there are no files, or if a file name is - , standard input is read. The processed
text is written to standard output.

Options
m4recognizes the following options:

-e Operate interactively. Interrupts are ignored and the output is unbuffered. Using this
mode may be very difficult.

-s Enable line sync output for the C preprocessor (#line ...)

-B int Change the size of the push-back and argument collection buffers from the default of 4,096.

-H int Change the size of the symbol table hash array from the default of 199. The size should be
prime.

-S int Change the size of the call stack from the default of 100 slots. Macros take three slots, and
nonmacro arguments take one.

-T int Change the size of the token buffer from the default of 512 bytes.

To be effective, the options listed above must appear before any file names and before any -D or -U
options.

-D name[=val]
Define name as val or as null if val is omitted.

-U name Undefine name.

Macro Calls
Macro calls have the form:

name(arg1, arg2, ... , argn)

The left parenthesis (() must immediately follow the name of the macro. If the name of a defined macro is
not followed by a (, it is deemed to be a call of that macro with no arguments. Potential macro names con-
sist of alphabetic letters, digits, and underscore (_); the first character cannot be a digit.

Leading unquoted blanks, tabs, and newlines are ignored while collecting arguments. Left and right single
quotes (‘ and ’) are used to quote strings. The value of a quoted string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a matching right
parenthesis. If fewer arguments are supplied than are in the macro definition, the trailing arguments are
taken to be null. Macro evaluation proceeds normally during the collection of the arguments, and any com-
mas or right parentheses which happen to turn up within the value of a nested call are as effective as those
in the original input text. After argument collection, the value of the macro is pushed back onto the input
stream and rescanned.

Built-In Macro Names
m4makes available the following built-in macros. They can be redefined, but, once this is done, the original
meaning is lost. Their values are null unless otherwise stated.

changecom Change left and right comment markers from the default # and newline. With no argu-
ments, the comment mechanism is effectively disabled. With one argument, the left
marker becomes the argument and the right marker becomes newline. With two argu-
ments, both markers are affected. Comment markers may be up to five characters long.

changequote Change quote symbols to the first and second arguments. The symbols may be up to
five characters long. changequote without arguments restores the original values
(i.e., ‘ and ’).

HP-UX Release 11i: December 2000 − 1 − Section 1−−485

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

m4(1) m4(1)

decr Returns the value of its argument decremented by 1.

define The second argument is installed as the value of the macro whose name is the first argu-
ment. Each occurrence of $n in the replacement text, where n is a digit, is replaced by
the nth argument. Argument 0 is the name of the macro; missing arguments are
replaced by the null string; $# is replaced by the number of arguments; $* is replaced
by a list of all the arguments separated by commas; $@is equivalent to $* , but each
argument is quoted (with the current quotes).

defn Returns the quoted definition of its arguments. It is useful for renaming macros, espe-
cially built-ins.

divert m4 maintains 10 output streams, numbered 0 to 9. The final output is the concatenation
of the streams in numerical order; initially, stream 0 is the current stream. The
divert macro changes the current output stream to its (digit-string) argument. Out-
put diverted to a stream other than 0 through 9 is discarded.

divnum Returns the value of the current output stream.

dnl Reads and discards characters up to and including the next newline.

dumpdef Prints current names and definitions, for the named items, or for all if no arguments are
given.

errprint Prints its argument on the diagnostic output file.

eval Evaluates its argument as an arithmetic expression, using 32-bit arithmetic. Operators
include +, - , * , / , %, ** (exponentiation), bitwise &, | , ˆ , and ˜ , relationals, and
parentheses. Octal and hexadecimal numbers may be specified as in C. The second
argument specifies the radix for the result; the default is 10. The third argument may
be used to specify the minimum number of digits in the result.

hpux Is a predefined object with a null value.

ifdef If the first argument is defined, the value is the second argument; otherwise the third.
If there is no third argument, the value is null. The word unix is predefined on HP-UX
system versions of m4.

ifelse Has three or more arguments. If the first argument is the same string as the second,
then the value is the third argument. If not, and if there are more than four arguments,
the process is repeated with arguments 4, 5, 6 and 7. Otherwise, the value is either the
fourth string, or, if it is not present, null.

include Returns the contents of the file named in the argument.

incr Returns the value of its argument incremented by 1. The value of the argument is cal-
culated by interpreting an initial digit-string as a decimal number.

index Returns the position in its first argument where the second argument begins (zero ori-
gin), or −1 if the second argument does not occur.

len Returns the number of characters in its argument.

m4exit Causes immediate exit from m4. Argument 1, if given, is the exit code; the default is 0.

m4wrap Argument 1 is pushed back at final EOF; for example: m4wrap(‘cleanup()’)

maketemp Fills in a string of XXXXXin its argument with the current process ID.

popdef Removes current definition of its arguments, exposing the previous one, if any.

pushdef Similar to define , but saves any previous definition.

shift Returns all but its first argument. The other arguments are quoted and pushed back
with commas in between. The quoting nullifies the effect of the extra scan that will sub-
sequently be performed.

sinclude Identical to include , except that it says nothing if the file is inaccessible.

substr Returns a substring of its first argument. The second argument is a zero-origin number
selecting the first character; the third argument indicates the length of the substring. A
missing third argument is taken to be large enough to extend to the end of the first
string.

Section 1−−486 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

m4(1) m4(1)

syscmd Executes the HP-UX system command given in the first argument. No value is
returned.

sysval Is the return code from the last call to syscmd .

traceoff Turns off trace globally and for any macros specified. Macros specifically traced by
traceon can be untraced only by specific calls to traceoff .

traceon With no arguments, turns on tracing for all macros (including built-ins). Otherwise,
turns on tracing for named macros.

translit Transliterates the characters in its first argument from the set given by the second
argument to the set given by the third. No abbreviations are permitted.

undefine Removes the definition of the macro named in its argument.

undivert Causes immediate output of text from diversions named as arguments, or all diversions
if no argument. Text may be undiverted into another diversion. Undiverting discards
the diverted text.

(XPG4 only.) It is an error to specify an argument containing any non-numeric character for the built-in-
macros: decr , divert , incr , m4exit , substr , undivert , and eval .

SEE ALSO
cpp(1), ratfor(1).

STANDARDS CONFORMANCE
m4: SVID2, SVID3, XPG2, XPG3, XPG4

HP-UX Release 11i: December 2000 − 3 − Section 1−−487

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

machid(1) machid(1)

NAME
hp9000s200, hp9000s300, hp9000s500, hp9000s800, pdp11, u3b, u3b2, u3b5, u3b10, u370, vax - provide
truth value about processor type

SYNOPSIS
hp9000s200
hp9000s300
hp9000s400
hp9000s500
hp9000s700
hp9000s800
hp-mc680x0
hp-pa
pdp11
u3b
u3b2
u3b5
u3b10
u370
vax

DESCRIPTION
The following commands return a true value (exit code 0) if the a processor type matches the command
name. Otherwise a false value (exit code non-zero) is returned. These commands are commonly used
within make makefiles and shell procedures to improve portability of applications (see make(1)).

Command True for: Command True for:
hp9000s200 Series 200 pdp11 PDP-11/45 or PDP-11/70
hp9000s300 Series 300 u3b 3B20 computer
hp9000s400 Series 400 u3b2 3B2 computer
hp9000s500 Series 500 u3b5 3B5 computer
hp9000s700 Series 700 u3b10 3B10 computer
hp9000s800 Series 800/700 u370 IBM System/370 computer
hp-mc680x0 Series 200, 300, or 400 vax VAX-11/750 or VAX-11/780

hp-pa Series 700 or 800

EXAMPLES
Given a shell script that must behave differently when run on an HP 9000 Series 700 or 800 system, select
the correct code segment to be executed:

if hp9000s800
then

system is Series 700 or 800.
if hp9000s700
then

System is Series 700

Series 700 code fragment goes here
else

System is Series 800

Series 800 code fragment goes here
fi

fi

WARNINGS
hp9000s800 always returns true on both Series 800 and Series 700 systems. Therefore, when using this
command in scripts to determine hardware type, always use both hp9000s800 and hp9000s700 in
the appropriate sequence to ensure correct results (see EXAMPLES).

machid(1) will no longer provide support for future machines beyond the Series 800 and Series 700 sys-
tems. Decisions should be based on the hardware and software configuration information returned by
getconf(1).

Section 1−−488 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

machid(1) machid(1)

SEE ALSO
getconf(1), make(1), sh(1), test(1), true(1).

HP-UX Release 11i: December 2000 − 2 − Section 1−−489

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mail(1) mail(1)

NAME
mail, rmail - send mail to users or read mail

SYNOPSIS
mail [+] [-epqr] [-f file]

mail [-dt] person ...

rmail [-dt] person ...

Remarks:
See mailx(1) and elm(1) for an enhanced user mail interface.

DESCRIPTION
The mail command, when used without arguments, prints the user’s mail, message-by-message, in last-
in, first-out order.

For each message, mail prints a ? prompt and reads a line from the standard input to determine the
disposition of the message. Commands that automatically proceed to the next message exit from mail if
mail already on the last message.

Commands
mail supports the following commands:

<new-line> Go on to next message. Exit if already on last message.

+ Same as <new-line>.

n Same as <new-line>.

d Delete message and go on to next message.

p Print message again.

- Go back to previous message.

s [files] Save message in the named files (default is mbox), mark the message for deletion
from the user’s mailfile, and proceed to next message.

y [files] Same as s [files].

w [files] Save message without its header (the ‘‘From ...’’ line), in the named files (default is
mbox), mark the message for deletion, and go on to next message.

m person ... Mail the message to each named person, mark the message for deletion, and go on to
next message.

q Put undeleted mail back in the mailfile and stop.

EOT (Ctrl-D) Same as q.

x Abort. Leave original mailfile unchanged and stop.

! command Escape to the command interpreter and execute command.

? Print a command summary.

* Same as ?.

Command-Line Options
The following command-line options alter printing of the mail:

+ Cause messages to be printed in first-in, first-out order.

-e Suppresses printing of mail and returns the exit value:

0 = Mail present
1 = No mail
2 = Other error

-p Prints all mail without prompting for disposition.

-q Causes mail to terminate if an interrupt is received. Normally an interrupt only
causes the termination of the printing of the current message.

Section 1−−490 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mail(1) mail(1)

-r Same as +.

-f file Causes mail to use file (for example, mbox) instead of the default mailfile.

-t Causes the outbound message to be preceded by each person the mail is sent to. A
person is usually a user name recognized by login (see login(1)). If a person being
sent mail is not recognized, or if mail is interrupted during input, the file
dead.letter will be saved to allow editing and resending. Note that
dead.letter is regarded as a temporary file in that it is recreated every time
needed, erasing the previous contents of dead.letter .

-d Causes mail to deliver mail directly. This isolates mail from making routing deci-
sions, and allows it to be used as a local delivery agent. Typically this option is used
by auto-routing facilities when they deliver mail locally.

When persons are named, mail takes the standard input up to an end-of-file (or up to a line consisting of
just a .) and adds it to each person ’s mailfile. The message is preceded by the sender’s name and a post-
mark.

To denote a recipient on a remote system, prefix person by the system name and exclamation mark (see
uucp(1)). Everything after the first exclamation mark in person is interpreted by the remote system. In
particular, if person contains additional exclamation marks, it can denote a sequence of machines through
which the message is to be sent on the way to its ultimate destination. For example, specifying a!b!cde
as a recipient’s name causes the message to be sent to user b!cde on system a. System a then inter-
prets that destination as a request to send the message to user cde on system b. This might be useful, for
instance, if the sending system can access system a but not system b. mail does not use uucp if the
remote system is the local system name (i.e., localsystem!user).

The mailfile can be manipulated in two ways to alter the function of mail . The other permissions of
the file can be read-write, read-only, or neither read nor write to allow different levels of privacy. If
changed to other than the default, the file is preserved, even when empty, to perpetuate the desired per-
missions. The file can also contain the first line:

Forward to person

which causes all mail sent to the owner of the mailfile to be forwarded to person. This is especially
useful for forwarding all of a person’s mail to a given machine in a multiple-machine environment. In order
for forwarding to work properly the mailfile should have "mail" as group ID, and the group permission
should be read-write.

rmail only permits the sending of mail. uucp uses rmail as a security precaution.

When a user logs in, the command mail -e can be used to detect the presence of mail, if any, and so
indicate. When terminating, mail produces a notification message if new mail arrived while mail was
running.

EXTERNAL INFLUENCES
Environment Variables

LC_TIME determines the format and contents of the displayed date and time strings.

If LC_TIME is not specified in the environment or is set to the empty string, the value of LANGis used as
a default for each unspecified or empty variable. If LANGis not specified or is set to the empty string, a
default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable contains an invalid
setting, mail behaves as if all internationalization variables are set to "C". See environ(5).

When set, the TMPDIR environment variable specifies a directory to be used for temporary files, overrid-
ing the default directory /tmp .

International Code Set Support
Between HP-UX systems, single- and multi-byte character code sets are supported within mail text.
Headers are restricted to characters from the 7-bit USASCII code set (see ascii(5)).

WARNINGS
Conditions sometimes result in a failure to remove a lock file.

After an interrupt, the next message may not be printed. To force printing, type a p.

Lines that look like postmarks in the message (that is, ‘‘From ...’’) are preceded by >.

HP-UX Release 11i: December 2000 − 2 − Section 1−−491

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mail(1) mail(1)

mail treats a line consisting solely of a dot (.) as the end of the message, except when the rmail -d
command is used.

The maximum allowable line length in mail messages is BUFSIZ bytes as defined in
/usr/include/stdio.h . If line length exceeds this limit, mail truncates the line starting at
beginning-of-line, and uses only the trailing BUFSIZ characters.

Using two separate mail programs to access the same mail file simultaneously (usually inadvertently from
two separate windows) can cause unpredictable results.

Some sites that have programs that adhere strictly to RFC-822 will fail to deliver a message if any of the
recipient fields below is missing.

To:
resent-to:
cc:
resent-cc:
bcc:
resent-bcc:

You can add the RFC-822 commands into the mail program buffer/editor. For instance:

mail user1@domain.com
From: user2@domain.com
Subject: This is a test
To: test_address@domain.com

This is a test

FILES
/var/mail/*.lock Lock for mail directory
dead.letter Unmailable text
/tmp/ma* Temporary file
$MAIL Variable containing path name of mailfile
$HOME/mbox Saved mail
/etc/passwd To identify sender and locate persons
/var/mail Directory for incoming mail (mode 775 , group ID mail)
/var/mail/ user Incoming mail for user; that is, the mailfile (mode 660 , group ID mail)

SEE ALSO
login(1), mailx(1), uucp(1), write(1).

STANDARDS CONFORMANCE
mail : SVID2, SVID3, XPG2, XPG3

rmail : SVID2, SVID3

Section 1−−492 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mailfrom(1) mailfrom(1)

NAME
mailfrom - summarize mail folders by subject and sender

SYNOPSIS
mailfrom [-hnQqStv] [-s status] [folderusername]...

DESCRIPTION
The mailfrom command reads one or more mail folders and outputs one line per message in the form:

from [subject]

where from is the name of the person the message is from, and subject is the subject of the message, if
present. If mailfrom determines that the message is from you, the from portion will read To user,
where user is the user the message was sent to. This happens when you receive a copy of a letter you sent.

The default folder is your incoming mailbox, /var/mail/ yourloginname. See the Operands subsection
below.

Options
mailfrom recognizes the following options:

-h Print a brief help message summarizing the options.

-n Number the messages using the same numbering scheme used by readmail .

-Q Very quiet mode. Only error messages are produced. This option is useful in shell
scripts, where only the success or failure of the program is important, and output is
not desired.

-q Quiet mode. Output only a one-line summary for each mailbox or folder.

-S Add a summary of the number of messages by message status in each mailbox or
folder. To get the summary only, use this with the -q option. The summary has the
form:

Folder contains:
New messages: n
Unread messages: u
Read messages: r

If an item count, n, r, or u is zero, the line is omitted.

-s status Only display headers from messages with the given status. status can be one of new,
old , read , or unread . old and unread are equivalent. The -s option can be
repeated to print header information from more than one category, for example, only
new and unread messages. The values can be abbreviated to their first letters. The
default is all messages.

-t Tidy mode. If the from field is long enough to displace the subject field from its normal
start column, move the subject down onto the next line.

-v Verbose mode. Print a descriptive header before listing the contents of each mailbox
or folder.

Operands
mailfrom recognizes the following optional operands:

folderusername
A file name or the name of a mail user on your system. You can use the =filename
format to specify a folder in your mail directory, defined by the maildir string vari-
able in your elmrc configuration file.

mailfrom searches for the value as a file name relative to your current directory.
Then, if the file name is not an absolute path, it searches for the value relative to the
incoming mailbox directory, /var/mail . The first file found is selected. You must
have read access to the file.

EXIT STATUS
mailfrom returns the following values:

HP-UX Release 11i: December 2000 − 1 − Section 1−−493

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mailfrom(1) mailfrom(1)

0 Messages matching status are present.

1 No messages matching status are present, but there are some messages.

2 There are no messages at all.

3 An error occurred.

If multiple mailboxes or folders are specified, the exit status only applies to the last one examined. This
can be used in scripts to determine what kind of mail a user has.

EXAMPLES
Display header information from all the messages in your mailbox.

mailfrom

Display header information from all new messages in your mailbox.

mailfrom -s new

Assuming you have the proper file permissions to read guest ’s mail, print out header information from all
new and unread messages in guest ’s incoming mailbox.

mailfrom -s new -s unread guest

Print only a summary of how many new, unread, and read messages are in your incoming mailbox.

mailfrom -q -S

FILES
$HOME/.elm/elmrc Your elm configuration file.

/var/mail Directory of incoming mailboxes.

AUTHOR
mailfrom was developed by HP.

SEE ALSO
elm(1), mail(1), mailx(1), readmail(1).

Section 1−−494 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mailq(1) mailq(1)

NAME
mailq - prints the mail queue

SYNOPSIS
mailq [-v]

DESCRIPTION
mailq prints a summary of the mail messages queued for future delivery.

The first line printed for each message shows the internal identifier used on this host for the message, the
size of the message in bytes, the date and time the message was accepted into the queue, and the envelope
sender of the message. The second line shows the error message that caused this message to be retained in
the queue; it will not be present if the message is being processed for the first time. The following lines
show message recipients, one per line.

mailq is identical to sendmail -bp .

The options are as follows:

Options
-v Print verbose information. This adds the priority of the message and a single character indicator

(‘‘+’’ or blank) indicating whether a warning message has been sent on the first line of the message.
Additionally, extra lines may be intermixed with the recipients indicating the ‘‘controlling user’’
information; this shows who will own any programs that are executed on behalf of this message
and the name of the alias this command expanded from, if any.

RETURN VALUE
The mailq utility exits 0 on success, and >0 if an error occurs.

AUTHOR
mailq was developed by the University of California, Berkeley, and originally appeared in 4.0BSD.

FILES
/var/spool/mqueue/* mail queue files

SEE ALSO
sendmail(1M).

HP-UX Release 11i: December 2000 − 1 − Section 1−−495

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mailstats(1) mailstats(1)

NAME
mailstats - print mail traffic statistics

SYNOPSIS
mailstats [-o] [-C cffile] [-f stfile]

DESCRIPTION
mailstats reads and interprets the sendmail statistics file, /etc/mail/sendmail.st , then
prints out the mail traffic statistics. If /etc/mail/sendmail.st exists, sendmail collects statis-
tics about your mail traffic and stores them in the statistics file. This file does not grow.

Statistics are gathered on a per-mailer basis for each mailer defined in the sendmail configuration file.
Statistics are kept on the number of messages and the number of bytes for all inbound and outbound traffic.

The mailstats utility displays the time at which statistics collection was started on the first line. Then,
the statistics of each mailer is displayed on a single line, each with the following white space separated
fields (see the "EXAMPLES" section below):

M The mailer number.

msgsfr Number of messages from the mailer.

bytes_from Kbytes from the mailer.

msgsto Number of messages to the mailer.

bytes_to Kbytes to the mailer.

msgsrej Number of messages rejected.

msgsdis Number of messages discarded.

Mailer The name of the mailer.

After this display, a line totaling the values for all of the mailers is displayed, separated from the previous
information by a line containing only equals (‘‘=’’) characters.

Options
The options are as follows:

-C Read the specified file instead of the default /etc/mail/sendmail.cf file.

-f Read the specified statistics file instead of the statistics file specified in the
/etc/mail/sendmail.cf file.

-o Do not display the name of the mailer in the output.

To clear the statistics file, execute, as root:

cp /dev/null/etc/mail/sendmail.st

RETURN VALUE
The mailstats utility exits 0 on success, and >0 if an error occurs.

DIAGNOSTICS
mailstats generates error messages if the statistics file is not accessible or if the size of the statistics file
has changed. Error messages are:

mailstats: file size changed
Either /etc/mail/sendmail.st is zero length, meaning that no mail has been transferred
since it was cleared out, or its size has changed. Since the size of this file is supposed to remain
constant, any change in size means that the file is invalid.

mailstats: /etc/mail/sendmail.st: No such file or directory
The statistics file does not exist.

mailstats: /etc/mail/sendmail.st: Permission denied
The statistics file’s permissions are set so that you cannot read it.

EXAMPLES
Here is a typical example of mailstats output:

Section 1−−496 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mailstats(1) mailstats(1)

Statistics from Thu Jul 11 14:12:40 1996
M msgsfr bytes_from msgsto bytes_to msgsrej msgsdis Mailer
0 0 0K 3 4K 0 0 prog
3 3 4K 0 0K 0 0 local
5 2 1K 11 11K 4 0 esmtp
===
T 13 13K 14 15K 4 0

This example shows that mailers 0, 3 and 5 have handled the given amounts of mail traffic since Thursday,
Jul 11th. Specifically, sendmail has sent 11 messages containing 11 kilobytes via mailer esmtp (M 5),
but has 4 messages rejected via mailer esmtp (M 5).

AUTHOR
mailstats was developed by the University of California, Berkeley.

FILES
/etc/mail/sendmail.st mail traffic statistics file
/etc/mail/sendmail.cf sendmail configuration file

SEE ALSO
sendmail(1M).

HP-UX Release 11i: December 2000 − 2 − Section 1−−497

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mailx(1) mailx(1)

NAME
mailx - interactive message processing system

SYNOPSIS
Send mode:

mailx [-FUm] [-s subject] [-r address] [-h number] address ...

Receive mode:
mailx -e

mailx [-UHLiNn] [-u user]

mailx -f [-UHLiNn] [filename]

Obsolescent:
mailx [-f filename] [-UHLiNn]

DESCRIPTION
mailx provides a comfortable, flexible environment for sending and receiving messages electronically.
When reading mail, mailx provides commands to facilitate saving, deleting, and responding to messages.
When sending mail, mailx allows editing, reviewing and other modification of the message as it is
created.

Incoming mail for each user is stored in a standard file called the system mailbox for that user. When
using mailx to read messages, the system mailbox is used unless an alternate mailbox file is specified by
using the -f option with or without a specific filename. As incoming messages are read from the system
mailbox, they are marked to be moved to a secondary file for storage (unless specific action is taken) so that
the messages need not be seen again. This secondary file is called the mbox and is usually located in the
user’s HOMEdirectory (see MBOXdescription under ENVIRONMENT VARIABLES below for a description of
this file and other environment variables used by mailx). Messages remain in this file until specifically
removed.

Command-line options start with a hyphen (-), and any other arguments are assumed to be destinations
(recipients). If no recipients are specified, mailx attempts to read messages from the system mailbox.

Recipient addresses specified on the command line must total less than 1024 characters in length. You may
declare an alias or group (see COMMANDS below) to specify a recipient address or list of addresses of up
to 8191 characters, and use that alias or group name (though each address in the list must still be less than
1024 characters). If you wish to specify a list of recipient addresses of greater length than this, have your
system administrator declare an alias or group in the system alias file /etc/mail/aliases and use
that alias name instead.

Options
mailx recognizes the following command-line options:

-e Test for presence of mail. mailx prints nothing and exits with a successful return
code if there is mail to read. Sometimes used in login scripts such as
$HOME/.profile to check for mail during login.

-f Read messages from filename instead of the user’s system mailbox. If filename is not
specified, the secondary mbox is used.

-F Record the message in a file named after the first recipient. Overrides the record
environment variable, if set.

-h number The number of network "hops" made so far. This is provided for network software to
prevent infinite delivery loops.

-H Print header summary only.

-L Print complete header information only.

-i Ignore interrupts. Also see the description of the ignore environment below.

-n Do not initialize from the system default mailx.rc file.

-m Do not add MIME header lines Mime Version, Content Type & Content Encoding to
the header information while sending mails.

Section 1−−498 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mailx(1) mailx(1)

-N Do not print initial header summary.

-r address Pass address to network delivery software. All tilde commands are disabled.

-s subject Set the Subject header field to subject.

-u user Read user ’s mailbox. Can be used only if read access to user ’s mailbox is not read pro-
tected.

-U Convert UUCP-style addresses to Internet standards. Overrides the conv environ-
ment variable.

-d Turn on debugging output. Neither particularly interesting nor recommended.

When reading mail, mailx operates in command mode. A header summary of the first several mes-
sages is displayed, followed by a prompt indicating that mailx can accept regular commands (see COM-
MANDS below). When sending mail, mailx operates in input mode. If no subject is specified on the
command line, a prompt for the subject is printed. As the message is typed, mailx reads the message
and stores it in a temporary file. Commands can be entered by beginning a line with the tilde (˜) escape
character followed by a single command letter and optional arguments. See TILDE ESCAPES for a summary
of these commands.

The behavior of mailx at any given time is governed by a set of environment variables; flags and
valued parameters that are set and cleared by using the se t and uns et commands. See ENVIRONMENT
VARIABLES below for a summary of these parameters.

Recipients listed on the command line can be of three types: login names, shell commands, or alias groups.
Login names can be any network address, including mixed network addressing. If the recipient name
begins with a pipe symbol (|), the rest of the name is assumed to be a shell command to pipe the message
through. This provides an automatic interface with any program that reads the standard input, such as
lp (see lp(1)) for recording outgoing mail on paper. Alias groups are set by the alias command (see COM-
MANDS below) and are lists of recipients of any type.

Regular commands are of the form

[command] [msglist] [arguments]

If no command is specified in command mode, print is assumed. In input mode, commands are recognized
by the escape character (tilde unless redefined by the escape environment variable), and lines not
treated as commands are treated as input for the message.

Each message is assigned a sequential number, and there is always the notion of a current message,
marked by a > in the header summary. Many commands take an optional list of messages (msglist) to
operate on, which defaults to the current message. A msglist is a list of message specifications separated
by spaces. The message list can include:

n Message number n.

. The current message.

^ The first undeleted message.

$ The last message.

* All messages.

n- m An inclusive range of message numbers, n through m, where n is less than m.

user All messages from user.

/ string All messages with string in the subject line (uppercase-lowercase differences are ignored).

: c All messages of type c, where c is one of:

d deleted messages

n new messages

o old messages

r read messages

u unread messages

Note that the context of the command determines whether this type of message
specification makes sense.

HP-UX Release 11i: December 2000 − 2 − Section 1−−499

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mailx(1) mailx(1)

Other arguments are usually arbitrary strings whose usage depends on the command involved. File names,
where expected, are expanded using normal shell conventions (see sh(1)). Special characters are recognized
by certain commands, and are documented with the commands below.

At start-up time, mailx reads commands from a system-wide file (/usr/share/lib/mailx.rc) to
initialize certain parameters, then from a private start-up file ($HOME/.mailrc) for personalized vari-
ables. Most regular commands are legal inside start-up files, the most common use being to set up initial
display options and alias lists. The following commands are not legal in the start-up file: ! , Copy, edit,
fo llowup, Followup, ho ld, mail, pre serve, r eply, Reply, sh ell, and v isual. Any errors in the start-up file
cause the remaining lines in the file to be ignored.

COMMANDS
The following is a complete list of mailx commands:

! command Escape to the shell. See the description of the SHELL environment variable below.

comment Null command (comment). Useful in .mailrc files.

= Print the current message number.

? Print a summary of commands.

<new-line> Advance to next message and print. If this is the first command entered, the first
unread message is printed. (To read the current message, use print.)

alias alias name ...
group alias name ...

Declare an alias for the given names. The names are substituted when alias is used
as a recipient. Useful in the .mailrc file.

alt ernates name ...
Declares a list of alternate names for your login. When responding to a message,
these names are removed from the list of recipients for the response. With no argu-
ments, alt ernates prints the current list of alternate names. See also allnet
under ENVIRONMENT VARIABLES.

cd [directory]
ch dir [directory] Change directory. If directory is not specified, $HOMEis used.

copy [filename]
copy [msglist] filename

Copy messages to the file without marking the messages as saved. Otherwise
equivalent to the save command.

Copy [msglist] Save the specified messages in a file whose name is derived from the author of the
message to be saved, without marking the messages as saved. Otherwise equivalent
to the Save command.

delete [msglist] Delete messages from the mailbox. If autoprint is set, the next message after the
last one deleted is printed (see ENVIRONMENT VARIABLES). See also dp .

di scard [header-field ...]
ig nore [header-field ...]

Suppresses printing of the specified header fields when displaying messages on the
screen. Examples of header fields to ignore are "status" and "cc." The fields are
included when the message is saved. The Print and Type commands override this
command.

dp [msglist]
dt [msglist] Delete the specified messages from the mailbox and print the next message after the

last one deleted. Roughly equivalent to a delete command followed by a print com-
mand.

ec ho string ... Echo the given string or strings (similar to echo − see echo(1)).

edit [msglist] Edit the given messages. The messages are placed in a temporary file and the EDI-
TORvariable is used to get the name of the editor (see ENVIRONMENT VARIABLES).
Default editor is ed (see ed(1)).

ex it

Section 1−−500 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mailx(1) mailx(1)

x it Exit from mailx , without changing the mailbox. No messages are saved in the mbox
(see also quit).

fi le [filename]
fold er [filename] Quit from the current file of messages and read in the specified file. Several special

characters are recognized when used as file names, and substitutions are made as fol-
lows:

% the current mailbox.
%user the mailbox for user.
the previous file.
& the current mbox.

Default file is the current mailbox.

folders Print the names of the files in the directory set by the folder variable (see
ENVIRONMENT VARIABLES).

fo llowup [message]
Respond to a message and record the response in a file whose name is derived from
the author of the message. Overrides the record variable, if set. See also the Fol-
lowup, Save, and Copy commands and outfolder (see ENVIRONMENT VARI-
ABLES).

Followup [msglist] Respond to the first message in the msglist , sending the message to the author of
each message in the msglist . The subject line is extracted from the first message and
the response is recorded in a file whose name is derived from the author of the first
message. See also the fo llowup, Save, and Copy commands and outfolder (see
ENVIRONMENT VARIABLES).

f rom [msglist] Print the header summary for the specified messages.

group alias name ...
alias alias name ... Declare an alias for the given names. The names are substituted when alias is used

as a recipient. Useful in the .mailrc file.

headers [message] Prints the page of headers which includes the message specified. The screen vari-
able sets the number of headers per page (see ENVIRONMENT VARIABLES). See also
the z command.

hel p Prints a summary of commands.

ho ld [msglist]
pre serve [msglist] Holds the specified messages in the mailbox.

i f sr
mail-commands

el se
mail-commands

endif Conditional execution, where s executes the accompanying mail-commands, up to an
el se or endif if the program is in send mode, and r causes the accompanying mail-
commands to be executed only in receive mode. Intended for use in .mailrc files.

ig nore header-field ...
di scard header-field ...

Suppresses printing of the specified header fields when displaying messages on the
screen. Examples of header fields to ignore are status and cc . All fields are
included when the message is saved. The Print and Type commands override this
command.

l ist Prints all commands available. No explanation is given.

mail name ... Mail a message to the specified users.

mbox [msglist] Arrange for the given messages to end up in the standard mbox save file when
mailx terminates normally. See MBOXdescription under ENVIRONMENT VARI-
ABLES for a description of this file. See also the ex it and quit commands.

next [message] Go to next message matching message . A msglist can be specified, but in this case the
first valid message in the list is the only one used. This is useful for jumping to the
next message from a specific user since the name would be interpreted as a command

HP-UX Release 11i: December 2000 − 4 − Section 1−−501

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mailx(1) mailx(1)

in the absence of a real command. See the discussion of msglists above for a descrip-
tion of possible message specifications.

pi pe [msglist] [command]
| [msglist] [command]

Pipe messages in msglist through the specified command. Each message is treated as
if it were read. If msglist is not specified, the current message is used. If command is
not specified, the command specified by the current value of the cmd variable is used.
If msglist is specified, command must also be specified. If the page variable is set, a
form feed character is inserted after each message (see ENVIRONMENT VARIABLES).

pre serve [msglist]
ho ld [msglist] Preserve the specified messages in the mailbox.

Print [msglist]
Type [msglist] Print the specified messages on the screen, including all header fields. Overrides

suppression of fields by the ig nore command.
print [msglist]
t ype [msglist] Print the specified messages. If crt is set, messages longer than the number of lines

specified by the crt variable are paged through the command specified by the
PAGERvariable. The default command is pg (see pg(1)), but many users prefer
more (see more(1) − see ENVIRONMENT VARIABLES).

quit Exit from mailx , storing messages that were read in mbox and unread messages in
the user’s system mailbox. Messages that have been explicitly saved in a file are
deleted.

Reply [msglist]
Respond [msglist] Send a response to the author of each message in the msglist . The subject line is

taken from the first message. If record is set to a file name, the response is saved
at the end of that file (see ENVIRONMENT VARIABLES).

r eply [message]
r espond [message] Reply to the specified message, including all other recipients of the message. If

record is set to a file name, the response is saved at the end of that file (see
ENVIRONMENT VARIABLES).

Save [msglist] Save the specified messages in a file whose name is derived from the author of the
first message. The name of the file is based on the author’s name with all network
addressing stripped off. See also the Copy, fo llowup, and Followup commands and
outfolder (see ENVIRONMENT VARIABLES).

save [filename]
save [msglist] filename

Save the specified messages in the given file. The file is created if it does not exist.
The message is deleted from the mailbox when mailx terminates unless keep-
save is set (see ENVIRONMENT VARIABLES and the ex it and quit commands).

se t
se t name
se t name=string
se t name=number Define a variable called name. The variable can be given a null, string, or numeric

value. Set by itself prints all defined variables and their values (see ENVIRONMENT
VARIABLES for detailed descriptions of the mailx variables).

sh ell Invoke an interactive shell (see SHELL under ENVIRONMENT VARIABLES).

si ze [msglist] Print the size in characters of the specified messages.

so urce filename Read commands from the given file and return to command mode.

to p [msglist] Print the top few lines of the specified messages. If the toplines variable is set, it
is interpreted as the number of lines to print (see ENVIRONMENT VARIABLES). The
default is 5.

tou ch [msglist] Touch the specified messages. If any message in msglist is not specifically saved in a
file, it is placed in the mbox upon normal termination. See ex it and quit.

Type [msglist]

Section 1−−502 − 5 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mailx(1) mailx(1)

Print [msglist] Print the specified messages on the screen, including all header fields. Overrides
suppression of fields by the ig nore command.

t ype [msglist]
print [msglist] Print the specified messages. If crt is set, messages longer than the number of lines

specified by the crt variable are paged through the command specified by the
PAGERvariable. The default command is pg(1) but many users prefer more(1) (see
ENVIRONMENT VARIABLES).

una lias alias Discard the specified alias names.

undelete [msglist] Restore the specified deleted messages. Restores only messages that were deleted in
the current mail session. If autoprint is set, the last message of those restored is
printed (see ENVIRONMENT VARIABLES).

uns et name... Cause the specified variables to be erased. If the variable was a shell variable
imported from the execution environment, it cannot be erased.

ve rsion Prints the current version and release date.

v isual [msglist] Edit the given messages with a screen editor. The messages are placed in a tem-
porary file and the VISUAL variable is used to get the name of the editor (see
ENVIRONMENT VARIABLES).

write [msglist] filename
Write the given messages on the specified file, except for the header (the "From ..."
line) and trailing blank line. Otherwise equivalent to the save command.

x it
ex it Exit from mailx , without changing the mailbox. No messages are saved in the mbox

(see also quit).

z [+-] Scroll the header display forward or backward one screen-full. The number of
headers displayed is set by the screen variable (see ENVIRONMENT VARIABLES).

TILDE ESCAPES
The following commands can be used only when in input mode, by beginning a line with the tilde escape
character (˜). See escape (ENVIRONMENT VARIABLES) for changing this special character.

˜! command Escape to the shell.

˜. Simulate end of file (terminate message input).

˜: mail-command
˜_ mail-command Perform the command-level request. Valid only when sending a message while read-

ing mail.

˜? Print a summary of tilde escapes.

˜A Insert the autograph string Sign into the message (see ENVIRONMENT VARIABLES).

˜a Insert the autograph string sign into the message (see ENVIRONMENT VARIABLES).

˜b name ... Add name to the blind carbon copy (Bcc) list.

˜c name ... Add name to the carbon copy (Cc) list.

˜d Read in the dead.letter file. See DEAD(under ENVIRONMENT VARIABLES) for a
description of this file.

˜e Invoke the editor on the partial message. Also see the EDITOR environment vari-
able description below.

˜f [msglist] Forward the specified messages. The messages are inserted into the message without
alteration.

˜h Prompt for Subject line and To, Cc, and Bcc lists. If the field is displayed with an ini-
tial value, it can be edited as if you had just typed it.

˜i string Insert the value of the named variable into the text of the message. For example, ˜A
is equivalent to ˜i Sign .

˜m [msglist] Insert the specified messages into the letter, shifting the new text to the right one tab
stop. Valid only when sending a message while reading mail.

HP-UX Release 11i: December 2000 − 6 − Section 1−−503

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mailx(1) mailx(1)

˜p Print the message being entered.

˜q Quit (terminate) input mode by simulating an interrupt. If the body of the message is
not null, the partial message is saved in dead.letter . See the description of the
DEADenvironment variable below for a description of this file.

˜R name ... Add name to the Reply-To list.

˜r filename
˜< filename
˜<! command Read in the specified file. If the argument begins with an exclamation point (!), the

rest of the string is assumed to be an arbitrary shell command and is executed, with
the standard output inserted into the message.

˜s string ... Set the subject line to string.

˜t name ... Add the given names to the To list.

˜v Invoke a preferred screen editor on the partial message. Also see the VISUAL
environment variable description below.

˜w filename Write the partial message onto the given file, without the header.

˜x Exit as with ˜q except the message is not saved in dead.letter .

˜| command Pipe the body of the message through the given command. If command returns a suc-
cessful exit status, the output of the command replaces the message.

ENVIRONMENT VARIABLES
The following variables are internal mailx program variables. They can be imported from the execution
environment or set by the se t command at any time. The uns et command can be used to erase variables.

allnet All network names whose login names match are treated as identical. This causes the
msglist message specifications to behave similarly. Default is noallnet . See also
the alt ernates command and the metoo variable.

append Upon termination, append messages to the end of the mbox file instead of inserting
them at the beginning of the file. Default is noappend.

askbcc Prompt for the Bcc list after the message is entered. Default is noaskbcc.

askcc Prompt for the Cc list after the message is entered. Default is noaskcc .

asksub Prompt for a subject if it is not specified on the command line with the -s option.
Enabled by default.

autoprint Enable automatic printing of messages after delete and undelete commands. Default
is noautoprint .

bang Enable special-case treatment of exclamation points (!) in shell escape command lines
as in vi(1). Default is nobang .

charset= charset Set the default character-set. If none is specified, mailx will attempt to use the
value of LANGto look up the system default for the user’s locale. If that is unsuccess-
ful, the default value of us-ascii will be used.

cmd=command Set the default command for the pi pe command. No default value.

conv= conversion Convert UUCP addresses to the specified address style. The only valid conversion
currently supported is internet, which requires a mail delivery program conforming to
the RFC822 standard for electronic mail addressing. Conversion is disabled by default.
See also sendmail and the -U command-line option.

crt= number Pipe messages having more than number lines through the command specified by the
value of the PAGERvariable pg by default (see pg(1)). Disabled by default.

DEAD=filename The name of the file in which to save partial letters in case of untimely interrupt or
delivery errors. Default is $HOME/dead.letter .

debug Enable verbose diagnostics for debugging. Messages are not delivered. Default is
nodebug .

dot When processing input from a terminal, interpret an ASCII period character on a line
by itself as end-of-file. Default is nodot .

Section 1−−504 − 7 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mailx(1) mailx(1)

EDITOR=command The command to run when the edit or ˜e command is used. Default is ed (see
ed(1)).

encoding= encoding
Set the default encoding to be used when 8-bit characters are present. Allowable
values are quoted-printable, base64 and 8bit. The short-hand q-p is also acceptable for
quoted-printable. The default value will be determined based upon the value of
charset . A value of 8bit means not to encode.

escape= c Substitute c for the ˜ escape character.

folder= directory The directory for saving standard mail files. User specified file names beginning with
a plus (+) are expanded by preceding the file name with this directory name to obtain
the real file name. If directory does not start with a slash (/), $HOMEis used as a
prefix. There is no default for the folder variable. See also outfolder below.

header Enable printing of the header summary when entering mailx . Enabled by default.

hold Preserve all messages that are read in the system mailbox instead of putting them in
the standard mbox save file. Default is nohold .

ignore Ignore interrupts while entering messages. Useful when communicating over noisy
dial-up lines. Default is noignore .

ignoreeof Ignore end-of-file during message input. Input must be terminated by a period (.) on
a line by itself or by the ˜. command. Default is noignoreeof . See also dot
above.

keep When the mailbox is empty, truncate it to zero length instead of removing it. Dis-
abled by default.

keepsave Keep messages that have been saved in other files in the system mailbox instead of
deleting them. Default is nokeepsave .

MBOX=filename The name of the file to save messages which have been read. The x it command over-
rides this function, as does saving the message explicitly in another file. Default is
$HOME/mbox.

metoo Usually, when a group (alias) containing the sender is expanded, the sender is
removed from the expansion. Setting this option causes the sender to be included in
the group. Default is nometoo .

mimeheader= value
To add or disable MIME header when sending mail. "value" can be ’yes’ or ’no’.

LISTER= command The command (and options) to use when listing contents of the folder directory.
The default is ls(1).

NOMETAMAIL=value
To disable the usage of metamail to read MIME messages, set the value to TRUE. By
default the NOMETAMAIL variable is not set.

onehop When responding to a message that was originally sent to several recipients, the other
recipient addresses are normally forced to be relative to the originating author’s
machine for the response. This flag disables alteration of the recipients’ addresses,
improving efficiency in a network where all machines can send directly to all other
machines (i.e., one hop away).

outfolder Cause the files used to record outgoing messages to be located in the directory
specified by the folder variable. Default is nooutfolder . See folder above
and the Save, Copy, fo llowup, and Followup commands.

page Used with the pi pe command to insert a form feed after each message sent through
the pipe. Default is nopage .

PAGER=command The command to use as a filter for paginating output. This can also be used to specify
the pager command-line options (for example, set PAGER="more -c"). Default
is pg (see pg(1)), but many users prefer more (see more(1)).

prompt= string
Set the command mode prompt to string. Default is ?.

HP-UX Release 11i: December 2000 − 8 − Section 1−−505

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mailx(1) mailx(1)

quiet Refrain from printing the opening message and version when entering mailx .
Default is noquiet .

record= filename Record all outgoing mail in filename. Disabled by default. See also outfolder
above.

save Enable saving of messages in dead.letter on interrupt or delivery error. See
DEADfor a description of this file. Enabled by default.

screen= number Set the number of lines in a screen-full of headers for the headers command.

sendmail= command
Alternate command for delivering messages. Default is mail (see mail(1)).

sendwait Wait for background mailer to finish before returning. Default is nosendwait .

SHELL=command The name of a preferred command interpreter. Default is the user’s login program
(see passwd(4), shells(4), and chsh(1)). Note: in the unusual case that a user’s login
program is a script file from which mailx is executed, rather than a shell, then
mailx requires that the user explicitly set SHELL=/usr/bin/sh in his or her
$HOME/.mailrc file.

showto When displaying the header summary and the message is from you, print the
recipient’s name instead of the author’s name.

sign= string The variable that is inserted into the text of a message when the ˜a (autograph) com-
mand is given. No default (see also ˜i under ILDE ESCAPES).

Sign= string The variable inserted into the text of a message when the ˜A command is given. No
default (see also ˜i (TILDE ESCAPES)).

SMARTMAILER When SMARTMAILERis set, various commands use the From: line instead of the
default From line.

toplines= number
The number of lines of header to print with the to p command. Default is 5.

VISUAL= command The name of a preferred screen editor. Default is vi (see vi(1)).

EXTERNAL INFLUENCES
Environment Variables

The following are environment variables taken from the execution environment and are not alterable
within mailx .

HOME The user’s home directory. This is usually the current directory immediately after
login.

MAILRC The name of the mailer start-up file. Default is $HOME/.mailrc.

LC_COLLATE
LC_CTYPE LC_COLLATEand LC_CTYPE influence mailx when the command interpreter

(see SHELL below) is invoked. To determine the behavior of LC_COLLATE and
LC_CTYPE, see the corresponding shell manual entry for the applicable command
interpreter

LC_TIME LC_TIME determines the format and contents of the date and time strings displayed.
If LC_TIME is not specified in the environment, or is set to the empty string, the
value of LANGis used as a default. If LANGis not specified or is set to the empty
string, a default of "C" (see lang(5)) is used instead of LANG. If any internationaliza-
tion variable contains an invalid setting, mailx behaves as if all internationalization
variables are set to "C". See environ(5).

TMPDIR When set, the TMPDIRenvironment variable specifies a directory to be used for tem-
porary files, overriding the default directory /tmp .

International Code Set Support
Single- and multi-byte character code sets are supported within mail text. Headers are restricted to char-
acters from the 7-bit USASCII character code set (see ascii(5)).

Section 1−−506 − 9 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mailx(1) mailx(1)

WARNINGS
Where command is shown as valid, arguments are not always allowed. Experimentation is recommended.

Internal variables imported from the execution environment cannot be uns et.

The full internet addressing is not fully supported by mailx . The new internationalization standards need
some time to settle down.

mail(1), the standard mail delivery program, treats a line consisting solely of a dot (.) as the end of the
message.

Using two separate mail programs to access the same mail file simultaneously (usually inadvertently from
two separate windows) can cause unpredictable results.

FILES
/var/mail/ Post office directory (mode 775, group ID mail)

/var/mail/ user System mailbox for user (mode 660, owned by user,group ID mail)

$HOME/.mailrc Personal start-up file

/usr/share/lib/mailx.rc Global start-up file

$HOME/mbox Secondary storage file

/tmp/R [emqsx]* Temporary files

SEE ALSO
mail(1), pg(1), ls(1).

STANDARDS CONFORMANCE
mailx : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 10 − Section 1−−507

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

make(1) make(1)

NAME
make - maintain, update, and regenerate groups of programs

SYNOPSIS
make [-f makefile] [-bBdeiknpPqrsStuw] [macro_name=value] [names]

DESCRIPTION
Makefile Structure

A makefile can contain four different kinds of lines: target lines, shell command lines, macro definitions,
and include lines.

TARGET LINES
Target lines consist of a blank-separated, non-null list of targets, followed by a colon (:) or double colon
(::), followed by a (possibly null) list of prerequisite files called dependents. Pattern Matching Notation
(see regexp(5)) is supported for the generation of file names as dependents.

SHELL COMMAND LINES
Text following a semicolon (;) on a target line, and all following lines that begin with a tab are shell com-
mands to be executed to update the target (see the Environment section below about SHELL). The first
line that does not begin with a tab or # begins a new target definition, macro definition, or include line.
Shell commands can be continued across lines by using a <backslash><new-line> sequence.

Target lines with their associated command lines are called rules.

MACROS
Lines of the form string1 = string2 are macro definitions. Macros can be defined anywhere in the
makefile, but are usually grouped together at the beginning. string1 is the macro name; string2 is the
macro value. string2 is defined as all characters up to a comment character or an unescaped new-line.
Spaces and tabs immediately to the left and right of the = are ignored. Subsequent appearances of
$(string1) anywhere in the makefile (except in comments) are replaced by string2. The parentheses are
optional if a single character macro name is used and there is no substitute sequence. An optional substi-
tute sequence, $(string1 [: subst1=[subst2]]) can be specified, which causes all nonoverlapping
occurrences of subst1 at the end of substrings in the value of string1 to be replaced by subst2. Substrings in
a macro value are delimited by blanks, tabs, new-line characters, and beginnings of lines. For example, if

OBJS = file1.o file2.o file3.o

then

$(OBJS:.o=.c)

evaluates to

file1.c file2.c file3.c

Macro values can contain references to other macros (see WARNINGS):

ONE =1

TWELVE =$(ONE)2

The value of $(TWELVE) is set to $(ONE)2 but when it is used in a target, command, or include line, it
is expanded to 12 . If the value of ONEis subsequently changed by another definition further down in the
makefile or on the command line, any references to $(TWELVE) reflect this change.

Macro definitions can also be specified on the command line and override any definitions in the makefile.

(XPG4 only. Macros on the command line are added to the MAKEFLAGSenvironment variable. Macros
defined in the MAKEFLAGSenvironment variable, but without any command line macro, adds the macro to
the environment overwriting any existing environment variable of the same name.)

Certain macros are automatically defined for make (see Built-in Macros). See the Environment section for
a discussion of the order in which macro definitions are treated.

The value assigned to a macro can be overridden by a conditional macro definition. A conditional macro
definition takes on the form target := string1 = string2. When the target line associated with target is
being processed, the macro value specified in the conditional macro definition is in effect. If string1 is pre-
viously defined, the new value of string1 will override the previous definition. The new value of string1
takes effect when target or any dependents of target are being processed.

Section 1−−508 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

make(1) make(1)

INCLUDE LINES
If the string include appears as the first seven letters of a line in a makefile, and is followed by one or
more space or tab characters, the rest of the line is assumed to be a file name and is read and processed by
the current invocation of make as another makefile after any macros in the filename have been expanded.

The default behaviour of make is to use .DEFAULT built-in target, if target does not have explicit com-
mands associated with it and .DEFAULT target is defined. See the Built-In Targets Section.

General Description
make executes commands previously placed in a makefile to update one or more target names. Target
names are typically names of programs. If no -f option is specified, the filenames makefile ,
Makefile , s.makefile , SCCS/s.makefile , s.Makefile and SCCS/s.Makefile are tried in
that order. If -f - is specified, the standard input is used. More than one -f option can be specified.
The makefile arguments are processed in the order specified. A space between the -f and the filename
must be present, and multiple makefile names must each have their own -f option preceding them. The
contents of a makefile override the built-in rules and macros if they are present.

If no target names are specified on the command line, make updates the first target in the (first) makefile
that is not an inference rule. A target is updated only if it depends on files that are newer than the target.
Missing files are deemed to be out-of-date. All dependents of a target are recursively updated, if necessary,
before the target is updated. This effects a depth-first update of the dependency tree for the target.

If a target does not have any dependents specified after the separator on the target line (explicit depen-
dents), any shell commands associated with that target are executed if the target is out-of-date.

A target line can have either a single or double colon between the target name or names and any explicit
dependent names. A target name can appear on more than one target line, but all of those lines must be of
the same (single- or double-colon) type. For the usual single-colon case, at most one of these target lines
can have explicit commands associated with it. If the target is out-of-date with any of its dependents on
any of the lines, the explicit commands are executed, if they are specified, or else a default rule can be exe-
cuted. For the double-colon case, explicit commands can be associated with more than one of the target
lines containing the target name; if the target is out-of-date with any of the dependents on a particular line,
the commands for that line are executed. A built-in rule may also be executed.

Target lines and their associated shell command lines are also referred to as rules. Hash marks (#) and
new-line characters surround comments anywhere in the makefile except in rules. Comments in the rules
depend on the setting of the SHELL macro.

The following makefile says that pgm depends on two files: a.o and b.o , and that they in turn depend on
their corresponding source files (a.c and b.c) and a common file incl.h :

OBJS = a.o b.o

pgm: $(OBJS)
cc $(OBJS) -o pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Command lines are executed one at a time, each by its own shell. Each command line can have one or
more of the following prefixes: - , @, or +. These prefixes are explained below.

Commands returning non-zero status normally terminate make. The -i option or the presence of the spe-
cial target .IGNORE in the makefile cause make to continue executing the makefile regardless of how
many command lines cause errors, although the error messages are still printed on standard output. If - is
present at the beginning of a command line, any error returned by that line is printed to standard output
but make does not terminate. The prefix - can be used to selectively ignore errors in a makefile. If the -k
option is specified and a command line returns an error status, work is abandoned on the current target,
but continues on other branches that do not depend on that target. If the -k option is present in the
MAKEFLAGSenvironment variable, processing can be returned to the default by specifying the -S option.

The -n option specifies printing of a command line without execution. However, if the command line has
the string $(MAKE) or ${MAKE} in it or + as a prefix, the line is always executed (see discussion of the
MAKEFLAGSmacro under Environment). The -t (touch) option updates the modified date of a file
without executing any commands.

HP-UX Release 11i: December 2000 − 2 − Section 1−−509

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

make(1) make(1)

A command line is normally printed before it is executed, but if the line has a @ at the beginning, printing
is suppressed. The -s option or the presence of the special target .SILENT: in the makefile suppresses
printing of all command lines. The @ can be used to selectively turn off printing. Everything printed by
make (except the initial tab) is passed directly to the shell without alteration. Thus,

echo a\
b

produces

ab

just as the shell would.

The -b option allows old makefiles (those written for the old version of make) to run without errors. The
old version of make assumed that if a target did not have any explicit commands associated with it, the
user intended the command to be null, and would not execute any .DEFAULT rule that might have been
defined. The current version of make operates in this mode by default. However, the current version of
make provides a -B option which turns this mode off so that if a target does not have explicit commands
associated with it and a .DEFAULT rule is defined, the .DEFAULT rule is executed. Note that the -b and
-B options have no effect on the search and possible location and execution of an appropriate inference rule
for the target. The search for a built-in inference rule other than .DEFAULT is always performed.

The signals SIGINT , SIGQUIT , SIGHUP, and SIGTERM (see signal(5)) cause the target to be deleted
unless the target depends on the special name .PRECIOUS.

Options
The following is a brief description of all options and some special names. Options can occur in any order.
They can be specified separately, or together with one - , except for the -f option.

-b Compatibility mode for old (Version 7) makefiles. This option is turned on by default.

-B Turn off compatibility mode for old (Version 7) makefiles.

-d Debug mode. Print out detailed information on files and times examined. (This is very ver-
bose and is intended for debugging the make command itself.)

-e Environment variables override assignments within makefiles .

-f makefile Description file name, referred to as the makefile. A file name of - denotes the standard
input. The contents of the makefile override the built-in rules and macros if they are
present. Note that the space between -f and makefile must be present. Multiple
instances of this option are allowable (except for -f -), and are processed in the order
specified.

-i Ignore error codes returned by invoked commands. This mode is also entered if the special
target name .IGNORE appears in the makefile.

-k When a command returns nonzero status, abandon work on the current entry, but continue
on other branches that do not depend on that target. This is the opposite of -S . If both -k
and -S are specified, the last one specified is used.

-n No execute mode. Print commands, but do not execute them. Even lines beginning with an
@ are printed. However, lines that contain the string $(MAKE) or ${MAKE} or that have
+ as a prefix to the command are executed.

-p Write to standard output the complete set of macro definitions and target descriptions.

-P Update in parallel more than one target at a time. The number of targets updated con-
currently is determined by the environment variable PARALLEL and the presence of
.MUTEX directives in make file.

-q Question. The make command returns a zero or non-zero status code, depending on
whether the target file is or is not up-to-date. Targets are not updated with this option.

-r Clear suffix list and do not use the built-in rules.

-s Silent mode. Command lines are not printed to standard output before their execution.
This mode is also entered if the special target name .SILENT appears in the makefile.

-S Terminate if an error occurs while executing the commands to bring a target up-to-date.
This is the default and the opposite of -k. If both -k and -S are specified, the last one

Section 1−−510 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

make(1) make(1)

given is used. This enables overriding the presence of the k flag in the MAKEFLAGS
environment variable.

-t Touch the target files (causing them to be up-to-date) rather than issue the usual com-
mands.

-u Unconditionally make the target, ignoring all timestamps.

-w Suppress warning messages. Fatal messages will not be affected.

[macro_name=value]
Zero or more command line macro definitions can be specified. See the Macros section.

[names] Zero or more target names that appear in the makefile. Each target so specified is updated
by make. If no names are specified, make updates the first target in the makefile that is
not an inference rule.

Parallel Make
If make is invoked with the -P option, it tries to build more than one target at a time, in parallel. (This is
done by using the standard UNIX system process mechanism which enables multiple processes to run
simultaneously.) For the makefile shown in the example in the previous section, it would create processes
to build a.o and b.o in parallel. After these processes were complete, it would build pgm.

The number of targets make will try to build in parallel is determined by the value of the environment
variable PARALLEL. If -P is invoked, but PARALLEL is not set, then make will try to build no more than
two targets in parallel.

You can use the .MUTEX directive to serialize the updating of some specified targets. This is useful when
two or more targets modify a common output file, such as when inserting modules into an archive or when
creating an intermediate file with the same name, as is done by lex and yacc. If the makefile in the previ-
ous section contained a .MUTEX directive of the form

.MUTEX: a.o b.o

it would prevent make from building a.o and b.o in parallel.

Environment
All variables defined in the environment (see environ(5)) are read by make and are treated and processed
as macro definitions, with the exception of the SHELL environment variable which is always ignored. The
value of the SHELL environment variable will not be used as a macro and will not be modified by defining
the SHELL macro in a makefile or on the command line. Variables with no definition or empty string
definitions are included by make.

There are four possible sources of macro definitions which are read in the following order: internal
(default), current environment, the makefile(s), and command line. Because of this order of processing,
macro assignments in a makefile override environment variables. The -e option allows the environment to
override the macro assignments in a makefile. Command-line macro definitions always override any other
definitions.

The MAKEFLAGSenvironment variable is processed by make on the assumption that it contains any legal
input option (except -f , -p , and -d) defined for the command line. The MAKEFLAGSvariable can also be
specified in the makefile.

(XPG4 only. MAKEFLAGSin the makefile replaces the MAKEFLAGSenvironment variable. Command line
options have precedence over MAKEFLAGSenvironment variable.)

If MAKEFLAGSis not defined in either of these places, make constructs the variable for itself, puts the
options specified on the command line and any default options into it, and passes it on to invocations of
commands. Thus, MAKEFLAGSalways contains the current input options. This proves very useful for
recursive makes. Even when the -n option is specified, command lines containing the string $(MAKE) or
${MAKE} are executed; hence, one can perform a make -n recursively on an entire software system to
see what would have been executed. This is possible because the -n is put into MAKEFLAGSand passed to
the recursive invocations of $(MAKE) or ${MAKE} . This is one way of debugging all of the makefiles for a
software project without actually executing any of the commands.

Each of the commands in the rules is given to a shell to be executed. The shell used is the shell command
interpreter (see sh(1)), or the one specified in the makefile by the SHELL macro. To ensure the same shell
is used each time a makefile is executed, the line:

HP-UX Release 11i: December 2000 − 4 − Section 1−−511

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

make(1) make(1)

SHELL=/usr/bin/sh

or a suitable equivalent should be put in the macro definition section of the makefile.

Suffixes
Target and/or dependent names often have suffixes. Knowledge about certain suffixes is built into make
and used to identify appropriate inference rules to be applied to update a target (see the section on Infer-
ence Rules). The current default list of suffixes is:

.o .c .c˜ .C .C˜ .cxx .cxx˜ .cpp .cpp˜ .cc .cc˜

.y .y˜ .l .l˜ .L .L˜ .Y .Y˜ .s .s˜ .sh .sh˜

.h .h˜ .H .H˜ .p .p˜ .f .f˜ .r .r˜

These suffixes are defined as the dependents of the special built-in target .SUFFIXES . This is done
automatically by make.

Additional suffixes can be specified in a makefile as the dependents list for .SUFFIXES . These additional
values are added to the default values. Multiple suffix lists accumulate. The order of the suffix list is
significant (see the Inference Rules section). If the user wishes to change the order of the suffixes, he must
first define .SUFFIXES with a null dependent list, which clears the current value for .SUFFIXES , and
then define .SUFFIXES with the suffixes in the desired order. The list of suffixes built into make on any
machine can be displayed by:

make -fp - 2>/dev/null </dev/null

The list of built-in suffixes incorporated with the definitions in a given makefile called mymakefile can be
displayed by:

make -fp mymakefile 2>/dev/null </dev/null

Inference Rules
Certain target or dependent names (such as those ending with .o) have inferable dependents such as .c
and .s , etc. If no update commands for such a name appear in the makefile, and if an inferable dependent
file exists, that dependent file is compiled to update the target. In this case, make has inference rules that
allow building files from other files by examining the suffixes and determining an appropriate inference rule
to use. There are currently default inference rules defined for:

Single Suffix Rules

.c .c˜

.C .C˜ .cxx .cxx˜ .cpp .cpp˜ .cc .cc˜

.sh .sh˜

.p .p˜

.f .f˜

.r .r˜

Double Suffix Rules

.c.o .c˜.o .c˜.c .c.a .c˜.a

.C.o .C˜.o .C˜.C .C.a .C˜.a

.cxx.o .cxx˜.o .cxx˜.cxx .cxx.a .cxx˜.a

.cpp.o .cpp˜.o .cpp˜.cpp .cpp.a .cpp˜.a

.cc.o .cc˜.o .cc˜.cc .cc.a .cc˜.a

.s.o .s˜.o .s˜.a

.p.o .p˜.o .p˜.p .p.a .p˜.a

.f.o .f˜.o .f˜.f .f.a .f˜.a

.r.o .r˜.o .r˜.r .r.a .r˜.a

.y.o .y˜.o .y.c .y˜.c

.l.o .l˜.o .l.c

.h˜.h .H˜.H .hxx˜.hxx .hpp˜.hpp

.C.o .C˜.o .C.a .C˜.a

.L.C .L.o .L˜.C .L˜.L .L˜.o

.Y.C .Y.o .Y˜.C .Y˜.Y .Y˜.o

Double suffix inference rules (.c.o) define how to build x.o from x.c . Single suffix inference rules (.c)
define how to build x from x.c . In effect, the first suffix is null. Single suffix rules are useful for building
targets from only one source file; e.g., shell procedures and simple C programs.

Section 1−−512 − 5 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

make(1) make(1)

A tilde in the above rules refers to an SCCS file (see sccsfile(4)). Thus, the rule .c˜.o would transform an
SCCS C source file into an object file (.o). Since the s. of the SCCS files is a prefix, it is incompatible
with make’s suffix point-of-view. Hence, the tilde is a way of changing any file reference into an SCCS file
reference.

A rule to create a file with suffix .o from a file with suffix .c is specified as an entry with .c.o as the tar-
get and no dependents. Shell commands associated with the target define the rule for making a .o file
from a .c file. Any target name that has no slashes in it and starts with a dot is identified as an inference
(implicit) rule instead of a target (explicit) rule. Targets with one dot are single suffix inference rules;
targets with two dots are double suffix inference rules. Users can, in a makefile, define additional inference
rules and either redefine or cancel default inference rules.

The default inference rule for changing a .c file into a .o file might look like this:

.c.o:
$(CC) $(CFLAGS) -c $<

and the default inference rule for changing a yacc file to a C object file might look like this:

.y.o:
$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $@

Certain macros are used in the default inference rules to permit the inclusion of optional matter in any
resulting commands. For example, CFLAGS, LDFLAGS, and YFLAGS are used for compiler options to
cc(1), lex(1), and yacc(1), respectively. LDFLAGS is commonly used to designate linker/loader options.
These macros are automatically defined by make but can be redefined by the user in the makefile.

The macro LIBS is, by convention, used to specify the order of inclusion of any special libraries during the
linking phase of compilation. To specify a particular order of inclusion for a particular set of libraries, the
existing single suffix rule for a .c file,

$(CC) $(CFLAGS) $< $(LDFLAGS) -o $@

can be redefined as

$(CC) $(CFLAGS) $< $(LDFLAGS) -o $@ $(LIBS)

as well as defining LIBS in the makefile.

There are also some special built-in macros used in the inference rules (@, <). See the Built-in Macros sec-
tion.

If a target does not have explicit dependents, or if a dependent does not also have a target that matches it
with associated explicit rules, make looks for the first inference rule that matches both the target’s
(dependent’s) suffix (which may be null) and a file which matches the other suffix of the rule. Since it con-
ducts this search by going through the list of .SUFFIXES values front to back, the order in which .SUF-
FIXES is defined is significant.

To print out the rules compiled into the make on any machine, type:

make -fp - 2>/dev/null </dev/null

Since make defines an inference rule .c.o , the example in the General Description section can be rewrit-
ten more simply:

OBJS = a.o b.o
pgm: $(OBJS)

cc $(OBJS) -o pgm
$(OBJS): incl.h

Libraries
If a target or dependent name contains parentheses, it is assumed to be an archive library, the string
within parentheses referring to a member within the library. Thus lib(file.o) and
$(LIB)(file.o) both refer to an archive library that contains file.o (this assumes the LIB macro
has been previously defined). The expression $(LIB)(file1.o file2.o) is not valid. Rules per-
taining to archive libraries have the form . xx.a where xx is the suffix from which the archive member is to
be made. An unfortunate byproduct of the current implementation requires the xx to be different from the
suffix of the archive member. Thus, one cannot have lib(file.o) depend upon file.o explicitly.

HP-UX Release 11i: December 2000 − 6 − Section 1−−513

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

make(1) make(1)

The most common use of the archive interface follows. Here, we assume the source files are all C type
source:

lib: lib(file1.o) lib(file2.o) lib(file3.o)
@echo lib is now up-to-date

.c.a:
$(CC) -c $(CFLAGS) $<
ar rv $@ $*.o
rm -f $*.o

(See the section on Built-in Macros for an explanation of the <, @, and * symbols.) In fact, the .c.a rule
listed above is built into make and is unnecessary in this example. This rule is applied to each dependent
of lib in turn. The following example accomplishes this more efficiently:

lib: lib(file1.o) lib(file2.o) lib(file3.o)
$(CC) -c $(CFLAGS) $(?:.o=.c)
ar rv lib $?
rm $?
@echo lib is now up-to-date

.c.a:;

Here substitution in the macros is used. The $? list is defined to be the set of object file names (inside
lib) whose C source files are out-of-date. The substitution sequence translates the .o to .c . (Unfor-
tunately, one cannot as yet transform to .c˜ ; however, this may become possible in the future.) Note also,
the disabling of the .c.a rule, which would have created and archived each object file, one by one. This
particular construct speeds up archive library maintenance considerably, but becomes very cumbersome if
the archive library contains a mix of assembly programs and C programs.

Archive members containing the definition of a symbol are designated by double parentheses around the
symbol name, lib((entry_name)) , but are otherwise handled as described above.

Built-In Targets
make has knowledge about some special targets. These must be specified in the makefile to take effect
(with the exception of .SUFFIXES , which is automatically set by make but can be changed by the user).

.DEFAULT If a file must be made but there are no explicit commands or relevant built-in rules for
it, the commands associated with the target name .DEFAULT are used if .DEFAULT
has been defined in the makefile. .DEFAULT does not have any explicit dependents.

.PRECIOUS Dependents of this target are not removed when QUIT, INTERRUPT, TERMINATE,
or HANGUPare received.

.SILENT Same effect as the -s option. No dependents or explicit commands need to be
specified.

.IGNORE Same effect as the -i option. No dependents or explicit commands need to be
specified.

.SUFFIXES The explicit dependents of .SUFFIXES are added to the built-in list of known
suffixes and are used in conjunction with the inference rules. If .SUFFIXES does not
have any dependents, the list of known suffixes is cleared. There are no commands
associated with .SUFFIXES .

.MUTEX Serialize the updating of specified targets (See the Parallel Make Section).

Built-in Macros
There are five internally maintained macros that are useful for writing rules for building targets. In order
to clearly define the meaning of these macros, some clarification of the terms target and dependent is
necessary. When make updates a target, it may actually generate a series of targets to update. Before
any rule (either explicit or implicit) is applied to the target to update it, recursion takes place on each
dependent of the target. The dependent, upon recursion, becomes a target itself, and may have or generate
its own dependents, which in turn are recursed upon until a target is found that has no dependents, at
which point the recursion stops. Not all targets processed by make appear as explicit targets in the
makefile; some of them are explicit dependents from the makefile while others are implicit dependents gen-
erated as make recursively updates the target. For instance, when the following makefile is executed:

pgm: a.o b.o
cc a.o b.o -o pgm

Section 1−−514 − 7 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

make(1) make(1)

the following series of targets to be made is generated:

--- pgm
with two dependents and an explicit rule to follow

--- a.o
(recursively) with an implicit dependent of a.c which matches the implicit rule .c.o

--- a.c
(recursively) with no implicit dependents and no implicit rules. This stops the recursion
and simply returns the last modification time of the file a.c.

--- b.o
(recursively) with an implicit dependent of b.c which matches the implicit rule .c.o

--- b.c
(recursively) with no implicit dependents and no implicit rules. This stops the recursion
and merely returns the last modification time of the file b.c .

In the definitions below, the word target refers to a target specified in the makefile, an explicit dependent
specified in the makefile which becomes the target when make recurses on it, or an implicit dependent
(generated as a result of locating an inference rule and file that match the suffix of the target) which
becomes the target when make recurses on it. The word dependent refers to an explicit dependent
specified in the makefile for a particular target, or an implicit dependent generated as a result of locating
an appropriate inference rule and corresponding file that matches the suffix of the target.

It may be helpful to think of target rules as user specified rules for a particular target name, and inference
rules as user or make specified rules for a particular class of target names. It may also be helpful to
remember that the value of the target name and its corresponding dependent names change as make
recurses on both explicit and implicit dependents, and that inference rules are only applied to implicit
dependents or to explicit dependents which do not have target rules defined for them in the makefile.

$@ The $@ macro is the full target name of the current target, or the archive filename part of a
library archive target. It is evaluated for both target and inference rules.

$% The $%macro is only evaluated when the current target is an archive library member of
the form libname(member.o) or libname((entry)) . In these cases, $@ evaluates to
libname and $%evaluates to member.o or the object file containing the symbol entry .
$%is evaluated for both target and inference rules.

$? The $? macro is the list of dependents that are out-of-date with respect to the current tar-
get; essentially, those modules that have been rebuilt. It is evaluated for both target and
inference rules, but is usually only used in target rules. $? evaluates to one name only in
an inference rule, but may evaluate to more than one name in a target rule.

$< In an inference rule, $< evaluates to the source file name that corresponds to the implicit
rule which matches the suffix of the target being made. In other words, it is the file that is
out-of-date with respect to the target. In the .DEFAULT rule, the $< macro evaluates to
the current target name. $< is evaluated only for inference rules. Thus, in the .c.o rule,
the $< macro would evaluate to the .c file. An example for making optimized .o files
from .c files is:

.c.o:
cc -c -O $*.c

or:

.c.o:
cc -c -O $<

$* The macro $* is the current target name with the suffix deleted. It is evaluated only for
inference rules.

These five macros can have alternative forms. When an uppercase D or F is appended to any of the five
macros, the meaning is changed to ‘‘directory part’’ for D and ‘‘file part’’ for F. Thus, $(@D) refers to the
directory part of the string $@. If there is no directory part, ./ is generated. When the $? macro con-
tains more than one dependent name, the $(?D) expands to a list of directory name parts and the $(?F)
expands to a list of the filename parts.

In addition to the built-in macros listed above, other commonly used macros are defined by make. These
macros are used in the default inference rules, and can be displayed with the -p option. These macros can

HP-UX Release 11i: December 2000 − 8 − Section 1−−515

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

make(1) make(1)

be used in target rules in the makefile. They can also be redefined in the makefile.

$$@ The $$@ macro has meaning only on dependency lines. Macros of this form are called
dynamic dependencies because they are evaluated at the time the dependency is
actually processed. $$@ evaluates to exactly the same thing as $@ does on a com-
mand line; i.e., the current target name. This macro is useful for building large
numbers of executable files, each of which has only one source file. For instance, the
following HP-UX commands could all be built using the same rule:

CMDS = cat echo cmp chown
$(CMDS) : $$@.c

$(CC) -O $? -o $@

If this makefile is invoked with make cat echo cmp chown , make builds each
target in turn using the generic rule, with $$@ evaluating to cat while cat is the
target, to echo when the target is echo , and so forth.

The dynamic dependency macro can also take the F form, $$(@F) which represents
the filename part of $$@. This is useful if the targets contain pathnames. For exam-
ple:

INCDIR = /usr/include
INCLUDES = $(INCDIR)/stdio.h \

$(INCDIR)/pwd.h \
$(INCDIR)/dir.h \
$(INCDIR)/a.out.h

$(INCLUDES) : $$(@F)
cp $? $@
chmod 0444 $@

Special Macros
The VPATH macro allows make to search a colon separated list of directories for dependents. Lines of the
form VPATH= path1:path2 ... causes make to first search the current directory for a dependent and if the
dependent is not found, make searches path1 and continues until the directories specified in the VPATH
macro are exhausted.

EXTERNAL INFLUENCES
Environment Variables

LANGprovides a default value for the internationalization variables that are unset or null. If LANGis unset
or null, the default value of "C" (see lang(5)) is used. If any of the internationalization variables contains an
invalid setting, make will behave as if all internationalization variables are set to "C". See environ(5).

LC_ALL If set to a non-empty string value, overrides the values of all the other internationalization vari-
ables.

LC_CTYPEdetermines the interpretation of text as single and/or multi-byte characters, the classification
of characters as printable, and the characters matched by character class expressions in regular expres-
sions.

LC_MESSAGESdetermines the locale that should be used to affect the format and contents of diagnostic
messages written to standard error and informative messages written to standard output.

NLSPATHdetermines the location of message catalogues for the processing of LC_MESSAGES.

PROJECTDIRprovides a directory to be used to search for SCCS files not found in the current directory.
In all of the following cases, the search for SCCS files will be made in the directory SCCSin the identified
directory. If the value of PROJECTDIRbegins with a slash, it is considered an absolute pathname; other-
wise, the home directory of a user of that name is examined for a subdirectory src or source . If such a
directory is found, it is used. Otherwise, the value is used as a relative pathname.

If PROJECTDIRis not set or has a null value, the current directory is searched first, followed by a search
in the SCCSdirectory in the current directory.

The setting of PROJECTDIRaffects all files listed in the remainder of this utility description for files with
a component named SCCS.

Section 1−−516 − 9 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

make(1) make(1)

International Code Set Support
Single and multi-byte character code sets are supported.

RETURN VALUES
make returns a 0 upon successful completion or a value greater than 0 if an error occurred. If the -q
option is specified, make returns 0 if the target was up-to-date and a value greater than 0 if the target was
not up-to-date.

EXAMPLES
The following example creates an executable file from a C source code file without a makefile, if program.c
exists in the current directory:

make program

The following example shows more than one makefile specified and some command line macros defined,
and updates the first target in module1:

make -f module1 -f module2 RELEASE=1.0 CFLAGS=-g

The following example updates two targets in a default makefile currently residing in the current directory:

make clobber prog

The following example updates the prog target in a specified makefile, allows environment variables to
override any common variables in the makefile, clears the built-in suffix list and ignore the built-in rules,
and outputs exhaustive debugging information:

make -erd -f module1 prog

WARNINGS
Be wary of any file (such as an include file) whose access, modification, and last change times cannot be
altered by the make-ing process. For example, if a program depends on an include file that in turn
depends on another include file, and if one or both of these files are out-of-date, make tries to update these
files each time it is run, thus unnecessarily re-makeing up-to-date files that are dependent on the include
file. The solution is to manually update these files with the touch command before running make (see
touch(1)).

Some commands return non-zero status inappropriately; use -i to overcome the difficulty.

File names with the characters = : @ $ do not work.

Built-in commands that are directly executed by the shell such as cd (see cd(1)), are ineffectual across
new-lines in make.

The syntax (lib(file1.o file2.o file3.o) is illegal.

You cannot build lib(file.o) from file.o .

The macro $(a:.o=.c˜) does not work.

Expanded target lines cannot contain more than 16384 characters, including the terminating new-line.

If no makefile exists in the current directory, typing

make filename

results in make attempting to build filename from filename.c

If make is invoked in a shell script with a quoted argument that evaluates to NULL (such as $@), make
fails.

DEPENDENCIES
NFS Warning:

When comparing modification times of files located on different NFS servers, make behaves unpredictably
if the clocks on the servers are not synchronized.

FILES
[Mm]akefile
s. [Mm]akefile
SCCS/s. [Mm]akefile

HP-UX Release 11i: December 2000 − 10 − Section 1−−517

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

make(1) make(1)

SEE ALSO
cc_bundled(1), cd(1), lex(1), mkmf(1), sh(1), environ(5), lang(5), regexp(5).

A Nutshell Handbook, Managing Projects With Make by Steve Talbot, Second Edition, O’Reilly & Associ-
ates, Inc., 1986.

STANDARDS CONFORMANCE
make: SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

Section 1−−518 − 11 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

makekey(1) makekey(1)

NAME
makekey - generate encryption key

SYNOPSIS
/usr/lbin/makekey

DESCRIPTION
makekey improves the usefulness of encryption schemes depending on a key by increasing the amount of
time required to search the key space. It reads 10 bytes from its standard input and writes 13 bytes on its
standard output. The output depends on the input in a way intended to be difficult to compute (i.e., to
require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters. The last two (the salt) are best
chosen from the set of digits, . , / , and uppercase and lowercase letters. The salt characters are repeated
as the first two characters of the output. The remaining 11 output characters are chosen from the same set
as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to select one of 4,096 crypto-
graphic machines all based on the National Bureau of Standards DES algorithm, but broken in 4,096
different ways. Using the input key as key, a constant string is fed into the machine and recirculated a
number of times. The 64 bits that come out are distributed into the 66 output key bits in the result.

makekey is intended for programs that perform encryption (e.g., ed(1) and crypt(1)). Usually, its input
and output will be pipes.

SEE ALSO
crypt(1), ed(1), passwd(4).

HP-UX Release 11i: December 2000 − 1 − Section 1−−519

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

man(1) man(1)

NAME
man - find manual information by keywords; print out a manual entry

SYNOPSIS
man [-M path] -k keyword...

man [-M path] -f file...

man [-] [-M path] [-T macro-package] [section [subsection]] entry_name ...

DESCRIPTION
man accesses information from the HP-UX manual pages. It can be used to:

• List all manual entries whose one-line description contains any of a specified set of keywords.

• Display or print one-line descriptions of entries specified by name.

• Search on-line manual directories by entry name and display or print the specified entry or entries.

• Search a specified on-line manual section (directory) and display or print the specified entry or
entries in that section.

Searching for Entry Names by Keyword (first form)
The first form above searches the one-line descriptions of individual entries for specified keywords. Argu-
ments are as follows:

-k keyword -k followed by one or more keywords causes man to print the one-line description of
each manual entry whose one-line description contains text matching one or more of
the specified keywords (similar to the behavior of grep(1)). Keywords are separated
by blanks (space or tab).

Before this option can be used, file /usr/share/lib/whatis must exist.
/usr/share/lib/whatis can be created by running catman(1M).

Obtaining One-Line Description of an Entry (second form)
The second form above finds and displays or prints the one-line descriptions of specified individual entries.
Arguments are as follows:

-f file -f followed by one or more file names causes man to print the one-line description of
each manual entry found whose name matches file. When specifying two or more
files, file arguments are separated by blanks (space or tab). If entry names matching
file exist in two or more sections, the one-line description of each matched file name is
output.

Before this option can be used, file /usr/share/lib/whatis must exist.
/usr/share/lib/whatis can be created by running catman(1M).

Viewing Individual Manual Entries (third form)
The third form shown above is used for viewing one or more individual manual entries. man in this form
recognizes the following arguments:

- (optional) When the - argument is present, man sends the formatted manual entry
directly to standard output without processing it through the output filter specified by
the PAGERenvironment variable.

-M path Change the search path for manual pages. path is a colon-separated list of directories
that contain manual page directory subtrees. When used with the -k or -f options,
the -M option must appear first.

-T macro-package
man uses macro-package rather than the standard -man macros defined in
/usr/share/lib/tmac/tmac.an for formatting manual pages.

When specifying the -T option to man , the full path must be given. For example:

man -T /usr/share/lib/tmac/tmac.s ls

section[subsection]
(optional) Search in the specified section for the given entry_name . section specifies a
single section number or one of the words local , new, old , or public to search

Section 1−−520 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

man(1) man(1)

for one or more of the entries indicated. section corresponds to the section number
where the entry appears in the HP-UX Reference . It can be followed by an optional
uppercase/lowercase subsection identifier such as 3C which would indicate a library
routine in Section 3. 3, 3c , and 3C are interpreted as equivalent, since all Section 3
manual entries are stored in the same or in related directories (such as
/usr/share/man/man3.Z and /usr/share/man/man3 . However, if an
entry is in Section 1M, section must be specified as 1mor 1M.

entry_name Search for a specific entry name where entry_name is the name of the manual entry
without its section-number suffix. Except for names exceeding 11 characters,
entry_name is identical to the name of the manual entry as listed at the top of each
page, or is the same as one of the keywords in the left-hand part of the one-line
description in the corresponding manual entry.

If entry_name is longer than 11 characters, man first searches for the full-length
entry_name . If not found, entry_name is truncated to 11 characters to ensure that
there is room for the section suffix in 14-character source file names. Files in the
/usr/share/man/ ∗ directories are normally installed with the filename truncated
to 11 characters where necessary so that the name plus a three-character section
suffix does not exceed the maximum filename length on short filename systems.

If section is not specified (see previous argument description), man searches all sec-
tions of the manual in order: man1, man2, man1M, man3, man4, man5, man6,
man7, man8, man9, manlocal , mannew, manold , then manpublic ; and print-
ing the first matching entry it encounters.

If there is more than one manual entry among the sections, the first manual entry is
displayed. For example, man intro will display only intro(1) . man 4 intro
will display intro(4) .

If the standard output is a teletype, and if the - flag is not given, man pipes its output through more
(see more(1)), with the -s option, to eliminate multiple blank lines and stop after each screenful. This
default behavior can be changed by setting the PAGERvariable in the user’s environment. The value of
PAGERmust be a string that names an output filter (such as pg(1)), along with the desired options.

File Search Conventions
man searches in several directories, as appropriate, for the specified manual entry. The search continues
until either the entry is found or all candidate directories are searched. The first three directories
searched, in order, are: /usr/share/man , /usr/contrib/man , and /usr/local/man .

The MANPATHenvironment variable can be used to specify directories to be searched, and, if set, overrides
the default paths given above. Upon logging in, /etc/profile (or /etc/csh.login) sets the
MANPATHenvironment variable to default settings. If the file /etc/MANPATH exists, the default settings
are taken from this file. The MANPATHvariable follows the same form as the PATH variable (see
environ(5)).

Within each of these directories, man searches in the cat ∗.Z subdirectories, the man∗.Z subdirec-
tories, the cat ∗ subdirectories, and the man∗ subdirectories. man∗.Z and man∗ directories contain
nroff(1)-compatible source text for the entries. cat ∗.Z and cat ∗ directories contain the formatted ver-
sions of the entries. man∗.Z and cat.Z directories contain entries in compressed form. Files in these
directories are uncompressed by uncompress (see compress (1)) before being processed for printing or
display.

If the LANGenvironment variable is set to any valid language name defined by lang(5), and the MAN-
PATH variable is not set, or is set to the default directories, man searches in three additional directories
for the manual entry before searching in /usr/share/man . First, man searches in
/usr/share/man/$LANG , then in /usr/contrib/man/$LANG , then in
/usr/local/man/$LANG . Thus, native-language manual entries are displayed if they are present and
installed properly in the system.

If the MANPATHenvironment variable is set to anything other than the default, the above directories with
$LANG as part of the path are not automatically searched. All directories must be explicitly given in
MANPATH.The %L, %l , %t, and %c specifiers can be used as path components to cause locale-specific
directories to be searched. See environ(5) for a complete description of MANPATH.

man uses the most recent version that it finds in the subdirectories searched. If the most recent version is
in:

HP-UX Release 11i: December 2000 − 2 − Section 1−−521

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

man(1) man(1)

man∗.Z The entry is uncompressed, formatted, and displayed. If the cat ∗.Z directory
exists, the formatted entry is compressed and installed in cat ∗.Z . If the cat ∗
directory exists, the formatted entry is installed in cat ∗.

cat ∗.Z The entry is uncompressed and displayed.

man∗ The entry is formatted, and displayed. If the cat ∗.Z directory exists, it is
compressed, and installed in cat ∗.Z . If the cat ∗ directory exists, the formatted
entry is installed in cat ∗.

cat ∗ The entry is displayed.

If only the cat ∗ or cat ∗.Z subdirectory is present and/or nroff(1) is not installed, only entries that are
already formatted can be displayed.

If you choose to have the formatted entries on your system, run catman(1M) with the default, which
creates the cat ∗.Z directories (after removing any cat ∗ directories that exist on your system) and also
creates the file /usr/share/lib/whatis used by the man -k option. If you choose to have the
cat ∗ directories, it would be space-saving to remove any cat ∗.Z directories that may exist on your sys-
tem. Beware that man updates both directories (cat* and cat*.Z) if they both exist.

Special Manual Entries
Some situations may require creation of manual entries for local use or distribution by third-party software
suppliers. The manual formatting macros have been structured to redefine page footers so that manual
entries not originating from Hewlett-Packard Company do not show the HP name in the footer. For more
information about this change and a description of the manual formatting macros used with nroff or
troff , see man(5).

EXTERNAL INFLUENCES
Environment Variables

LANGdetermines the language in which messages are displayed. LANG is also used to determine the
search path (as described above).

If LANGis not specified or is set to the empty string, a default of "C" (see lang(5)) is used instead of LANG
for messages, but not for the search path.

If any internationalization variable contains an invalid setting, man behaves as if all internationalization
variables are set to "C". See environ(5).

MANPATH, if set, gives a list of directories to be searched for the given entry, replacing the default paths.

PAGER, if set, defines an output filter to be used instead of more(1) to paginate output.

International Code Set Support
Single- and multi-byte character code sets are supported.

EXAMPLES
List the manual entries that contain the word grep in their respective one-line description (NAME) lines:

man -k grep

The output is:

grep, egrep, fgrep (1) - search a file for a pattern
zgrep(1) - search possibly compressed files for a

regular expression

Print the one-line description of the grep(1) manual entry:

man -f grep

Print the entire grep(1) manual entry:

man grep

Set a search path that includes a path directly below the current directory. The manual entry, mypage is
assumed to exist in the directory ./man1 (or ./man1.Z , cat1 , or cat1.Z).

MANPATH=.:/usr/share/man:/usr/contrib/man:/usr/local/man
export MANPATH
man mypage

Section 1−−522 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

man(1) man(1)

Display the manual entry for id(1), with the output piped through pg -c :

PAGER="pg -c"
export PAGER
man id

List all printed manuals available for the current system (see manuals(5):

man manuals

Display intro(4) and intro(3):

man 4 intro

man 3 intro

WARNINGS
Manual entries are structured such that they can be printed on a phototypesetter, conventional line
printer, and screen display devices. However, due to line printer and display device limitations, some infor-
mation may be lost in certain situations.

FILES
/usr/share/lib/whatis keyword database
/usr/share/man/cat ∗[.Z]/ ∗ formatted manual entries [compressed]
/usr/share/man/man ∗[.Z]/ ∗ raw (nroff(1) source) manual entries [compressed]
/usr/contrib/man/cat ∗[.Z]/ ∗
/usr/contrib/man/man ∗[.Z]/ ∗
/usr/local/man/cat ∗[.Z]/ ∗
/usr/local/man/man ∗[.Z]/ ∗
/usr/share/man/$LANG/cat ∗[.Z]/ ∗ formatted native-language manual entries [compressed]
/usr/share/man/$LANG/man ∗[.Z]/ ∗ raw (nroff(1) source) native-language manual entries

[compressed]
/usr/contrib/man/$LANG/cat ∗[.Z]/ ∗
/usr/contrib/man/$LANG/man ∗[.Z]/ ∗
/usr/local/man/$LANG/cat ∗[.Z]/ ∗
/usr/local/man/$LANG/man ∗[.Z]/ ∗

SEE ALSO
col(1), compress(1), grep(1), more(1), catman(1M), fixman(1M), environ(5), intro(1), intro(1M), intro(2),
intro(3), intro(4), intro(5), intro(7), intro(9), introduction(9), man(5), manuals(5).

STANDARDS CONFORMANCE
man: XPG4

HP-UX Release 11i: December 2000 − 4 − Section 1−−523

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mediainit(1) mediainit(1)

NAME
mediainit - initialize disk or partition DDS tape

SYNOPSIS
mediainit [-vr] [-f fmt_optn] [-i interleave] [-p size] pathname

DESCRIPTION
mediainit initializes mass storage media by formatting the media, writing and reading test patterns to
verify media integrity, then sparing any defective blocks found. This process prepares the disk or tape for
error-free operation. Initialization destroys all existing user data in the area being initialized.

mediainit can also used for partitioning DDS tape media. See the -p option below for further details.

Options
The following command options are recognized. They can be specified in any order, but all must precede
the pathname. Options without parameters can be listed individually or grouped together. Options with
parameters must be listed individually, but white space between the option and its parameter is discretion-
ary.

-v Normally, mediainit provides only fatal error messages which are directed to
standard error. The -v (verbose) option sends device-specific information related to
low-level operation of mediainit to standard output (stdout). This option is most
useful to trained service personnel because it usually requires detailed knowledge of
device operation before the information can be interpreted correctly.

-r (re-certify) This option forces a complete tape certification whether or not the tape has
been certified previously. All record of any previously spared blocks is discarded, so
any bad blocks will have to be rediscovered. This option should be used only if:

• It is suspected that numerous blocks on the tape have been spared which
should not have been, or

• It is necessary to destroy (overwrite) all previous data on the tape.

-f fmt_optn The format option is a device-specific number in the range 0 through 239 . It is
intended solely for use with certain SS/80 devices that support multiple media formats
(independent from interleave factor). For example, certain microfloppy drives support
256-, 512-, and 1024-byte sectors. mediainit passes any supplied format option
directly through to the device. The device then either accepts the format option if it is
supported, or rejects it if it is not supported. Refer to device operating manuals for
additional information. The default format option is 0.

-i interleave The interleave factor, interleave , refers to the relationship between sequential logical
records and sequential physical records. It defines the number of physical records on
the media that lie between the beginning points of two consecutively numbered logical
records. The choice of interleave factor can have a substantial impact on disk perfor-
mance.

-p size Partition DDS cartridge media into two logical separate volumes: partition 0 and par-
tition 1:

• size specifies the minimum size of partition 1 (in Mbytes). The maximum
allowed value is 1200.

• Partition 0 is the remainder of the tape (partition 0 physically follows parti-
tion 1 on the tape).

The actual size of partition 1 is somewhat larger than the requested size to allow for
tape media errors during writing. Thus, a size of 400 formats the DDS tape into two
partitions where partition 1 holds at least 400 Megabytes of data, and the remainder
of the tape is used for partition 0 (for a 1300 Mbyte DDS cartridge, this means that
partition 0 has a size somewhat less than 900 Mbytes).

Note that it is unnecessary to format a DDS tape before use unless the tape is being
partitioned. Unformatted DDS media does not require initialization when used as a
single partition tape. Accessing partition 1 on a single-partition tape produces an
error. To change a two-partition tape to single-partition, use mediainit with 0
specified as the size.

Section 1−−524 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mediainit(1) mediainit(1)

pathname pathname is the path name to the character (raw) device special file associated with
the device unit or volume that is to be initialized. mediainit aborts if you lack
either read or write permission to the device special file, or if the device is currently
open for any other process. This prevents accidental initialization of the root device or
any mounted volume. mediainit locks the unit or volume being initialized so that
no other processes can access it.

Except for SCSI devices, pathname must be a device special file whose minor number
of the device being initialized has the diagnostic bit set. For device special files with
the diagnostic bit set, the section number is meaningless. The entire device is
accessed.

When a given unit contains multiple volumes as defined by the drive controller, any available unit or
volume associated with that controller can be initialized, independent of other units and volumes that share
the same controller. Thus, you can initialize one unit or volume to any format or interleave factor without
affecting formats or data on companion units or volumes. However, be aware that the entire unit or
volume (as defined by the drive controller) is initialized without considering the possibility that it may be
subdivided into smaller structures by the the operating software. When such structures exist, unexpected
loss of data is possible.

mediainit dominates controller resources and limits access by competing processes to other units or
volumes sharing the same controller. If other simultaneous processes need access to the same controller,
some access degradation can be expected until initialization is complete; especially if you are initializing a
tape cartridge in a drive that shares the root disk controller.

In general, mediainit attempts to carefully check any -f (format option) or -i (interleave options)
supplied, and aborts if an option is out of range or inappropriate for the media being initialized. Specifying
an interleave factor or format option value of 0 has the same effect as not specifying the option at all.

For disks that support interleave factors, the acceptable range is usually 1 (no interleave) through n − 1,
where n is the number of sectors per track. Refer to the appropriate device operating manual for recom-
mended values.

If a disk being initialized requires an interleave factor but none is specified, mediainit provides an
appropriate, though not necessarily optimum default.

When a given device supports format options, the allowable range of interleave factors may be related to
the specified format option. In such instances, mediainit cannot check the interleave factor if one is
specified.

Notes
Most types of mass storage media must be initialized before they can be used. HP hard disks, flexible disks,
and cartridge tapes require some form of initialization, but 9-track tapes do not. Initialization usually
involves formatting the media, writing and reading test patterns, then sparing any defective blocks.
Depending upon the media and device type, none, some, or all of the initialization process may have been
performed at the factory. mediainit completes whatever steps are appropriate to prepare the media
for error-free operation.

Most HP hard disks are formatted and exhaustively tested at the factory by use of a process more thorough
but also more time-consuming than appropriate for mediainit . However, mediainit is still valuable
for ensuring the integrity of the media after factory shipment, formatting with the correct interleave factor,
and sparing any blocks which may have become defective since original factory testing was performed.

HP flexible disks are not usually formatted prior to shipment, so they must undergo the entire initialization
process before they can be used.

When a tape is certified, it is thoroughly tested and defective blocks are spared. mediainit usually
certifies a tape only if it has not been certified previously. If the tape has been previously certified and
spared, mediainit usually reorganizes the tape’s spare block table, retaining any previous spares, and
optimizing their assignment for maximum performance under sequential access. Reorganizing the spare
block table takes only a few seconds, whereas complete certification takes about a half-hour for 150-foot
tapes, and over an hour for 600-foot tapes.

Reorganization of a tape’s spare block table technically renders any existing data undefined, but the data is
not usually destroyed by overwriting. To ensure that old tape data is destroyed, which is useful for secu-
rity, complete tape re-certification can be forced with the -r option.

HP-UX Release 11i: December 2000 − 2 − Section 1−−525

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mediainit(1) mediainit(1)

Some applications may require that a file system be placed on the media before use. mediainit does
not create a file system; it only prepares media for writing and reading. If such a file system is required,
other utilities such as newfs , lifinit , or mkfs must be invoked after running mediainit (see
newfs(1M), lifinit(1), and mkfs(1M)).

RETURN VALUE
mediainit returns one of the following values:

0 Successful completion.
1 A device-related error occurred.
2 A syntax-related error was encountered.

ERRORS
Appropriate error messages are printed on standard error during execution of mediainit .

WARNINGS
For a device that contains multiple units on a single controller, each unit can be initialized independently
from any other unit. It should be noted, however, that mediainit requires that there be no other
processes accessing the device before initialization begins, regardless of which unit is being initialized. If
there are accesses currently in progress, mediainit aborts.

Aborting mediainit is likely to leave the medium in a corrupt state, even if it was previously initialized.
To recover, the initialization must be restarted.

During the initialization process, open() rejects all other accesses to the device being initialized, produc-
ing the error EACCES (see open(2)).

DEPENDENCIES
Series 800

Partitioning of DDS tape media (-p option) is not supported.

AUTHOR
mediainit was developed by HP.

SEE ALSO
lifinit(1), mkfs(1M), newfs(1M).

Section 1−−526 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

merge(1) merge(1)

NAME
merge - three-way file merge

SYNOPSIS
merge [-p] file1 file2 file3

DESCRIPTION
merge combines two files that are revisions of a single original file. The original file is file2, and the
revised files are file1 and file3. merge identifies all changes that lead from file2 to file3 and from file2 to
file1, then deposits the merged text into file1. If the -p option is used, the result goes to standard output
instead of file1.

An overlap occurs if both file1 and file3 have changes in the same place. merge prints how many over-
laps occurred, and includes both alternatives in the result. The alternatives are delimited as follows:

<<<<<<< file1
lines in file1
=======
lines in file3
>>>>>>> file3

If there are overlaps, edit the result in file1 and delete one of the alternatives.

This command is particularly useful for revision control, especially if file1 and file3 are the ends of two
branches that have file2 as a common ancestor.

EXAMPLES
A typical use for merge is as follows:

1. To merge an RCS branch into the trunk, first check out the three different versions from RCS (see
co(1)) and rename them for their revision numbers: 5.2, 5.11, and 5.2.3.3. File 5.2.3.3 is the end
of an RCS branch that split off the trunk at file 5.2.

2. For this example, assume file 5.11 is the latest version on the trunk, and is also a revision of the
"original" file, 5.2. Merge the branch into the trunk with the command:

merge 5.11 5.2 5.2.3.3

3. File 5.11 now contains all changes made on the branch and the trunk, and has markings in the
file to show all overlapping changes.

4. Edit file 5.11 to correct the overlaps, then use the ci command to check the file back in (see
ci(1)).

WARNINGS
merge uses the ed(1) system editor. Therefore, the file size limits of ed(1) apply to merge .

AUTHOR
merge was developed by Walter F. Tichy.

SEE ALSO
diff3(1), diff(1), rcsmerge(1), co(1).

HP-UX Release 11i: December 2000 − 1 − Section 1−−527

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mesg(1) mesg(1)

NAME
mesg - permit or deny messages to terminal

SYNOPSIS
mesg [[-] g] [[-] y] [[-] n]
mesg

DESCRIPTION
The command form mesg [-] n forbids messages via write by revoking write permission to users
without appropriate privilege on the user’s terminal (see write(1)). The command form mesg [-] g rein-
states permission so that only legitimate commands (such as write(1)) can be used by other users to send
messages. mesg [-] y allows applications such as write or talk to send messages to the user’s terminal
(that is, without restrictions). mesg without any other argument reports the current state without
changing it.

RETURN VALUE
mesg returns the following values:

0 Messages are receivable.
1 Messages are not receivable.
2 An error occurred.

EXTERNAL INFLUENCES
Environment Variables

LC_MESSAGESdetermines the language in which messages are displayed.

If LC_MESSAGESis not specified in the environment or is set to the empty string, the value of LANGis
used as a default for each unspecified or empty variable. If LANGis not specified or is set to the empty
string, a default of "C" (see lang(5)) is used instead of LANG.

If any internationalization variable contains an invalid setting, mesg behaves as if all internationalization
variables are set to "C". See environ(5).

FILES
/dev/tty*

SEE ALSO
write(1).

STANDARDS CONFORMANCE
mesg: SVID2, SVID3, XPG2, XPG3, XPG4

Section 1−−528 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mkdir(1) mkdir(1)

NAME
mkdir - make a directory

SYNOPSIS
mkdir [-p] [-m mode] dirname ...

DESCRIPTION
mkdir creates specified directories in mode 0777 (possibly altered by umask unless specified otherwise by
a -m mode option (see umask(1)). Standard entries, . (for the directory itself) and .. (for its parent) are
created automatically. If dirname already exists, mkdir exits with a diagnostic message, and the direc-
tory is not changed.

Options
mkdir recognizes the following command-line options:

-m mode After creating the directory as specified, the file permissions are set to mode, which is a
symbolic mode string as defined for chmod (see chmod(1)). The umask(1) has pre-
cedence over -m.

-p Intermediate directories are created as necessary. Otherwise, the full path prefix of dir-
name must already exist. mkdir requires write permission in the parent directory.

For each directory name in the pathname prefix of the dirname argument that is not the
name of an existing directory, the specified directory is created using the current umask
setting, except that the equivalent of chmod u+wx is done on each component to
ensure that mkdir can create lower directories regardless of the setting of umask .
Each directory name in the pathname prefix of the dirname argument that matches an
existing directory is ignored without error. If an intermediate path component exists,
but has permissions set to prevent writing or searching, mkdir fails with an error mes-
sage.

If the -m option is used, the directory specified by dirname (excluding directories in the
pathname prefix) is created with the permissions specified by mode.

Only LINK_MAX subdirectories can be created (see limits(5)).

Access Control Lists - JFS File Systems Only
If the parent directory has an access control list (ACL, see aclv(5)), and that ACL contains default entries,
an ACL is created for the new directory, and the parent directory’s default entries are applied to the new
directory’s ACL, both as regular entries and as default entries.

EXTERNAL INFLUENCES
Environment Variables

LANGprovides a default value for the internationalization variables that are unset or null. If LANG is
unset or null, the default value of "C" (see lang(5)) is used. If any of the internationalization variables con-
tains an invalid setting, mkdir will behave as if all internationalization variables are set to "C". See
environ(5).

LC_ALL If set to a non-empty string value, overrides the values of all the other internationalization vari-
ables.

LC_CTYPEdetermines the interpretation of text as single and/or multi-byte characters, the classification
of characters as printable, and the characters matched by character class expressions in regular expres-
sions.

LC_MESSAGESdetermines the locale that should be used to affect the format and contents of diagnostic
messages written to standard error and informative messages written to standard output.

NLSPATHdetermines the location of message catalogues for the processing of LC_MESSAGES.

International Code Set Support
Single- and multi-byte character code sets are supported.

DIAGNOSTICS
mkdir returns exit code 0 if all directories were created successfully. Otherwise, it prints a diagnostic and
returns non-zero.

HP-UX Release 11i: December 2000 − 1 − Section 1−−529

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mkdir(1) mkdir(1)

mkdir returns exit code 0 if the -p option was specified, and all the specified directories now exist. If any
of the intermediate directories do not have search or write permission (with the -p option), mkdir prints
a diagnostic and returns non-zero.

EXAMPLES
Create directory gem beneath existing directory raw in the current directory:

mkdir raw/gem

Create directory path raw/gem/diamond underneath the current directory and set permissions on
directory diamond to read-only for all users (a=r):

mkdir -p -m "a=r" raw/gem/diamond

which is equivalent to (see chmod(1)):

mkdir -p -m 444 raw/gem/diamond

If directories raw or raw and gem already exist, only the missing directories in the specified path are
created.

SEE ALSO
rm(1), setacl(1), sh(1), umask(1), aclv(5).

STANDARDS CONFORMANCE
mkdir : SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

Section 1−−530 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mkfifo(1) mkfifo(1)

NAME
mkfifo - make FIFO (named pipe) special files

SYNOPSIS
mkfifo [-p] [-m mode] filename ...

DESCRIPTION
mkfifo creates the FIFO special files named by its operand list. The operands are taken sequentially in
the order specified and, if the user has write permission in the appropriate directory, the FIFO is created
with permissions 0666 modified by the user’s file mode creation mask (see umask(2)).

The specific actions performed are equivalent to calling

mkfifo(filename, 0666)

for each filename in the operand list (see mkfifo(2)).

Options
mkfifo recognizes the following command-line options:

-m mode After creating the FIFO special file, set the permission bits of the new file to the
specified mode value. The mode option argument is a symbolic mode string as defined
in chmod(1).

(XPG4 Only.) In the symbolic mode strings, the operators + and - will be interpreted
relative to an initial mode of a=rw.

-p Create any missing intermediate path name components.

EXTERNAL INFLUENCES
Environment Variables

LANGdetermines the locale to use for the locale categories when both LC_ALL and the corresponding
environment variable (beginning with LC_) do not specify a locale. If LANGis not specified or is set to the
empty string, a default of "C" (see lang(5)) is used.

LC_ALL determines the locale to use to override any values for locale categories specified by the settings of
LANGor any environment variables beginning with LC_.

LC_CTYPEdetermines the locale for the interpretation of sequences of bytes of text data as characters
(e.g., single- versus multibyte characters in arguments).

If any internationalization variable contains an invalid setting, mkfifo behaves as if all internationaliza-
tion variables are set to "C". See environ(5).

International Code Set Support
Single-byte character code sets are supported.

RETURN VALUE
mkfifo returns zero if invoked with at least one operand and if all FIFO special files were created success-
fully. Otherwise, it prints a diagnostic message and returns non-zero.

EXAMPLES
The following command creates a FIFO special file named peacepipe in the current directory:

mkfifo peacepipe

SEE ALSO
chmod(1), umask(1), mknod(1M), mkfifo(3C).

STANDARDS CONFORMANCE
mkfifo : XPG3, XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 1 − Section 1−−531

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mkmf(1) mkmf(1)

NAME
mkmf - make a makefile

SYNOPSIS
mkmf [-acdeil] [-f makefile] [-F template] [-M language] [macroname=value ...]

DESCRIPTION
The mkmf command creates a makefile that informs the make command how to construct and maintain
programs and libraries (see make(1)). After gathering up all source code file names in the current working
directory and inserting them into the makefile, mkmf scans source code files for included files and gen-
erates dependency information that is appended to the makefile. Source code files are identified by their
file name suffixes. mkmf recognizes the following suffixes:

.c C

.C C++

.f FORTRAN

.h Include files

.i Pascal include files

.l Lex or Lisp

.o Object files

.p Pascal

.r Ratfor

.s Assembler

.y Yacc

The mkmf command checks for an existing makefile before creating one. If no -f option is present, mkmf
tries the makefiles makefile and Makefile , respectively.

After the makefile has been created, arbitrary changes can be made using a text editor. mkmf can also be
used to re-edit the macro definitions in the makefile, regardless of changes that may have been made since
it was created.

By default, mkmf creates a program makefile. To create a makefile that handles libraries, the -l option
must be used.

Make Requests
Given a makefile created by mkmf, make recognizes the following requests:

all Compile and load a program or library.

clean Remove all object and core files.

clobber Remove all files that can be regenerated.

depend Update included file dependencies in a makefile.

echo List the names of the source code files on standard output.

extract Extract all object files from the library and place them in the same directory as the
source code files. The library is not altered.

index Print an index of functions on standard output.

install Compile and load the program or library and move it to its destination directory.

print Print source code files on standard output.

tags Create a tags file for the ex editor (see ex(1) and ctags(1)), for C, Pascal, and Fortran
source code files.

update Recompile only if there are source code files that are newer than the program or library,
link and install the program or library.

Several requests can be given simultaneously. For example, to (1) compile and link a program, (2) move
the program to its destination directory, and (3) remove any unnecessary object files, use:

make install clean

Macro Definitions
mkmf understands the following macro definitions:

Section 1−−532 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mkmf(1) mkmf(1)

CFLAGS C compiler flags. After searching for included files in the directory currently being
processed, mkmf searches in directories named in -I compiler options and then in the
/usr/include directory.

COMPILESYSTYPE
Location of /usr/include . If the COMPILESYSTYPEmacro or environment
variable is defined, mkmf searches for included files in
/$COMPILESYSTYPE/usr/include instead of /usr/include .

CXXFLAGS C++ compiler flags. After searching for included files in the directory currently being
processed, mkmf searches in directories named in -I compiler options and then in the
/usr/include/CC directory, followed by the /usr/include directory.

DEST Directory where the program or library is to be installed.

EXTHDRS List of included files external to the current directory. mkmf automatically updates
this macro definition in the makefile if dependency information is being generated.

FFLAGS Fortran compiler flags. After searching for included files in the directory currently
being processed, mkmf searches in directories named in -I compiler options, then in
the /usr/include directory.

HDRS List of included files in the current directory. mkmf automatically updates this macro
definition in the makefile.

INSTALL Installation program name.

LD Link editor name.

LDFLAGS Link editor flags.

LIBRARY Library name. This macro also implies the -l option.

LIBS List of libraries needed by the link editor to resolve external references.

MAKEFILE Makefile name.

OBJS List of object files. mkmf automatically updates this macro definition in the makefile.

PROGRAM Program name.

SRCS List of source code files. mkmf automatically updates this macro definition in the
makefile.

SUFFIX List of additional file name suffixes for mkmf to know about.

SYSHDRS List of included files found in the /usr/include directory hierarchy. mkmf
automatically updates this macro definition in the makefile if dependency information
is being generated. If SYSHDRSis omitted from the makefile, mkmf does not gen-
erate /usr/include dependencies.

Both these and any other macro definitions already within the makefile can be replaced by definitions on
the command line in the form macroname=value. For example, to change the C compiler flags and the pro-
gram name, type the following line:

mkmf "CFLAGS=-I../include -O" PROGRAM=mkmf

Note that macro definitions such as CFLAGSwith blanks in them must be enclosed in double quote (")
marks.

Environment
The environment is read by mkmf. All variables are assumed to be macro definitions with the exception of
HDRS, EXTHDRS, SRCS, and OBJS. Environment variables are processed after command line macro
definitions and the macro definitions in a makefile. The -e option forces the environment to override the
macro definitions in a makefile.

File Name Suffixes
mkmf can recognize additional file name suffixes, or ignore ones that it already recognizes, by specifying
suffix descriptions in the SUFFIX macro definition. Each suffix description takes the form . suffix: tI
where t is a character indicating the contents of the file (s = source file, o = object file, h = header file, x =
executable file) and I is an optional character indicating the include syntax for header files (C = C syntax,
C++ = C syntax plus the addition of /usr/include/CC as a standard search directory, F = Fortran and

HP-UX Release 11i: December 2000 − 2 − Section 1−−533

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mkmf(1) mkmf(1)

Ratfor syntax, P = Pascal syntax). The following list shows the default configuration for mkmf:

.c:sC C

.C:sC++ C++

.f:sF Fortran

.h:h Include files

.i:h Pascal include files

.l:sC Lex or Lisp

.o:o Object files

.p:sP Pascal

.r:sF Ratfor

.s:s Assembler

.y:sC Yacc

For example, to change the object file suffix to .obj , undefine the Pascal include file suffix, and prevent
Fortran files from being scanned for included files, the SUFFIX macro definition could be:

SUFFIX = .obj:o .i: .f:s

Include Statement Syntax
The syntax of include statements for C, C++, Fortran, and Pascal source code are of the form:

C/C++:

#include " filename"
#include filename

where # must be the first character in the line.

Fortran:

$include ’ filename ’$
$INCLUDE ’ filename ’$

where $ must be the first character in the line. Alternatively, the $ can be omitted if the
include statement starts in column 7. In either case the trailing $ can be omitted.

Pascal:

$include ’ filename ’$
$INCLUDE ’ filename ’$

where $ must be the first character in the line and the trailing $ is optional.

User-defined Templates
If mkmf cannot find a makefile within the current directory, it normally uses one of the standard makefile
templates, C.p or C.l , in /usr/ccs/lib/mf unless the user has alternative C.p or C.l template
files in a directory $PROJECT/lib/mf where $PROJECT is the absolute path name of the directory
assigned to the PROJECTenvironment variable.

Options
mkmf recognizes the following options:

-a Include source files beginning with a . in the makefile.

-c Suppress ‘‘creating makefile from ...’’ message.

-d Turn off scanning of source code for include files. Old dependency information is
left untouched in the makefile.

-e Environment variables override macro definitions within makefiles.

-f makefile Specify an alternative makefile file name. The default file name is Makefile .

-i Prompt the user for the name of the program or library and the directory where it is
to be installed. If a carriage-return is typed in response to each of these queries,
mkmf assumes that the default program name is a.out or the default library name
is lib.a , and the destination directory is the current directory.

-l Force the makefile to be a library makefile.

Section 1−−534 − 3 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mkmf(1) mkmf(1)

-F template Specify an alternative makefile template path name. The path name can be relative
or absolute.

-M language Specify an alternative language-specific makefile template. The default language is C
and the corresponding program and library makefile templates are C.p and C.l ,
respectively. mkmf looks for these templates in /usr/ccs/lib/mf or
$PROJECT/lib/mf .

DIAGNOSTICS
Exit status 0 is normal. Exit status 1 indicates an error.

WARNINGS
The name of the makefile is included as a macro definition within the makefile and must be changed if the
makefile is renamed.

Since executable files are dependent on libraries, standard library abbreviations must be expanded to full
path names within the LIBS macro definition in the makefile.

Generated dependency information appears after a line in the makefile beginning with ### . This line must
not be removed, nor must any other information be inserted in the makefile below this line.

The name of a program or library must not conflict with any predefined target names in a makefile. It is
especially important to avoid the the name update to prevent make from recursively executing itself an
infinite number of times.

AUTHOR
mkmf was developed by the University of California, Berkeley.

FILES
/usr/ccs/lib/mf/C.p Standard program makefile template
/usr/ccs/lib/mf/C.l Standard library makefile template
$PROJECT/lib/mf/C.p User-defined program makefile template
$PROJECT/lib/mf/C.l User-defined library makefile template

SEE ALSO
ar(1), ctags(1), ld(1), make(1).

"Automatic Generation of Make Dependencies", Software-Practice and Experience, Walden, K., vol. 14, no.
6, pp. 575-585, June 1984.

HP-UX Release 11i: December 2000 − 4 − Section 1−−535

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mkmsgs(1) mkmsgs(1)

NAME
mkmsgs - create message files for use by gettxt()

SYNOPSIS
mkmsgs [-o] [-i locale] textfile msgfile

DESCRIPTION
The mkmsgs command takes as input a file of localized text strings and generates a message file that can
be accessed by the gettxt (3C) routine. textfile is the name of the file that contains the text strings. msgfile
is the name of the output message file. mkmsgs appends the suffix .cat to the message file name. The
combined length of the file name should be less than 14 bytes for short file name file system. The msgfile
file should not contain a colon since it will confuse the formatting routines.

The textfile file contains the localized text strings. The text strings are separated by a newline character.
The text strings are processed sequentially and copied to the msgfile message file. An empty line in the
input results in a corresponding empty message written to the msgfile message file.

Options
The mkmsgs command supports the following options:

-o Overwrite the msgfile message file if it exists.

-i locale The msgfile message file is installed in the system-wide localization directory
corresponding to the specified locale. Only a user with the appropriate privileges can
create or overwrite the message file in that directory. The directory will be created if
it does not exist.

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of messages as single- and/or multibyte characters.

Messages are issued in LANGif it is set to a valid language and LANGmessages are available. Otherwise
"C" locale messages are issued.

If LC_CTYPEis not specified in the environment or is set to the empty string, the value of LANGis used as
a default for each unspecified or empty variable. If LANGis not specified or is set to the empty string, a
default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable contains an invalid
setting, mkmsgs behaves as if all internationalization variables are set to "C". See environ(5).

International Code Set Support
Single- and multibyte character code sets are supported.

EXAMPLES
The following example shows the format of the input text strings:

global %s not found\n
\n\n<press return to continue>\n\n
\t%s, %d, %d,typ = %d, disp = ’%s’\n

WARNINGS
mkmsgs is provided for SVID3 compatibility only. The user is encouraged to use the NLS mechanism
developed by HP and the X/Open Company, Ltd.

SEE ALSO
gencat(1), gettxt(3C), setlocale(3C).

STANDARDS COMPLIANCE
mkmsgs: SVID3

Section 1−−536 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mkstr(1) mkstr(1)

NAME
mkstr - extract error messages from C source into a file

SYNOPSIS
mkstr [-] messagefile prefix file ...

DESCRIPTION
mkstr examines a C program and creates a file containing error message strings used by the program.
Programs with many error diagnostics can be made much smaller by referring to places in the file, and
reduce system overhead in running the program.

mkstr processes each of the specified files, placing a revised version of each in a file whose name consists
of the specified prefix concatenated in front of the original name. A typical usage of mkstr would be

mkstr mystrings xx *.c

This command would cause all the error messages from the C source files in the current directory to be
placed in the file mystrings and revised copies of the source for these files to be placed in files whose names
are prefixed with xx.

When processing the error messages in the source for transfer to the message file, mkstr searches for the
string error(in the input file. Each time it is encountered, the C string starting after the leading quote
is placed in the message file, followed by a null character and a new-line character. The null character ter-
minates the message so that it can be easily used when retrieved, and the new-line character makes it pos-
sible to conveniently list the error message file (using cat , more , etc. — see cat(1) and more(1)) to review
its contents.

The modified copy of the input file is identical to the original, except that each occurrence of any string that
was moved to the error message file is replaced by an offset pointer usable by lseek to retrieve the mes-
sage.

If the command line includes the optional - , extracted error messages are placed at the end of the specified
message file (append) instead of overwriting it. This enables you to process individual files that are part of
larger programs that have been previously processed by mkstr without reprocessing all the files.

All functions used by the original program whose names end in "error" that also can take a constant string
as their first argument should be rewritten so that they search for the string in the error message file.

For example, a program based on the previous example usage would resemble the following:

#include <stdio.h>
#include <sys/types.h>
#include <fcntl.h>

char errfile[] = "mystrings" ;

error(offset, a2, a3, a4)
int offset, a1, a2, a3;
{

char msg[256];
static int fd = -1;

if (fd < 0) {
fd = open(errfile, O_RDONLY);
if (fd < 0) {

perror(errfile);
exit(1);

}
}

if (lseek(fd, (off_t) offset, 0) | | read(fd, msg, 256) <= 0) {
printf("? Can’t find error message in %s:\n", errfile);
perror(errfile);
exit(1);

}

printf(msg, a1, a2, a3);
}

HP-UX Release 11i: December 2000 − 1 − Section 1−−537

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mkstr(1) mkstr(1)

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of comments and string literals as single- and/or multi-byte char-
acters.

If LC_CTYPEis not specified in the environment or is set to the empty string, the value of LANGis used
as a default for each unspecified or empty variable. If LANGis not specified or is set to the empty string, a
default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable contains an invalid
setting, mkstr behaves as if all internationalization variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported within file names, comments, and string literals.

SEE ALSO
lseek(2), perror(3C), xstr(1).

BUGS
Strings in calls to functions whose names end in error , notably perror() , may be replaced with offsets
by mkstr .

Calls to error functions whose first argument is not a string constant are left unmodified without warning.

Section 1−−538 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mktemp(1) mktemp(1)

NAME
mktemp - make a name for a temporary file

SYNOPSIS
mktemp [-c] [-d directory_name] [-p prefix]

DESCRIPTION
mktemp makes a name that is suitable for use as the pathname of a temporary file, and writes that name
to the standard output. The name is chosen such that it does not duplicate the name of an existing file. If
the -c option is specified, a zero-length file is created with the generated name.

The name generated by mktemp is the concatenation of a directory name, a slash (/), the value of the
LOGNAMEenvironment variable truncated to {NAME_MAX} − 6 characters, and the process ID of the
invoking process.

The directory name is chosen as follows:

1. If the -d option is specified, directory_name is used.

2. Otherwise, if the TMPDIR environment variable is set and a string that would yield a unique
name can be obtained by using the value of that variable as a directory name, this value is used.

3. Otherwise, if a string that would yield a unique name can be obtained using /tmp as the direc-
tory, /tmp is used.

4. Otherwise, . (current directory) is used.

If the -p option is specified, prefix is used instead of the value of the LOGNAMEenvironment variable for
name generation.

RETURN VALUE
mktemp returns zero on successful completion and non-zero if syntax, file access, or file creation errors
were encountered or a unique pathname could not be generated.

SEE ALSO
mktemp(3C), umask(1).

HP-UX Release 11i: December 2000 − 1 − Section 1−−539

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mm(1) mm(1)

NAME
mm, osdd - print documents formatted with the mm macros

SYNOPSIS
mm[options] [files]

osdd [options] [files]

DESCRIPTION
mmcan be used to format and print documents using nroff and the mmtext-formatting macro package
(see nroff(1)). It has options to specify preprocessing by tbl and/or neqn , (see tbl(1) and neqn(1)), and
postprocessing by various terminal-oriented output filters. The proper pipelines and the required argu-
ments and flags for nroff and mmare generated, depending on the options selected.

osdd is equivalent to the command mm -mosd.

Options
mmrecognizes the following options and command-line arguments. Any other arguments or options (such
as -rC3) are passed to nroff or to mm, as appropriate. Such options can occur in any order, but they
must appear before the files arguments. If no arguments are given, mmprints a list of its options.

-T term Specifies the type of output terminal; for a list of recognized values for term , type help
term2 . If this option is not used, mmuses the value of the shell variable $TERMfrom the
environment (see profile(4) and environ(5)) as the value of term if $TERMis set; otherwise,
mmuses 450 as the value of term . If several terminal types are specified, the last one is
used.

-12 Indicates that the document is to be produced in 12-pitch. Can be used when $TERMis set
to one of 300 , 300s , 450 , and 1620 . (The pitch switch on the DASI 300 and 300s termi-
nals must be manually set to 12 if this option is used.)

-c Causes mmto invoke col(1); note that col(1) is invoked automatically by mmunless term is
one of 300 , 300s , 450 , 37 , 4000a , 382 , 4014 , tek , 1620 , and X.

-e Causes mmto invoke neqn .

-t Causes mmto invoke tbl .

-E Invokes the -e option of nroff .

DIAGNOSTICS
mmsends the message mm: no input file if none of the arguments is a readable file and mmis not
used as a filter.

EXAMPLES
Assuming that the shell variable $TERMis set in the environment to 450 , the two command lines below
are equivalent:

mm -t -rC3 -12 ghh*
tbl ghh* | nroff -cm -T450-12 -h -rC3

mmreads the standard input when - is specified instead of any file names (mentioning other files along
with - leads to disaster). This option allows mmto be used as a filter, as in this example:

cat dws | mm -

Hints
• mminvokes nroff with the -h option. With this option, nroff assumes that the terminal has tabs

set every 8 character positions.

• Use the -o list option of nroff to specify ranges of pages to be output. Note, however, that mm, if
invoked with one or more of the -e , -t , and - options, together with the -o list option of nroff may
cause a harmless ‘‘broken pipe’’ diagnostic if the last page of the document is not specified in list.

• If you use the -s option of nroff (to stop between pages of output), use line-feed (rather than return
or new-line) to restart the output. The -s option of nroff does not work with the -c option of mm,
or if mmautomatically invokes col (see -c option above and col(1)).

Section 1−−540 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mm(1) mm(1)

• If you specify an incorrect output terminal type, mmproduces (often subtle) unpredictable results. How-
ever, if you are redirecting output into a file, use the -T37 option, then use the appropriate terminal
filter when actually printing the formatted file.

SEE ALSO
col(1), env(1), nroff(1), tbl(1), profile(4), term(4), mm(5).

mmsection in Text Formatting: User’s Guide.

HP-UX Release 11i: December 2000 − 2 − Section 1−−541

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

model(1) model(1)

NAME
model - print hardware model information

SYNOPSIS
model

DESCRIPTION
model prints the machine hardware model. Two or more fields may be displayed: computer, model
number, and sometimes the clock or an additional model number.

Its output is similar to that of uname -m. However, it is recommended that the model command or the
getconf command be used to obtain the model name since future model names may not be compatible
with uname.

EXAMPLES
Here are examples of what the model command displays.

The model output below indicates an HP 9000 Model 715 with a 50 MHz clock.

9000/715/50

The model output below indicates an HP 9000 879 K-Class model K260.

9000/879/K260

The model output below indicates an HP 9000 871 D-Class model D370.

9000/871/D370

The model output below indicates an HP 9000 Model 720.

9000/720

SEE ALSO
getconf(1), uname(1).

Section 1−−542 − 1 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

more(1) more(1)

NAME
more, page - file perusal filter for crt viewing

SYNOPSIS
more [-n] [-cdefisuvz] [-n number] [-p command] [-t tagstring] [-x tabs] [-W option]
[+linenumber] [+/ pattern] [name ...]

page [-n] [-cdefisuvz] [-n number] [-p command] [-t tagstring] [-x tabs] [-W option]
[+linenumber] [+/ pattern] [name ...]

REMARKS:
pg is preferred in some standards and has some added functionality, but does not support character
highlighting (see pg(1)).

DESCRIPTION
more is a filter for examining continuous text, one screenful at a time, on a soft-copy terminal. It is quite
similar to pg , and is retained primarily for backward compatibility. more normally pauses after each
screenful, printing the filename at the bottom of the screen. To display one more line, press <Return> .
To display another screenful press <Space> . Other possibilities are described later.

more and page differ only slightly. more scrolls the screen upward as it prints the next page. page
clears the screen and prints a new screenful of text when it prints a new page. Both provide one line of
overlap between screenfuls.

name can be a filename or - , specifying standard input. more processes file arguments in the order
given.

more supports the Basic Regular Expression syntax (see regexp(5)).

more recognizes the following command line options:

-n number Set the number of lines in the display window to number, a positive decimal integer.
The default is one line less than the the number of lines displayed by the terminal; on
a screen that displays 24 lines, the default is 23. The -n flag overrides any values
obtained from the environment.

- n Same as -n number except that the number of lines is set to n.

-c Draw each page by beginning at the top of the screen, and erase each line just before
drawing on it. This avoids scrolling the screen, making it easier to read while more
is writing. This option is ignored if the terminal has no clear-to-end-of-line capability.

-d Prompt user with the message Press space to continue, q to quit,
h for help at the end of each screenful. This is useful if more is being used as a
filter in some setting, such as a training class, where many users might be unsophisti-
cated.

-e Exit immediately after writing the last line of the last file in the argument list

-f Count logical lines, rather than screen lines. That is, long lines are not folded. This
option is recommended if nroff output is being piped through ul, since the latter can
generate escape sequences. These escape sequences contain characters that would
ordinarily occupy screen positions, but which do not print when sent to the terminal
as part of an escape sequence. Thus more might assume lines are longer than they
really are, and fold lines erroneously.

-i Perform pattern matching in searches without regard to case.

-s Squeeze multiple blank lines from the output, producing only one blank line. Espe-
cially helpful when viewing nroff output, this option maximizes the useful information
present on the screen.

-u Normally, more handles underlining and bold such as produced by nroff in a manner
appropriate to the particular terminal: if the terminal supports underlining or has a
highlighting (usually inverse-video) mode, more outputs appropriate escape
sequences to enable underlining, else highlighting mode, for underlined information in
the source file. If the terminal supports highlighting, more uses that mode informa-
tion that should be printed in boldface type. The -u option suppresses this process-
ing, as do the "ul" and "os" terminfo flags.

HP-UX Release 11i: December 2000 − 1 − Section 1−−543

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

more(1) more(1)

-v Do not display nonprinting characters graphically; by default, all non-ASCII and con-
trol characters (except <Tab> , <Backspace> , and <Return>) are displayed visi-
bly in the form ˆX for <Ctrl-x> , or M-x for non-ASCII character x .

-z Same as not specifying -v , with the exception of displaying <Backspace> as ˆH ,
<Return> as ˆM, and <Tab> as ˆI .

-p command Execute the more command initially in the command argument for each file exam-
ined. If the command is a positioning command, such as a line number or a regular
expression search, sets the current position to represent the final results of the com-
mand, without writing any intermediate lines of the file. If the positioning command
is unsuccessful, the first line in the file is the current position.

-t tagstring Write the screenful of the file containing the tag named by the tagstring argument.
The specified tag appears in the current position. If both -p and -t options are
specified, more processes -t first; that is, the file containing the tagstring is
selected by -t and then the command is executed.

-x tabs Set the tabstops every tabs position. The default value for the tabs argument is 8.

-W option Provides optional extensions to the more command. Currently, the following two
options are supported:

notite Prevents more from sending the terminal initialization string
before displaying the file. This argument also prevents more
from sending the terminal de-initialization string before exiting.

tite Causes more to send the initialization and de-initialization
strings. This is the default.

+linenumber Start listing such that the current position is set to linenumber.

+/ pattern Start listing such that the current position is set to two lines above the line matching
the regular expression pattern.

Note: Unlike editors, this construct should NOT end with a / . If it does, the trailing
slash is taken as character in the search pattern.

The number of lines available per screen is determined by the -n option, if present or by examining values
in the environment. The actual number of lines written is one less than this number, as the last line of the
screen is used to write a user prompt and user input.

The number of columns available per line is determined by examining values in the environment. more
writes lines containing more characters than would fit into this number of columns by breaking the line into
one more logical lines where each of these lines but the last contains the number of characters needed to fill
the columns. The logical lines are written independently of each other; that is, commands affecting a single
line affect them separately.

While determining the number of lines and the number of columns, if the methods described above do not
yield any number then more uses terminfo descriptor files (see term(4)). If this also fails then the number
of lines is set to 24 and the number of columns to 80.

When standard output is a terminal and -u is not specified, more treats backspace characters and
carriage-return characters specially.

• A character, followed first by a backspace character, then by an underscore (_), causes that charac-
ter to be written as underlined text, if the terminal supports that. An underscore, followed first by
a backspace character, then any character, also causes that character to be written as underlined
text, if the terminal supports that.

• A backspace character that appears between two identical printable characters causes the first of
those two characters to be written as emboldened text, if the terminal type supports that, and the
second to be discarded. Immediately subsequent occurrences of backspaces/character pairs for that
same character is also discarded.

• Other backspace character sequences is written directly to the terminal, which generally causes
the character preceding the backspace character to be suppressed in the display.

• A carriage-return character at the end of a line is ignored, rather than being written as a control
character.

Section 1−−544 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

more(1) more(1)

If the standard output is not a terminal device, more always exits when it reaches end-of-file on the last
file in its argument list. Otherwise, for all files but the last, more prompts, with an indication that it has
reached the end of file, along with the name of the next file. For the last file specified, or for the standard
input if no file is specified, more prompts, indicating end-fo-file, and accept additional commands. If the
next command specifies forward scrolling, more will exit. If the -e option is specified, more will exit
immediately after writing the last line of the last file.

more uses the environment variable MOREto preset any flags desired. The MOREvariable thus sets a
string containing flags and arguments, preceded with hyphens and blank-character-separated as on the
command line. Any command-line flags or arguments are processed after those in the MOREvariable, as if
the command line were as follows:

more $MOREflags arguments

For example, to view files using the -c mode of operation, the shell command sequence

MORE=’-c’ ; export MORE

or the csh command

setenv MORE -c

causes all invocations of more , including invocations by programs such as man and msgs , to use this mode.
The command sequence that sets up the MOREenvironment variable is usually placed in the .profile or
.cshrc file.

In the following descriptions, the current position refers to two things:

• the position of the current line on the screen

• the line number (in the file) of the current line on the screen

The line on the screen corresponding to the current position is the third line on the screen. If this is not
possible (there are fewer than three lines to display or this is the first page of the file, or it is the last page
of the file), then the current position is either the first or last line on the screen.

Other sequences that can be typed when more pauses, and their effects, are as follows (i is an optional
integer argument, defaulting to 1):

i<Return>
i j
i<Ctrl-e>
i<Space> Scroll forward i lines. The default i for <Space> is one screenful; for j and

<Return> it is one line. The entire i lines are written, even if i is more than the
screen size. At end-of-file, <Return> causes more to continue with the next file in
the list, or exits if the current file is the last file in the list.

id
i<Ctrl-d> Scroll forward i lines, with a default of one half of the screen size. If i is specified, it

becomes the new default for subsequent d and u commands.

iu
i<Ctrl-u> Scrolls backward i lines, with a default of one half of the screen size. If i is specified, it

becomes the new default for subsequent d and u commands.

ik
i<Ctrl-y> Scrolls backward i lines, with a default of one line. The entire i lines are written, even

if i is more than the screen size.

iz Display i more lines and sets the new window (screenful) size to i .

ig Go to line i in the file, with a default of 1 (beginning of file). Scroll or rewrite the
screen so that the line is at the current position. If i is not specified, then more
displays the first screenful in the file.

iG Go to line i in the file, with a default of the end of the file. If i is not specified, scrolls
or rewrites screen so that the last line in the file is at the bottom of the screen. If i is
specified, scrolls or rewrites the screen so that the line is at the current position.

is Skip forward i lines, with a default of 1, and write the next screenful beginning at that
point. If i would cause the current position to be such that less than one screenful
would be written, the last screenful in the file is written.

HP-UX Release 11i: December 2000 − 3 − Section 1−−545

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

more(1) more(1)

if
i<Ctrl-f> Move forward i lines, with a default of one screenful. At end-of-file, more will con-

tinue with the next file in the list, or exit if the current file is the last file in the list.

ib
i<Ctrl-b> Move backward i lines, with a default of one screenful. If i is more than the screen

size, only the final screenful will be written.

q
Q
:q
:Q
ZZ Exit from more .

=
:f
<Ctrl-g> Write the name of the file currently being examined, the number relative to the total

number of files there are to examine, the current line number, the current byte
number, and the total bytes to write and what percentage of the file precedes the
current position. All of these items reference the first byte of the line after the last
line written.

v Invoke an editor to edit the current file being examined. The name of the editor is
taken from the environment variable EDITOR, or default to vi . If EDITOR
represents either vi or ex , the editor is invoked with options such that the current
editor line is the physical line corresponding to the current position in more at the
time of the invocation.

When the editor exits, more resumes on the current file by rewriting the screen with
the current line as the current position.

h Display a description of all the more commands.

i / [!]expression
Search forward in the file for the i-th line containing the regular expression expres-
sion. The default value for i is 1. The search starts at the line following the current
position. If the search is successful, the screen is modified so that the searched-for
line is in the current position. The null regular expression (/<Return>) repeats the
search using the previous regular expression. If the character ! is included, the lines
for searching are those that do not contain expression .

If there are less than i occurrences of expression, and the input is a file rather than a
pipe, then the position in the file remains unchanged.

The user’s erase and kill characters can be used to edit the regular expression. Eras-
ing back past the first column cancels the search command.

i ?[!]expression
Same as / , but searches backward in the file for the i th line containing the regular
expression expression .

Note: Unlike editors, the ?. construct should NOT end with a / . If it does, the trail-
ing slash is taken as a character in the search pattern.

in Repeat the previous search for the i-th line (default 1) containing the last expression
(or not containing the last expression, if the previous search was /! or ?!).

iN Repeat the search for the opposite direction of the previous search for the i-th line
(default 1) containing the last expression

’’ (2 apostrophes) Return to the position from which the last large movement command
was executed ("large movement" is defined as any movement of more than a screenful
of lines). If no such movements have been made, return to the beginning of the file.

! command Invoke a shell with command. The characters %and ! in command are replaced
with the current file name and the previous shell command, respectively. If there is
no current file name, %is not expanded. The sequences \% and \! are replaced by
%and ! respectively.

Section 1−−546 − 4 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

more(1) more(1)

:e [file]
E [file] Examine a new file. If the file argument is not specified, the "current" file (see the :n

and :p commands) from the list of files in the command line is re-examined. The
filename is subjected to the process of shell word expansions. If file is a # (number
sign) character, the previously examined file is re-examined.

i:n Examine the next file. If i is specified, examines the i-th next file specified in the com-
mand line.

i:p Examine the previous file. If a number i is specified, examines the i-th previous file
specified in the command line.

:t tagstring Go to the supplied tagstring and scroll or rewrite the screen with that line in the
current position.

m letter Mark the current position with the specified letter, where letter represents the name
of one of the lower-case letters of the portable character set.

’ letter Return to the position that was previously marked with the specified letter, making
that line the current position.

r
<Ctrl-l> Refresh the screen.

R Refresh the screen, discarding any buffered input.

. Dot. Repeat the previous command.

^\ Halt a partial display of text. more stops sending output, and displays the usual
prompt. Unfortunately, some output is lost as a result.

The commands take effect immediately; i.e., it is not necessary to press <Return> . Up to the time when
the command character itself is given, the line-kill character can be used to cancel the numerical argument
being formed.

If the standard output is not a teletype, more is equivalent to cat(1).

more supports the SIGWINCHsignal, and redraws the screen in response to window size changes.

EXTERNAL INFLUENCES
Environment Variables

COLUMNS Overrides the system-selected horizontal screen size.

EDITOR Used by the v command to select an editor.

LANG Provides a default value for the internationalization variables that are unset or null. If
LANGis unset or null, the default value of "C" (see lang(5)) is used. If any of the interna-
tionalization variables contains an invalid setting, more will behave as if all internationali-
zation variables are set to "C". See environ(5).

LC_ALL If set to a non-empty string value, overrides the values of all the other internationalization
variables.

LC_CTYPE Determines the interpretation of text as single and/or multi-byte characters, the
classification of characters as printable, and the characters matched by character class
expressions in regular expressions.

LC_MESSAGES
Determines the locale that should be used to affect the format and contents of diagnostic
messages written to standard error and informative messages written to standard output.

NLSPATH Determines the location of message catalogues for the processing of LC_MESSAGES.

LINES Overrides the system-selected vertical screen size, used as the number of lines in a screen-
ful. The -n option takes precedence over the LINES variable for determining the number
of lines in a screenful.

MORE Determines a string containing options, preceded with hyphens and blank-character-
separated as on the command line. Any command-line options are processed after those in
the MOREvariable. The MOREvariable takes precedence over the TERMand LINES
variables for determining the number of lines in a screenful.

HP-UX Release 11i: December 2000 − 5 − Section 1−−547

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

more(1) more(1)

TERM Determines the name of the terminal type.

International Code Set Support
Single- and multi-byte character code sets are supported.

APPLICATION USAGE
When the standard output is not a terminal, none of the filter-modification options is effective. This is based
on historical practice. For example, a typical implementation of man pipes its output through more -s to
squeeze excess white space for terminal users. When man is piped to lp , however, it is undesirable for this
squeezing to happen.

EXAMPLES
To view a simple file, use:

more filename

To preview nroff output, use a command resembling:

nroff -mm +2 doc.n | more -s

If the file contains tables, use:

tbl file | nroff -mm | col | more -s

To display file stuff in a fifteen line-window and convert multiple adjacent blank lines into a single blank
line:

more -s -n 15 stuff

To examine each file with its last screenful:

more -p G file1 file2

To examine each file starting with line 100 in the current position (third line, so line 98 is the first line writ-
ten):

more -p 100g file1 file2

To examine the file that contains the tagstring tag with line 30 in the current position:

more -t tag -p 30g

WARNINGS
Standard error, file descriptor 2, is normally used for input during interactive use and should not be
redirected (see Input/Output section in the manpage of the shell in use).

FILES
/usr/share/lib/terminfo/?/* compiled terminal capability data base

AUTHOR
more was developed by Mark Nudleman, University of California, Berkeley, OSF, and HP.

SEE ALSO
csh(1), man(1), pg(1), sh(1), term(4), terminfo(4), environ(5), lang(5), regexp(5).

STANDARDS CONFORMANCE
more : XPG4

Section 1−−548 − 6 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mpsched(1) mpsched(1)

NAME
mpsched - control the processor or locality domain on which a specific process executes

SYNOPSIS
mpsched -h

mpsched -s

mpsched [-g] [-P policy] [-T policy] [-l locality-domain-id] [-c spu] command

mpsched [-qu] [-P policy] [-l locality-domain-id] [-c spu] {-p pid}...

DESCRIPTION
mpsched controls the processor (spu), or locality domain (locality-domain-id) on which a process executes.
It can do this by binding a process to a particular processor or locality domain, or by setting the launch pol-
icy for the process.

The command may be invoked in four manners.

• With -h , it prints a help message.

• With -s , it returns the hardware configuration of the system. This includes information about the
number of locality domains and processors active in the system.

• With a command and its arguments, it applies the binding or launch policy to this command.

• With -p , it applies the binding or launch policy to the specified pid.

Options
The command-line options are:

-c spu
Bind the specified processes to the spu listed. This will ensure that the processes always run on the
indicated processor. This option may be used with the -P , -T , and -p options.

-g Enable gang scheduling on th No other options may be used with -g .

-h Print a help message.

-l locality-domain-id
Bind the specified processes to the locality-domain listed. This will ensure that the processes always
run on the indicated domain. This option may be used with the -P , -T , and -p options.

-p pid
Specify process ID, pid. To use the pid option, the caller must be a member of a group having
PRIV_MPCTL access, be superuser, or have the same effective user ID as the pid. Specifying a com-
mand instead of the -p option does not require special privileges. Multiple -p options may be
specified per command line, although each -p option can take only a single process ID.

-q Query the system regarding process bindings. This will return information about whether processes
are bound to a processor or locality domain. It will also report on the thread and process launch poli-
cies for the processes. If this option is used in conjunction with -p then only those processes specified
are queried. If this option is specified alone, then the status of all processes on the system that differ
from the default settings are displayed.

-s Print the system hardware configuration. No other options may be specified.

-u Unbind the processes from any processor or locality domain bindings that may be present. This option
can be used only with -p and no other options may be specified.

-P policy
Apply the specified policy to the processes. Launch policies affect the locality domain on which a pro-
cess is spawned. This option may be used with the -T , -p , -c , and -l options. policy is one of the
following values.

RR Round robin launch policy. Under this policy, successive child processes are launched in a
round robin fashion across the other locality domains in the system relative to creating
thread.

LL Least loaded launch policy. Under this policy, child processes are launched on the least
loaded node in the system at the time of creation.

HP-UX Release 11i: December 2000 − 1 − Section 1−−549

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mpsched(1) mpsched(1)

FILL Fill first launch policy. Under this policy, successive processed are launched on the same
locality domain as their parent until one has been launched on each processor in the locality
domain. At that point, new processes are created on the next locality domain.

PACKED Packed launch. Under this policy, successive processes are launched on the same locality
domain as their parent. A different domain is never selected.

NONE No special policy. The default HP-UX launch policy is used.

-T policy
Apply the specified policy to the threads of the process. The scheduling policies are the same as for
the -P option except that they apply to newly created threads instead of processes. Also, thread poli-
cies may only be specified on commands launched from the command line of mpsched . The option
may be used with the -P , -p , -l , and -c options.

Operands
The command-line operands are:

command
A command including its arguments.

RETURN VALUE
mpsched returns exit status 0 if command is successfully scheduled or -1 if it fails.

EXAMPLES
Execute the a.out file on processor 2:

mpsched -c 2 a.out

Set the process launch policy for the existing process with pid 24217 to round robin:

mpsched -P RR -p 24217

Bind the processes with pids 1247 and 1842 to processor 4:

mpsched -c 4 -p 1247 -p 1842

AUTHOR
mpsched was developed by HP.

SEE ALSO
getprivgrp(1), setprivgrp(1M), fork(2), getprivgrp(2), mpctl(2), privgrp(4).

Section 1−−550 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mt(1) mt(1)

NAME
mt - magnetic tape manipulating program

SYNOPSIS
mt [-f tapename] command [count]

Obsolescent
mt [-t tapename] command [count]

DESCRIPTION
mt is used to give commands to the tape drive. If tapename is not specified, the environment variable
TAPE is used; if TAPE is not defined, the default drive is used.

mt winds the tape in the requested direction (forward or backward), stopping after the specified count EOF
marks or records are passed. If count is not specified, one is assumed. Each EOF mark counts as one
record. When winding backwards, the tape always stops at the BOT marker, regardless of the number
remaining in count.

mt accepts the following commands:

eof Write count EOF marks.

fsf Forward space count files.

fsr Forward space count records.

bsf Backward space count files.

bsr Backward space count records.

rew Rewind tape.

offl Rewind tape and go offline.

eod Seek to end of data (DDS and QIC drives only).

smk Write count setmarks (DDS drives only).

fss Forward space count setmarks (DDS drives only).

bss Backward space count setmarks (DDS drives only).

status Print status information about the tape drive.

res Reserve tape drive for sole use by the host issuing the mt command (stape driver only).

rel Release tape drive from sole use by the host issuing the mt command (stape driver only).

Spacing operations (back or forward space file or record) leave the tape positioned past the object being
spaced to in the direction of motion. That is, backspacing a file leaves the the tape positioned before the file
mark, forward spacing a file leaves the tape positioned after the file mark. This is consistent with all classi-
cal usage on tapes.

WARNINGS
Only raw, no-rewind Berkeley-type devices should be specified. This type of device will not reposition the
tape upon close. An example of such a device is /dev/rmt/0mnb . Please refer to mt(7) for more details.

It is possible to wind the tape beyond the EOT marker and off the end of the reel.

A reservation may only be cleared with a release by the host that issued the original reserve. In the event
that the host that holds the reservation is no longer available, the st command may be used to reclaim the
device by issuing a bus device reset. Refer to st(1M) for more details.

The reserve/release functionality can only be issued to drives using the stape driver.

EXAMPLES
Rewind the tape associated with the device file /dev/rmt/0mnb :

mt -f /dev/rmt/0mnb rew

FILES
/dev/rmt/* Raw magnetic tape interface

HP-UX Release 11i: December 2000 − 1 − Section 1−−551

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mt(1) mt(1)

/dev/rmt/0mnb Default tape interface

AUTHOR
mt was developed by the University of California, Berkeley.

SEE ALSO
dd(1), mt(7), st(1M).

Section 1−−552 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mv(1) mv(1)

NAME
mv - move or rename files and directories

SYNOPSIS
mv [-f -i] [-e extarg] file1 new-file

mv [-f -i] [-e extarg] file1 [file2 ...] dest-directory

mv [-f -i] [-e extarg] directory1 [directory2 ...] dest-directory

DESCRIPTION
The mv command moves:

• One file (file1) to a new or existing file (new-file).

• One or more files (file1, [file2, ...]) to an existing directory (dest-directory).

• One or more directory subtrees (directory1, [directory2, ...]) to a new or existing directory (dest-
directory).

Moving file1 to new-file is used to rename a file within a directory or to relocate a file within a file system or
across different file systems. When the destination is a directory, one or more files are moved into that
directory. If two or more files are moved, the destination must be a directory. When moving a single file to
a new file, if new-file exists, its contents are destroyed.

If the access permissions of the destination dest-directory or existing destination file new-file forbid writing,
mv asks permission to overwrite the file. This is done by printing the mode (see chmod(2) and Access Con-
trol Lists below), followed by the first letters of the words yes and no in the language of the current locale,
prompting for a response, and reading one line from the standard input. If the response is affirmative and
the action is permissible, the operation occurs; if not, the command proceeds to the next source file, if any.

If file1 is a file and new-file is a link to another file with other links, the other links remain and new-file
becomes a new file. If file1 is a file with links or a link to a file, the existing file or link remains intact, but
the name is changed to new-file which may or may not be in the directory where file1 resided, depending on
directory path names used in the mv command. The last access and modification times of the file or files
being moved remain unchanged.

Options
mv recognizes the following options:

-f Perform mv commands without prompting for permission. This option is assumed
when the standard input is not a terminal.

-i Causes mv to write a prompt to standard output before moving a file that would
overwrite an existing file. If the response from the standard input is affirmative, the
file is moved if permissions allow the move.

-e extarg Specifies the handling of any extent attributes of the files(s) to be moved. extarg can
be one of the following values:

warn Issue a warning message if extent attributes cannot be preserved, but
move the file anyway.

ignore Do not preserve extent attributes.

force Do not move the file if the extent attributes cannot be preserved.

If multiple source files are specified with a single target directory, mv will
move the files that either do not have extent attributes or that have
extent attributes that can be preserved. mv will not move the files if it
cannot preserve their extent attributes.

Extent attributes cannot be preserved if the files are being moved to a file system that
does not support extent attributes or if that file system has a different block size than
the original. If -e is not specified, the default value for extarg is warn .

Access Control Lists (ACLs)
If optional ACL entries are associated with new-file, mv displays a plus sign (+) after the access mode when
asking permission to overwrite the file.

HP-UX Release 11i: December 2000 − 1 − Section 1−−553

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mv(1) mv(1)

If new-file is a new file, it inherits the access control list of file1, altered to reflect any difference in owner-
ship between the two files (see acl(5) and aclv(5)). In JFS file systems, new files created by mv do not
inherit their parent directory’s default ACL entries (if any), but instead retain their original ACLs. When
moving files from a JFS file system to an HFS file system or vice versa, optional ACL entries are lost.

EXTERNAL INFLUENCES
Environment Variables

LC_CTYPEdetermines the interpretation of text as single byte and/or multibyte characters.

LANGand LC_CTYPEdetermine the local language equivalent of y (for yes/no queries).

LANGdetermines the language in which messages are displayed.

If LC_CTYPEis not specified in the environment or is set to the empty string, the value of LANGis used as
a default for each unspecified or empty variable. If LANGis not specified or is set to the empty string, a
default of C (see lang(5)) is used instead of LANG. If any internationalization variable contains an invalid
setting, mv behaves as if all internationalization variables are set to C. See environ(5).

International Code Set Support
Single character and multibyte character code sets are supported.

EXAMPLES
Rename a file in the current directory:

mv old-filename new-filename

Rename a directory in the current directory:

mv old-dirname new-dirname

Rename a file in the current directory whose name starts with a nonprinting control character or a charac-
ter that is special to the shell, such as - and * (extra care may be required depending on the situation):

mv ./bad-filename new-filename
mv ./?bad-filename new-filename
mv ./*bad-filename new-filename

Move directory sourcedir and its contents to a new location (targetdir) in the file system (upon
completion, a subdirectory named sourcedir resides in directory targetdir):

mv sourcedir targetdir

Move all files and directories (including links) in the current directory to a new location underneath tar-
getdir :

mv * targetdir

Move all files and directories (including links) in sourcedir to a new location underneath targetdir
(sourcedir and targetdir are in separate directory paths):

mv sourcedir/* targetdir

WARNINGS
If file1 and new-file exist on different file systems, mv copies the file and deletes the original. In this case
the mover becomes the owner and any linking relationship with other files is lost. mv cannot carry hard
links across file systems. If file1 is a directory, mv copies the entire directory structure onto the destination
file system and deletes the original.

mv cannot be used to perform the following operations:

• Rename either the current working directory or its parent directory using the . or .. notation.

• Rename a directory to a new name identical to the name of a file contained in the same parent
directory.

DEPENDENCIES
NFS

Access control lists of networked files are summarized (as returned in st_mode by stat(2)), but not copied to
the new file. When using mv on such files, a + is not printed after the mode value when asking for permis-
sion to overwrite a file.

Section 1−−554 − 2 − HP-UX Release 11i: December 2000

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

mv(1) mv(1)

AUTHOR
mv was developed by AT&T, the University of California, Berkeley and HP.

SEE ALSO
cp(1), cpio(1), ln(1), rm(1), link(1M), lstat(2), readlink(2), stat(2), symlink(2), symlink(4), acl(5), aclv(5).

STANDARDS CONFORMANCE
mv: SVID2, SVID3, XPG2, XPG3, XPG4, POSIX.2

HP-UX Release 11i: December 2000 − 3 − Section 1−−555

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/build/1111/BRICK/man1/!!!intro.1L__L

___ L L ___

m

(Notes) (Notes)

Section 1−−556 − 1 − HP-UX Release 11i: December 2000

LL LL

	Volume One Tabl e of Contents
	Introduction
	Section 1 Part 1
	User Commands (A- M)
	intro(1) intro(1)
	adb(1) adb(1)
	adjust(1) adjust(1)
	admin(1) admin(1)
	answer(1) answer(1)
	ar(1) ar(1)
	as(1) as(1)
	asa(1) asa(1)
	at(1) at(1)
	attributes(1) attributes(1)
	awk(1) awk(1)
	banner(1) banner(1)
	basename(1) basename(1)
	bc(1) bc(1)
	bdiff(1) bdiff(1)
	bfs(1) bfs(1)
	bs(1) bs(1)
	cal(1) cal(1)
	calendar(1) calendar(1)
	cat(1) cat(1)
	cc_bundled(1) cc_bundled(1)
	cd(1) cd(1)
	cdc(1) cdc(1)
	chacl(1) chacl(1)
	chatr(1) chatr(1)
	checknr(1) checknr(1)
	chfn(1) chfn(1)
	chkey(1) chkey(1)
	chmod(1) chmod(1)
	chown(1) chown(1)
	chsh(1) chsh(1)
	ci(1) ci(1)
	ckconfig(1) ckconfig(1)
	cksum(1) cksum(1)
	clear(1) clear(1)
	cmp(1) cmp(1)
	co(1) co(1)
	col(1) col(1)
	comb(1) comb(1)
	comm(1) comm(1)
	command(1) command(1)
	compact(1) compact(1)
	compress(1) compress(1)
	convert(1) convert(1)
	cp(1) cp(1)
	cpio(1) cpio(1)
	cpp(1) cpp(1)
	crontab(1) crontab(1)
	crypt(1) crypt(1)
	csh(1) csh(1)
	csplit(1) csplit(1)
	ct(1) ct(1)
	ctags(1) ctags(1)
	cu(1) cu(1)
	cue(1) cue(1)
	cut(1) cut(1)
	date(1) date(1)
	dc(1) dc(1)
	dd(1) dd(1)
	delta(1) delta(1)
	deroff(1) deroff(1)
	diff(1) diff(1)
	diff3(1) diff3(1)
	diffmk(1) diffmk(1)
	dircmp(1) dircmp(1)
	dmpxlt(1) dmpxlt(1)
	domainname(1) domainname(1)
	dos2ux(1) dos2ux(1)
	doschmod(1) doschmod(1)
	doscp(1) doscp(1)
	dosdf(1) dosdf(1)
	dosls(1) dosls(1)
	dosmkdir(1) dosmkdir(1)
	dosrm(1) dosrm(1)
	du(1) du(1)
	echo(1) echo(1)
	ed(1) ed(1)
	elfdump(1) elfdump(1)
	elm(1) elm(1)
	elmalias(1) elmalias(1)
	enable(1) enable(1)
	env(1) env(1)
	eucset(1) eucset(1)
	ex(1) ex(1)
	expand(1) expand(1)
	expand_alias(1) expand_alias(1)
	expr(1) expr(1)
	factor(1) factor(1)
	fastbind(1) fastbind(1)
	fastmail (1) fastmail(1)
	file(1) file(1)
	find(1) find(1)
	findmsg(1) findmsg(1)
	findstr(1) findstr(1)
	finger(1) finger(1)
	fmt(1) fmt(1)
	fold(1) fold(1)
	forder(1) forder(1)
	from(1) from(1)
	fruled(1) fruled(1)
	ftio(1) ftio(1)
	ftp(1) ftp(1)
	ftp(1)
	ftpcount(1) ftpcount(1)
	ftprestart(1) ftprestart(1)
	ftpshut(1) ftpshut(1)
	ftpwho(1) ftpwho(1)
	gencat(1) gencat(1)
	genxlt(1) genxlt(1)
	get(1) get(1)
	getaccess(1) getaccess(1)
	getacl (1) getacl (1)
	getconf(1) getconf(1)
	getopt(1) getopt(1)
	getopts(1) getopts(1)
	getprivgrp(1) getprivgrp(1)
	gprof(1) gprof(1)
	grep(1) grep(1)
	groups(1) groups(1)
	head(1) head(1)
	hostname(1) hostname(1)
	hp(1) hp(1)
	hyphen(1) hyphen(1)
	iconv(1) iconv(1)
	id(1) id(1)
	ident(1) ident(1)
	idlookup(1) idlookup(1)
	ied(1) ied(1)
	insertmsg(1) insertmsg(1)
	iostat(1) iostat(1)
	ipcrm(1) ipcrm(1)
	ipcs(1) ipcs(1)
	join(1) join(1)
	kdestroy(1) kdestroy(1)
	kermit(1) kermit(1)
	keylogin(1) keylogin(1)
	keylogout(1) keylogout(1)
	keysh(1) keysh(1)
	kill(1) kill(1)
	kinit(1) kinit(1)
	klist(1) klist(1)
	kpasswd(1) kpasswd(1)
	ksh(1) ksh(1)
	ktutil(1) ktutil(1)
	kvno(1) kvno(1)
	last(1) last(1)
	lastcomm(1) lastcomm(1)
	ld(1) ld(1)
	ldd(1) ldd(1)
	leave(1) leave(1)
	lifcp(1) lifcp(1)
	lifinit(1) lifinit(1)
	lifls(1) lifls(1)
	lifrename(1) lifrename(1)
	lifrm(1) lifrm(1)
	line(1) line(1)
	listusers(1) listusers(1)
	ln(1) ln(1)
	locale(1) locale(1)
	lock(1) lock(1)
	logger(1) logger(1)
	login(1) login(1)
	logname(1) logname(1)
	lorder(1) lorder(1)
	lp(1) lp(1)
	lpfilter(1) lpfilter(1)
	lpstat(1) lpstat(1)
	ls(1) ls(1)
	lsacl(1) lsacl(1)
	m4(1) m4(1)
	machid(1) machid(1)
	mail(1) mail(1)
	mailfrom(1) mailfrom(1)
	mailq(1) mailq(1)
	mailstats(1) mailstats(1)
	mailx(1) mailx(1)
	make(1) make(1)
	makekey(1) makekey(1)
	man(1) man(1)
	mediainit(1) mediainit(1)
	merge(1) merge(1)
	mesg(1) mesg(1)
	mkdir(1) mkdir(1)
	mkfifo(1) mkfifo(1)
	mkmf(1) mkmf(1)
	mkmsgs(1) mkmsgs(1)
	mkstr(1) mkstr(1)
	mktemp(1) mktemp(1)
	mm(1) mm(1)
	model(1) model(1)
	more(1) more(1)
	mpsched(1) mpsched(1)
	mt(1) mt(1)
	mv(1) mv(1)
	(Notes) (Notes)

