
Software RAID in Linux Workstations

Mini-White Paper

Introduction... 3
RAID Basics .. 3

RAID Overview.. 3
Software RAID in Linux ... 3
Performance and Bottlenecks ... 4

RAID Levels ... 4
RAID-Linear: Concatenating Disks... 4
RAID-0: Striping ... 4
RAID-1: Mirroring... 5
RAID-2: Error Checking and Correction .. 6
RAID-3: Byte-Level Striping with Parity Disk.. 6
RAID-4: Block-Level Striping with Parity Disk .. 6
RAID-5: Block-Level Striping with Distributed Parity ... 6
Additional RAID Levels.. 7

RAID Configuration Strategies ... 7
Performance .. 7
Capacity versus Fault-Tolerance ... 7
Cost ... 7
RAID Performance Considerations .. 8

Configuring Red Hat Enterprise Linux with Software RAID... 8
Manual Setup of Software RAID Data Partitions... 11
Manual Configuration Examples.. 12

RAID-0.. 12
RAID-1.. 12
RAID-5.. 13
RAID-10.. 13

Disk Failure and Recovery... 14
Spare Disks and Disk Failure ... 14
Multiple Disk Failure ... 15

Additional Configuration Information ... 15

The Persistent Superblock .. 15
Chunk Sizes .. 15
Swap Space in a RAID Configuration... 16
Boot Partitions in a Mirrored RAID Configuration ... 16
Software RAID and LVM ... 19

Introduction
This document provides an overview of software RAID solutions for HP workstations running the Linux
operating system. It assumes a basic understanding of computer hardware, filesystems, and the Linux
operating system. It covers the various RAID levels, the differences between hardware RAID and
software RAID, steps to configure software RAID on Linux workstations, and information regarding
disk failure, recovery, and other information pertaining to running software RAID on a Linux system.
Please note that while BIOS messages may refer to hardware RAID, hardware RAID is not supported
by HP Linux workstations.

RAID Basics

RAID Overview
Standing for Redundant Array of Independent (or Inexpensive) Disks, RAID is a technology that allows
a computer system to increase capacity, performance, and/or reliability of storage solutions using
multiple physical hard disks. There are several kinds of RAID; each RAID configuration is assigned to
its own RAID “level.” There are four basic RAID levels: 0, 1, 5, and 10. Over time, a number of other
RAID levels have been defined as well; RAID levels 1-5 were those defined by the original RAID
paper. These levels have been implemented with dedicated RAID disk controllers, hardware RAID,
and with kernel-level code controlling RAID operations, software RAID.

RAID was originally developed as a means to provide a degree of redundancy for disk data. It first
became popular in servers with SCSI drives where data reliability was key. Today, RAID can be
found across a number of different systems, including workstations, and a variety of drive types,
including IDE, SATA, and SAS, as well as SCSI.

Software RAID in Linux
The Linux kernel, as of revision 2.4, offers integrated software RAID without the need for additional
hardware disk controllers or kernel patches. All that is required is multiple hard disks and a small
amount of setup. Unlike most hardware RAID solutions, software RAID can be used with IDE disks as
well as SATA, SAS, and SCSI.

Software RAID does not come entirely without cost: in order to manage the disks, break up data as
necessary, and manage parity data, the CPU must take on some extra loading. It has been found that
heavily disk-intensive workloads result in roughly double the CPU overhead (for example, from 15% to
30%) when software RAID is in use. For most applications, this overhead is easily handled by excess
headroom in the processors, but for some applications where disk performance and CPU
performance are very well balanced and already near-bottleneck, this additional CPU overhead may
become burdensome and hardware RAID may look attractive. Hardware RAID also offers advantages
due to its large hardware cache, and the capability for better scheduling of operations in parallel;
however, software RAID offers much more flexibility in terms of disk and disk controller setup.
Additionally, hardware RAID requires that a failed RAID controller must be replaced with an identical
model in order to avoid data loss, whereas software RAID imposes no such requirements.

3

Some software RAID schemes offer data protection through mirroring (copying the data to multiple
disks in case one fails) or parity data (checksums that allow error detection and limited rebuilding of
data in case of a failure), but it should be noted that all software RAID solutions on workstations will
require the shutdown of the system so that the failed drive can be replaced before redundancy can be
restored. Currently only external hardware RAID allows online, invisible failure recovery through a
hot-swap, however, the replacement for failed drives in software RAID requires only a minimum
amount of work. Hardware RAID is not supported by HP Linux workstations.

Performance and Bottlenecks
Disk I/O bandwidth is typically limited by the system’s bus speeds, the disk controller, and the disks
themselves. Each generation of disks tends to get faster and newer rotation speeds premiere from time
to time. The balance of these hardware limiters, as affected by the software configuration, determines
where the real bottleneck is in the system.

Several RAID levels offer improved performance relative to a standalone disk. If your disk throughput
is throttled by a single disk controller, there is probably little you can do with RAID to improve the
performance without adding another controller. On the other hand, if the raw disk performance is the
bottleneck, a tuned software RAID solution can dramatically improve the throughput. In fact, the
slower the disk is relative to the rest of the system, the better RAID performance will scale, since the
slowest piece of the performance pipeline is being directly addressed by moving to RAID.

RAID Levels

RAID-Linear: Concatenating Disks
RAID-linear can only generously be considered to be in the RAID family. It is generally used as a
method of making two smaller disks look like a larger one by “appending” one to the other. For
instance, two 40GB disks configured with RAID-linear look like one 80GB disk. RAID-linear offers no
practical performance or reliability gains over standard separate disks. Spare disks are not supported
in RAID-linear; if one disk fails, the RAID array fails as well. RAID-linear is not supported by HP Linux
workstation.

RAID-0: Striping
RAID-0, or striping, means that the data is spread out in small chunks over multiple disks so that a
read or write operation can fully utilize all the disk and disk controller bandwidth available by having
each disk and/or disk controller share the load of any particular operation. The drives in the array
are treated as one large address space and successive data blocks are typically written to different
drives in the array. RAID-0 arrays are comprised of a minimum of two disk drives. In order to optimize
read and write speeds, partitions in RAID-0 arrays should be located on different physical hard disks.
RAID-0 was not included in the original RAID proposal as it does not technically meet the redundancy
requirement, nor does it offer any error protection. Software RAID-0 is supported by HP Linux
workstations.

4

Figure 1. Efficiency of Software RAID-0

Read Performance Write Performance Space Efficiency Reliability

Excellent Excellent ~100% Decreased

Read performance is
excellent, scaling
towards controller
maximum speed as
more disks are added.
The use of multiple
controllers will aid in
scaling.

Write performance is
excellent as well,
typically scaling even
better than reads.

Space efficiency is quite
good; there is very little
overhead.

RAID-0 offers no
protection against disk
crashes; in fact, it is
somewhat worse than
non-RAID configurations
because a single disk
crash is guaranteed to
affect the data spread
out over the array.

RAID-1: Mirroring
RAID-1, or mirroring, means that the data is copied or mirrored across multiple physical disks. The
data from a single physical disk or partition, once put into a RAID-1 array, will be copied
transparently to the other disks in the array. This provides increased reliability for data integrity;
should one disk fail, the data still remains on the other(s).

Tip:
Although RAID-1, as well as other RAID levels such as RAID-5, does provide
some data protection, this is only protection against common hardware
problems such as failure of a single disk. RAID should not be viewed as a
substitute for regular data back-ups.

Since it is possible to read from two (or more) disks at once, there is a possible performance increase
using RAID-1. Typically performance is sacrificed for recovery of data. Because data is mirrored, only
half of the physical space is utilized, and data must be replicated to multiple disks, marginally
increasing write times. Software RAID-1 is supported by HP Linux workstations.

Figure 2. Efficiency of Software RAID-1

Read Performance Write Performance Space Efficiency Reliability

Slight Improvement Somewhat Slower ~50% Excellent

Theoretically, RAID-1
configuration could
deliver higher read
performance, but there
have not been
significant gains seen
using software RAID-1.

Writes will be
fractionally slower than
non-RAID configurations
since data must be
replicated to several
disks.

Only 50% space
efficiency for two-disk
RAID-1, since the data
is fully replicated on
each disk.

Reliability is very good;
if one disk crashes, the
other(s) still have a full
copy of the data.

5

RAID-2: Error Checking and Correction
RAID-2 adds error checking and correcting (ECC) checksums to RAID-1. ECC stands for either “Error
Correcting Code” or “Error Checking and Correcting.” It is a code in which each data signal
conforms to specific rules of construction so that departures from this construction in the received
signal can generally be automatically detected and corrected. RAID-2 is rarely seen these days
because most hard-disk controllers already do ECC, and this scheme offers few advantages over other
RAID configurations. Software RAID-2 is not supported by HP Linux workstations.

RAID-3: Byte-Level Striping with Parity Disk
Like RAID-0, RAID-3 does striping, but at a very small granularity. It also adds a parity disk which
helps in error detection and recovery. Parity in regards to hard disks refers to use of a parity bit,
which counts whether the number of 1 bits in some preceding data was even or odd; if a single bit is
changed in transmission, the parity bit will change, thus providing a redundancy check for data
transmission. Parity bits are a very simple example of ECCs, or Error Correcting Codes. The details of
ECC and parity are beyond the scope of this paper. The small granularity of RAID-3 leads to gains
only when record sizes are very small and drive spindles are carefully synchronized. RAID-5 is
generally preferred, and RAID-3 is very seldom used these days. Software RAID-3 is not supported by
HP Linux workstations.

RAID-4: Block-Level Striping with Parity Disk
RAID-4 attempts to add error checking and recovery to RAID-3 by doing block-level striping, as in
RAID-0, with the addition of a single parity disk. At least 3 disks are required for a RAID-4 array.
Since all operations access the parity disk, that disk can become a bottleneck. RAID-4 can work in
some operations, but RAID-5 is generally preferred where a compromise between speed and
reliability is sought. Software RAID-4 is not supported by HP Linux workstations.

RAID-5: Block-Level Striping with Distributed Parity
In order to add error checking and recovery to RAID-0 and to eliminate the parity disk bottleneck of
RAID-4, RAID-5 is implemented as a combination of data striping and parity, where data and parity
blocks are successively written across the drives of the array. RAID-5 is used to ensure data integrity;
should a single disk fail, it is possible to recover the data on the lost disk from the parity data on the
others. RAID-5 requires a minimum of 3 disks, and the effective disk space availability of n disks in a
RAID-5 array is n-1 disks. Software RAID-5 is supported by HP Linux workstations.

Figure 3. Efficiency of Software RAID-5

Read Performance Write Performance Space Efficiency Reliability

Poor to Moderate Moderate
66-75% (3 and 4-

disk)
Good

For both small and large
blocks, RAID-5 performs
poorly because parity
data is interspersed with
real data. The
performance of RAID-5
can be dramatically
improved by filesystem
tuning.

While RAID-5 eliminates
the parity-disk bottleneck
of RAID-4, block-write
performance is still
slower than raw disks.

RAID-5's efficiency is
about the same as RAID-
4, where one disk is
used to hold parity data,
except the parity data is
spread rather than
concentrated on one
drive.

Parity data is retained
for all data. RAID-5
arrays can tolerate the
failure of one disk.

6

Additional RAID Levels
More RAID levels can be created from the basic RAID levels by means of nesting. This is
accomplished by creating a second RAID array of other RAID disks, instead of creating a RAID of
physical disks. Nested RAID levels include RAID-0+1, a mirrored array of striped disks, RAID-10
(RAID-1+0), a striped array of mirrored disks, RAID-100 (RAID-10+0), which is a striped array of
RAID-10 arrays, RAID-5+0, RAID-0+5, and other combinations. In nested RAID solutions, it is
preferable to have a RAID-0 level on top to provide better performance as well as reducing the
number of disks that need to be regenerated when a disk fails. For example, RAID-10 is usually
preferred over RAID-0+1. Nested RAID levels are not supported by the Red Hat Enterprise Linux
installer, and must be configured manually. Software RAID-10 is the only additional RAID level
supported by HP Linux workstations.

Please note that while the Linux kernel allows for RAID-linear, -0, -1, -4, -5, and nested RAID levels, HP
only provides support for RAID-0, 1, 5, and 10.

RAID Configuration Strategies
Configuration of RAID workstations must take several factors into account in order to deliver optimal
performance, capacity, and redundancy. Note that the cost to implement RAID solutions increases as
desired performance, capacity, and redundancy increases. Users should consider the following when
designing an ideal RAID workstation:

Performance
Multiple factors must be taken into account, including both random and sequential read and write
speeds, latency times, and bus types; CPU and RAM configurations play a heavy part in the
performance of a software RAID solution as well. Such technical details are beyond the scope of this
document.

Capacity versus Fault-Tolerance
With most implementations of RAID, capacity and fault-tolerance are mutually exclusive.

Cost
Obviously, as the number of physical disks required for an installation increases, the cost also
increases.

7

RAID Performance Considerations
With the many different RAID levels available, as well as the many more combinations provided by
nesting RAID levels, it can often be difficult to decide upon the most effective RAID configuration for
your needs. Since high performance speeds and data protection are almost always mutually exclusive
in RAID implementations, there will be a tradeoff to consider between these two factors. The following
are examples of different RAID configurations that will be more efficient in different situations.

• If a filesystem had an external backup method, such as automated nightly tape backups, but

needed to have quick read and write times, a RAID-0 configuration would make optimal use of the
disk and disk controller bandwidth, but not provide any data protection. RAID-0 is most useful when
performance is a key issue, but data protection is not as big a factor.

• If it is necessary to have backup drives available at all time so there is no loss of data, even in case
of a disk failure, a RAID-1 setup using several physical hard disks would provide a good degree of
redundancy so that no critical data is lost. This would be most valuable in a system that depends
highly upon data reliability and less upon higher disk speeds.

• If a compromise between speed and redundancy is required, RAID-5 is fairly easy to implement,
and provides a good balance between disk speeds and having parity data available to rebuild the
RAID array in case of failure. RAID-5 is moderately efficient in both these areas, with neither being
at a significant disadvantage, and is simpler to set up than a nested RAID configuration.

The optimal RAID configuration for a particular system will depend on the specific needs of the
system; for example, how often will reads or writes have to be performed, versus how important is the
ability to survive in case of multiple disk failures? You may want to experiment with different
configurations to determine the RAID setup that works best for your system.

Configuring Red Hat Enterprise Linux with Software RAID
In order to configure software RAID on a workstation running Linux, you need to be using Linux
revision 2.4 or later.

Tip:
It is possible to configure software RAID with late 2.2.x or 2.0.x Linux
kernels if you have a matching RAID patch and version .90 of the
raidtools installed as well. The patch and the raidtools can both be
downloaded from http://people.redhat.com/mingo.

While it is possible to manually configure software RAID after a Linux system has been installed and
configured, it is HP’s recommendation that software RAID should be configured at installation time.
The Red Hat Enterprise Linux installation utility includes a configuration tool to set up software RAID
partitions. Please note that while the Linux kernel itself allows for RAID-linear, -0, -1, -4, -5, and nested
RAID levels, the Anaconda installer only allows for RAID-0, -1, and -5.

The steps to configure software RAID using RHEL media are outlined below:

1. Power your HP workstation; boot to your RHEL installation media.
2. Continue through the installation until the “Disk Partitioning Setup” screen.
3. Select “Manually partition with Disk Druid.”

8

Figure 4. Disk Partitioning Setup

4. Select “New” to create a new partition.
5. From the File System Type menu, choose “Software RAID.”
6. Select one physical disk to create the partition on.
7. Choose the size of the partition.
8. Click OK.

Figure 5. Disk Setup

9. Repeat steps 4-8 until all necessary software RAID partitions are created.
10. From the main partitioning menu, choose “RAID.”
11. From the “RAID Options” screen, choose “Create a RAID Device.”

9

Figure 6. Creating a RAID Device

12. Choose a mount point, file system type, device, and RAID level for this partition.

Figure 7. Creating a RAID Device

13. Click OK.
14. Continue with setup as normal.
The Red Hat Enterprise Linux Anaconda installer only supports RAID-0, RAID-1, and RAID-5. Other
levels or nested RAID must be configured manually after installation. If you are creating a nested RAID
array, you can either configure the “bottom” RAID level (for example, the RAID-1 array in the case of
nested RAID-10) in Anaconda and the “top” RAID level manually later, or configure both parts of the
nested RAID level manually after installation.

10

HP only provides support for software RAID-0, -1, -5, and -10.

Tip:
The GRUB and LILO boot loaders only support booting to RAID-1, or no
RAID at all. If you wish to use a RAID level other than RAID-1, you must put
the /boot partition on a non-RAID part of the filesystem.

Manual Setup of Software RAID Data Partitions
While HP recommends using the above method to set up software RAID on your Linux workstations, it
is possible to manually set up a software RAID partition on multiple disks after installation.

1. Create partitions for the RAID array on two or more disks. You can use Disk Druid, fdisk,
sfdisk, or any number of other partitioning tools to do this. It helps if the partitions are of the
same size and on the same type of disk. The type of the partitions will be “Linux raid auto,”
or 0xfd. A reboot may be required after writing the new partition table.

Tip:
If you are setting up a RAID-1 array, it is best to use the same partition
number on each disk for elements in the array. When one disk fails, if it is
not the last disk in the array, the other disk(s) will be renamed on restart.
For example, if sdb fails but sdc is still functional, when your system is
restarted, the old sdc is renamed sdb. If you use a consistent partition
number, your configuration files will remain valid (e.g. sdb1 and sdc1
being RAID partitions), no matter how the devices are renamed.

2. These partitions will correspond to Linux block file devices, e.g. the second partition on the third
SCSI disk will be /dev/sdc2; the first partition on the second IDE disk will be /dev/hdb1.

3. Create the /etc/raidtab file. Sample configuration files can usually be found in
/usr/share/doc/raidtools-*.

Tip:
You can view the file named /proc/mdstat by running the command
cat /proc/mdstat.

This file should tell you that you have the right personality (RAID mode)
registered, as well as what RAID devices are currently active.

4. Use mkraid to create the initial RAID configuration on the partitions you previously specified in
/etc/raidtab by entering the following:

mkraid /dev/md0

 or if you are using mdadm, enter:
mdadm ñcreate ñverbose /dev/md0 --level=raidlevel --raid-
devices=n /dev/sda1 /dev/sdb2

where /dev/md0 is the name of the RAID device, raidlevel is the RAID level specified as a
number (e.g. 0, 1), n is the number of disks in the RAID array, and /dev/sda1, /dev/sdb2,
etc are the names of the drives in the RAID array.

5. Create a filesystem on your RAID device as follows:

mkfs ñt ext3 /dev/md0

6. Mount the filesystem like a normal block file device:

11

mkdir /raid
mount /dev/md0 /raid

 where /raid is wherever the filesystem you created in step 5 will reside.

7. Edit your /etc/fstab file. You will need to comment out the lines containing the partitions that

are now in the RAID array, such as /dev/sda1 and /dev/sdb2, by adding a # at the
beginning of the line. Add a line for the RAID array filesystem:

/dev/md0 /raid ext3 defaults 0 1

Manual Configuration Examples
Most of the work in manual configuration of a software RAID array comes from the creation of the
appropriate /etc/raidtab file. The following are examples of /etc/raidtab files and the
corresponding mdadm commands needed to set up each of the basic RAID configurations supported
by HP.

RAID-0
/etc/raidtab file:
raiddev /dev/md0
 raid-level 0
 nr-raid-disks 2
 nr-spare-disks 0
 persistent-superblock 1
 chunk-size 4
 device /dev/hda1
 raid-disk 0
 device /dev/hdb1
 raid-disk 1

Command:
mdadm -Cv /dev/md0 --level=0 --raid-devices=2 /dev/hda1 /dev/hdb1

RAID-1
/etc/raidtab file:
raiddev /dev/md0
 raid-level 1
 nr-raid-disks 2
 nr-spare-disks 0
 persistent-superblock 1
 chunk-size 4
 device /dev/sda1
 raid-disk 0
 device /dev/sdb1
 raid-disk 1

Command:
mdadm -Cv /dev/md0 --level=1 --raid-devices=2 /dev/sda1 /dev/sdb1

12

RAID-5
/etc/raidtab file:
raiddev /dev/md0
 raid-level 5
 nr-raid-disks 4
 nr-spare-disks 0
 persistent-superblock 1
 chunk-size 4
 device /dev/hda1
 raid-disk 0
 device /dev/hdb1
 raid-disk 1
 device /dev/hdc1
 raid-disk 2
 device /dev/hdd1
 raid-disk 3

Command:
mdadm -Cv /dev/md0 --level=5 --raid-devices=4 /dev/hda1 /dev/hdb1
/dev/hdc1 /dev/hdd1

RAID-10
/etc/raidtab file:
raiddev /dev/md0
 raid-level 0
 nr-raid-disks 2
 nr-spare-disks 0
 chunk-size 4
 device /dev/sda1
 raid-disk 0
 device /dev/sdb1
 raid-disk 1

raiddev /dev/md1
 raid-level 0
 nr-raid-disks 2
 nr-spare-disks 0
 chunk-size 4
 device /dev/sdc1
 raid-disk 0
 device /dev/sdd1
 raid-disk 1

raiddev /dev/md2
 raid-level 1
 nr-raid-disks 2
 nr-spare-disks 0
 chunk-size 4
 device /dev/md0
 raid-disk 0
 device /dev/md1
 raid-disk 1

Commands:
mdadm ñCv /dev/md0 --level=0 --raid-devices=2 /dev/sda1 /dev/sdb1
mdadm ñCv /dev/md1 --level=0 --raid-devices=2 /dev/sdc1 /dev/sdd1
mdadm ñCv /dev/md2 --level=1 --raid-devices=2 /dev/md0 /dev/md1

13

In a RAID-10 configuration, you will need to add three lines to the /etc/fstab file, one for each of
the RAID arrays. There does not need to be a mount point specified for /dev/md0 or /dev/md1. If
no mount point is specified, you will see error messages during startup, but the RAID-10 array will still
initialize and mount correctly.

Please note that these configuration files are only meant as examples, and your /etc/raidtab file
will differ based on your specific hard drive configuration.

Disk Failure and Recovery

Spare Disks and Disk Failure
Spare disks are disks that do not take part in the RAID configuration until one of the active disks fails.
At that point, the failed device is marked as “bad” and reconstruction of the RAID array begins
immediately on the first available spare disk.

Tip:
When reconstruction occurs, if multiple bad blocks have built up on the
active disks over time, the reconstruction process can sometimes trigger the
failure of one of the “good” disks, leading to failure of the entire array.
However, performing regular filesystem checks (fsck) of the entire RAID
filesystem should almost completely eliminate this risk.

Spare disks are not required for a RAID configuration, but they are highly recommended. While most
RAID levels can handle the failure of one physical disk, the failure of another disk will cause the entire
array to fail, thus it is recommended to start rebuilding the array as quickly as possible after a disk
failure. When a disk fails, the crashed disk is marked as “faulty.” Faulty disks still look and behave as
members of the RAID array; they are simply treated as inactive parts of the filesystem.

When a disk fails, information regarding the failure will appear in the standard log and stat files.
Looking in /proc/mdstat will show information regarding the drives in the RAID array. RAID role
numbers show the role that the disks play in the RAID configuration; for an array with n disks, disks
with RAID role numbers greater than or equal to n are designated spare disks. A failed disk will be
marked with an “F” and will be replaced with the device with the lowest role number greater than n
that is not failed.

Removing and replacing a failed disk can be done as follows:

1. Remove the failed disk from the RAID array by running the command:
raidhotremove /dev/md0 /dev/sdc2

where /dev/sdc2 is the name of the failed drive. If you wish to use mdadm instead of
raidtools, the command is:
 mdadm /dev/md0 -r /dev/sdc2

Please note that raidhotremove can not be used to pull a disk out of a running array, and
should only be used for removing failed disks.

2. After recovery ends, a new disk should be designated as /dev/sdc2, or whichever disk was the
one that failed. This new disk now needs to be added to the array.

raidhotadd /dev/md1 /dev/sdc2

 Using mdadm, the command is:
 mdadm /dev/md1 -a /dev/sdc2

14

Tip:
You can use mdadm as a daemon to monitor a RAID array, by running:

mdadm --monitor --mail=root@localhost --delay=1800
/dev/md0

This will poll the array in intervals of 1800 seconds, and critical events and
failures will be emailed to the system administrator. There are many other
monitoring systems available for Linux software RAID as well.

Multiple Disk Failure
In the case of a temporary failure of multiple disks, such as a disk controller failure or cable coming
loose that affects multiple disks, the RAID superblocks will afterwards be out of sync and the RAID
array can no longer be initialized. Using mdadm, you can run:

 mdadm --assemble ñforce

to try and recreate the array. If that method doesn’t work, you can run:

 mkraid --force

to rewrite the RAID superblocks. In order for this to work, you will need to have a completely up-to-
date /etc/raidtab file, otherwise, if the ordering of the disks is different than expected, data on all
disks could be lost.

Additional Configuration Information

The Persistent Superblock
Previously, the raidtools, which are included with most major Linux distributions, would read your
/etc/raidtab file, and then initialize the filesystem. This required that the filesystem on which
/etc/raidtab resided was mounted, which was unfortunate if you wanted to boot on a RAID.

The persistent superblock solves these problems. When an array is initialized with the persistent-
superblock option in the /etc/raidtab file, a special superblock is written to the beginning of
all disks participating in the array. This allows the kernel to read the configuration of RAID devices
directly from the disks involved, instead of reading from the /etc/raidtab configuration file that
might not be available at all times. You should still maintain a consistent /etc/raidtab file, since
you may need this file for later reconstruction of the array.

The persistent superblock is mandatory if you want auto-detection of your RAID devices upon system
boot.

Chunk Sizes
The chunk size is defined as the smallest amount of data that can be written to a device. You can
never write completely in parallel to a set of disks. If you had two disks and wanted to write a byte,
you would have to write four bits on each disk, with every second bit going to disk 0 and the others
to disk 1. Hardware doesn’t support that, so chunk size is used instead. A write of 16kB with a chunk
size of 4kB will cause the first and the third 4kB chunks to be written to the first disk, and the second
and fourth chunks to be written to the second disk, in the RAID-0 case with two disks. Thus, for large
writes, you may see lower overhead by having fairly large chunks, whereas arrays that are primarily
holding small files may benefit more from a smaller chunk size.

15

Chunk sizes must be specified for all RAID levels, including linear mode. However, the chunk size
does not make any difference for RAID-Linear. The argument to the chunk-size option in the
/etc/raidtab file specifies the chunk size in kB, so “4” means “4kB.”

For optimal performance, you should experiment with the value, as well as with the block-size of the
filesystem you put in the array.

Swap Space in a RAID Configuration
There is generally no need to use RAID for swap performance. The kernel itself can stripe the swap
space over multiple physical disks, provided each stripe is given the same priority in the
/etc/fstab file. For example, the /etc/fstab file for striping the swap space over three drives
might look like the following:

 /dev/sda2 swap swap defaults,pri=1 0 0
 /dev/sdb2 swap swap defaults,pri=1 0 0
 /dev/sdc2 swap swap defaults,pri=1 0 0

This will allow the machine to swap in parallel over multiple physical devices. The Linux kernel itself
has this capability; there is no need for RAID implementation of swap space.

Boot Partitions in a Mirrored RAID Configuration
The mirroring for Linux in software RAID configuration is the mirroring of partitions, not physical
drives. For this reason, the Master Boot Record (MBR) is not mirrored in a RAID-1 configuration, and
therefore, the mirrored drive or drives are not inherently bootable. Currently there is no way to mirror
the boot partition of a hard drive using utilities such as Disk Druid, so the mirrored drives must be
configured manually in order to make them bootable by Linux in case the first drive fails.

One possible configuration for a software RAID-1 array in Linux is to install the /boot partition on a
separate physical hard disk from the rest of the filesystem. For example, /dev/sda1 would be a
hard disk containing the /boot partition, and /dev/sdb1 and /dev/sdc1 would be separate
physical disks making up the / partition, configured in a RAID-1 array that is independent of the
/boot partition. In this case, failure of one of the hard disks in the RAID array would not affect the
disk with the /boot partition.

If placing the / and /boot partitions on separate physical drives as described above is not possible
or desirable, more manual configuration is required to make sure that all hard drives in a RAID-1
array will be bootable in case of failure. In this case, you will need to create a bootable partition on
each physical hard disk that will be part of the RAID-1 array. This is easiest when done during the
original installation and configuration of the Linux workstation.

The steps to manually mirror your boot partition are outlined below:

1. Power your HP workstation; boot to your RHEL installation media.
2. Continue through the installation until the “Disk Partitioning Setup” screen.
3. Select “Manually partition with Disk Druid.”

16

Figure 8. Disk Partitioning Setup

4. On each disk that will be in the RAID-1 array, create a partition that will be bootable. One drive

should have the actual /boot partition; each other drive should have a partition of the same size
of format ext3.

Tip:
It is recommended that you use the same partition number for each of the
bootable partitions. For example, if your primary /boot partition resides
on /dev/sda1, you should create a partition called /boot1, located on
/dev/sdb1, and so on for each hard disk.

5. Create a bootable partition on each disk that will be in the RAID-1 array.

17

Figure 9. Disk Partitioning Setup

6. Create a RAID device by selecting the “RAID” option in the main partitioning menu, then choosing

“Create a RAID Device” from the “RAID Options” screen, and configuring as desired.
7. Continue with setup as normal.

At this point, finish with the initial installation and configuration of your workstation. You should now
have a partition that will be made bootable on each hard disk in the RAID array. You can verify your
current disk setup by running the df command in a terminal window.

You can now mirror the original /boot partition to the partitions you created on the other drives.
8. For each other bootable partition, copy the contents of the /boot partition to the new partition as

follows:
cp ña /boot/* /boot1/

 If your other bootable partition is named /boot1.
9. Repeat step 8 for each bootable partition until each hard drive in the RAID array has been

configured as such.
10. The final step is to edit the /etc/fstab file to allow the system to boot without the original

/boot partition. Comment out the line with the /boot partition by inserting a # at the beginning
of that line in the file. The system will now be able to boot to any of the other drives in the RAID
array if the first disk should fail.

Tip:
While you do not need to have /boot mounted for the system to boot
normally, you will need to mount it if you are running a kernel update. After
the update is complete, repeat these steps to mirror the new /boot
partition to the bootable partitions on the other drives. After this is done,
the /boot partition can safely be removed from the /etc/fstab file
again.

18

Software RAID and LVM
Software RAID can be used with the Linux LVM, or Logical Volume Manager, to provide a greater
degree of flexibility with regard to the setup of the filesystem. The LVM provides a level of abstraction
of the physical disks in a filesystem, making it easier to manage. It works by grouping physical disks
into a volume group, which can then be partitioned into logical volumes. These logical volumes
behave much like ordinary disk block devices, except that logical volumes can be dynamically grown,
shrunk, and/or moved without rebooting the system or entering into maintenance/standalone mode.
In general, it adds a layer of abstraction between filesystem mount points such as / or /usr, and hard
disk devices such as /dev/hda1 or /dev/sdb2.

The benefit of using LVM is the flexibility of being able to add or remove physical hard drives or move
data between existing drives without disrupting the filesystem or users. LVM cannot be used to
dynamically resize RAID devices, nor can physical drives be simply added and removed from a RAID
array as they could while using LVM without RAID. There are still benefits to using software RAID with
LVM, which can be implemented using the following steps:

1. Set up RAID partitions using Disk Druid, fdisk, or whatever partition manager you prefer.
2. Create the RAID array, either during installation using the Anaconda installer, or manually after

installation. Any supported RAID level can be used with LVM, since neither software RAID nor LVM
knows about the other.

3. Use LVM to create a physical volume on the RAID device. For example, if the RAID array is
/dev/md0, then use the following command to create a physical volume:

 pvcreate /dev/md0

4. Create a volume group from the physical volume you just set up. For example, create the volume
group using the command:
 vgcreate lvm-raid /dev/md0

 In this case, a volume group called lvm-raid is created from the device /dev/md0.

5. Logical volumes can now be created using the following command:
 lvcreate ñl 57235 lvm-raid ñn lvm0

This creates a logical volume called lvm0 of size 57235 from the lvm-raid volume group. As many
partitions as necessary can be created in this way. The lvdisplay command can be used to check the
status of logical volumes; the vgdisplay command provides status about the volume group as a whole.
The available space can be seen using the vgdisplay command.

Setup of the filesystem can now continue as normal.

© 2006 Hewlett-Packard Development Company, L.P. The information contained
herein is subject to change without notice. The only warranties for HP products and
services are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

439278-001, October 2006

19

	Introduction
	RAID Basics
	RAID Overview
	Software RAID in Linux
	Performance and Bottlenecks

	RAID Levels
	RAID-Linear: Concatenating Disks
	RAID-0: Striping
	RAID-1: Mirroring
	RAID-2: Error Checking and Correction
	RAID-3: Byte-Level Striping with Parity Disk
	RAID-4: Block-Level Striping with Parity Disk
	RAID-5: Block-Level Striping with Distributed Parity
	Additional RAID Levels

	RAID Configuration Strategies
	Performance
	Capacity versus Fault-Tolerance
	Cost
	RAID Performance Considerations

	Configuring Red Hat Enterprise Linux with Software RAID
	Manual Setup of Software RAID Data Partitions
	Manual Configuration Examples
	RAID-0
	RAID-1
	RAID-5
	RAID-10

	Disk Failure and Recovery
	Spare Disks and Disk Failure
	Multiple Disk Failure

	Additional Configuration Information
	The Persistent Superblock
	Chunk Sizes
	Swap Space in a RAID Configuration
	Boot Partitions in a Mirrored RAID Configuration
	Software RAID and LVM

