User’s Guide

HP Part Number: F2240-90001
First Edition: Jan 2009

Legal Notices

This manual and any examples contained herein are provided “as is” and are subject to change without notice. Hewlett-Packard Company makes no warranty of any kind with regard to this manual, including, but not limited to, the implied warranties of merchantability, non-infringement and fitness for a particular purpose. In this regard, HP shall not be liable for technical or editorial errors or omissions contained in the manual.

Hewlett-Packard Company shall not be liable for any errors or for incidental or consequential damages in connection with the furnishing, performance, or use of this manual or the examples contained herein.

Copyright © 2008 Hewlett-Packard Development Company, L.P.

Reproduction, adaptation, or translation of this manual is prohibited without prior written permission of Hewlett-Packard Company, except as allowed under the copyright laws.

Hewlett-Packard Company
16399 West Bernardo Drive
San Diego, CA 92127-1899
USA

Printing History
Edition 1 January 2009
About this Manual

- The Math mark indicates an example that uses Math format, while the Linear mark indicates Linear format. For details about input/output formats, see “Specifying the Input / Output Format”.
- Keycap markings indicate what a key inputs or what function it performs.
- Example: [1], [2], [3], [4], [5], [6] etc.
- Pressing the Shift or Alpha key followed by a second key performs the alternate function of the second key. The alternate function is indicated by the text printed above the key.

<table>
<thead>
<tr>
<th>Keycap function</th>
<th>Alternate function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin D</td>
<td>Sin</td>
</tr>
</tbody>
</table>

- The following shows what the different colors of the alternate function key text mean.

<table>
<thead>
<tr>
<th>If key marking</th>
<th>Text is this color:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>Press Shift and then the key to access the applicable function.</td>
</tr>
<tr>
<td>Red</td>
<td>Press Alpha and then the key to input the applicable variable, constant, or symbol.</td>
</tr>
</tbody>
</table>

- The following shows an example of how an alternate function operation is represented in this User’s Guide.

Example: \(\text{SHIFT} \sin (\text{sin}) \text{1} \text{C} \text{1} \text{C} \)

Indicates the function that is accessed by the key operation (\(\text{SHIFT} \sin \)) before it.
Note that this is not part of the actual key operation you perform.

- The following shows an example of how a key operation to select an on-screen menu item is represented in this User’s Guide.

Example: \(\text{SHIFT} \text{1} \) \(\text{SETUP} \)

Indicates the menu item that is selected by the key operation (\(\text{SHIFT} \text{1} \)) before it. Note that this is not part of the actual key operation you perform.

- The cursor key is marked with four arrows, indicating direction, as shown in the illustration nearby. In this User’s Guide, cursor key operations is indicated as \(\downarrow, \uparrow, \leftarrow, \rightarrow \) and \(\text{SHIFT} \).
- The displays and illustrations (such as key markings) shown in this User’s Guide are for illustrative purposes only, and may differ somewhat from the actual items they represent.
- The contents of this manual are subject to change without notice.

- **Deg**: Specify Degree for the angle unit.
- **Rad**: Specify radian for the angle unit.

Safety Precautions

Be sure to read the following safety precautions before using this calculator. Keep this manual handy for later reference.

⚠️ **Caution**

This symbol is used to indicate information that can result in personal injury or material damage if ignored.
Battery
- After removing the battery from the calculator, put it in a safe place where it will not get into the hands of small children and accidentally swallowed.
- Keep batteries out of the reach of small children. If accidentally swallowed, consult with a physician immediately.
- Never charge the battery, try to take the battery apart, or allow the battery to become shorted. Never expose the battery to direct heat or dispose of it by incineration.
- Improperly using a battery can cause it to leak and damage nearby items, and can create the risk of fire and personal injury.
- Always make sure that the battery’s positive and negative ends are facing correctly when you load it into the calculator.
- Remove the battery if you do not plan to use the calculator for a long time.
- Use only the type of battery specified for this calculator in this manual.

Disposing of the Calculator
- Never dispose of the calculator by burning it. Doing so can cause certain components to suddenly burst, creating the risk of fire and personal injury.

Handling Precautions
- Be sure to press the ON key before using the calculator for the first time.
- Even if the calculator is operating normally, replace the battery at least once every two years. A dead battery can leak, causing damage to and malfunction of the calculator. Never leave a dead battery in the calculator.
- The battery that comes with this unit discharges slightly during shipment and storage. Because of this, it may require replacement sooner than the normal expected battery life.
- Low battery power can cause memory contents to become corrupted or lost completely. Always keep written records of all important data.
- Avoid use and storage of the calculator in areas subjected to temperature extremes. Very low temperatures can cause slow display response, total failure of the display, and shortening of battery life. Also avoid leaving the calculator in direct sunlight near a window, near a heater or anywhere else it might be exposed to very high temperatures. Heat can cause discoloration or deformation of the calculator’s case, and damage to internal circuitry.
- Avoid use and storage of the calculator in areas subjected to large amounts of humidity and dust. Take care never to leave the calculator where it might be splashed by water or exposed to large amounts of humidity or dust. Such conditions can damage internal circuitry.
- Never drop the calculator or otherwise Subject it to strong impact.
- Never twist or bend the calculator. Avoid carrying the calculator in the pocket of your trousers or other tight-fitting clothing where it might be subjected to twisting or bending.
- Never try to take the calculator apart. Never press the keys of the calculator with a ballpoint pen or other pointed object.
- Use a soft, dry cloth to clean the exterior of the calculator.
- If the calculator becomes very dirty, wipe it off with a cloth moistened in a weak solution of water and a mild neutral household detergent. Wring out all excess liquid before wiping the calculator. Never use thinner, benzene or other volatile agents to clean the calculator. Doing so can remove printed markings and can damage the case.

Before Using the Calculator
- Using the Protective Hard Case
The calculator comes with a separate hard case to protect the screen. To use the hard case, clip the upper portion of the hard case to the top of the calculator and snap the case to position at the bottom.

To remove, lift the hard case using the handle.

- Turning Power On and Off
 - Press ON to turn on the calculator.
 - Press SHIFT AC (OFF) to turn off the calculator.

- Adjusting Display Contrast
 - (SHIFT MODE (SETUP) 5) (<— CON T ➤)
This displays the contrast adjustment screen. Use < and > to adjust display contrast. After the setting is the way you want, press AC.
About the Display

Your calculator has a 31-dot x 96-dot LCD screen.

Example:

Input expression: \(\sqrt{2}, \sqrt{2} \)
Calculation result: \(\sqrt{2} \)

Display Indicators

Sample Display: STAT 0

This indicator: Means this:

3: The keypad has been shifted by pressing the \(\text{SHIFT} \) key. The keypad will unshift and this indicator will disappear when you press a key.

A: The alpha input mode has been entered by pressing the \(\text{ALPHA} \) key. The alpha input mode will be exited and this indicator will disappear when you press a key.

M: There is a value stored in independent memory.

STO: The calculator is standing by for input of a variable name to assign a value to the variable. This indicator appears after you press \(\text{SHIFT} \) \(\text{KCL} \) \(\text{STO} \).

RCL: The calculator is standing by for input of a variable name to recall the variable’s value. This indicator appears after you press \(\text{SHIFT} \) \(\text{KCL} \).

STAT: The calculator is in the STAT Mode.

D: The default angle unit is degrees.

E: The default angle unit is radians.

G: The default angle unit is grads.

FIX: A fixed number of decimal places is in effect.

SCI: A fixed number of significant digits is in effect.

Math: Math style is selected as the input/output format.

Disp: The display currently shows an intermediate result of a multi-statement calculation.

Calculation Modes and Calculator Setup

Calculation Modes

When you want to perform this type of operation:

Select this mode:

General calculations

COMP

Statistical and regression calculations

STAT

Generation of a number table based on an expression

TABLE

Specifying the Calculation Mode

1) Press \(\text{MODE} \) to display the mode menu.

2) Press the number key that corresponds to the mode you want to select.

To select the STAT Mode, for example, press 2.

Configuring the Calculator Setup

Pressing \(\text{SHIFT} \) \(\text{MODE} \) (SETUP) displays the setup menu, which you can use to control how the calculations are executed and displayed. The setup menu has two screens, which you can jump between using \(\text{A} \) and \(\text{B} \).

Specifying the Input/Output Format

For this input/output format:

Perform this key operation:

- Math

\(\text{SHIFT} \) \(\text{MODE} \) 1 (MIO)

- Linear

\(\text{SHIFT} \) \(\text{MODE} \) 2 (L=IO)

- Math format causes fractions, irrational numbers, and other expressions to be displayed as they are written on paper.

- Linear format causes fractions and other expressions to be displayed in a single line.

90 = \(\frac{5\pi}{2} \) radians = 100 grads

Specifying the Number of Display Digits

To specify this:

Perform this key operation:

- Number of Decimal Places

\(\text{SHIFT} \) \(\text{MODE} \) 3 (Fix) \(\text{0} \) - 9

- Number of Significant Digits

\(\text{SHIFT} \) \(\text{MODE} \) 4 (Sci) \(\text{0} \) - 9

- Exponential Display Range

\(\text{SHIFT} \) \(\text{MODE} \) 5 (Norm) \(\text{1} \) (Norm) to \(\text{2} \) (Norm-2)

Calculation Result Display Examples
• Fix: The value you specify (from 0 to 9) controls the number of decimal places for displayed calculation results. Calculation results are rounded off to the specified digit before being displayed.
 Example: 100 ÷ 7 = 14.286 (Fix 3)
 14.29 (Fix 2)

• Sci: The value you specify (from 0 to 10) controls the number of significant digits for displayed calculation results. Calculation results are rounded off to the specified digit before being displayed.
 Example: 1 ÷ 7 = 1.4286 x 10^-3 (Sci 5)
 1.429 x 10^-3 (Sci 4)

Norm: Selecting one of the two available settings (Norm 1, Norm 2) determines the range in which results will be displayed in non-exponential format. Outside the specified range, results are displayed using exponential format.
 Norm 1: 10^-5 ≤ |x| ≤ 10^5
 Norm 2: 10^-5 ≤ |x| ≤ 10^5
 Example: 1 ÷ 0.5 = 2.0 x 10^-5 (Norm 1)
 0.2005 (Norm 2)

Specifying the Fraction Format

<table>
<thead>
<tr>
<th>To specify this fraction format:</th>
<th>Perform this key operation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed</td>
<td>SHIFT (MODE 1) (ab/c)</td>
</tr>
<tr>
<td>Improper</td>
<td>SHIFT (MODE 2) (d/c)</td>
</tr>
</tbody>
</table>

Specifying the Statistical Display Format

Use the following procedure to turn display of the frequency (FREQ) column of the STAT Mode STAT editor screen on or off.

To specify this column display format:
- Show FREQ Column: SHIFT (MODE 2) (3) (ON)
- Hide FREQ Column: SHIFT (MODE 2) (3) (OFF)

Specifying the Decimal Point Display Format

<table>
<thead>
<tr>
<th>To specify this decimal point display format:</th>
<th>Perform this key operation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dot (.)</td>
<td>SHIFT (MODE 2) (4) (Disp) (Dot)</td>
</tr>
<tr>
<td>Comm (,)</td>
<td>SHIFT (MODE 2) (4) (Disp) (Comm)</td>
</tr>
</tbody>
</table>

- The setting you configure here is applied for calculation results only. The decimal point for input values is always a dot (.)

Initializing the Calculation Mode and Other Settings

Performing the following procedure initializes the calculation mode and other setup settings as shown below.

SHIFT 9 (CLR) 1 (Setup) (Yes)

This setting is initialized to this:
- Calculation Mode: Comp
- Input/Output Format: Whib
- Angle Unit: Deg
- Display Digits: Norm 1
- Fraction Form: D/C
- Statistical Display: OFF
- Decimal Point: Dot
- To cancel initialization without doing anything. Press AC (Cancel) instead of .

Inputting Expressions and Values

Inputting a Calculation Expression Using Standard Format

Your calculator lets you input calculation expressions just as they are written. Then simply press the key to execute it. The calculator automatically judges the calculation priority sequence for addition, subtraction, multiplication, and division, functions, and parentheses.

Example: 2(5+4) ÷ 2 × (-3) =

```
LINE
2 ÷ 5 ÷ 4 ÷ ÷
2 × (-3) ÷ ÷
2(5+4) ÷ 2 × -3
```

24

Inputting a General Function

When you input any of the general functions shown below, it is automatically input with the open parenthesis () character. Next, you need to input the argument and the closing parenthesis ().

- sin, cos, tan, sin^-1, cos^-1, tan^-1, sinh, cosh, tanh, sinh^-1, cosh^-1, tanh^-1, log, ln, e^, 10^, x^, x^2, Abs, Pol, Rec, Rnd

Example: sin 30 =

```
LINE
sin(30)
```

0.5

• Note that the input procedure is different if you want to use Math format. For more information, see “Inputting with Math Format”.

Omitting the Multiplication Sign

You can omit the multiplication sign (×) in any of the following cases.
- Before an open parentheses (()): 2 × (5+4), etc.
- Before a general function: 2 × sin (30), 2 × √ (3), etc.
- Before a variable name, constant, or random number: 20 × A, 2 × π, etc.

Final Closed Parenthesis

You can omit one or more closed parentheses that come at the end of a calculation, immediately before the key is pressed. For details, see “Omitting a Final Closed Parenthesis”.
Displaying a Long Expression

The display can show up to 14 characters at a time. When inputting the 15th character causes the expression to shift to the left. At this time, the \(\leftarrow \) indicator appears to the left of the expression, indicating that it runs off the left side of the screen.

Input expression: 1111 + 2222 + 3333 + 4444

Displayed portion: \(\leftarrow \) 2222 + 3333 + 4444

When the \(\leftarrow \) indicator is displayed, you can scroll left and view the hidden part by pressing the \(\rightarrow \) key. This will cause the \(\leftarrow \) indicator to appear to the right of the expression. At this time, you can use the \(\rightarrow \) key to scroll back.

Number of Input Characters (Bytes)

• You can input up to 99 bytes of data for a single expression. Basically each key operation uses up one byte. A function that requires two key operations to input (like \(\text{sin} \) or \(\text{sin} \)) also uses only one byte. Note, however, that when you are inputting functions with Math format, each item you input uses up more than one byte. For more information, see “Inputting with Math Format”.

• Normally the input cursor appears as a straight vertical (Ⅰ) or horizontal (Ⅲ) flashing line on the display screen. When there are 10 or fewer bytes of input remaining in the current expression, the cursor changes shape to Ⅰ to let you know. If the Ⅰ cursor appears, terminate the expression at a convenient point and calculate the result.

Correcting an Expression

This section explains how to correct an expression as you are inputting it. The procedure you should use depends on whether you have insert or overwrite selected as the input mode.

About the Insert and Overwrite Input Modes

With the insert mode, the displayed characters shift to the left to make room when you input replaces the character at the current cursor position. The initial default input mode is insert. You can change to the overwrite mode when you need it.

• The cursor is a vertical flashing line (Ⅰ) when the insert mode is selected. The cursor is a horizontal flashing line (Ⅲ) when the overwrite mode is selected.

• The initial default for Linear format input is the insert mode. You can switch to the overwrite mode by pressing \(\text{SHIFT} + \text{DEL} \) (INS).

• With Math format, you can only insert the insert mode. Pressing \(\text{SHIFT} + \text{DEL} \) (INS) when the Math format is selected does not switch to the overwrite mode. See “Incorporating a Value into a Function” for more information.

• The calculator automatically changes to the insert mode whenever you change the input/output format from Linear to Math.

Changing the Character or Function You Just Input

Example: To correct the expression 369 × 13 so it becomes 369 × 12

\[\text{LINE} \quad 3 \ 6 \ 9 \ \boxed{\times} \ 1 \ 3 \quad \boxed{369 \times 131} \]

\[\boxed{369 \times 121} \]

Deleting a Character or Function

Example: To correct the expression 369 × 12 so it becomes 369 × 12

\[\text{LINE} \quad 3 \ 6 \ 9 \ \boxed{\times} \ 1 \ 2 \quad 369 \times 12 \]

Inserting Input into a Calculation

Always use the insert mode for this operation. Use \(\leftarrow \) or \(\rightarrow \) to move the cursor to the location where you want to insert new input, and then input what you want.
Displaying the Location of an Error

If an error message (like "Math ERROR" or "Syntax ERROR") appears when you press \(\boxed{} \), press \(\boxed{\text{AC}} \) or \(\boxed{\text{ON}} \). This will display the part of the calculation where the error occurred, with the cursor positioned at the error location. You can then make necessary corrections.

Example: when you input \(14 \div 0 \times 2 \) by mistake instead of \(14 \div 10 \times 2 \)

Use the insert mode for the following operation.

\[\boxed{14} \boxed{\div} \boxed{0} \boxed{\times} \boxed{2} \]

This is causing the error.

\[\boxed{14} \boxed{\div} \boxed{10} \boxed{\times} \boxed{2} \]

You can also exit the error screen by pressing \(\boxed{\text{AC}} \), which clears the calculation.

Inputting with Math Format

When inputting with Math format, you can input and display fractions and some functions using the same format as they appear in your textbook.

Important:
- Certain types of expressions can cause the height of a calculation formula to be greater than one display line. The maximum allowable height of a calculation formula is two display screens (31 data \(\times 2 \) Further input will become impossible if the height of the calculation you are inputting exceeds the allowable limit.
- Nesting of functions and parentheses is allowed. Further input will become impossible if you nest too many functions and/or parentheses. If this happens, divide the calculation into multiple parts and calculate each part separately.

Functions and Symbols Supported for Math Format Input
- The "Bytes" column shows the number of bytes of memory that are used up by input.

<table>
<thead>
<tr>
<th>Function/symbol</th>
<th>Key Operation</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improper Fraction</td>
<td>(\boxed{\text{a,b}})</td>
<td>9</td>
</tr>
<tr>
<td>Mixed Fraction</td>
<td>\boxed{\text{SHIFT}} \boxed{\text{a,b}} (\text{(\frac{a}{b})})</td>
<td>13</td>
</tr>
<tr>
<td>Log(a,b) (Logarithm)</td>
<td>\boxed{\text{log}}</td>
<td>6</td>
</tr>
<tr>
<td>(10^x) (Power of 10)</td>
<td>\boxed{\text{SHIFT}} \boxed{\text{log}} (\text{10})</td>
<td>4</td>
</tr>
<tr>
<td>(e^x) (Power of e)</td>
<td>\boxed{\text{SHIFT}} \boxed{\text{ln}} (\text{e})</td>
<td>4</td>
</tr>
<tr>
<td>Square Root</td>
<td>\boxed{\sqrt{}}</td>
<td>4</td>
</tr>
<tr>
<td>Cube Root</td>
<td>\boxed{\text{SHIFT}} \boxed{\sqrt{}}</td>
<td>9</td>
</tr>
<tr>
<td>Square, Cube (\boxed{x^2} \boxed{x^3})</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Reciprocal</td>
<td>\boxed{\frac{1}{x}}</td>
<td>5</td>
</tr>
<tr>
<td>Power</td>
<td>\boxed{x^x}</td>
<td>4</td>
</tr>
<tr>
<td>Power Root</td>
<td>\boxed{\text{SHIFT}} \boxed{x^{\frac{1}{2}}}</td>
<td>9</td>
</tr>
<tr>
<td>Absolute Value</td>
<td>\boxed{\text{Abs}}</td>
<td>4</td>
</tr>
<tr>
<td>Parentheses (\boxed{(} \boxed{)})</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Math Format Input Examples
- The following operations are all performed while Math format is selected.
- Pay close attention to the location and size of the cursor on the display when you input using Math format.

Example 1: To input \(2^2 + 1 \)

Example 2: To input \(1 + \sqrt{2} + 3 \)

Example 3: To input \((1 + \frac{\sqrt{2}}{2})\times 2 = \)

When you press \(\boxed{\text{AC}} \) and obtain a calculation result using Math format, part of the expression you input can be cut off as shown in the Example 3 screen shot. If you need to view the entire input expression again, Press \(\boxed{\text{AC}} \) and then press \(\boxed{\text{ON}} \).

Incorporating a Value into a Function
When using Math format, you can incorporate part of an input expression (a value, an expression within parentheses, etc.) into a function.

Example: To incorporate the expression inside of the parentheses of \(1+(2+3)\times 4 \) into the \(\sqrt{\boxed{}} \) function.
• If the cursor is located left of a particular value or fraction (instead of an open parenthesis), that value or fraction will be incorporated into the function specified here.
• If the cursor is located left of a function, the entire function is incorporated into the function specified here.
• The following examples show the other functions that can be used in the above procedure, and the required key operations to use them.

Original Expression: $1 + (2 + 3) + 4$

<table>
<thead>
<tr>
<th>Function</th>
<th>Key Operation</th>
<th>Resulting Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction</td>
<td></td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>log(a,b)</td>
<td></td>
<td>$\log_{10}(a/b)$</td>
</tr>
<tr>
<td>Power Root</td>
<td>SHIFT</td>
<td>$\sqrt[3]{a}$</td>
</tr>
</tbody>
</table>

You can also incorporate values into the following functions.

<table>
<thead>
<tr>
<th>Function</th>
<th>Key Operation</th>
<th>Resulting Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHIFT</td>
<td>\log_{10}</td>
<td>$\log_{10}(a)$</td>
</tr>
<tr>
<td>SHIFT</td>
<td>$\sqrt[3]{a}$</td>
<td>$\sqrt[3]{a}$</td>
</tr>
</tbody>
</table>

Displaying Calculation Results in a Form that Includes $\sqrt[n]{\ldots}$, π, etc., (Irrational Number Form)

When “Math” is selected for the input/output format, you can specify whether calculation results should be displayed in a form that includes expressions like $\sqrt[n]{\ldots}$ and π (irrational number form), or displayed using decimal values without using the irrational number form.

- Pressing SHIFT after inputting a calculation displays the result using irrational number form.
- Pressing SHIFT after inputting a calculation displays the result using decimal values.

In the following examples, ① shows the result when SHIFT is pressed, while ② shows the result when SHIFT is pressed.

Example 1: $\sqrt{2} + \sqrt{8} = 3 + 2$

[MATH]

1. $\sqrt{2} + \sqrt{8} = 3 + 2$

2. $\sqrt{2} + \sqrt{8} = 3.242640687$

Example 2: $\sin(60) = \frac{\sqrt{3}}{2}$

[MATH] $\sin 60 = \frac{\sqrt{3}}{2}$

Example 2: $\sin^{-1}(0.5) = \frac{\pi}{6}$

[MATH] $\sin^{-1}(0.5) = \frac{\pi}{6}$

For details about calculations using $\sqrt[n]{\ldots}$ and π see "Function Calculations".

- For details about calculations using $\sqrt[n]{\ldots}$ and π see "Function Calculations".
- The following are the calculations for which $\sqrt[n]{\ldots}$ form (a form that includes $\sqrt[n]{\ldots}$ within irrational number display) results can be displayed.
 a. Arithmetic calculations of values with square root symbol ($\sqrt[n]{\ldots}$), x^n, x^π.
 b. Trigonometric function calculations $\sqrt[n]{\ldots}$ form results can be produced by trigonometric functions only in the following cases.

<table>
<thead>
<tr>
<th>Angle Unit Setting</th>
<th>Angle Value Input</th>
<th>Input Value Range for $\sqrt[n]{\ldots}$ Form Calculation Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deg</td>
<td>Units of \deg</td>
<td>$\pm 9 \times 10^9$</td>
</tr>
<tr>
<td>Rad</td>
<td>Multiples of $\frac{\pi}{10}$ radians</td>
<td>$\pm 2 \times 10^9$</td>
</tr>
<tr>
<td>Gra</td>
<td>Multiples of $\frac{90}{10}$ degrees</td>
<td>$\pm 1 \times 10^9$</td>
</tr>
</tbody>
</table>

In all other cases, calculation results displayed in decimal form.

$\sqrt[n]{\ldots}$ Form Calculation Range

- The following shows the internal data format and applicable value ranges for results obtained with $\sqrt[n]{\ldots}$

$\frac{\sqrt{3}}{2}$, $\sqrt{2}$, $\sqrt{3}$

$\pm 9 \times 10^9$ $\pm 2 \times 10^9$ $\pm 1 \times 10^9$

The calculation result is displayed in decimal form when any one of these ranges is exceeded.

Example: $35\cdot\sqrt{2} \times 3 = 184.492424$

$\frac{\sqrt{2}}{2} = 0.485281374$

- Actual $\sqrt[n]{\ldots}$ calculation results are displayed using the following forms.

$\pm \frac{a}{b} \pm \frac{c}{d}$

Because of this, the value that is actually displayed can be larger than the range shown above.

Example: $\frac{\sqrt{2}}{2} = \frac{10}{10} \pm \frac{11}{10}$

- Results that include square root symbols can have up to two terms (an integer term is also counted as a term). If the result has three or more terms, it is displayed in decimal form.

Example: $-2 \cdot \sqrt{3} + \sqrt{2} = 3 + \sqrt{2}$

$\frac{\sqrt{2}}{2} = 5.595754113$

- The result is displayed in decimal form even when any intermediate result has three or more terms.
Example: \((1 - \sqrt{2} - 3) \div \sqrt{3} - (4 - 2/6) = -8.898979486 \)

Basic Calculations (COMP)

This section explains how to perform arithmetic, fraction, percent, and sexagesimal calculations. All calculations in this section are performed in the COMP Mode (MODE1).

- **Arithmetic Calculations**
 - Use the \(\boxed{\#} \), \(\boxed{\#} \), \(\boxed{\#} \), and \(\boxed{\#} \) keys to perform arithmetic calculations.
 - Example: \(7 \times 8 - 4 \times 5 = 36 \)

- **Fraction Calculations**
 - How you should input fractions depends on the input/output format that is currently selected.

- **Number of Decimal Places and Number of Significant Digits**
 - You can specify a fixed number of decimal places and significant digits for the calculation result.
 - Example: \(1 \div 6 = \)

- **Switching between Improper Fraction and Mixed Fraction Format**
 - Pressing the \(\boxed{\#} \) key toggles the display format between mixed fraction and improper fraction format.

- **Percent Calculations**
 - Inputting a value and pressing \(\boxed{\%} \) causes the input value to become a percent.
 - Example: \(2\% = 0.02 \)

- **Omitting a Final Closed Parenthesis**
 - You can omit any closed parenthesis (‘) immediately preceding operation of the \(\boxed{\#} \) key at the end of a calculation. This is true only in the case of Linear format.
 - Example: \((2 + 3) \times (4 - 1) = 15 \)

- **Mixed Fraction input is possible only when “ab/c” is specified for the fraction format.**
 - Under "MATH" mode, press \(\boxed{\#} \) to input mixed fraction.
 - If the total number of digits used for a mixed fraction (including integer, numerator, denominator, and separator symbols) is greater than 10, the value is automatically displayed in decimal format.
 - The result of a calculation that involves both fraction and decimal values is displayed in decimal format.

- **Switching between Fraction and Decimal Format**
 - The format of the fraction depends on the currently selected fraction format setting (improper fraction or mixed fraction).
 - You cannot switch from decimal format to mixed fraction format if the total number of digits used in the mixed fraction (including integer, numerator, denominator, and separator symbols) is greater than 10.
 - For details about the \(\boxed{\%} \) key, see “Using S-D Transformation”.

Example: \(2\% = 0.02 \)

\(\boxed{2} \) \(\boxed{\%} \) \(\boxed{\#} \) \(\boxed{\%} \)

- \(\boxed{\%} \) \(\boxed{\#} \) \(\boxed{\%} \) \(\boxed{\#} \) \(\boxed{\%} \)

- \(\boxed{\%} \) \(\boxed{\#} \) \(\boxed{\%} \) \(\boxed{\#} \) \(\boxed{\%} \)
Degree, Minute, Second (Sexagesimal) Calculations

You can perform calculations using sexagesimal values, and convert values between sexagesimal and decimal.

Inputting Sexagesimal Values
The following is the syntax for inputting a sexagesimal value:

\[\text{[Degrees]} \text{[Minutes]} \text{[Seconds]} \]

Example: Input 2° 0' 30".

\[\text{[2]} \text{[0]} \text{[30]} \]

Note that you must always input something for the degrees and minutes, even if they are zero.

Sexagesimal Calculations

- Performing the following types of sexagesimal calculations produces a sexagesimal result.
- Addition or subtraction of two sexagesimal values
- Multiplication of division of a sexagesimal value and a decimal value

Example: 2° 20' 30" + 39' 30" = 3' 00" 00'

\[\text{[2]} \text{[20]} \text{[30]} \]

Converting Values between Sexagesimal and Decimal

Pressing \(\equiv \) while a calculation result is displayed toggles the value between sexagesimal and decimal.

Convert 2.255 to its sexagesimal equivalent.

\[\text{[2]} \text{[25]} \text{[5]} \]

Using Multi-statements in Calculations

You can use the colon character (:) to connect two or more expressions and execute them in sequence from left to right when you press \(\equiv \).

Example: To create a multi-statement that performs the following two calculations: 3 + 3 and 3 × 3

\[\text{[3]} \text{[+]} \text{[3]} \text{[\(\equiv \)]} \text{[3]} \text{[\(\equiv \)]} \]

"Disp" indicates this is an intermediate result of a multi-statement.

\[\text{[3]} \text{[\(\equiv \)]} \text{[3]} \text{[\(\equiv \)]} \]

Using Calculation History Memory and Replay (COMP)

Calculation history memory maintains a record of each calculation expression you input and execute, and its result.

You can use calculation history memory in the COMP Model (MODE 1) only.

Recalling Calculation History Memory Contents

Press \(\leftarrow \) to back-step through calculation history memory contents. Calculation history memory shows both calculation expressions and results.

Example:

\[\text{[3]} \text{[+]} \text{[3]} \text{[\(\equiv \)]} \text{[3]} \text{[\(\equiv \)]} \]

\[\text{[3]} \text{[\(\equiv \)]} \text{[3]} \text{[\(\equiv \)]} \]

\[\text{[3]} \text{[\(\equiv \)]} \text{[3]} \text{[\(\equiv \)]} \]
Using Calculator Memory

<table>
<thead>
<tr>
<th>Memory Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer Memory</td>
<td>Stores the last calculation result obtained.</td>
</tr>
<tr>
<td>Independent Memory</td>
<td>Calculation results can be added to or subtracted from independent memory. The "M" display indicator indicates data in independent memory.</td>
</tr>
<tr>
<td>Variables</td>
<td>Six variables named A, B, C, D, X, and Y can be used for storage of individual values.</td>
</tr>
</tbody>
</table>

This section uses the COMP Mode (MODE) to demonstrate how you can use memory.

Answer Memory (Ans)

- Answer Memory contents are updated whenever you execute a calculation using any one of the following keys: =,MEMORY (M) and STO (STO).
- Answer Memory can hold up to 15 digits.
- Answer Memory contents are not changed if an error occurs during the current calculation.
- Answer Memory contents are maintained even if you press the CLEAR (C) key, change the calculation mode, or turn off the calculator.

Using Answer Memory to Perform a Series of Calculations

Example: To divide the result of 3×4 by 30

- Input 3×4 and press = to store the result in Ans.
- Input $30 \div 10$ and press = to divide the result by 30.
- Ans is 0.4.

Pressing $=$ automatically inputs "Ans" command.

With the above procedure, you need to perform the second calculation immediately after the first one. If you need to recall Answer Memory contents after pressing AC, press the Ans key.

Inputting Answer Memory Contents into an Expression

Example: To perform the calculations shown below:

$123 + 456 = 579$
$789 - 579 = 210$

- Input $123 + 456$ and press $=$ to store 579.

To do this: \hspace{1cm} Perform this key operation:

- Add the displayed value or result of the expression to independent memory \hspace{1cm} \text{RCL} \hspace{1cm} \text{M} \hspace{1cm} \text{STO} \hspace{1cm} \text{M} \hspace{1cm} \text{REC}
- Subtract the displayed value or result of the expression from independent memory \hspace{1cm} \text{RCL} \hspace{1cm} \text{M} \hspace{1cm} \text{STO} \hspace{1cm} \text{M} \hspace{1cm} \text{REC}

Independent Memory (M)

You can add calculation results to or subtract results from independent memory. The "M" appears on the display when independent memory contains a value.

Independent Memory Overview

The following is a summary of the different operations you can perform using independent memory.

- **Add to Memory:** Press STO to add the displayed value to independent memory.
- **Recall from Memory:** Press RCL to recall the value stored in independent memory.

You can also insert the "M" variable into a calculation, which tells the calculator to use the current independent memory contents at that location. The following is the key operation for inserting the "M" variable.

- $\text{ALPHA} \hspace{0.5cm} \text{M}$

The "M" indicator appears in the upper left of the display when there is any value other than zero stored in independent memory.
Calculation Examples Using Independent Memory

- If the "M" indicator is on the display, perform the procedure under "Clearing Independent Memory" before performing this example.

 Example: $23 + 9 = 32$

 $3 - 6 = 47$

 $45 \times 2 = 90$

 $99 \div 3 = 33$

 Total 22

Clearing Independent Memory

Press [SHIFT INS] [STO A]. This clears independent memory and cause the "M" indicator to disappear from the display.

Variables (A, B, C, D, X, Y)

Variable Overview

- You can assign a specific value or a calculation result to a variable.

 Example: To assign the result of $3 + 5$ to variable A.

- Use the following procedure when you want to check the contents of a variable.

 Example: To recall the contents of variable A.

- The following shows how you can include variables inside of an expression.

 Example: To multiply the contents of variable A by the contents of variable B.

- Independent memory contents are maintained even if you press the AC key, change the calculation mode, or turn off the calculator.

 Example: $9 \times 6 = 54$

Function Calculations

This section explains how to use the calculator's built-in functions.

The functions available depend on the calculation mode you are in. The explanations in this section are mainly about the functions that are available in all calculation modes. All of the examples in this section show operations in the COMP Mode.

- Certain function calculations may take some time to display calculation results. Before performing an operation, be sure to wait until execution of the current operation is complete. You can interrupt an ongoing operation by pressing AC.

PI (π) and Natural Logarithm Base e

You can input PI (π) for natural logarithm base e into a calculation.

Trigonometric and Inverse Trigonometric Functions

- The angle unit required by trigonometric and inverse trigonometric functions is one specified as the calculator's default angle unit. Before performing a calculation, be sure to specify the default angle unit you want to use. See "Specifying the Default Angle Unit" for more information.

 Example: $\sin 30 = 0.5$, $\sin^{-1} 0.5 = 30$

Hyperbolic and Inverse Hyperbolic Functions

Pressing the [HYP] key displays a menu of functions. Press the number key that corresponds to the function you want to input.

Example: $\sinh 1 = 1.17520194$, $\cosh^{-1} 1 = 0$

Converting an Input Value to the Calculator's Default Angle Unit

After inputting a value, press [SHIFT] [INS] (DRG ▶) to display the angle unit specification menu shown below. Press the number key that corresponds to the angle unit of the input value. The calculator will automatically convert it to the calculator's default angle unit.
Example 1: To convert the following values to degrees:

\[\frac{\pi}{2} \text{ radians} = 90^\circ, \quad 50 \text{ grads} = 45^\circ \]

The following procedure assumes that the calculator's default angle unit is degrees.

- For the logarithmic function \(\log \), you can specify base \(m \) using the syntax \(\log (m, n) \). If you input only a single value, a base of 10 is used for the calculation.
- \(\ln \) is a natural logarithm function with base \(e \).
- You can also use the \(\times \) key when inputting an expression with the form \(\log_{m^n} \) while using Math format. For details, see Example: \(\log_{10} 16 = 4 \)

Example 2: \(\cos(\pi \text{ radians}) = -1, \quad \cos(100 \text{ grads}) = 0 \)

Example 3: \(\cos^{-1}(-1) = 180^\circ, \quad \cos^{-1}(-1) = \pi \)

\[\text{Math} \]

\[\text{Deg} \quad \text{Shift} \quad \cos \quad \cos^{-1} \quad (\text{Deg}) \quad 180 \]

\[\text{Rad} \quad \text{Shift} \quad \cos \quad \cos^{-1} \quad (\text{Rad}) \quad \pi \]

- Exponential Functions and Logarithmic Functions

- Power Functions and Power Root Functions

\[x \times x \times x \times x \times x \]

Example 1: \(1.2 \times 10^3 = 1200 \)

\[\text{Math} \quad \text{Shift} \quad \log (10^3) \quad 3 \]

\[(1 + 1)^2 = 16 \]

\[\text{Math} \quad 1 + 1 \quad 2 \]

Example 2: \(2^8 \)

\[\text{Math} \quad 2 \quad 8 \]

Note that you must input the base (base \(m \)) when using the \(\times \) key for input.

\[\text{Math} \quad \log 16 = 1.204119983 \]

\[\text{Math} \quad \log (16) \quad 1.204119983 \]

\[\text{Math} \quad \log (10^2) \quad 2 \]

\[\sqrt{2} = 2 \]

\[\text{Math} \quad \sqrt{2} \]

Example 3: \((-2)^{\frac{3}{2}} = 1.587401052 \)

\[\text{Math} \quad -2 \quad \frac{3}{2} \]

\[\frac{1}{3} + \sqrt{27} = 1.299024503 \]

\[\text{Math} \quad \frac{1}{3} \quad + \quad \text{Shift} \quad \sqrt{27} \]

Example 4: \(\frac{1}{3} - \frac{4}{2} = -12 \)

\[\text{Math} \quad \frac{1}{3} \quad - \quad \frac{4}{2} \]

- 1 A base of 10 (common logarithm) is used if no base is specified.
Rectangular-Polar Coordinate Conversion

- Coordinate conversion can be performed in the COMP and STAT calculation modes.

Converting to Polar Coordinates (Pol)

\[\text{Pol}(X, Y) \]
- X: Specifies the rectangular coordinate X value
- Y: Specifies the rectangular coordinate Y value
- Calculation result \(\theta \) is displayed in the range of \(-180^\circ < \theta \leq 180^\circ\)
- Calculation result \(r \) is displayed using the calculator’s default angle unit.
- Calculation result \(r \) is assigned to variable \(X \), while \(\theta \) is assigned to \(Y \).

Converting to Rectangular Coordinates (Rec)

\[\text{Rec}(r, \theta) \]
- \(r \): Specifies \(r \) value of polar coordinate
- \(\theta \): Specifies \(\theta \) value of polar coordinate
- Input value \(\theta \) is treated as an angle value, in accordance with the calculator’s default angle unit setting.
- Calculation result \(r \) is assigned to variable \(X \), while \(\theta \) is assigned to \(Y \).
- If you perform coordinate conversion inside of an expression instead of a stand-alone operation, the calculation is performed using only the first value (either the \(r \) value or the \(X \) value) produced by the conversion.

Example: \[\text{Pol}(2, \sqrt{2}) + 5 = 2 + 5 = 7 \]
\[\text{Rec}(X, Y) = (\sqrt{2}, \sqrt{2}) \rightarrow (r, \theta) \]

Other Functions

This section explains how to use the functions shown below.

1. \(\text{Abs} \), \(\text{Int} \), \(\text{nPr} \), \(\text{nCr} \), \(\text{Rnd} \)

Factorial (!)

This function obtains the factorials of a value that is zero or a positive integer.

Example: \((5+3)! = 40320\)

Absolute Value Calculation (Abs)

When you are performing a real number calculation, this function simply obtains the absolute value.

Example: \(|2 - 7| = 5\)

Random Number (Rand#)

This function generates a 3-digit pseudo random number that is less than 1.

Generate three 3-digit random numbers. The random 3-digit decimal values are converted to 3-digit integer values by multiplying by 1000.

Note that values shown here are examples only. Values actually generated by your calculator will be different.

Permutation (nPr) and Combination (nCr)

These functions make it possible to perform permutation and combination calculations.

- \(n \) and \(r \) must be integers in the range of \(0 \leq r \leq n < 1 \times 10^8 \).
- How many four-person permutations and combinations are possible for a group of 10 people?

Rounding Function (Rnd)

This function rounds the value or the result of the expression in the function’s argument to the number of significant digits specified by the number of display digits setting.

Display Digits Setting: Norm1 or Norm2

The mantissa is rounded to 10 digits.

Display Digits Setting: Fix or Sci

The value is rounded to the specified number of digits.

Example: \(200 \div 7 \times 14 = 400 \)

Calculations are performed internally using 15 digits.
Transform the value 123 to engineering notation, shifting the decimal point to the left.

\[\text{LINE} \]

\[\text{ENG} \]

\[1234 \]

\[1234, uv \]

The following performs the same calculation with rounding.

\[\text{Ans} \times 14 \]

\[400.00 \]

(Round the value to the specified number of digits.)

\[\text{Rnd} \text{Ans} \]

\[28.571 \]

(Will result.)

\[\text{Ans} \times 14 \]

\[399.994 \]

Transforming Displayed Values

You can use procedures in this section to transform a displayed value to engineering notation, or to transform between standard form and decimal form.

Using Engineering Notation

A simple key operation transforms a displayed value to engineering notation. Transform the value 1234 to engineering notation by shifting the decimal point to the right.

\[\text{LINE} \]

\[1234 \]

\[1234, uv \]

\[\text{ENG} \]

\[1234 \]

\[1234, uv \]

\[1234 \times 10^3 \]

\[1234 \times 10^3 \]

\[1234 \]

\[1234, uv \]
Statistical Calculation (STAT)

All calculations in this section are performed in the STAT Mode (MODE 2).

Selecting a Statistical Calculation Type

In the STAT Mode, display the statistical calculation type selection screen.

Statistical Calculation Types

<table>
<thead>
<tr>
<th>Key</th>
<th>Menu Item</th>
<th>Statistical Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-VAR</td>
<td>Single-variable</td>
</tr>
<tr>
<td>2</td>
<td>A + BX</td>
<td>Linear regression</td>
</tr>
<tr>
<td>3</td>
<td>_ + CX²</td>
<td>Quadratic regression</td>
</tr>
<tr>
<td>4</td>
<td>In X</td>
<td>Logarithmic regression</td>
</tr>
<tr>
<td>5</td>
<td>e^X</td>
<td>e expositional regression</td>
</tr>
<tr>
<td>6</td>
<td>A · B^X</td>
<td>ab expositional regression</td>
</tr>
<tr>
<td>7</td>
<td>A + X*B</td>
<td>Power regression</td>
</tr>
<tr>
<td>8</td>
<td>1/X</td>
<td>Inverse regression</td>
</tr>
</tbody>
</table>

Inputting Sample Data

Displaying the STAT Editor Screen

The STAT editor screen appears after you enter the STAT Mode from another mode. Use the STAT menu to select a statistical calculation type. To display the STAT editor screen from another STAT Mode screen, press [EXIT] (STAT) 1 (Data).

STAT Editor Screen

There are two STAT editor screen formats, depending on the type of statistical calculation you selected.

- **Single-variable Statistics**
- **Paired-variable Statistics**

- The first line of the STAT editor screen shows the value for the first sample or the values for their first pair of samples.

FREQ (Frequency) Column

If you turn on the Statistical Display item on the calculator’s setup screen, a column labeled “FREQ” will also be included on the STAT editor screen. You can use FREQ column to specify the frequency (the number of times the same sample appears in the group of data) of each sample value.

Rules for Inputting Sample Data on the STAT Editor Screen

- Data you input is inserted into the cell where the cursor is located. Use the cursor keys to move the cursor between cells.

- The values and expressions you can input on the STAT editor screen are the same as those you can input in the COMP Mode with Linear format.
- Pressing [AC] while inputting data clears your current input.
- After inputting a value, press [EXE]. This registers the value and displays up to six of its digits in the currently selected cell.

Example:

To input the value 123.45 in cell 1 (Move the cursor to cell 1)

- The value you input appears in the formula area.

- Registering a value causes the cursor to move down one cell.

STAT Editor Screen Input Precautions

- The number of lines in STAT editor screen (the number of sample data values you can input) depends on the type of statistical data you selected and on the Statistical Display setting of the calculator’s setup screen.

- The following types of input are not allowed on the STAT editor screen.
 - [AC] operations
 - Assignment to variables (STO)

Precautions Concerning Sample Data Storage

Sample data you input is deleted automatically whenever you change to another mode from the STAT Mode or change the Statistical Display setting (which causes the FREQ column to be shown or hidden) on the calculator’s setup screen.

Editing Sample Data

Replacing the Data in a Cell

1. On the STAT editor screen, move the cursor to the cell you want to edit.
2. Input the new data value or expression, and then press [EXE].

Important!

- Note that you must totally replace the existing data of the cell with new input. You cannot edit parts of the existing data.

Deleting a Line

1. On the STAT editor screen, move the cursor to the line you want to delete.
2. Press [DEL].

Inserting a Line

1. On the STAT editor screen, move the cursor to the line that will be under the line you will insert.
2. Press [SHIFT] (STAT) 1 (Edit).
3. Press [INS].

Important!

- Note that the insert operation will not work if the maximum number of lines allowed for the STAT editor screen are already used.
Deleting All STAT Editor Contents
1) Press \[\text{MODE} \] \(\rightarrow \) \{STAT\} \(\rightarrow \) (Edit).
2) Press \(\text{Del-A} \).
 - This clears all of the sample data on the STAT editor screen.

Note
- Note that you can perform the procedures under "Inserting a Line" and "Deleting All STAT Editor Contents" only when the STAT editor screen is on the display.

■ STAT Calculation Screen
The STAT calculation screen is for performing statistical calculations with the data you input with the STAT editor screen. Pressing the \(\text{F} \) key while the STAT editor screen is displayed switches to the STAT calculation screen.
The STAT calculation screen also uses linear format, regardless of the current input/output format setting on the calculator's setup screen.

■ Using the STAT Menu
While the STAT editor screen or STAT calculation screen is on the display, press \(\text{SHIFT} \) \(\text{STAT} \) to display the STAT menu.
The content to the STAT menu depends on whether the currently selected statistical operation type uses a single variable or paired variables.

STAT Menu Items

Common Items

<table>
<thead>
<tr>
<th>Select this menu item</th>
<th>When you want to do this:</th>
</tr>
</thead>
<tbody>
<tr>
<td>① Type</td>
<td>Display the statistical calculation type selection screen</td>
</tr>
<tr>
<td>② Data</td>
<td>Display the STAT editor screen</td>
</tr>
<tr>
<td>③ Edit</td>
<td>Display the Edit sub-menu for editing STAT editor screen contents</td>
</tr>
<tr>
<td>④ Sum</td>
<td>Display the Sum sub-menu of commands for calculating sums</td>
</tr>
<tr>
<td>⑤ Var</td>
<td>Display the Var sub-menu of commands for calculating the mean, standard deviation, etc.</td>
</tr>
<tr>
<td>⑥ MinMax</td>
<td>Display the MinMax sub-menu of commands for obtaining maximum and minimum values</td>
</tr>
</tbody>
</table>

Paired-variable Menu Item

<table>
<thead>
<tr>
<th>Select this menu item</th>
<th>When you want to do this:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΣReg</td>
<td>Display the Reg sub-menu of commands for regression calculations</td>
</tr>
</tbody>
</table>
 - For details see "Commands when Linear Regression Calculation (A+BX) is Selected" and "Commands when Quadratic Regression Calculation (A+CX)² is Selected".

Single-variable (1-VAR) Statistical Calculation Commands

The following are the commands that appear on the sub-menus that appear when you select ⑤ (Sum), ⑦ (Var), or ⑥ (MinMax) on the STAT menu while a single-variable statistical calculation type is selected.

\[
x = \frac{\sum x}{n}
\]

\[
x_{\text{Min}} = \frac{\min x}{n}
\]

\[
x_{\text{Max}} = \frac{\max x}{n}
\]

Sum Sub-menu (\(\text{SHIFT} \) \(\text{STAT} \) \(\rightarrow \) (Sum))

<table>
<thead>
<tr>
<th>Select this menu item</th>
<th>When you want to obtain this:</th>
</tr>
</thead>
<tbody>
<tr>
<td>① Σx^2</td>
<td>Sum of squares of the sample data</td>
</tr>
<tr>
<td>② Σx</td>
<td>Sum of the sample data</td>
</tr>
</tbody>
</table>

Var Sub-menu (\(\text{SHIFT} \) \(\text{STAT} \) \(\rightarrow \) (Var))

<table>
<thead>
<tr>
<th>Select this menu item</th>
<th>When you want to obtain this:</th>
</tr>
</thead>
<tbody>
<tr>
<td>① n</td>
<td>Number of samples</td>
</tr>
<tr>
<td>② x</td>
<td>Mean of the sample data</td>
</tr>
<tr>
<td>⑦ x (\times) n</td>
<td>Population standard deviation</td>
</tr>
<tr>
<td>⑨ x (\div) n(^2)</td>
<td>Sample standard deviation</td>
</tr>
</tbody>
</table>

MinMax Sub-menu (\(\text{SHIFT} \) \(\text{STAT} \) \(\rightarrow \) (MinMax))

<table>
<thead>
<tr>
<th>Select this menu item</th>
<th>When you want to obtain this:</th>
</tr>
</thead>
<tbody>
<tr>
<td>⑤ minX</td>
<td>Minimum value</td>
</tr>
<tr>
<td>⑥ maxX</td>
<td>Maximum value</td>
</tr>
</tbody>
</table>

Single-variable Statistical Calculation
Select single-variable (1-VAR) and input the following data: \(\{1,2,3,4,5,6,7,8,9,10\} \)

\[
(\text{FREQ:ON})
\]

\[
(\text{SHIFT}) \Rightarrow 3 \Rightarrow \{\text{STAT}\} \Rightarrow \{\text{ON}\} \Rightarrow 1 \Rightarrow 1 \Rightarrow \text{VAR} \Rightarrow 3 \Rightarrow 1 \Rightarrow \text{A} \Rightarrow 4 \Rightarrow \text{B} \Rightarrow 2 \Rightarrow \text{C} \Rightarrow 5 \Rightarrow \text{D} \Rightarrow 6 \Rightarrow \text{FREQ} \Rightarrow 7 \Rightarrow \text{RND} \Rightarrow 8 \Rightarrow \text{AC} \Rightarrow 9 \Rightarrow \text{SUM} \Rightarrow \text{AC} \Rightarrow 0
\]
Edit the data to the following, using insert and delete

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

(FREQ: ON)

SHIFT 1 (STAT) 2 (Data)

SHIFT 1 (STAT) 3 (Edit) 1 (Ins)

AC

Edit the FREQ data to the following:

1, 2, 1, 2, 2, 2, 3, 4, 2, 1

(FREQ: ON)

SHIFT 1 (STAT) 2 (Data)

AC

Examples:
Calculate sum of squares of the sample data and sum of the sample data.

SHIFT 1 (STAT) 4 (Sum)

1 Σ×² 2 Σ×

1 (Σ×)² 2 (Σ×)

AC

Calculate number of samples, mean, and population standard deviation.

SHIFT 1 (STAT) 5 (Var)

1: n 2: x

3: x̄n 4: x̅n-1

1 (n) 20

SHIFT 1 (STAT) 5 (Var) 2 (X) 5

1 (n) 20

SHIFT 1 (STAT) 5 (Var) 3 (X) 5

1 (n) 20

SHIFT 1 (STAT) 5 (Var) 3 (X) 5

1 (n) 20

Calculate minimum value and maximum value.

SHIFT 1 (STAT) 6 (Min Max)

1 (Min) 2 (Max)

SHIFT 1 (STAT) 6 (Min Max)

1 (Min) 2 (Max)

Commands when Linear Regression Calculation (A+Bx) Is Selected

With linear regression, regression is performed in accordance with the following model equation.

\[y = A + Bx \]

The following are the commands that appear on the sub-menus that appear when you select 2 (Sum), 5 (Var), or 6 (MinMax), or 7 (Reg) on the STAT menu while linear regression is selected as the statistical calculation type.

\[x = \frac{\sum x}{n} \quad \bar{y} = \frac{\sum y}{n} \]

\[x_{\text{on}} = \frac{\sum x \times y}{\sum x^2} \quad y_{\text{on}} = \frac{\sum y \times x}{\sum y^2} \]

\[A = \frac{\sum y - B \sum x}{n} \]

\[B = \frac{\sum x y - \bar{x} \sum y}{\sum x^2 - \bar{x}^2 \sum x} \]

\[\hat{r} = \frac{\sum x \times y - (\sum x \times \bar{y}) (\sum y \times \bar{y})}{\sqrt{(\sum x^2 - (\sum x \times \bar{x})^2) \sum y^2 - (\sum y \times \bar{y})^2}} \]

\[\bar{x} = \frac{\sum x}{n} \quad \hat{y} = A + Bx \]

Sum Sub-menu (SHIFT 1 (STAT) 5 (Sum))

Select this menu item: When you want to obtain this:

1 Σ×² Sum of squares of the X-data

2 Σ× Sum of the X-data

3 Σy² Sum of the squares of the Y-data

4 Σy Sum of the Y-data

5 Σxy Sum of products of the X-data and Y-data

6 Σx³ Sum of cubes of the X-data

7 Σx²y Sum of (X-data squares × Y-data)

8 Σx⁴ Sum of biquadrate of the X-data

Var Sub-menu (SHIFT 1 (STAT) 6 (Var))

Select this menu item: When you want to obtain this:

1 n Number of samples

2 x Mean of the X-data

3 Σx n Population standard deviation of the X-data

4 Σx² n Sample standard deviation of the X-data

5 y Mean of the Y-data

6 Σy n Population standard deviation of the Y-data

7 Σy² n Sample standard deviation of the Y-data

MinMax Sub-menu (SHIFT 1 (STAT) 6 (MinMax))

Select this menu item: When you want to obtain this:

1 MinX Minimum value of the X-data

2 MaxX Maximum value of the X-data

3 MinY Minimum value of the Y-data

4 MaxY Maximum value of the Y-data
Regression Sub-menu (STAT) (Reg)

Examples of Use:
- Use the data in this table:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Linear Regression Calculation

- Estimated value of y
- Correlation coefficient r
- Regression coefficient constant A
- Regression coefficient constant B

Quadratic Regression Calculation

- Estimated value of x_2
- Estimated value of y_2
- Estimated value of A
- Estimated value of B
- Estimated value of C

Command: When you want to obtain this:
- `2A-BX1`:
- `2A-BX2`:
- `2A-BX3`:

Notes:
- Estimated Value $y=(A-BX)/C$
- Estimated Value $x=(A-CY)/B$
- Estimated Value $y=A-BX2+CX2^2$
Sum sub-menu (surn), Var sub-menu (number of samples, mean, standard deviation), and MinMax sub-menu (maximum value, minimum value) operations are the same for linear regression calculations.

Quadratic Regression Calculation:

- For examples:
 - All the data be used as follow table:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>2.1</td>
<td>1.5</td>
</tr>
<tr>
<td>1.2</td>
<td>1.1</td>
<td>2.4</td>
<td>1.6</td>
</tr>
<tr>
<td>1.5</td>
<td>1.2</td>
<td>2.7</td>
<td>1.7</td>
</tr>
<tr>
<td>1.6</td>
<td>1.3</td>
<td>2.7</td>
<td>1.8</td>
</tr>
<tr>
<td>1.9</td>
<td>1.4</td>
<td>3.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Comments for Other Types of Regression

For details about the calculation formula of the command included in each regression type, refer to the indicated calculation formulas.

- **For example:**
 - Logarithmic Regression (ln X)
 - Power Regression (A·X^B)
 - Exponential Regression (e^X)
 - Inverse Regression (1/X)
 - Comparison Regression Curves

The following example uses the data input as the following table:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>21</td>
<td>1.5</td>
</tr>
<tr>
<td>1.2</td>
<td>1.1</td>
<td>24</td>
<td>1.6</td>
</tr>
<tr>
<td>1.5</td>
<td>1.2</td>
<td>25</td>
<td>1.7</td>
</tr>
<tr>
<td>1.6</td>
<td>1.3</td>
<td>27</td>
<td>1.8</td>
</tr>
<tr>
<td>1.9</td>
<td>1.4</td>
<td>30</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Compare the correlation coefficient for logarithmic, exponential, ab exponential, Power, and inverse regression.
Generating a Number Table from a Function

TABLE

Command Usage Tips
- The commands include in the Reg sub-menu can take a long time to execute in logarithmic, exponential, ab exponential, or power regression calculation when there are a large number of data samples.

1. Press \(y = Ax^2 \)

2. Input the function.

3. After making sure the function is the way you want, press \(\text{(TABLE)} \).

4. After specifying the start value, press \(\text{(TABLE)} \).

 - Indicates the initial default start value of 1.
 - Indicates the initial default end value of 5.

Configuring a Number Table Generation Function

All calculations in this section are performed in the TABLE Mode (MODE 3).

Function: \(f(x) = x^2 \)

Start Value: 1, End Value: 5, Step Value: 1

1. Press (MODE 3) (TABLE).

2. Input the function.

 \(f(x) = \frac{1}{x} \)

 - This displays the start value input screen.

3. If the initial value is not 1, press \(\text{1} \) to specify the initial start value for this example.

4. After specifying the start value, press \(\text{(TABLE)} \).

 - This displays the end value input screen.

5. Specify the end value.
5.2 After specifying the end value, press \(\text{X} \rightarrow \).
 - This displays the step value input screen.

 ![Step Value Screen]

 - \(\text{Step} \) indicates the initial default step value of 1.
 - Specify the step value.
 - For details about specifying the start, end, and step values, see “Start, End, and Step Value Rules”.

5.3 After specifying the step value, press \(\text{X} \rightarrow \).
 - Pressing the \(\text{X} \rightarrow \) key returns to the function editor screen.

Supported Function Types

- Except for the \(X \) variable, other variables (\(A, B, C, D, Y \)) and independent memory (\(M \)) are all treated as values (the current variable assigned to the variable or stored in independent memory).
- Only variable \(X \) can be used as the variable of a function.
- The coordinate conversion (Pol, Rec) functions cannot be used as a number table generation function.
- Note that the number table generation operation causes the contents of variable \(X \) to be changed.

Start, End, and Step Value Rules

- Linear format is always used for value input.
- You can specify either values or calculation expressions (which must produce a numeric result) for Start, End, and Step.
- Specifying an End value that is less than the Start value causes an error, so the number table is not generated.
- The specified Start, End, and Step values should produce a maximum of 30 \(X \) values for the number table being generated. Executing a number generation table using a Start, End, and Step value combination that produces more than 30 \(X \) values causes an error.

Note

- Certain functions and Start, End Step value combinations can cause number table generation to take a long time.

Number Table Screen

- The number table screen shows \(X \) values calculated using the specified Start, End, as well as the values obtained when each \(X \) value is substituted in the function \(f(X) \).
- Note that you can use the number table screen for viewing only. Table contents cannot be edited.
- Pressing the \(\text{X} \rightarrow \) key returns to the function editor screen.

TABLE Mode Precautions

Note that changing the input/output format settings (Math format or Linear format) on the calculator’s setup screen while in the TABLE Mode clears the number table generation function.

Technical Information

Calculation Priority Sequence

The calculator performs calculations according to a Calculation priority sequence.
- Basically, calculations are performed from left to right.
- Expressions with in parentheses have the highest priority.
- The following shows the priority sequence for each individual command:
 1. Function with parentheses:
 - Pol, Rec
 - sin, cos, tan, \(\sin^{-1} \), \(\cos^{-1} \), \(\tan^{-1} \), sinh, cosh, tanh, \(\sinh^{-1} \), \(\cosh^{-1} \), tanh^{-1}
 - log, ln, 10 \(\log \), \(10^{-x} \), \(x^{y} \), Abs
 - Rnd
 2. Functions preceded by values, powers, power roots:
 - \(x \), \(x^{2} \), \(x^{3} \), \(x^{4} \), \(x^{5} \), %
 3. Fractions: \(\sqrt{x} \)/
 4. Prefix symbol: \(- \) (negative sign)

- Statistical estimated value calculation: \(\lambda, \, \beta, \, \kappa_{1}, \, \kappa_{2} \)
- Permutations, combinations: \(nPr, nCr \)
- Multiplication and division: \(\times, \div \)
- Multiplication where sign is omitted: Multiplication sign omitted immediately before \(x, \times \) variables (\(2n, \, 5A, \, 2n \), etc.) Functions with parentheses (\(2\sqrt{3}, \, \sin(30) \), etc.)
- Addition and subtraction: \(+, - \)
 - If a calculation contains a negative value, you may need to enclose the negative value in parentheses. If you want to square the value \(-2 \) for example, you need to input: \((-2)^{2} \). This is because \(x^{2} \) is a function preceded by a value (Priority 2, above), whose priority is greater than the negative sign, which is a prefix symbol (Priority 4).

Example:

\(\left(\frac{1}{2} \right)^{2} = 2^{4} \)

- Multiplication and division, and multiplication where the sign is omitted are the same priority (Priority 7). So these operations are performed from left to right when both types are mixed in the same calculation. Enclosing an operation within parentheses causes it to be performed first, so the use of parentheses can result in different calculations results.

Example:

\((\frac{1}{2}) \cdot (\frac{1}{3}) \cdot (\frac{1}{4}) \)

\(= 1 \cdot 1.570796327 \)

\(= 1 \cdot 0.159154943 \)
Stack Limitations
This calculator uses memory areas called stacks temporarily store lower calculation priority sequence values, commands, and functions. The numeric stack has 10 levels and the command stack has 24 levels, as shown in the illustration below.

Functions Calculation Input Ranges and Precision

<table>
<thead>
<tr>
<th>Functions</th>
<th>Input Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>sin x</td>
<td>0 ≤ x ≤ 9 × 10^10</td>
</tr>
<tr>
<td>cos x</td>
<td>0 ≤ x ≤ 9 × 10^10</td>
</tr>
<tr>
<td>tan x</td>
<td>Same as sin x, except when</td>
</tr>
<tr>
<td>sin^-1 x</td>
<td>0 ≤ x ≤ 1</td>
</tr>
<tr>
<td>cos^-1 x</td>
<td>0 ≤ x ≤ 230.2585092</td>
</tr>
<tr>
<td>tan^-1 x</td>
<td>0 ≤ x ≤ 9 × 10^10</td>
</tr>
<tr>
<td>log x</td>
<td>0 ≤ x ≤ 9 × 10^10</td>
</tr>
<tr>
<td>nPr</td>
<td>0 ≤ n ≤ 10^10, 0 ≤ r ≤ n (n and r are integers)</td>
</tr>
<tr>
<td>nCr</td>
<td>0 ≤ n ≤ 10^10, 0 ≤ r ≤ n (n and r are integers)</td>
</tr>
<tr>
<td>Pol(x,y)</td>
<td></td>
</tr>
<tr>
<td>Rec(x,y)</td>
<td>0 ≤ x ≤ 9 × 10^10</td>
</tr>
</tbody>
</table>

- Precision is basically the same as that described under "Calculation Range and Precision", above.
- "(x)" Input: When functions require consecutive internal calculation, which can cause accumulation of errors that occur with each calculation.
- Error is cumulative and tends to be large in the vicinity of a function's singular point and point of inflection

Error Messages
The calculator will display an error message when a result exceeds the calculation range, when you attempt an illegal input, or whenever any other similar problem occurs.

When an error message appears……
The following are general operations you can use when any error message appears.
- Pressing 1 or 2 displays the calculation expression editing screen you were using before the error message appeared, with the cursor located at the position of the error. For more information, see "Displaying the location of an Error".
- Pressing AC clears the calculation expression you input before the error message appeared. You can then re-input and re-execute the calculation, if you want. Note that in this case, the original calculation will not be retained in calculation history memory.
Math ERROR

*Cause
The intermediate or final result of the calculation you are performing exceeds the allowable calculation range.
Your input exceeds the allowable input range (particularly when using functions).
The calculation you are performing contains an illegal mathematical operation (such as division by zero).

*Action
Check the input values, reduce the number of digits, and try again.
When using independent memory or a variable as the argument of a function, make sure that the memory variable value is within the allowable range for the function.

Stack ERROR

*Cause
The calculation you are performing has caused the capacity of the numeric stack or the command stack to be exceeded.

*Action
Simplify the calculation expression so that it does not exceed the capacity of the stack.
Try splitting the calculation into two or more parts.

Syntax ERROR

*Cause
There is a problem with the format of the calculation you are performing.

*Action
Make necessary corrections.

Insufficient MEM Error

*Cause
There is not enough memory to perform your calculation.

*Action
Narrow the table calculation range by changing the Start, End and Step values, and try again.

Before assuming malfunction of the calculator......
Perform the following steps whenever an error occurs during a calculation or when calculation results are not what you expected. If one step does not correct the problem, move to the next step.
Note that you should make separate copies of important data before performing these steps.
(1) Check the calculation expression to make sure that it does not contain any errors.
(2) Make sure that you are using the correct mode for the type of calculation you are trying to perform.
(3) If the above steps do not correct your problem, press the CE key. This will cause the calculator to perform a routine that checks whether calculation functions are operating correctly. If the calculator discovers any abnormality, it automatically initializes the calculation mode and clears memory contents. For details about initialization settings, see "Initializing the Calculation Mode and Other Settings" under "Initialization Modes and Calculator Setup".
(4) Initialize all modes and settings by performing the following operation:
$\text{CE} \rightarrow \text{CLR} \rightarrow \text{(Setup)}$ (Yes).

Reference

Power Requirements and Battery Replacement
This calculator is powered by solar with a battery (AG 13X1) back-up.

Replacing the Battery
Dim figures on the display of the calculator indicate that battery power is low. Continued use of the calculator when the battery is low can result in improper operation. Replace the battery as soon as possible when display figures become dim. Even if the calculator is operating normally, replace the battery at least once every two years. Important!

Removing the battery from the calculator causes independent memory contents and values assigned to variables to be cleared.
Press \text{SHIFT} (OFF)
Remove the battery cover.

Load a new battery into the calculator with its positive@ and negative@ ends facing correctly.
Replace the battery cover.
Perform the following key operation:
$\text{MEM} \rightarrow \text{(CLR)}$ (All) (Yes).
* Make sure you perform the above key operation. Do not skip it.

Auto Power Off
Your calculator will turn off automatically if you do not perform any operation for about eight minutes. If this happens, press the ON key to turn the calculator back on.

Specifications

Power Requirements:
Battery: AG 13X1
1 year (when used 1 h/day)

Operating Temperature: 0°C to 40°C

Bundled Items: Hard Case
HP Limited Hardware Warranty and Customer Care

This HP Limited Warranty gives you, the end-user customer, express limited warranty rights from HP, the manufacturer. Please refer to HP’s Web site for an extensive description of your limited warranty entitlements. In addition, you may also have other legal rights under applicable local law or special written agreement with HP.

Limited Hardware Warranty Period
Duration: 12 months total (may vary by region, please visit www.hp.com/support for latest information)

General Terms
EXCEPT FOR THE WARRANTIES SPECIFICALLY PROVIDED FOR IN SUBSEQUENT PARAGRAPHS OF THIS SECTION, HP MAKES NO OTHER EXPRESS WARRANTY OR CONDITION WHETHER WRITTEN OR ORAL, TO THE EXTENT ALLOWED BY LOCAL LAW, ANY IMPLIED WARRANTY OR CONDITION OF MERCHANTABILITY, SATISFACTORY QUALITY, OR FITNESS FOR A PARTICULAR PURPOSE IS LIMITED TO THE DURATION OF THE EXPRESSED WARRANTY SET FORTH IN THE SUBSEQUENT PARAGRAPHS OF THIS SECTION. Some countries, states or provinces do not allow limitations on the duration of an implied warranty, so the above limitation or exclusion might not apply to you. This warranty gives you specific legal rights and you might also have other rights that vary from country to country, state to state, or province to province.

TO THE EXTENT ALLOWED BY LOCAL LAW, THE REMEDIES IN THIS WARRANTY STATEMENT ARE YOUR SOLE AND EXCLUSIVE REMEDIES. EXCEPT AS INDICATED ABOVE, IN NO EVENT WILL HP OR ITS SUPPLIERS BE LIABLE FOR LOSS OF DATA OR FOR DIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL (INCLUDING LOST PROFIT OR DATA), OR OTHER DAMAGE, WHETHER BASED IN CONTRACT, TORT, OR OTHERWISE. Some countries, states or provinces do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

FOR CONSUMER TRANSACTIONS IN AUSTRALIA AND NEW ZEALAND: THE WARRANTY TERMS CONTAINED IN THIS STATEMENT, EXCEPT TO THE EXTENT LAWFULLY PERMITTED, DO NOT EXCLUDE, RESTRICT OR MODIFY AND ARE IN ADDITION TO THE MANDATORY STATUTORY RIGHTS APPLICABLE TO THE SALE OF THIS PRODUCT TO YOU.

Notwithstanding the above disclaimers, HP expressly warrants to you, the end-user customer, that HP hardware, accessories and supplies will be free from defects in materials and workmanship after the date of purchase, for the period specified above. If HP receives notice of such defects during the warranty period, HP will, at its option, either repair or replace the product or parts which prove to be defective. Replacement products may be either new or like-new.

HP also expressly warrants to you that HP software will not fail to execute its programming instructions after the date of purchase, for the period specified above, due to defects in materials and workmanship when properly installed and used. If HP receives notice of such defects during the warranty period, HP will replace software media which does not execute its programming instructions due to such defects.

Exclusions
HP does not warrant that the operation of HP products will be uninterrupted or error free. If HP is unable, within a reasonable time, to repair or replace any product to a condition as warranted, you will be entitled to a refund of the purchase price upon prompt return of the product with proof of purchase.

HP products may contain remanufactured parts equivalent to new in performance or may have been subject to incidental use. Warranty does not apply to defects resulting from (a) improper or inadequate maintenance or calibration; (b) software, interfacing, parts or supplies not supplied by HP; (c) unauthorized modification or misuse; (d) operation outside of the published environmental specifications for the product; or (e) improper site preparation or maintenance.

Customer Care
In addition to the one year hardware warranty your HP calculator also comes with one year of technical support. If you need assistance, HP customer care can be reached by either email or telephone. Before calling please locate the call center nearest you from the list below. Have your proof of purchase and calculator serial number ready when you call.

Telephone numbers are subject to change, and local and national telephone rates may apply. A complete list is available on the web at: www.hp.com/support.

Country/Region	Contact
Africa (English) | www.hp.com/support
Afrique (français) | www.hp.com/support
Argentina | 0-800-555-5000
Australia | 1300-551-664
Belgique (français) | 02 620 00 85
Belgium (English) | 02 620 00 86
Bolivia | 800-100-193
Brasil | 0-800-709-7751
Canada | 800-HP-INVENT
Caribbean | 1-800-711-2884
Česká republika | 296 335 612
Chile | 800-360-999
China | 913753382
Colombia | 01-8000-31-4746-8368
Costa Rica | 0-800-011-0524
Danmark | 82 33 28 44
Deutschland | 069 9530 7103
Ecuador | 800-711-2884
El Salvador | 800-6160
España | 913753382
France | 01 4993 9006
Greece Ελλάδα | 210 969 6421
Guatemala | 1-800-999-5105
Honduras | 800-711-2884
Hong Kong | 852 2833-1111
India | www.hp.com/support/india
Indonesia | +65 6100 6682