HP StorageWorks

P4000 SAN Solutionユーザーガイド

本書では、HP StorageWorks SAN Solutionの構成と使用について説明しています。説明内容には、ハードウェア構成や、P4000 SANの設計と実装についての情報が含まれています。本書は、P4000 SAN Solutionの実装、保守、管理を担当するシステム管理者を対象としています。
ご注意

© Copyright 2009-2010 Hewlett-Packard Development Company, L.P.

本書で取り扱っているコンピューターソフトウェアは秘密情報であり、その保有、使用、または複製には、Hewlett-Packard Companyから使用許諾を得る必要があります。米国政府の連邦調達規則であるFAR 12.211および12.212の規定に従って、コマーシャルコンピューターソフトウェア、コンピューターソフトウェアドキュメンテーションおよびコマーシャルアイテムのテクニカルデータ（Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items）は、ベンダーが提供する標準使用許諾規定に基づいて米国政府に使用許諾が付与されます。

本書の内容は、将来予告なしに変更されることがあります。HP製品、またはサービスの保証は、当該製品、およびサービスに付随する明示的な保証文によってのみ規定されるものとします。ここに記載の何ものも、追加保証を構成すると解釈されるものではありません。ここに含まれる技術的、編集上の誤り、または欠如について、HPはいかなる責任も負いません。

商標について

Microsoft、Windows、Windows XPおよびWindows NTは、米国におけるMicrosoft Corporationの登録商標です。
ストレージノード構成ファイルのバックアップ .. 42
ファイルからのストレージノード構成の復元 .. 42
ストレージノードの電源切断または再起動 .. 43
ストレージノードの再起動 .. 43
ストレージノードの電源の切断 .. 44
ストレージノード上のSAN/iQソフトウェアのアップグレード .. 45
前提条件 .. 45
Webサイトからのアップグレードファイルのコピー ... 45
ストレージノードのアップグレード .. 45
ストレージノードの高度な機能の登録 .. 46
ポリュームとスナップショットの可用性の確認 ... 46

3 ストレージの設定 ディスクのRAIDとディスクの管理

<table>
<thead>
<tr>
<th>ストレージの設定</th>
<th>ディスクのRAIDとディスクの管理</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAIDの構成とディスクの管理</td>
<td>RAIDの構成とディスクの管理</td>
</tr>
<tr>
<td>ストレージの必要条件としてのRAID</td>
<td>ストレージの必要条件としてのRAID</td>
</tr>
<tr>
<td>アクセス方法</td>
<td>アクセス方法</td>
</tr>
<tr>
<td>ステータスインジケーター</td>
<td>ステータスインジケーター</td>
</tr>
<tr>
<td>RAIDの構成と管理</td>
<td>RAIDの構成と管理</td>
</tr>
<tr>
<td>RAIDの利点</td>
<td>RAIDの利点</td>
</tr>
<tr>
<td>RAID構成の定義</td>
<td>RAID構成の定義</td>
</tr>
<tr>
<td>RAID 0</td>
<td>RAID 0</td>
</tr>
<tr>
<td>RAID 1/10</td>
<td>RAID 1/10</td>
</tr>
<tr>
<td>RAID 1/10内のストレージ容量</td>
<td>RAID 1/10内のストレージ容量</td>
</tr>
<tr>
<td>RAID 5、RAID 5+スペア、またはRAID 50</td>
<td>RAID 5、RAID 5+スペア、またはRAID 50</td>
</tr>
<tr>
<td>RAID 5またはRAID 5+スペア内のバリティとストレージ容量</td>
<td>RAID 5またはRAID 5+スペア内のバリティとストレージ容量</td>
</tr>
<tr>
<td>RAID 5とホットスペアディスク</td>
<td>RAID 5とホットスペアディスク</td>
</tr>
<tr>
<td>RAID 6</td>
<td>RAID 6</td>
</tr>
<tr>
<td>RAID 6内のバリティとストレージ容量</td>
<td>RAID 6内のバリティとストレージ容量</td>
</tr>
<tr>
<td>RAID 6におけるドライブ障害とホットスワップ</td>
<td>RAID 6におけるドライブ障害とホットスワップ</td>
</tr>
<tr>
<td>[RAID Setup]レポートに表示されるRAIDデバイスの説明</td>
<td>[RAID Setup]レポートに表示されるRAIDデバイスの説明</td>
</tr>
<tr>
<td>RAIDタイプごとのRAIDデバイス</td>
<td>RAIDタイプごとのRAIDデバイス</td>
</tr>
<tr>
<td>仮想RAIDデバイス</td>
<td>仮想RAIDデバイス</td>
</tr>
<tr>
<td>RAID 0内で構成されるデバイス</td>
<td>RAID 0内で構成されるデバイス</td>
</tr>
<tr>
<td>RAID 10内で構成されるデバイス</td>
<td>RAID 10内で構成されるデバイス</td>
</tr>
<tr>
<td>RAID 5内で構成されるデバイス</td>
<td>RAID 5内で構成されるデバイス</td>
</tr>
<tr>
<td>RAID 6内で構成されるデバイス</td>
<td>RAID 6内で構成されるデバイス</td>
</tr>
<tr>
<td>RAID構成のプランニング</td>
<td>RAID構成のプランニング</td>
</tr>
<tr>
<td>データ保護</td>
<td>データ保護</td>
</tr>
<tr>
<td>RAIDによるデータ冗長性の実現</td>
<td>RAIDによるデータ冗長性の実現</td>
</tr>
<tr>
<td>クラスター内でのネットワークRAIDの使用</td>
<td>クラスター内でのネットワークRAIDの使用</td>
</tr>
<tr>
<td>クラスター内のネットワークRAIDとディスクRAIDを併用する</td>
<td>クラスター内のネットワークRAIDとディスクRAIDを併用する</td>
</tr>
<tr>
<td>RAID構成の混在</td>
<td>RAID構成の混在</td>
</tr>
<tr>
<td>RAID再構築速度の設定</td>
<td>RAID再構築速度の設定</td>
</tr>
<tr>
<td>RAID再構築速度の一般的なガイドライン</td>
<td>RAID再構築速度の一般的なガイドライン</td>
</tr>
<tr>
<td>RAID再構築速度の設定</td>
<td>RAID再構築速度の設定</td>
</tr>
<tr>
<td>RAIDの再構成</td>
<td>RAIDの再構成</td>
</tr>
<tr>
<td>RAIDの再構成要件</td>
<td>RAIDの再構成要件</td>
</tr>
<tr>
<td>電気ストレージノードで事前構成済みのRAIDを変更する場合</td>
<td>電気ストレージノードで事前構成済みのRAIDを変更する場合</td>
</tr>
<tr>
<td>管理グループ内のストレージノード上でRAIDを変更する場合</td>
<td>管理グループ内のストレージノード上でRAIDを変更する場合</td>
</tr>
<tr>
<td>RAID再構成に</td>
<td>RAID再構成に</td>
</tr>
<tr>
<td>RAIDステータスの監視</td>
<td>RAIDステータスの監視</td>
</tr>
<tr>
<td>データの読み書きとRAIDステータス</td>
<td>データの読み書きとRAIDステータス</td>
</tr>
<tr>
<td>データ冗長性とRAIDステータス</td>
<td>データ冗長性とRAIDステータス</td>
</tr>
<tr>
<td>ディスクの管理</td>
<td>ディスクの管理</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

4
4 ネットワークの管理

IPネットワークブラケット

ネットワーク構成の変更

ネットワーク特性の変更に際してのベストプラクティス

アクセス方法

ネットワークインタフェース上の設定の管理

要件

[TCP Status]タブ

[TCP Status]タブ

速度と二重化の設定の変更

要件

ベストプラクティス

速度と二重化の設定を変更するには

NICのフレームサイズの変更

要件

ベストプラクティス

ジャンボフレーム

NICのフレームサイズの縮集

NICフロー制御の設定

要件

NICフロー制御の有効化

[TCP/IP]タブ

ネットワークインタフェースの識別

IPアドレスへのping送信

IPアドレスへのping送信するには

IPアドレスの手動構築

DHCPの使用

DHCPを使用してIPアドレスを設定するには

ネットワークインタフェースのボンディングの構築
6 管理者ユーザーと管理者グループ

管理者ユーザーの管理
デフォルト管理者ユーザー
新しい管理者ユーザーの追加
管理者ユーザーの編集
ユーザーの説明の変更
ユーザーのパスワードの変更
ユーザーに対するグループメンバーシップの追加
ユーザーからのグループメンバーシップの削除
管理者ユーザーの削除

管理者グループの管理
デフォルト管理者グループ
管理者グループの追加
管理者グループの編集
グループの説明の変更
管理者グループの権限の変更
既存のグループへのユーザーの追加
グループからのユーザーの削除
管理者グループの削除

7 SNMPの使用

SNMPの使用
アクセス方法
SNMPエージェントの有効化
SNMPエージェントの有効化
SNMPクライアントの追加
IPアドレスによる追加
ホスト名による追加
SNMPクライアントに対するアクセス制御の構成
アクセス制御エントリーの編集
アクセス制御エントリーの削除

SNMP MIBの使用
LeftHand Networks MIBのインストール
サポートされているMIB

SNMPエージェントの無効化

SNMPの無効化

SNMPトラップの追加
前提条件
SNMPトラップの有効化
トラップ受信者の削除
テストトラップの送信
SNMPトラップの無効化
8 レポート機能

<table>
<thead>
<tr>
<th>設定</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>アクティブ監視の概要</td>
<td>121</td>
</tr>
<tr>
<td>警告を使用したアクティブ監視</td>
<td>121</td>
</tr>
<tr>
<td>アクセス方法</td>
<td>122</td>
</tr>
<tr>
<td>監視する警告の選択</td>
<td>122</td>
</tr>
<tr>
<td>監視対象変数の追加</td>
<td>122</td>
</tr>
<tr>
<td>監視対象変数の編集</td>
<td>123</td>
</tr>
<tr>
<td>アクティブ監視の対象からの変数の削除</td>
<td>123</td>
</tr>
<tr>
<td>監視対象変数のリスト</td>
<td>124</td>
</tr>
<tr>
<td>警告通知の設定</td>
<td>127</td>
</tr>
<tr>
<td>単一の変数を対象とする警告通知の設定</td>
<td>127</td>
</tr>
<tr>
<td>複数の変数を対象とする通知の設定</td>
<td>127</td>
</tr>
<tr>
<td>警告のCMC通知の変更</td>
<td>127</td>
</tr>
<tr>
<td>警告のSNMP通知の設定</td>
<td>127</td>
</tr>
<tr>
<td>警告の電子メール通知の設定</td>
<td>128</td>
</tr>
<tr>
<td>警告の表示と保存</td>
<td>129</td>
</tr>
<tr>
<td>すべての変数の警告ログの保存</td>
<td>129</td>
</tr>
<tr>
<td>特定の変数の警告履歴の保存</td>
<td>129</td>
</tr>
<tr>
<td>ハードウェア情報レポートの使用</td>
<td>130</td>
</tr>
<tr>
<td>診断レポートの実行</td>
<td>130</td>
</tr>
<tr>
<td>アクセス方法</td>
<td>130</td>
</tr>
<tr>
<td>診断レポートの表示</td>
<td>131</td>
</tr>
<tr>
<td>診断テストのリスト</td>
<td>131</td>
</tr>
<tr>
<td>ハードウェア情報レポートの使用</td>
<td>134</td>
</tr>
<tr>
<td>ハードウェア情報レポートの生成</td>
<td>134</td>
</tr>
<tr>
<td>ハードウェア情報レポートの保存</td>
<td>135</td>
</tr>
<tr>
<td>ハードウェア情報レポートの詳細</td>
<td>136</td>
</tr>
<tr>
<td>ハードウェア情報ログファイルの使用</td>
<td>134</td>
</tr>
<tr>
<td>ログファイルの保存</td>
<td>144</td>
</tr>
<tr>
<td>リモートログファイルの使用</td>
<td>144</td>
</tr>
<tr>
<td>リモートログの追加</td>
<td>144</td>
</tr>
<tr>
<td>リモートログターゲットコンピューターの構成</td>
<td>145</td>
</tr>
<tr>
<td>リモートログターゲットの編集</td>
<td>145</td>
</tr>
<tr>
<td>リモートログの削除</td>
<td>145</td>
</tr>
<tr>
<td>サポートログのエクスポート</td>
<td>146</td>
</tr>
</tbody>
</table>

9 管理グループの操作

<table>
<thead>
<tr>
<th>設定</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>管理グループの機能</td>
<td>147</td>
</tr>
<tr>
<td>管理グループ作成の要件</td>
<td>147</td>
</tr>
<tr>
<td>マネージャーの概要</td>
<td>147</td>
</tr>
<tr>
<td>マネージャーの機能</td>
<td>148</td>
</tr>
<tr>
<td>マネージャーとコントロール</td>
<td>148</td>
</tr>
<tr>
<td>標準マネージャーと特殊マネージャー</td>
<td>148</td>
</tr>
<tr>
<td>フェールオーバーマネージャー</td>
<td>149</td>
</tr>
<tr>
<td>仮想マネージャー</td>
<td>149</td>
</tr>
<tr>
<td>管理グループとデフォルトマネージャーの作成</td>
<td>150</td>
</tr>
<tr>
<td>構成サマリーの概要</td>
<td>150</td>
</tr>
<tr>
<td>サマリーロールアップ</td>
<td>150</td>
</tr>
<tr>
<td>構成のガイド</td>
<td>151</td>
</tr>
<tr>
<td>ベストプラクティス</td>
<td>151</td>
</tr>
<tr>
<td>構成サマリーの読み方</td>
<td>152</td>
</tr>
<tr>
<td>ベストプラクティスサマリーの概要</td>
<td>154</td>
</tr>
<tr>
<td>ディスクレベルのデータ保護</td>
<td>155</td>
</tr>
<tr>
<td>RAIDを使用したディスク保護</td>
<td>155</td>
</tr>
</tbody>
</table>
10 特殊マネージャーの使用

用語の定義
フェールオーバーマネージャーの概要
フェールオーバーマネージャーの要件
VMware ServerまたはVMware Playerとともに使用する場合の最小システム要件
VMware ESX Serverとともに使用する場合の最小システム要件
仮想ネットワーク構成のプランニング
7.0フェールオーバーマネージャーのアップグレード
VMware ServerまたはVMware Player上でのフェールオーバーマネージャーの使用
フェールオーバーマネージャーのインストールと構成
フェールオーバーマネージャーの構成
クラスターの使用
クラスターの編集
クラスターの使用状況の追跡
追加のクラスターの作成
仮想マネージャーの起動
仮想マネージャーの電源投入とIPアドレスおよびホスト名の構成
10 クラスターの使用
クラスターとストレージノード容量
前提条件
追加のクラスターの作成
前提条件
クラスター内のストレージノードの数
追加のクラスターを作成するには
iSCSI用の仮想IPおよびiSNSの構成
仮想IPマネージャーの使用
iSNSサーバーの追加
クラスターの使用状況の追跡
クラスターの編集
前提条件
アクセス方法
既存のクラスターへの新しいストレージノードの追加
前提条件
クラスターへのストレージの追加
クラスターからのストレージノードの削除
12 ストレージのプロビジョニング ... 199
SANの容量はどのように使用されるか .. 199
ストレージのプロビジョニング .. 199
ボリュームのプロビジョニング ... 200
フルプロビジョニング .. 200
シンプロビジョニング .. 200
ボリュームサイズの設定に関するベストプラクティス 200
データ保護のプランニング ... 200
以前の用語 .. 201
データ保護レベル ... 201
データ保護レベルが機能する仕組み .. 202
スナップショットのプロビジョニング ... 206
スナップショットとバックアップの違い ... 206
スナップショットがクラスタースペースに及ぼす影響 207
ボリュームサイズとスナップショットによる容量の管理 207
スナップショットはどのように作成されるか ... 207
継続的な容量管理 .. 208
ボリュームとスナップショットの数 .. 208
SAN容量と使用状況の確認 ... 208
クラスターの[Use Summary] .. 208
[Volume Use]サマリー .. 210
[Node Use]サマリー .. 212
ディスク容量とボリュームサイズの測定 .. 214
ブロックシステムとファイルシステム ... 214
ブロックシステムへのファイルシステムデータの格納 214
サーバー上のボリュームサイズの変更 ... 215
Microsoft Windowsでのボリュームサイズの拡大 215
その他の環境でのボリュームサイズの拡大 ... 216
スペース管理のための構成特性の変更 .. 216
スナップショット一時スペース ... 216
スナップショットの一時スペースの管理 ... 216

13 ボリュームの使用 .. 219
ボリュームとサーバーアクセス ... 219
前提条件 .. 219
ポリュームのプランニング ... 219
ポリューム数のプランニング .. 220
ポリュームタイプのプランニング .. 220
ポリューム作成の手引き ... 220
ポリュームの作成 ... 222
基本ポリュームの作成 ... 222
ポリュームの高度な設定の構成 (オプション) 223
ポリュームの高度な設定の構成 ... 223
ポリュームの編集 ... 223
ポリュームを編集するには .. 224
ポリュームの説明の変更 .. 225
クラスターの変更 .. 225
データ保護レベルの変更 ... 225
サイズの変更 ... 225
ポリュームの削除 ... 226
ポリュームの削除に関する制限事項 ... 226
前提条件 ... 226
リリース8.xでの変更点 ... 226
ポリュームを削除するには .. 226

14 スナップショットの使用 ... 229
スナップショットとバックアップの違い ... 229
前提条件 ... 229
スナップショットの使用 ... 229
シングルスナップショットとスケジュール設定されたスナップショットの違い ... 230
リリース8.5での新要件 ... 230
スナップショットのガイド ... 230
スナップショットの計画 .. 231
テーブルバックアップのためのソースポリューム 231
ベストプラクティス .. 231
ソフトウェアをアップグレードする前のデータ保存 231
ベストプラクティス .. 231
自動バックアップ .. 231
ベストプラクティス .. 231
スナップショットの数の計画 ... 232
単独のスナップショットの作成 ... 232
アプリケーション管理スナップショットの要件 232
ポリュームセット用のスナップショットについて 233
ポリュームセット用のスナップショットの作成 233
スナップショットの編集 ... 234
スナップショットのマウントとアクセス ... 234
ホストへのスナップショットのマウント ... 235
アプリケーション管理スナップショットの使用準備 235
スタンダードノンサーバー上でのアプリケーション管理スナップショットの使用準備 .. 235
Microsoftクラスター内のサーバー上でのアプリケーション管理スナップショットの使用準備 236
スナップショットの一時スペースの管理 ... 237
一時スペースの変換 .. 237
一時スペースの削除 .. 238
ポリュームのスナップショットのスケジュール作成 238
ポリュームのスナップショットのスケジュール作成に対するベストプラクティス ... 239
ポリュームのスナップショットのスケジュール作成 239
ポリュームセットのスナップショットを作成するためのスケジュールについて ... 241
スケジュール設定されたスナップショットの編集 242
スケジュールされたスナップショットの一時停止と再開 242
15 SmartCloneボリューム

SmartCloneボリュームとは 251
前提条件 ... 251
用語集 ... 252
SmartCloneボリュームの使用シナリオの例 252
複数の仮想サーバーまたはBoot from SANサーバーの展開 252
本番データをテスト、開発、およびデータマイニングに安全に使用 253
ボリュームのクローン .. 253
SmartCloneボリュームのプランニング 253
スペース要件 .. 254
SmartCloneボリュームの命名規則 254
サーバー内での複数の同一ディスクと名前 254
サーバーアクセス .. 255
SmartCloneボリュームの特性の定義 255
SmartCloneボリュームの命名 256
共有特性と個別特性 ... 257
クローンポイント .. 261
共有スナップショット 262
SmartCloneボリュームの作成 264
SmartCloneボリュームを作成するには 264
SmartCloneボリュームの表示 267
Map View (マップビュー) 267
ビューの使用 ... 268
マップビューの操作 ... 268
クローンポイント、ボリューム、およびスナップショットの表示 270
クローンポイントとSmartCloneボリュームの使用状況の表示 270
SmartCloneボリュームの編集 271
SmartCloneボリュームを編集するには 272
SmartCloneボリュームの削除 272
クローンポイントの削除 273
複数のSmartCloneボリュームの削除 273

16 スクリプトの使用 .. 275
スクリプトのマニュアル 275
17 ボリュームへのサーバーアクセスの制御 ... 277
丼来の用語（リリース7.0以前） ... 277
管理グループへのサーバー接続の追加 .. 278
前提条件 .. 278
サーバー接続の編集 .. 279
サーバー接続の削除 .. 280
ボリュームへのサーバー接続アクセスの割り当て ... 280
ボリュームからのサーバー接続の割り当て ... 281
サーバー接続からのボリュームの割り当て ... 282
サーバー接続とボリュームの割り当ての編集 ... 282
ボリュームからのサーバー接続の割り当ての編集 ... 282
サーバー接続からのサーバーの割り当ての編集 ... 282

iSCSIイニシエーターとディスク設定の完了 ... 283
永続的ターゲットまたは優先ターゲット ... 283
HP LeftHand DSM for MPIOの設定 ... 283
ディスク管理 .. 283

18 パフォーマンスの監視 ... 285
前提条件 .. 285
パフォーマンス情報の用途の紹介 .. 285
使用しているSANについての理解 .. 286
現在のSANの動作状況の例 ... 286
ワークローンドの特性付けの例 .. 286
障害の分離の例 ... 287
使用しているボリュームに関する理解 .. 287
最もアクティブなボリュームの例 .. 287
特定のサーバーによって生成される動作の例 ... 288
SANの向上計画 .. 288
NICボンディングによるパフォーマンス向上を判断するためのネットワーク使用率の例 .. 289
2つのクラスターの負荷の比較の例 ... 289
2つのボリュームの負荷の比較の例 ... 289
パフォーマンスモニターウィンドウへのアクセスと理解 .. 291
パフォーマンスモニターのツールバー ... 292
パフォーマンスモニターのグラフ .. 294
パフォーマンスモニターのテーブル ... 294
パフォーマンス統計の理解 ... 295
複数クラスターの監視と比較 .. 297
パフォーマンス監視と解析の概念 .. 298
ワークローンド ... 298
アクセスタイプ .. 298
アクセスサイズ .. 298
アクセスパターン .. 298
キュープレバ .. 298
サンプル間隔とタイムゾーンの変更 .. 298
統計の追加 ... 299
統計の詳細の表示 ... 301
統計の削除とクリア ... 301
統計の削除 ... 301
サンプルデータのクリア .. 301
表示のクリア .. 302
デフォルトのリセット .. 302
監視の一時停止と再開 .. 302
グラフの変更 .. 302
グラフの表示/非表示 ... 303
19 高度な機能の登録

20 iSCSIおよびHP LeftHand Storage Solution

21 ディスク交換に関する付録
図一覧

<table>
<thead>
<tr>
<th>ページ</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>CMCの3つのセクションの表示</td>
</tr>
<tr>
<td>27</td>
<td>ナビゲーションウィンドウ内のメニューバーの表示</td>
</tr>
<tr>
<td>30</td>
<td>スナップショットおよびSmartCloneボリュームのデフォルト命名規則</td>
</tr>
<tr>
<td>32</td>
<td>すべての構成要素にデフォルト命名規則を使用した場合の例</td>
</tr>
<tr>
<td>34</td>
<td>SAN/iQソフトウェアのストレージ階層</td>
</tr>
<tr>
<td>39</td>
<td>ストレージノードの構成カテゴリ</td>
</tr>
<tr>
<td>45</td>
<td>ストレージノードの電源切断の確認</td>
</tr>
<tr>
<td>47</td>
<td>[Availability]タブ</td>
</tr>
<tr>
<td>50</td>
<td>ストレージノードの[Storage]構成カテゴリの表示</td>
</tr>
<tr>
<td>52</td>
<td>RAID 10内のディスクベアの容量の例</td>
</tr>
<tr>
<td>52</td>
<td>4つのディスクを使用するRAID 5セット内におけるパリティ分散</td>
</tr>
<tr>
<td>53</td>
<td>RAID 6内のディスク間で分散されるパリティ</td>
</tr>
<tr>
<td>54</td>
<td>[RAID Setup]レポート</td>
</tr>
<tr>
<td>55</td>
<td>HP LeftHand P4500およびHP StorageWorks P4500 G2で、ミラー化されたディスクベアと2つのRAIDデバイスを持つRAID 10</td>
</tr>
<tr>
<td>55</td>
<td>HP LeftHand P4300およびHP StorageWorks P4300 G2内のRAID 1+0</td>
</tr>
<tr>
<td>55</td>
<td>HP LeftHand P4500およびHP StorageWorks P4500 G2のRAID 5セット</td>
</tr>
<tr>
<td>55</td>
<td>HP LeftHand P4300およびHP StorageWorks P4300 G2のRAID 5セット</td>
</tr>
<tr>
<td>56</td>
<td>HP LeftHand P4500およびHP StorageWorks P4500 G2で、6台のディスクセットを2組使うRAID 6構成</td>
</tr>
<tr>
<td>56</td>
<td>P4300およびP4300 G2のRAID 6</td>
</tr>
<tr>
<td>61</td>
<td>メインCMCウィンドウからのRAIDステータスの監視</td>
</tr>
<tr>
<td>62</td>
<td>[Disk Setup]タブの列の例</td>
</tr>
<tr>
<td>63</td>
<td>VSAのディスクステータスの表示</td>
</tr>
<tr>
<td>64</td>
<td>HP LeftHand P4500およびHP StorageWorks P4500 G2の[Disk Setup]タブの表示</td>
</tr>
<tr>
<td>64</td>
<td>HP LeftHand P4500およびHP StorageWorks P4500 G2のドライブベイのレイアウト</td>
</tr>
<tr>
<td>65</td>
<td>HP LeftHand P4300およびHP StorageWorks P4300 G2の[Disk Setup]タブの表示</td>
</tr>
<tr>
<td>65</td>
<td>HP LeftHand P4300およびHP StorageWorks P4300 G2のドライブベイのレイアウト</td>
</tr>
<tr>
<td>69</td>
<td>ディスクの電源オフまたは未検出時の表示</td>
</tr>
<tr>
<td>70</td>
<td>RAID再構築中の[RAID Setup]タブの表示</td>
</tr>
<tr>
<td>70</td>
<td>RAID再構築中の[Disk Setup]タブの表示</td>
</tr>
<tr>
<td>72</td>
<td>ストレージノードの[Storage]構成カテゴリの表示</td>
</tr>
</tbody>
</table>
100 [Map View]タブ上でSmartCloneボリュームおよび関連付けられているスナップショットをオー
ガニックレイアウトで表示 .. 268
101 [Map View]ウィンドウのツールバーに用意されている表示ツール 269
102 マップビューツリーでの拡大ツールの使用 .. 270
103 ナビゲーションウィンドウ内でのすべての関連するクローンポイントのハイライト表示 270
104 クローンポイントの[Details]タブに表示される[Utilization]グラフ 271
105 SmartCloneボリュームの[Details]タブに表示される[Utilization]グラフ 271
106 クローンポイントに依存するボリュームの表示 .. 273
107 クライアント内のSmartCloneボリュームのリスト .. 273
108 ナビゲーションウィンドウのサーバー割り当てと[Volumes and Snapshots]タブ 278
109 負荷分散のチェックボックスを変更した後の警告 .. 280
110 クラスターの動作状況の概要を示す例 ... 286
111 ボリュームのワークロードのタイプを示す例 ... 287
112 障害の分離を示す例 ... 287
113 2つのボリュームのIOSPを示す例 ... 288
114 2つのボリュームのスループットを示す例 ... 288
115 特定のサーバーによって生成される動作を示す例 .. 288
116 2つのストレージノードのネットワーク使用率を示す例 .. 289
117 2つのクラスターの比較例 .. 290
118 2つのボリュームの比較例 .. 291
119 パフォーマンスモニターウィンドウの各部 .. 292
120 パフォーマンスモニターのツールバー .. 293
121 警告メッセージの例 ... 294
122 パフォーマンスモニターのグラフ .. 294
123 パフォーマンスモニターのテーブル .. 295
124 パフォーマンス統計とその測定場所 .. 296
125 [Add Statistics]ウィンドウ .. 300
126 [Edit Line]ウィンドウ .. 303
127 60日の評価期間スタートの確認 ... 307
128 高度な機能のライセンス状況を示すアイコン ... 308
129 ストレージノードのライセンスキーが表示された状態 ... 311
130 管理グループの高度な機能の登録 ... 312
131 フィーチャーキーの選択 .. 312
132 準拠するイニシエーターに関する情報の入手 .. 316
133 準拠するiSCSIイニシエーターの表示 .. 317
134 さまざまなタイプのCHAP .. 318
135 イニシエーターノード名をコピーするためにMS iSCSIを表示 319
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>136</td>
<td>CHAPによる単一ホストのiSCSIの構成（MS iSCSIイニシエーターに表示された内容から）</td>
</tr>
<tr>
<td>137</td>
<td>2ウェイCHAPのためのイニシエーターシークレットの追加（MS iSCSIイニシエーターに表示された内容から）</td>
</tr>
<tr>
<td>138</td>
<td>ボリュームがネットワークRAID-0構成の場合の警告メッセージ</td>
</tr>
<tr>
<td>139</td>
<td>RAIDの再構築の進行状況の確認</td>
</tr>
</tbody>
</table>
表一覧

<table>
<thead>
<tr>
<th>章目</th>
<th>タイトル</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>デフォルトで用意されている名前</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>デフォルト名の例</td>
<td>31</td>
</tr>
<tr>
<td>3</td>
<td>デフォルトをいずれも有効化しない場合の番号付与規則</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>ストレージノードのRAIDレベルおよびデフォルト構成</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>ステータスとアイコンの色の定義</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>ストレージノード内のRAID 5セットのストレージ容量</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>ストレージノード内のRAID 6セットのストレージ容量</td>
<td>53</td>
</tr>
<tr>
<td>8</td>
<td>RAID構成におけるデータの可用性と安全性</td>
<td>58</td>
</tr>
<tr>
<td>9</td>
<td>ストレージノードのディスク管理タスク</td>
<td>62</td>
</tr>
<tr>
<td>10</td>
<td>ディスクレポート上の項目の説明（続き）</td>
<td>63</td>
</tr>
<tr>
<td>11</td>
<td>ディスク交換の要件</td>
<td>65</td>
</tr>
<tr>
<td>12</td>
<td>ネットワークインターフェイスのステータスと情報</td>
<td>73</td>
</tr>
<tr>
<td>13</td>
<td>ストレージノードの速度と二重化の設定</td>
<td>74</td>
</tr>
<tr>
<td>14</td>
<td>ストレージノード上のネットワークインターフェイスの識別</td>
<td>78</td>
</tr>
<tr>
<td>15</td>
<td>アクティブ/パッシブ、リンクアグリゲーション動的モード、アダプティブ負荷分散の各ボニング方法の比較</td>
<td>81</td>
</tr>
<tr>
<td>16</td>
<td>ボンディングされたネットワークインターフェイス</td>
<td>81</td>
</tr>
<tr>
<td>17</td>
<td>アクティブ/パッシブ構成におけるNICステータス</td>
<td>82</td>
</tr>
<tr>
<td>18</td>
<td>アクティブ/パッシブフェールオーバーのサンプルシナリオおよび対応するNICステータス</td>
<td>83</td>
</tr>
<tr>
<td>19</td>
<td>アクティブ/パッシブによるフェールオーバー中のNICステータス</td>
<td>83</td>
</tr>
<tr>
<td>20</td>
<td>リンクアグリゲーション動的モードでのフェールオーバーのサンプルシナリオおよび対応するNICステータス</td>
<td>86</td>
</tr>
<tr>
<td>21</td>
<td>リンクアグリゲーション動的モードによるフェールオーバー中のNICステータス</td>
<td>86</td>
</tr>
<tr>
<td>22</td>
<td>アダプティブ負荷分散フェールオーバーのサンプルシナリオおよび対応するNICステータス</td>
<td>88</td>
</tr>
<tr>
<td>23</td>
<td>アダプティブ負荷分散によるフェールオーバー中のNICステータス</td>
<td>88</td>
</tr>
<tr>
<td>24</td>
<td>デフォルト管理者グループの使用</td>
<td>109</td>
</tr>
<tr>
<td>25</td>
<td>グループ権限の説明</td>
<td>110</td>
</tr>
<tr>
<td>26</td>
<td>アクティブ監視の警告のタイプ</td>
<td>122</td>
</tr>
<tr>
<td>27</td>
<td>監視対象変数のリスト</td>
<td>124</td>
</tr>
<tr>
<td>28</td>
<td>HP LeftHand P4500、HP StorageWorks P4500 G2、およびHP LeftHand P4300、HP StorageWorks P4300 G2で使用できるハードウェア診断テストと成功/失敗基準のリスト</td>
<td>131</td>
</tr>
<tr>
<td>章目</td>
<td>ページ</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>66 iSCSI CHAPの構成</td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>67 SCSI用語</td>
<td>319</td>
<td></td>
</tr>
<tr>
<td>68 ゴーストストレージノードの修復後のストレージノードへの置き換え</td>
<td>327</td>
<td></td>
</tr>
<tr>
<td>69 ストレージノードの場所によるログイン方法の違い</td>
<td>332</td>
<td></td>
</tr>
<tr>
<td>70 ストレージノード上のEthernetインターフェイスの識別</td>
<td>333</td>
<td></td>
</tr>
<tr>
<td>71 表記上の規則</td>
<td>340</td>
<td></td>
</tr>
</tbody>
</table>
1 はじめに

本文書ではSAN/iQソフトウェアおよびCMCについて説明します。CMCでは、HP LeftHand Storage Solutionの構成と管理を行います。
本製品ガイドには、個々のストレージノードの構成手順と、複数のストレージノードのボリューム、スナップショット、リモートコピー、およびストレージクラスターの作成手順が記載されています。

CMCの使用法

CMCでは以下の作業を行います。
• ストレージノードの構成と管理
• クラスターおよびボリュームの作成と管理

自動検出

CMCを初めて開くと、サブネット内でストレージノードを自動的に検索します。CMCによって検出されたストレージノードは、CMCの左側にあるナビゲーションウィンドウに表示されます。ストレージノードが1つも見つからなかった場合は、[Find Nodes]ウィザードが起動します。このウィザードの指示に従って、ネットワーク上のストレージノードを検出してください。

自動検出機能を無効にするには、[Find by Subnet and Mask]ウィンドウ上のチェックボックスをオフにします。詳しくは、「ストレージノードの検出」（33ページ）を参照してください。

CMC

CMCは、3つのセクションに分かれています。
1. ナビゲーションウィンドウ
2. タブウィンドウ
3. 警告ウィンドウ

図1 CMCの3つのセクションの表示

ナビゲーションウィンドウ - 左側の縦のペインには、ネットワークのアーキテクチャーが表示されます。ネットワークには、以下の物理構成要素と論理構成要素があります。
- 管理グループ
- サーバー
- 管理
- サイト
- フェールオーバーマネージャーと仮想マネージャー
- クラスター
- ストレージノードとそれらの構成カテゴリ
- ボリューム（SmartCloneを含む）
- スナップショット
- リモートコピー

タブウィンドウ - ナビゲーションウィンドウで選択した各構成要素に関する情報が右側のタブウィンドウに表示されます。タブウィンドウの左下にある[Tasks]メニューから、現在の構成要素に関連するコマンドにアクセスできます。

警告ウィンドウ - 警告メッセージが表示されます。警告メッセージを削除することもできます。

CMC内でのメニューーバーを使用したタスクの実行

メニューーバーから以下のタスクメニューにアクセスできます。
ナビゲーションウィンドウの使用

ナビゲーションウィンドウには、メニューの[Find]項目か、[Find Storage Nodes]ウィザードで設定した条件に基づいて、ネットワークアーキテクチャのコンポーネントが表示されます。1つの管理グループなど、少数のストレージノードからなるグループを表示したり、すべてのストレージノードを同時に表示したりできます。

ログイン

CMCは、[Available Nodes]プールに含まれているストレージノードに自動的にログインして、構成カテゴリにアクセスします。管理グループを作成した後でCMCを開いた場合、その管理グループにアクセスするにはログインが必要になります。ユーザーがいずれかの管理グループへのログインを完了すると、CMCは最初のログインを使用して、ユーザーを他の管理グループに自動的にログインさせるようになります。

△ 注意:

CMCを同時に複数のマシン上で開かないでください。ネットワーク上で複数のCMCセッションを開くことはサポートされていません。

ナビゲーションウィンドウ内での移動

ナビゲーションウィンドウ内の項目間を移動すると、タブウィンドウに表示される情報とタブが変化し、ナビゲーションウィンドウ内で現在選択されている項目が反映されます。
シングルクリック
ナビゲーションウィンドウ内の項目はシングルクリックで選択できます。
プラス記号（+）をシングルクリックすると、ツリーが展開され、下層にある項目が表示されます。

ダブルクリック
ナビゲーションウィンドウ内の項目をダブルクリックすると、その項目の下の階層が開きます。もう一度ダブルクリックすると、下の階層が閉じます。

右クリック
ナビゲーションウィンドウ内の項目を右クリックすると、その項目に対して使用できるコマンドのメニューが表示されます。

[Getting Started Launch Pad]
ナビゲーションウィンドウに最初に表示される項目は常に[Getting Started Launch Pad]です。この起動パッドを選択すると、3つのウィザードのいずれかにアクセスして作業を開始できます。

[Available Nodes]
ナビゲーションウィンドウ内の2番目の項目は、[Available Nodes]です。[Available Nodes]には、管理グループにまだ含まれていないストレージノードとフェールオーバーマネージャーが表示されます。これらの含まれていないストレージノードは、管理グループに追加して使用できます。

ナビゲーションウィンドウ内の他の情報は、ユーザーがシステム上で作成するストレージアーキテクチャーを表します。その一例を「CMCの3つのセクションの表示」(26ページ)に示しています。

CMCストレージ階層
ナビゲーションウィンドウ内の項目は、特定の階層に従います。

- [Management Groups] — 管理グループは、複数のストレージノードからなるグループです。グループ内1つ以上のストレージノードがマネージャーとして指定されます。管理グループは、クラスター化されたストレージノード、ポリューム、およびスナップショットの論理コンテナです。
- [Servers] — サーバーは、ユーザーが管理グループ内でセットアップするアプリケーションサーバーを意味します。サーバーにポリュームを割り当てて、サーバーからそのポリュームにアクセスできるようにします。
- [Sites] — サイトは、環境内で地理的位置や論理的分類の異なるサイトを指定するために使用されます。サイトはMulti–Site SANともに使用され、フィーチャーキーを必要とします。Multi–Site SANの詳細については、CMCプログラムファイルのDocumentationサブディレクトリにインストールされている『HP StorageWorks P4000 Multi–Site HA/DR Solution Packユーザーガイド』を参照してください。
- [Clusters] — クラスターは、管理グループ内のストレージノードをグループ化したものです。クラスターには、データポリュームとスナップショットが格納されます。
- [Volumes] — ポリュームはデータを格納し、アプリケーションサーバーにディスクとして提供されます。
- [Snapshots] — スナップショットはポリュームのコピーです。スナップショットは必要に応じて手動で作成できるほか、定期的に作成されるようにスケジュール設定もできます。ポリュームのスナップショットはポリューム自体に格納できますが、別のリモートポリュームにも格納できます。
- [Remote Copies] — リモートコピーは、SAN/iQソフトウェアのリモートコピー機能を使用してリモートポリューム（通常は地理的に異なる位置にあるポリューム）にコピーされた特別なスナップショットです。
アイコン
ナビゲーションウィンドウ内の各項目には、その項目のタイプを示すアイコンがあります。淡い色のアイコンは、ローカルまたはプライマリになっているリモート項目を示します。CMCで使用されるアイコンのいずれについても説明が用意されています。

1. メニューバー上の[Help]をクリックします。
2. メニューから[Graphical Legend]を選択します。
3. [Items]タブと[Hardware]タブを表示します。

[Items]タブには、ナビゲーションウィンドウ内で項目、動作、およびステータスを表するために使用されるアイコンが表示されます。

[Hardware]タブには、ナビゲーションウィンドウに表示される物理ストレージノードの各種モデルを表すアイコンが表示されます。

タブウィンドウの使用
タブウィンドウでは、ナビゲーションウィンドウ内で選択された項目に関する情報が[Details]タブに、その項目に関連する他の機能のタブとともに表示されます。
たとえば、「CMCの3つのセクションの表示」（26ページ）には、ナビゲーションウィンドウで管理グループが選択された時に表示されるタブが示されています。

タブウィンドウの共通規則
タブウィンドウには、項目のタイプごとに共通した規則性があります。

• タブ — タブウィンドウ内の各タブは、ナビゲーションウィンドウで選択した構成要素に関する情報と機能へのアクセスを提供します。たとえば、ナビゲーションウィンドウでクラスターを選択した場合は、クラスター内のボリュームとストレージノードの使用状況に関する情報や、ボリュームに接続されているiSCSIセッションなど、クラスターに関する情報および機能がこれらのタブに表示されます。

• リスト — 管理グループの[Details]タブに表示されるストレージノードのリストなど、何らかのリストが表示されている場合は、アクションの実行対象となる項目をリストから選択できます。

• リストと右クリック — リスト内の項目を右クリックすると、その項目に対して使用できるコマンドのドロップダウンリストが表示されます。

• タスクボタン — タブウィンドウの一番下にあるタスクボタンをクリックすると、タブの構成要素または機能に対して使用可能なコマンドのメニューが表示されます。

注記:
画面上的CMCアプリケーションのデフォルトサイズを変更すると、タブウィンドウの左下にある青いタスクボタンが隠れてしまうことがあります。その場合には、スクロールバーでタブウィンドウをスクロールすると、タスクボタンを再表示できます。

• ソート可能な列 — いずれかの列の見出しをクリックすると、その列に基づいてリストをソートできます。
• サイズ調整可能な列 — 列の境界線を左右にドラッグすると、列が広がり読みやすくなります。
警告ウィンドウの使用

発生した警告メッセージは警告ウィンドウに表示されますが、以下の3つの場合のいずれかで警告状態が解消されると削除されます。

・ 警告状況自体が解消された場合
・ ユーザーが[Alert Tasks]からコマンドを実行して警告を削除した場合
・ CMCを閉じた場合

古い警告を表示するには、[Alerts]カテゴリ内のストレージノード構成カテゴリから警告を表示します。

命名規則の設定

HP LeftHand Storage Solutionの構築時に作成する構成要素の命名規則を設定するには、[Help]メニューから[Preferences]ウィンドウを開きます。あらかじめデフォルト値が用意されていますが、独自のカスタム値も作成できます。

CMCを初めてインストールした場合や、リリース7.0.xからアップグレードした場合は、ポリュームのスナップショットの作成スケジュールなどのデフォルト名がスナップショットに対して有効化されており、SmartCloneボリュームに対してもデフォルト名が有効化されています。管理グループ、クラスター、およびポリュームに対してはデフォルト名が無効化されています。

図3 スナップショットおよびSmartCloneボリュームのデフォルト命名規則

命名規則の変更

デフォルト命名規則を使用する構成要素を変更するか、または命名規則自体を変更できます。

SAN/iQソフトウェアに組み込まれているデフォルト命名規則は、表1(30ページ)に示すとおりです。

表1 デフォルトで用意されている名前

<table>
<thead>
<tr>
<th>要素</th>
<th>デフォルト名</th>
</tr>
</thead>
<tbody>
<tr>
<td>デフォルトでは無効</td>
<td></td>
</tr>
<tr>
<td>管理グループ</td>
<td>MG_</td>
</tr>
</tbody>
</table>
要素 | デフォルト名
--- | ---
クラスター | CL_
ボリューム | VOL_

デフォルトで有効
SmartCloneボリューム | VOL_
スナップショット | _SS_
リモートスナップショット | _RS_
ボリュームのスナップショット作成スケジュール | _Sch_SS_
ボリュームのリモートスナップショット作成スケジュール | _Sch_RS_

仮にすべての要素にデフォルトの命名規則を使用したとすると、以下の例のような名前が使用されることになります。スナップショットから作成されるSmartCloneボリュームを含め、すべてのスナップショット構成要素の名前にはボリューム名が含まれていることに注目してください。

表2 デフォルト名の例

<table>
<thead>
<tr>
<th>要素</th>
<th>デフォルト名</th>
<th>例</th>
</tr>
</thead>
<tbody>
<tr>
<td>インストール直後は無効</td>
<td></td>
<td></td>
</tr>
<tr>
<td>管理グループ</td>
<td>MG_</td>
<td>MG_LogsBackup</td>
</tr>
<tr>
<td>クラスター</td>
<td>CL_</td>
<td>CL_OffSiteBkUp</td>
</tr>
<tr>
<td>ボリューム</td>
<td>VOL_</td>
<td>VOL_DailyBkUp</td>
</tr>
<tr>
<td>インストール直後から有効</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SmartCloneボリューム</td>
<td>VOL_</td>
<td>VOL_VOL_DailyBkUp_SS_3_1</td>
</tr>
<tr>
<td>スナップショット</td>
<td>SS</td>
<td>VOL_DailyBkUp_SS_1</td>
</tr>
<tr>
<td>リモートスナップショット</td>
<td>RS</td>
<td>VOL_DailyBkUp_RS_1</td>
</tr>
<tr>
<td>ボリュームのスナップショット作成スケジュール</td>
<td>Sch_SS</td>
<td>VOL_DailyBkUp_Sch_SS_1.1</td>
</tr>
<tr>
<td>ボリュームのリモートスナップショット作成スケジュール</td>
<td>Sch_RS</td>
<td>VOL_DailyBkUp_Sch_RS_1.1</td>
</tr>
</tbody>
</table>

図4（32ページ）の画面には、上記の名前が表示されています。
図4 すべての構成要素にデフォルト命名規則を使用した場合の例

デフォルトの名前をいずれも使用しない場合は、一連のスナップショットまたはSmartCloneボリュームに連番を付与する名前だけが自動的に生成されます。表3（32ページ）のを参照してください。

表3 デフォルトをいずれも有効化しない場合の番号付与規則

<table>
<thead>
<tr>
<th>要素</th>
<th>デフォルト名</th>
</tr>
</thead>
<tbody>
<tr>
<td>インストール直後は無効</td>
<td></td>
</tr>
<tr>
<td>管理グループ</td>
<td>なし</td>
</tr>
<tr>
<td>クラスター</td>
<td>なし</td>
</tr>
<tr>
<td>ボリューム</td>
<td>なし</td>
</tr>
<tr>
<td>インストール直後から有効</td>
<td></td>
</tr>
<tr>
<td>SmartCloneボリューム</td>
<td>Name.#</td>
</tr>
<tr>
<td>スナップショット</td>
<td>なし</td>
</tr>
<tr>
<td>リモートスナップショット</td>
<td>なし</td>
</tr>
<tr>
<td>ボリュームのスナップショットの作成スケジュール</td>
<td>Name.#</td>
</tr>
</tbody>
</table>
[Getting Started Launch Pad]を通じたストレージの作成

ボリュームをすばやくセットアップするには、この項の手順に従ってください。[Getting Started Launch Pad]でウィザードを使用する場合は、これらの手順を1つのストレージノードに対し、1つの方式で実行することになります。ストレージを作成するための他の方法や、iSCSI SANの機能の詳細については、本製品ガイドで詳述しています。

前提条件

• ネットワーク上にストレージノードをインストールすること。
• ストレージノードをインストールしたときにKVMまたはシリアル構成インターフェイスで構成したIPアドレスまたはホスト名がわかっていること。
• ネットワーク上のストレージノードに接続可能な管理ワークステーションまたはサーバー上にHP LeftHand集中管理コンソールソフトウェアをインストールすること。
• 最新バージョンのMicrosoft iSCSIイニシエーターなどのiSCSIイニシエーターをアプリケーションサーバーにインストールすること。

注記:

HP LeftHand Storage Solutionでサポートされているマルチパスソリューションは、HP LeftHand DSM for MPIOだけです。リリース7.0以降のSAN/iQソフトウェアでHP LeftHand DSM for MPIOを使用するには、Microsoft MPIO DSMをインストールする必要があります。

ストレージノードの検出

CMCを開き、[Getting Started Launch Pad]を通じて[Find Nodes]ウィザードを起動します。このウィザードを使用するには、以下のいずれかの情報がわかっている必要があります。

• ストレージネットワークのサブネットおよびマスク
• ストレージノードのIPアドレスまたはホスト名

ストレージノードの検出を終えると、それらのストレージノードがナビゲーションウィンドウの[Available Nodes]プールに表示されます。

ストレージノードの構成

次に、ストレージノードを構成します。複数のストレージノードを使用する予定がある場合は、それらをクラスター化されたストレージに使用する前に、すべてのストレージノードを構成しておく必要があります。構成対象となるカテゴリのうち、以下のカテゴリが特に重要です。

• RAID — ストレージノードは、RAIDが機能するように事前に構成された状態で出荷されます。ストレージノード内のドライブが適切に構成されていて、適切に動作していることを確認する方法については、第3章（49ページ）を参照してください。
• TCP/IP Network — NICインターフェイスを接続し、フレームサイズ、NICフロー制御、速度、二重化設定を構成します。ネットワーク構成の詳細な手順については、第4章（71ページ）を参照してください。
警告 - 電子メール警告機能またはSNMPを使用し、最新の警告情報およびレポート情報に即時にアクセスできるようにします。SNMPおよび警告の詳細な設定手順については、第7章（113ページ）および「警告を使用したアクティブ監視」（121ページ）を参照してください。

ストレージノードカテゴリの構成
1. ナビゲーションウィンドウから、[Available Nodes]プール内のストレージノードを選択します。
2. ストレージノードの下層のツリーをダブルクリックして開きます。
3. ストレージノード構成カテゴリのリストが表示されます。
4. [Storage]タブウィンドウが表示されます。
5. [RAID Setup]タブを選択し、RAID設定を確認します。
6. 構成カテゴリリスト内で、[TCP/IP Network]カテゴリを選択し、ネットワーク設定を構成します。
7. 構成カテゴリリスト内で、[SNMP]カテゴリと[Alerts]カテゴリの一方または両方を選択し、IP SANの監視を構成します。

ウィザードを通じたポリュームの作成

このウィザードでは、最初のタスクとして1つ以上のストレージノードを管理グループに割り当てます。2番目のタスクとして、ストレージノードをクラスター化します。さらに、3番目のタスクとして、ストレージポリュームを作成します。図5に、このストレージ階層を示します。

図5 SAN/iQソフトウェアのストレージ階層
ウィザードの実行中に必要となる情報は以下のとおりです。
・管理グループの名前。

注意：
この名前は、管理グループを破棄しない限り、後から変更することはできません。
ポリュームへのサーバーアクセスの有効化
ポリュームに対するサーバーアクセスの準備をするには、[Assign Volume and Snapshot]ウィザードを使用します。管理グループ内でアプリケーションサーバーをセットアップし、ポリュームをそれらのサーバーに割り当てます。これらの機能の詳細については、第17章（277ページ）を参照してください。

SAN/iQソフトウェアの継続的使用
この項では、CMCを継続的に使用する上のデティールについて説明します。さらに、ストレージノードの構成を他のストレージノードへコピーする方法についても説明します。

ストレージノードの検出
最初の検索で使用した検出設定がCMCに保存されます。CMCを開くたびに、同じ検索が自動的に実行され、検出されたすべてのストレージノードがナビゲーションウィンドウに表示されます。

ストレージノードの検出をオフにする
CMCを開いたときにネットワーク上のすべてのストレージノードが自動検出されないようにするには、自動検出をオフにします。
1. メニューバーから[Find]を選択し、[By Subnet and Mask]を選択します。
2. [Auto Discover]チェックボックスをオフにします。

トラブルシューティング — ストレージノードが見つからない場合
ネットワークのトラフィックが高い場合や、ストレージノードがデータの読み書きでビジー状態になっている場合は、検索を実行してもストレージノードが見つからないことがあります。その場合は、以下の手順でストレージノードを検出してみてください。
1. 探しているストレージノードがナビゲーションウィンドウに表示されない場合は、[Find]メニューから検索をもう一度実行します。
2. 検索に[By Subnet and Mask]オプションを使用している場合は、代わりに[By IP or Host Name]オプションを使用して検索を再試行します。逆に、検索に[By IP or Host Name]オプションを使用している場合は、代わりに[By Subnet and Mask]オプションを使用して検索を再試行します。
3. 再検索してもノードが見つからない場合は、以下のことを実施します。
 • ストレージノードの物理接続をチェックします。
 • 数分待ってから、再検索します。ストレージノードへの動作が頻繁な場合は、ストレージノードが
 検索に応答しなかった可能性があります。

ストレージノードが見つからない場合に考えられる原因
他の問題が原因で、CMCがストレージノードを検出できない場合があります。たとえば、
 • ストレージノードとの間のネットワークトラフィックが非常に高い
 • ストレージノードがDHCP (DHCPは非推奨) を使用する構成である場合にIPアドレスの変更が行われた
 • 管理者によって名前が変更された
 • ストレージノードが再起動され、まだオンラインになっていない
 • ストレージノードが接続されているネットワークスイッチで電力の障害が発生した
 • ストレージノードと異なる物理ネットワーク上のシステムでCMCが実行されている（サイトでネットワーク
 クーリングのパフォーマンスが低下すると、CMCのパフォーマンスに大きく影響することがあります

ナビゲーションウィンドウに表示されるストレージノードの変更
1. [Find]メニューをクリックします。
2. [Clear All Found Items]を選択して、ナビゲーションウィンドウからストレージノードをすべて削除します。
3. [By Subnet and Mask]または[By Node IP or Host Name]のいずれかのオプションによる検索を実行し、目的のストレージノードのセットを検索します。

注記:
ナビゲーションウィンドウにどのストレージノードを表示するかを制御するには、[IP and Host Name List]ウィンドウに特定のIPまたはホスト名だけを入力します。その後、CMCを開くと、それらのIPとホスト名だけがナビゲーションウィンドウに表示されます。この方法では、どの管理グループを表示するかを制御できます。

複数のストレージノードの構成
1つのストレージノードに対して警告、SNMP監視、およびリモートログファイルの設定を構成し終えたら、それらの設定を複数のストレージノード間でコピーできます。
これらの設定の構成方法の詳細については、以下の項を参照してください。
 • 「SNMPエージェントの有効化」(113ページ)
 • 「警告を使用したアクティブ監視」(121ページ)
 • 「リモートログファイルの使用」(144ページ)
 • 「警告の電子メール通知の設定」(128ページ)
△ 注意:
異なるモデル間で構成をコピーすると、監視対象変数の構成にサポート外の変数や不正なしきい値が含まれたり、変数が削除されたりする結果を招くことがあります。コピー先のストレージノード上で構成が正しいことを必ず確認してください。

1. ナビゲーションウィンドウで、構成のコピー元となるストレージノードを選択します。
3. [Configuration Settings]セクションで、コピーする構成を選択します。
4. [Copy Configurations to nodes]セクションで、構成のコピー先となるストレージノードを選択します。
5. [Copy]をクリックします。
 選択したストレージノードに構成設定がコピーされます。
6. [OK]をクリックして操作を確定し、ウィンドウを閉じます。
2 ストレージノードの操作

ナビゲーションウィンドウに表示されるストレージノードの下層には、構成カテゴリのツリー構造があります。ストレージノードには、以下の構成カテゴリがあります。

- [Alerts]
- [Hardware]
- [SNMP]
- [Storage]
- [TCP/IP Network]

ストレージノードの構成カテゴリ

ストレージノードの構成カテゴリを通じて、個々のストレージノードを対象とするすべての構成タスクにアクセスできます。各ストレージノードの機能を構成、変更、または監視するには、各ストレージノードに個別にログインする必要があります。

図6 ストレージノードの構成カテゴリ

ストレージノードの構成カテゴリ

ストレージノードの構成カテゴリの説明は以下のとおりです。

- [Alerts] — 監視対象変数のアクティブ監視設定および警告受信用の通知設定を構成します。
- [Hardware] — ハードウェア診断テストの実行、現在のハードウェアステータスと構成情報の表示、およびログファイルの保存を行います。
- [SNMP] — SNMP管理ステーションを使用してストレージノードを監視します。SNMPトラップの有効化もできます。
- [Storage] — ストレージノード内のRAIDおよび個々のディスクを管理します。
- [TCP/IP Network] — ネットワークインターフェイスカード（NIC）、DNSサーバー、ルーティングテーブル、SAN/IQ通信に使用するインターフェイスなどのネットワーク設定をストレージノードごとに構成および管理します。

ストレージノードタスク

この項では、基本的なストレージノードタスクの実行方法を説明します。

- 「ストレージノードの操作」(40ページ)
ストレージノードの操作

ネットワーク上のすべてのストレージノードを検出した後、各ストレージノードを個別に構成します。

1. ナビゲーションウィンドウでストレージノードを選択します。
 通常は、自動でログインします。ただし、リリース7.0より古いバージョンのソフトウェアを実行している
 ストレージノードについては、手動でのログインが必要です。手動でのログインが必要な場合は、[Log
 In]ウィンドウが表示されます。

2. ユーザー名とパスワードを入力します。

3. [Log In]をクリックします。

自動ログイン

いったん管理グループにログインした後は、同じユーザー名とパスワードが割り当てられている限り、それ
以降のロジンが自動的に行われます。管理グループのユーザー名またはパスワードが異なる場合には、自動ログインできません。その場合は、手動でログインする必要があります。

1. 正しいユーザー名とパスワードを入力します。
2. [Log In]をクリックします。

ステレージノードからのログアウト

1. ナビゲーションウィンドウでストレージノードを選択します。
2. ノードを右クリックし、[Log Out]を選択します。

注記:

複数のストレージノードにログインしている場合は、各ストレージノードから個別にログアウトする必要
があります。

ステレージノードのホスト名の変更

ストレージノードは、デフォルトのホスト名を事前に構成した状態で出荷されます。ストレージノードのホス
ト名を変更するには、以下の手順に従ってください。

40 ストレージノードの操作
1. ナビゲーションウィンドウでストレージノードにログインします。
3. 新しい名前を入力し、[OK]をクリックします。
4. [OK]をクリックします。

注記:
実際の環境で使用されているホスト名の解決方法（DNSやWINSなど）にホスト名とIPアドレスのペアを追加します。

ラック内におけるストレージノードの位置の確認
この情報は、以下の製品に適用されます。
- HP LeftHand P4500
-

[Set ID LED On] コマンドを使用すると、物理ストレージノード上のLEDが点灯するため、ラック内におけるストレージノードの物理的な位置を確認できます。

1. ナビゲーションウィンドウでストレージノードを選択し、ログインします。
 ストレージノード前面のID LEDが明るい青色に点灯します。ストレージノードの背面にも、ID LEDがもう1つあります。
 [Set ID LED On] をクリックすると、ステータスが[On]に変化します。
3. 確認を終えたら、[Set ID LED Off] を選択します。
 ストレージノード上のLEDが消灯します。

ストレージノード構成のバックアップと復元
ストレージノードに障害が発生した場合に備えて、ストレージノード構成をファイルに保存し、ストレージノード構成のバックアップと復元を行います。ストレージノード構成のバックアップでは、ストレージノードに関する情報がファイルに保存されます。ストレージノードに障害が発生した場合は、バックアップをもとに交換用の新しいストレージノードに復元します。

注記:
交換用の新しいストレージノードを管理グループおよびクラスターに追加する前に、構成を新しいストレージノードに復元しておく必要があります。

ストレージノードのバックアップで保存されない情報
ストレージノードの構成ファイルのバックアップでは、データは保存されません。ストレージノードが所属している管理グループやクラスターの構成も保存されず、登録済みの機能のライセンスキーエントリーもバックアップされません。
管理グループの構成を保存する方法については、「管理グループの構成のバックアップ」（162ページ）を参照してください。
管理グループのライセンスキーのレコードを維持する方法については、「ライセンスキー情報の保存」（313ページ）を参照してください。

注記:
ストレージノードの設定を変更したときは必ずストレージノード構成をバックアップしてください。そうすることで、ストレージノードを直近の構成に復元できます。

復元後の手動構成手順
ストレージノード構成をファイルから復元した後は、以下のように、最大で3つの手動構成作業を行う必要があります。

・ ストレージノード上のRAIDは手動で構成する必要があります。
・ 復元後には、ネットワークルートを手動で追加する必要があります。1つのストレージノードからもう1つのストレージノードに構成ファイルを復元しても、ストレージノード上で以前に構成されていたネットワークルートは復元されません。
・ 1つの構成ファイルから複数のストレージノードを復元する場合は、2番目以降のストレージノードのIPアドレスを手動で変更する必要があります。たとえば、静的なIPアドレスが割り当てられているストレージノードの構成をバックアップした場合に、その構成を2番目のストレージノードに復元すると、2番目のストレージノードには同じIPアドレスが割り当てられることになります。

ストレージノード構成ファイルのバックアップ
バックアップ機能では、選択したディレクトリにストレージノード構成ファイルを保存できます。

1. ナビゲーションウィンドウで、ストレージノードを選択します。
2. [Details]タブで[Storage Node Tasks]をクリックし、[Back Up or Restore]を選択します。
3. [Back Up]をクリックします。
4. ストレージノード構成ファイルのバックアップの保存先となるフォルダーに移動します。
5. バックアップファイルを説明する名前を入力するか、デフォルトの名前（StorageNode_Configuration_Backup）をそのまま使用します。

注記:
バックアップ対象のすべてのストレージノードの構成ファイルは、選択した場所に保存されます。複数のストレージノードを同じ場所にバックアップする場合は、必ず各ストレージノードの構成ファイルを説明する一意な名前を付けてください。そうすることによって、特定のストレージノードの構成を復元する必要が生じた場合に、正しい構成ファイルを容易に選択できます。

6. [Save]をクリックします。

ファイルからのストレージノード構成の復元
交換用の新しいストレージノードを管理グループおよびクラスターに追加する前に、故障したストレージノードの構成を構成バックアップファイルから交換用の新しいノードに復元しております。このほか、RAIDとネットワークルートの手動構成も必要に応じて行います。さらに、複数のストレージノードに同じ構成バックアップを利用すると、ストレージノードの構成を複数のストレージノードに同じ構成で復元することができます。

42　ストレージノードの操作
アップファイルを適用する場合は、ノードごとに一意なIPアドレスを設定する必要があります。手動での構成作業においても、交換用の新しいストレージノードを管理グループおよびクラスターに追加する前に完了しておく必要があります。

1. ナビゲーションウィンドウで、[Available Nodes]プールからストレージノードを選択します。
2. [Details]タブで[Storage Node Tasks]をクリックし、[Back Up or Restore]を選択します。
3. [復元]をクリックします。
4. テーブル内で、復元するストレージノードを選択します。
 必要であれば、複数のストレージノードを復元対象としてテーブルから選択できます。
5. 次のラジオボタンを選択します。[Install file on selected storage nodes one at a time (Recommended)]
6. [Browse]をクリックし、構成バックアップファイルが保存されているフォルダーへ移動します。
7. 復元するファイルを選択し、[Open Backup File]をクリックします。
8. バージョンと説明をチェックして、復元しようとしているファイルが正しいことを確認します。
9. [Install]をクリックします。
10. 復元が完了すると、[Install Status]ウィンドウ上の[Save to File]ボタンと[Close]ボタンが有効になります。
 再起動前に復元操作のログファイルを保存するには、[Save to File]をクリックします。
11. [Close]をクリックして構成の復元を完了します。
 ストレージノードが再起動され、バックアップファイルの構成と同一の構成が復元されます。
12. 交換用の新しいストレージノードの交換を完了するには、以下の特性を再構成します。これらの特性の詳細については、「復元後の手動構成手順」（42ページ）を参照してください。
 - RAID
 - ネットワークルート
 - IPアドレス

ストレージノードの電源切断または再起動

CMCからストレージノードの再起動または電源切断ができます。ストレージノードに対するすべての動作を確実に停止してから処理を開始できるように、処理開始までの時間を遅らせることができます。

CMCからストレージノードの電源切断を行うと、ストレージノードの電源が物理的に切断されます。CMCが電源切断処理を制御しているため、データが保護されます。

個々のストレージノードの電源切断は、特定のストレージノードを保守または移動するときに適しています。ただし、管理グループ内の複数のストレージノードをシャットダウンする必要がある場合は、管理グループ内のストレージノードの電源を個別に切断する代わりに、管理グループ全体をシャットダウンできます。「管理グループの安全なシャットダウン」（163ページ）を参照してください。

ストレージノードの再起動

1. ナビゲーションウィンドウでストレージノードを選択し、ログインします。
3. [minutes]フィールドを使用して、何分後に再起動を開始するかを指定します。

0以上の任意の整数を入力できます。0を入力した場合は、手順5の完了後、すぐにストレージノードが再起動されます。

注記:
再起動時に0を入力した場合は、アクションをキャンセルできません。0より大きい整数を入力した場合は、再起動が実際に行われる前にアクションをキャンセルできます。

4. [Reboot]を選択して、電源サイクルなしのソフトウェア再起動を実行します。
5. [OK]をクリックします。

分単位で指定した時間が経過すると、ストレージノードの再起動が開始されます。再起動には数分かかります。
6. 再起動が完了したら、ストレージノードを検索し、CMCをそのストレージノードに再接続します。
「ストレージノードの検出」(33ページ)を参照してください。

ストレージノードの電源の切断
1. ストレージノードにログインします。
3. [Power Off]を選択します。

ボタンが[Power Off]に変化します。
4. [minutes]フィールドを使用して、何分後に電源の切断を開始するかを指定します。

0以上の任意の整数を入力できます。0を入力した場合は、手順5を完了後、すぐにストレージノードの電源が切断されます。

注記:
電源切断時に0を入力した場合は、アクションをキャンセルできません。0より大きい整数を入力した場合は、電源の切断が実際に行われる前にアクションをキャンセルできます。
5. [Power Off]をクリックします。

図7 ストレージノードの電源切断の確認
管理グループとボリュームの構成によっては、ボリュームとスナップショットが使用可能な状態のままになることがあります。

ストレージノード上のSAN/iQソフトウェアのアップグレード

ストレージノード上のSAN/iQソフトウェアをアップグレードすると、バージョン番号が変わります。ナビゲーションウィンドウでストレージノードを選択し、[Details]タブウィンドウを表示して、現在のソフトウェアバージョンを確認してください。

前提条件
アップグレード対象のストレージノード上に存在するボリュームにアクセスしているアプリケーションをすべて停止し、すべての関連するiSCSIセッションをログオフします。

使用可能なアップグレードのリストを表示するには、[Help]メニューから[Check for Upgrades]を選択します。

Webサイトからのアップグレードファイルのコピー
アップグレードまたはパッチがリリースされると、ストレージノード上のSAN/iQソフトウェアをアップグレードします。SAN/iQソフトウェアのアップグレード/インストールには、ストレージノードの再起動を含めて、約10〜15分かかります（プラットフォームによっては、それより長くなることがあります）。

注記:
2つのブートフラッシュカードが付属しているモデルでは、両方のフラッシュカードを装着していないと、SAN/iQソフトウェアをアップグレードできません。??を参照してください。

ストレージノードのアップグレード
ストレージノードへのアップグレードのインストールは、ノードごとに個別に行うことを推奨します。管理グループに所属していない複数のストレージノードをアップグレードする場合は、それらのノードを同時にアップグレードできます。
アップグレード手順中に、CPU使用率の値が90を超えたことを示す警告を受信する場合があります（例: CPU Utilization = 97.8843）が、これはアップグレード中に予測される動作です。対処は必要はありません。

1. アップグレード対象の最初のストレージノードにログインします。
2. [Details]タブで[Storage Node Tasks]をクリックし、[Install Software]を選択します。
3. リストから、アップグレードするストレージノードを選択します。アップグレード対象のストレージノードをリストから複数選択するには、Ctrlキーを使用します。
4. 次のラジオボタンを選択します。[Install file on selected storage nodes one at a time (Recommended)]
5. [Browse]をクリックし、アップグレードまたはパッチをコピーしたフォルダーに移動します。
6. ファイルを選択し、[Open Install File]をクリックします。
7. バージョンと説明をチェックして、インストールしようとしているアップグレードファイルが正しいことを確認します。
8. [Install]をクリックします。
 インストールメッセージを自動的にスクロールするチェックボックスをオンにします。これらのメッセージはファイルに保存できます。
 (オプション) インストールが完了したら、[Save To File]をクリックし、ファイルの名前と保存場所を選択します。
 インストールが完了すると、システムが再起動されます。システムがオンライン状態に戻った後、インストール後の検証が行われます。インストール後の検証が成功すると、アップグレード処理が完了します。
9. インストールが完了したら[Close]をクリックします。

ストレージノードの高度な機能の登録
[Feature Registration]タブを使用して、個々のストレージノードに対して高度な機能の登録を行います。
高度な機能の登録の詳細については第19章（307ページ）を参照してください。

ボリュームとスナップショットの可用性の確認
[Availability]タブは、そのストレージノードがオンラインであることにより、どのボリュームとスナップショットの可用性が維持されているかを表示します。その詳細として、複製レベルが示されるほか、進行中の複製処理やRAID再ストライプ処理に参加しているストレージノードのステータスなど、可用性ステータスに寄与する要因が示されます。

46　ストレージノードの操作
図8 [Availability]タブ
ストレージノードの操作
3 ストレージの設定 ディスクのRAIDとディスクの管理

[Storage]構成カテゴリでは、ストレージノードのRAIDと個々のディスクを構成および管理できます。

RAIDの構成とディスクの管理

ストレージノードごとに、RAID構成とRAID再構築オプションを選択でき、RAIDステータスを監視できます。さらに、ディスク情報の確認もできます。一部のモデルでは個々のディスクの管理も可能です。

ストレージの必須条件としてのRAID

データストレージ用には、RAIDを構成する必要があります。HP LeftHand Networksの物理ストレージノードは、RAIDが事前構成済みです。VSAについては、最初にViクライアント内でデータディスクを構成したのであれば、『VSA Quick Start Guide』に記載されているとおり、RAIDが事前構成済みです。各種ストレージノードにおけるRAIDのレベルと構成の説明を表4に示しています。

表4 ストレージノードのRAIDレベルおよびデフォルト構成

<table>
<thead>
<tr>
<th>モデル</th>
<th>事前構成済みのレベル</th>
<th>使用可能なRAIDレベル</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSA</td>
<td>仮想RAID（データディスクがViクライアント上で最初に構成されている場合）</td>
<td>RAID（仮想）</td>
</tr>
<tr>
<td>HP LeftHand P4300およびP4500</td>
<td>RAID 5</td>
<td>10, 5, 6</td>
</tr>
<tr>
<td>HP StorageWorks P4500 G2およびP4300 G2</td>
<td>RAID 5</td>
<td>10, 5, 6</td>
</tr>
</tbody>
</table>

アクセス方法

1. ナビゲーションウィンドウでストレージノードを選択し、必要に応じてログインします。
2. ストレージノードの下層にあるツリーを開き、[Storage]カテゴリを選択します。
図9 ストレージノードの[Storage]構成カテゴリの表示

[RAID Setup]タブの列には以下の情報が表示されます。

- デバイス名
- デバイスタイプまたはRAIDレベル
- デバイスステータス
- サブデバイス

ステータスインジケーター

【RAID Setup】タブと【Disk Setup】タブでは、文字列またはアイコンの色でステータスが示されます。表5(50ページ)は、以下の3つのカテゴリに対するステータスとカラーインジケーターを示したものです。

- RAIDデバイスステータス
- ディスクステータス
- ディスク動作状態

表5 ステータスとアイコンの色の定義

<table>
<thead>
<tr>
<th>ステータス</th>
<th>アイコンの色</th>
</tr>
</thead>
<tbody>
<tr>
<td>【Normal】(正常)</td>
<td>緑色</td>
</tr>
<tr>
<td>【Inactive】(非アクティブ)</td>
<td>黄色/オレンジ色</td>
</tr>
<tr>
<td>【Uninitialized】(初期化されていない)</td>
<td>黄色</td>
</tr>
<tr>
<td>【Rebuilding】(再構築中)</td>
<td>青色</td>
</tr>
<tr>
<td>【Off】(オフ)または【Removed】(削除済み)</td>
<td>赤色</td>
</tr>
<tr>
<td>【Marginal】(境界域)</td>
<td>黄色</td>
</tr>
<tr>
<td>【Faulty】(障害)</td>
<td>赤色</td>
</tr>
<tr>
<td>【Hot Spare】(ホットスペア)</td>
<td>緑色</td>
</tr>
<tr>
<td>【Hot Spare Down】(ホットスペア停止)</td>
<td>黄色</td>
</tr>
</tbody>
</table>

RAIDの構成と管理

ストレージノードのRAID設定管理には、以下のタスクが含まれます。

- 実際のストレージのニーズに適したRAID構成を選択する
- 必要に応じてRAID構成を設定または変更する
- RAIDの再構築速度を設定する
ストレージノードのRAIDステータスを監視する
必要時にRAIDを再構成する

RAIDの利点

RAIDでは、複数の物理ディスクを組み合わせて、より大きなサイズの単一論理ディスクを構築します。より大きいサイズであるこの論理ディスクは、ストレージノードにおける読み書きのパフォーマンスとデータ信頼性の両方が向上するように構成できます。

RAID構成の定義

RAID構成の選択は、ストレージノードをどのように使用するかに依存します。ストレージノードは、モデルに応じて、RAID 0、RAID 1/10、RAID 5、RAID 5+ホットスペア、RAID 50、RAID 6のいずれかで再構成できます。各モデルで使用できるRAIDレベルのリストについては、表4(49ページ)を参照してください。

RAID 0

RAID 0では、ストライプディスクセットを作成します。データはアレイ内のすべてのディスクにわたって格納され、パフォーマンスが向上します。ただし、RAID 0にはフォールトトレランスがありません。RAIDセット内のいずれかのディスクに障害が発生すると、セット上のすべてのデータが失われます。

RAID 0内のストレージノード容量は、ストレージノード内のすべてのディスクの容量の合計に等しくなります。

注記:

RAID 0にはフォールトトレランスがないため、容易に再生できないデータの長期的なストレージとしては推奨されません。

RAID 1/10

RAID 1では、ディスクペア内でデータをミラー化します。RAID 10では、ディスクペア内でのデータをミラー化すると同時に、ディスクペア間でのデータをストライプ化します。RAID 10では、ディスクのミラー化(RAID 1)によるデータの冗長性と、ストライプ化(RAID 0)によるパフォーマンス向上を組み合わせています。

RAID 1/10内のストレージ容量

RAID 1/10内のストレージ容量は、ストレージノード内のRAID 0の総容量の半分です。1組のディスクペアの容量はペアを構成する各ディスクの容量と等しくなるため、合計容量の半分となります。次のような式で表すことができます。

RAID 0の容量 = (ディスク1台の容量 × ディスクの総数) ÷ 2
図10 RAID 10内のディスクペアの容量の例

RAID 5、RAID 5+スペア、またはRAID 50
RAID 5では、RAIDセット内のすべてのディスク間でデータブロックを分散し、データ冗長性を実現します。冗長情報は、ディスク間で分散されたパリティとして保存されます。次の図は、RAID 5セット内の4つのディスク間におけるパリティ分散の例を示しています。

図11 4つのディスクを使用するRAID 5セット内におけるパリティ分散
パリティを採用していることにより、データストレージに使用できるディスク容量がRAID 10の場合より大きくなります。

RAID 5またはRAID 5+スペア内のパリティとストレージ容量
RAID 5セット内のパリティは、セット内の1つのディスクの容量と等しくなります。したがって、RAID 5セットの容量は、表6(52ページ)に示されているように、「(N−1) × ディスク1台分の容量」 (Nはストレージノード内のドライブ数)になります。

表6 ストレージノード内のRAID 5セットのストレージ容量

<table>
<thead>
<tr>
<th>モデル</th>
<th>RAID 5セット内のディスク数</th>
<th>ディスクのストレージ容量</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP LeftHand P4300</td>
<td>8ディスク</td>
<td>ディスク7台分の容量</td>
</tr>
<tr>
<td>HP LeftHand P4500</td>
<td>6ディスク（2つのRAIDセット）</td>
<td>ディスク10台分の容量</td>
</tr>
<tr>
<td>HP StorageWorks P4300 G2</td>
<td>8ディスク</td>
<td>ディスク7台分の容量</td>
</tr>
<tr>
<td>HP StorageWorks P4500 G2</td>
<td>6ディスク（2つのRAIDセット）</td>
<td>ディスク10台分の容量</td>
</tr>
</tbody>
</table>

RAID 5とホットスペアディスク
スペアを使用するRAID 5構成では、RAIDセット内の残りのディスクをホットスペアとして指定します。ホットスペアディスクが存在する場合は、RAID 5セット内のディスクのいずれかに障害が発生すると、ホットスペアディスクが自動的にセットに追加され、RAIDの再構築が開始されます。
モデル別のRAID 5構成とホットスペアがサポートされている構成については、表6(52ページ)を参照してください。

RAID 6

RAID 6は、本質的には、二重パリティを持つRAID 5構成です。RAID 6の二重パリティは、2つのRAIDセットのそれぞれにおいて2つのドライブの障害からのフォールトトレランスを実現します。各アレイは、最大でドライブが2台故障しても継続して動作します。RAID 6では、RAIDアレイの再構築中に別のハードディスクドライブに障害が発生してもデータの損失は起こりません。

RAID 6内のパリティとストレージ容量

RAID 6では、RAID 5と同様にドライブのセット間でブロックレベルでデータがストライプ化されますが、2番目のパリティセットが計算され、そのセット内のすべてのドライブに書き込まれる点が異なります。RAID 6はデータのフォールトトレランスに非常に優れており、複数のドライブで同時に障害が発生した場合でも持続性を保つことができます。

RAID 6セット内のパリティは、セット内の1台のディスクの容量と等しくなります。したがって、RAID 6セットの容量は、「(N−2) × ディスク1台の容量」(Nは、ストレージノード内のディスク数)になります。

表7 ストレージノード内のRAID 6セットのストレージ容量

<table>
<thead>
<tr>
<th>モデル</th>
<th>RAID 6セット内のディスク数</th>
<th>ディスクのストレージ容量</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP LeftHand P4300</td>
<td>8ディスク</td>
<td>ディスク6台分の容量</td>
</tr>
<tr>
<td>HP LeftHand P4500</td>
<td>6ディスク（2つのRAIDセット）</td>
<td>ディスク8台分の容量</td>
</tr>
<tr>
<td>HP StorageWorks P4300 G2</td>
<td>8ディスク</td>
<td>ディスク6台分の容量</td>
</tr>
<tr>
<td>HP StorageWorks P4500 G2</td>
<td>6ディスク（2つのRAIDセット）</td>
<td>ディスク8台分の容量</td>
</tr>
</tbody>
</table>

図12 RAID 6内のディスク間で分散されるパリティ

RAID 6におけるドライブ障害とホットスワップ

以下のプラットフォームでは、RAID 6と併せて、ディスク障害時のホットスワップもサポートされています。

・ HP LeftHand P4300およびP4500
・ HP StorageWorks P4500 G2およびP4300 G2

ホットスワップとは、装置の電源を切断せずに障害の発生したドライブを物理的に取り外し、新品を挿入できるという意味です。

RAID 6では通常の運用中に冗長性を確保し、さらに障害の影響を受けやすい劣化モード中においても最大で2台のドライブの障害を許容して、RAIDアレイを劣化モード中のデータ消失から保護します。
[RAID Setup]レポートに表示されるRAIDデバイスの説明

[Storage]カテゴリの[RAID Setup]タブには、ストレージノード内のRAIDデバイスのリストが表示され、それらのデバイスに関する情報が示されます。図13は、[RAID Setup]レポートの一例を示しています。レポート内に示されている各情報については、表8の説明を参照してください。

図13 [RAID Setup]レポート

RAIDタイプごとのRAIDデバイス

作成されるRAIDデバイスのセットは、RAIDタイプごとに異なります。RAIDデバイスの構成は、RAIDタイプによって異なり、それらのRAIDタイプを実装しているプラットフォームモデルによっても異なります。これら2の違いについて、表8（54ページ）で説明しています。

表8 [RAID Setup]レポートの情報

<table>
<thead>
<tr>
<th>項目</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Device Name]</td>
<td>RAIDで使用されるディスクセット。デバイスの数と名前は、プラットフォームとRAIDレベルによって異なります。</td>
</tr>
<tr>
<td>[Device Type]</td>
<td>デバイスのRAIDレベル。たとえば、P4300 G2でRAID 5の場合には、[Device Type]列に「RAID 5」と表示され、[Subdevices]列に「8」と表示されます。</td>
</tr>
<tr>
<td>[Device Status]</td>
<td>デバイスのRAIDステータス。</td>
</tr>
<tr>
<td>[Subdevices]</td>
<td>デバイスに搭載されているディスクの数。</td>
</tr>
</tbody>
</table>

仮想RAIDデバイス

VSAで使用できるのは、仮想RAIDだけです。最初にVIクライアント内でデータディスクを構成した場合、VSAのインストール後に、仮想RAIDが自動的に構成されます。

RAID 5構成またはRAID 6構成のサーバー上にVMware ESX Serverをインストールすることをお勧めします。

RAID 0内で構成されるデバイス

RAID 0が構成されている場合、物理ディスクは1つのRAIDディスクに組み入れられます。

RAID 10内で構成されるデバイス

ストレージノード上でRAID 10が構成されている場合は、複数の物理ディスクからミラー化ディスクセットが構築され、さらに1つのストライプディスクが構築されます。この構成では、物理ディスクが組み合わされてミラー化ディスクペアが構築されます。RAID 10デバイスの例を、図14（55ページ）と図15（55ページ）に示します。RAID 1では、1組のディスクペアだけを使用します。これに対し、RAID 10では、プラットフォームに依存しますが、8組までのディスクペアを使用します。
図14 HP LeftHand P4500およびHP StorageWorks P4500 G2で、ミラー化されたディスクペアと2つのRAIDデバイスを持つRAID 10

図15 HP LeftHand P4300およびHP StorageWorks P4300 G2内のRAID 1+0

RAID 5内で構成されるデバイス
RAID 5が構成されている場合は、物理ディスクが1つ以上のRAID 5セットにグループ化されます。

図16 HP LeftHand P4500およびHP StorageWorks P4500 G2のRAID 5セット

図17 HP LeftHand P4300およびHP StorageWorks P4300 G2のRAID 5セット

RAID 6内で構成されるデバイス
RAID 6の場合は、物理ディスクがセットにグループ化されます。RAID 6では、2組のディスクセットを使用します。
図18 HP LeftHand P4500およびHP StorageWorks P4500 G2で、6台のディスクセットを2組使うRAID 6構成

図19 P4300およびP4300 G2のRAID 6

RAID構成のプランニング

どのRAID構成をストレージノード用に選択するかは、データのフォールトレランス、データ可用性、および容量増加に関するプランに依存します。

△ 注意:
RAID構成のプランニングは、慎重に行ってください。RAIDの構成を完了した後は、ストレージノード上のすべてのデータを削除しない限り、RAID構成を変更できません。

データ保護

データのコピーを複数維持しておくば、データの安全性を確保でき、ディスク障害の発生時にもデータの可用性を維持できます。データ複製には、以下の2通りの方法があります。

・ 各ストレージノード内でRAID 1、RAID 10、RAID 5、RAID 5+スペア、RAID 50、またはRAID 6を構成してデータ冗長性を確保する。
・ RAIDレベルに関係なく、ネットワークRAIDを使用して、クラスター内のストレージノード間でデータボリュームを常時ミラー化し、データの保護と可用性を向上する。

RAIDによるデータ冗長性の実現

各ストレージノード内でRAID 1またはRAID 10を使用すると、すべてのデータのコピーを2つ確保できます。RAIDベース内のディスクのいずれかが停止しても、もう一方のディスク上でデータの読み書きを継続できます。に同様に、RAID 5、RAID 50、またはRAID 6を使用すると、セット内のディスク間でパリティを均等に分散して冗長性を確保できます。

RAID 5セット内の1台のディスク、またはRAID 6セット内の2台のディスクが停止しても、セット内の残りのディスク上でデータの読み書きを継続できます。RAID 50では、最大で各RAID 5セット内のディスクが1つずつ停止しても、残りのディスク上でデータの読み書きを継続できます。
RAIDによる保護は、あくまでストレージノード内のディスクの障害に対する保護であり、ストレージノード全体の障害に対する保護ではありません。たとえば、ストレージノードへのネットワーク接続が失われると、ストレージノードに対するデータの読み書きを継続できなくなります。

注記：
単一のストレージノードだけのクラスターを使用する予定の場合は、RAID 1/10、RAID 5、またはRAID 6を使用して、そのストレージノード内のデータ冗長性を確保します。

クラスター内でのネットワークRAIDの使用
クラスターは、ネットワークRAIDを使ってデータを保護できるストレージノードのグループです。ネットワークRAIDでは、ストレージノード内のRAIDディスクセットの障害、ストレージノード全体の障害、またはネットワークや電源などの外的障害に対してデータが保護されます。たとえば、クラスター内の1つのストレージノード全体が使用できなくなった場合、失われたデータは他のストレージノードから取得できるため、読み書きを継続できます。

クラスター内のネットワークRAIDとディスクRAIDを併用する
クラスター内でネットワークRAIDを常有して、ストレージノード間でポリュームを保護します。RAID 10、RAID 5、RAID 50、またはRAID 6が提供する冗長性により、ストレージノードレベルで可用性が確保されます。クラスター内でポリュームのネットワークRAIDを使用すると、クラスターレベルで可用性が確保されます。以下の例を示します。

ネットワークRAIDを使用すると、3つのストレージノードからなるクラスター上では、ポリュームのコピーを3つまで作成できます。ネットワークRAID構成では、3つのストレージノードのうち2つをオフラインにしても、ポリュームへのアクセスが引き続き可能となります。

これらのストレージノード上でRAID 10を構成すると、これらの3つのポリュームのコピーがストレージノード内の2つのディスクに格納されるため、各ポリュームのコピーが合計6つ存在することになります。50GBポリュームの場合は、300GBのディスク容量が使用されます。

RAID 5/50で使用されるディスク容量はRAID 1/10の場合より少ないため、RAID 5/50をネットワークRAIDと併用しても容量を効率的に使用できます。クラスター内でネットワークRAIDを使用するストレージノードでのRAID 5/50を構成することで得られる利点の1つは、いずれかのディスクが停止した場合でもクラスター内の他のノードからのフルコピーを必要とせずに、RAIDを使用してそのストレージノード上のデータを再構築できる点にあります。クラスター内の他のノードからデータをコピーする場合に比べて、単一のセット内のディスクの再構築は処理速度が高く、データにアクセスしているアプリケーションのパフォーマンスへの影響が小さくなります。

RAID 6では、RAID 5の場合と同様に容量の使用効率に関する利点があるほか、最大で2台までのドライブの消失に耐えられるため、より強力な保護が得られます。

注記：
クラスター間でポリュームを保護する場合、ストレージノードをRAID 1/10で構成するとストレージノードの容量の2分の1が消費されるのに対し、ストレージノードをRAID 5/50で構成すると、各ストレージノード内の冗長性が実現され、なおかつディスク容量の大部分をデータストレージに使用できます。RAID 6は単一のストレージノード上の冗長性に優れていますが、RAID 5よりもディスク領域の消費が大きくあります。
表9 RAID構成におけるデータの可用性と安全性

<table>
<thead>
<tr>
<th>構成</th>
<th>ディスク障害時の安全性と可用性</th>
<th>ストレージノード全体の障害が発生した場合、またはストレージノードへのネットワーク接続が失われた場合のデータ可用性</th>
</tr>
</thead>
<tbody>
<tr>
<td>スタンードアロンのストレージノード、RAID 0</td>
<td>なし</td>
<td>なし</td>
</tr>
<tr>
<td>スタンードアロンのストレージノード、RAID 1/10、RAID 10+スペア</td>
<td>あり、どの構成の場合も、ミラー化ペア1組あたり1つのディスクの障害を許容。</td>
<td>なし</td>
</tr>
<tr>
<td>スタンードアロンのストレージノード、RAID 5、RAID 5+スペア、RAID 50</td>
<td>あり、アレイあたり1つのディスクの障害を許容。</td>
<td>なし</td>
</tr>
<tr>
<td>スタンードアロンのストレージノード、RAID 6</td>
<td>あり、アレイあたり2つのディスクの障害を許容。</td>
<td>なし</td>
</tr>
<tr>
<td>クラスター化されたストレージノードでRAID 0またはそれ以上のレベルでネットワークRAIDが構成されているボリューム、各ノードはRAID 0</td>
<td>あり、ただし、ストレージノード内のいずれかのディスクに障害が発生した場合は、クラスター内の他のストレージノードからストレージノード全体をコピーする必要あり。</td>
<td>なし</td>
</tr>
<tr>
<td>クラスター化されたストレージノードでRAID 5またはそれ以上のレベルでネットワークRAIDが構成されているボリューム、各ノードはRAID 5、RAID 50</td>
<td>あり、クラスター内の他のストレージノードからのコピーなしで、RAIDセットあたり1つのディスクの障害を許容。</td>
<td>なし</td>
</tr>
<tr>
<td>クラスター化されたストレージノードでRAID 6</td>
<td>あり、クラスター内の他のストレージノードからのコピーなしで、RAIDセットあたり2つのディスクの障害を許容。</td>
<td>なし</td>
</tr>
</tbody>
</table>
| クラスター化されたVSAでRAID 10またはそれ以上のレベルでネットワークRAIDが構成されているボリューム、各ノードは仮想RAID | VSAがインストールされているプラットフォームのRAID構成に依存。RAID 5またはRAID 6を構成することを推奨します。 | あり、ただし、プラットフォームのRAID構成がRAID 0以外の場合。

RAID構成の混在

1つのクラスター内にはRAID構成の異なるストレージノードを混在させることができるが、RAIDレベルの異なる新しいストレージノードを増設できます。ただし、クラスターはストレージノードあたりの最小使用可能容量で動作するために、目的のRAIDレベルで構成されている追加のストレージノードの容量を正確に計算する必要があります。

たとえば、SANで、RAID 10が構成されている4台の12TB HP LeftHand P4500を使用している場合に、RAID 5構成にするために、追加の12TB HP LeftHand P4500を2台購入するとします。

既存のクラスター内、RAID 10で構成した単一の12TB HP LeftHand P4500の使用可能ストレージ容量は6TBです。RAID 5で構成した単一の12TB HP LeftHand P4500の使用可能ストレージ容量は9TBです。しかし、クラスターでの容量の使用方法の制限により、RAID 5構成の12TB HP LeftHand P4500はストレージノードあたり6TBに制限されます。
一般的には、SANで各クラスターの使用可能容量を最大限に利用できるようにするために、数や容量が異なるドライブを混在させて構成しないことがベストプラクティスです。

RAID再構築速度の設定

ディスクの交換時にRAID構成を再構築する速度を選択します。

注記:

VSAでは、再構築する物理ハードウェアがないため、RAID再構築速度は設定できません。

RAID再構築速度の一般的なガイドライン

以下のガイドラインに従って、RAID再構築速度を決定してください。

- RAIDをすばやく再構築してデータを保護するには、再構築速度を「high」に設定するのが適していますが、再構築速度が高いとデータへのユーザーアクセスの速度が低下します。
- 再構築速度を低く設定すると、再構築中でもユーザーはデータにすばやくアクセスできますが、再構築が完了するまでに時間がかかります。

RAID再構築速度の設定

1. ナビゲーションウィンドウからストレージノードにログインし、[Storage]カテゴリを選択します。
2. [RAID Setup]タブで、[RAID Setup Tasks]をクリックし、[RAID Rebuild Rate Priority]を選択します。

 [RAID Rebuild Rate Priority]ウィンドウが表示されます。このウィンドウの内容は、前述したように、プラットフォームによって異なります。
3. 再構築設定を目的の値に変更します。
4. [OK]をクリックします。

 次回のRAID再構築の実行時に新しい設定が反映されます。

RAIDの再構成

ストレージノードまたはVSA上でRAIDを再構成すると、そのストレージノード上の既存のデータはすべて破棄されます。RAIDの再構成要件を「RAIDの再構成要件」(59ページ)に示します。VSAでは、別のRAID構成を選択できないため、RAIDを再構築して得られる効果はすべてのデータを消去することだけです。

RAIDの再構成要件

新しいストレージノードで事前構成済みのRAIDを変更する場合

ストレージノードを管理グループに追加する前に、個々のストレージノード上でRAIDを構成する必要があります。ストレージノードの事前構成済みRAIDレベルを変更する場合は、ストレージノードを管理グループに追加する前に変更を行う必要があります。
管理グループ内のストレージノード上でRAIDを変更する場合

管理グループにすでに所属しているストレージノードに対しては、RAIDを再構成できません。管理グループに所属しているストレージノードに対してRAID構成を変更する必要がある場合は、最初にそのストレージノードを管理グループから削除する必要があります。

注意:
RAID構成を変更すると、ディスク上のすべてのデータが消去されます。

RAIDを再構成するには

1. ナビゲーションウィンドウからストレージノードにログインし、[Storage]カテゴリを選択します。
3. リストからRAID構成を選択します。
4. [OK]をクリックします。
5. メッセージが表示されたら[OK]をクリックします。

RAIDの構成処理が開始されます。

注記:
RAID 10、RAID 5/50、RAID 6の各構成では、ストレージノード内のディスクが完全に同期されるまでに数時間かかることがあります。この間、パフォーマンスの低下が生じます。[RAID Setup]タブのRAIDステータスが[Normal]と表示された時点で、ディスクは完全なデータ冗長性を提供し、通常のパフォーマンスに戻ります。

RAIDステータスの監視

ストレージノードを運用する上で、RAIDは非常に重要な役割を担います。RAIDが構成されていないと、ストレージノードを使用できません。ストレージノードのRAIDステータスを監視して、RAIDが正常な状態にあることを確認してください。RAIDステータスが変化すると、CMC警告が生成されます。電子メールアドレスまたはSNMPトラップを指定して追加の警告も構成できます。これらの追加の警告を設定する方法については、「警告を使用したアクティブ監視」(121ページ)を参照してください。

データの読み書きとRAIDステータス

RAIDステータスが[Normal]、[Rebuild]、または[Degraded]の場合はデータ転送が可能です。ストレージノードとの間でデータの読み書きができなくなるのは、RAIDステータスが[Off]のときだけです。

データ冗長性とRAIDステータス

RAID 1/10構成またはRAID 5/50構成では、RAIDが劣化状態になると、完全なデータ冗長性が得られなくなります。したがって、RAIDが劣化状態になっているときにディスク障害が発生すると、データが消失するというリスクがあります。

60 ストレージの設定 ディスクのRAIDとディスクの管理
RAID 6では、1台のドライブの障害によりRAIDが劣化状態になっている場合に、もう1台のディスクに障害が発生してもデータ消失のリスクがありません。ただし、2台のドライブの障害のためにRAIDが劣化状態になった場合には、さらにもう1台ディスク障害が発生するとデータが消失するというリスクがあります。

注意:
RAID 1/10構成で劣化状態の場合には、ペアの2台目のディスクに障害が発生すると、データの消失を招きます。RAID 5構成で劣化状態の場合には、2台目のディスクに障害が発生すると、データの消失を招きます。RAID 50構成で劣化状態の場合は、単一のRAID 5セット内の2台目のディスクに障害が発生すると、データの消失を招きます。RAID 6構成で劣化状態の場合には、3台のドライブに障害が発生すると、データの消失を招きます。

RAIDステータスは、[Storage]カテゴリの[RAID Setup]タブの一番上に表示されます。また、ストレージノードをナビゲーションウィンドウで選択したときには、メインCMCウィンドウの[Details]タブにRAIDステータスが表示されます。

1. RAIDステータス

図20 メインCMCウィンドウからのRAIDステータスの監視

4通りのRAIDステータスのいずれかが表示されます。

- [Normal] — RAIDが同期されており、動作しています。処置は不要です。
- [Rebuilding] — ドライブペイに新しいディスクが装着されたか、またはホットスペアがアクティブになって、現在RAIDの再構築中です。処置は不要です。
- [Degraded] — RAIDが劣化状態です。ディスクに障害が発生したか、ディスクがペイから取り外された場合がこれに該当します。

ホットスワップ対応プラットフォーム（HP LeftHand P4500、P4300、HP StorageWorks P4500 G2およびP4300 G2）の場合は、故障したディスク、非アクティブなディスク、初期化されていないディスク、または検出されないディスクを交換してください。
ディスクの管理

表10 (62ページ)に示すように、[Disk Setup]タブではディスク情報を監視してディスク管理タスクを実行できます。

△ 注意:
どのプラットフォームについても、RAID 0ではホットスワップドライブがサポートされていません。

表10 ストレージノードのディスク管理タスク

<table>
<thead>
<tr>
<th>ディスクセットアップ機能</th>
<th>この機能が用意されているモデル</th>
</tr>
</thead>
<tbody>
<tr>
<td>ディスク情報の監視</td>
<td>すべてのモデル</td>
</tr>
</tbody>
</table>

アクセス方法

1. ナビゲーションウィンドウで、ストレージノードを選択します。
2. ノードの下層にある[Storage]カテゴリを選択します。
3. [Disk Setup]タブを選択します。

[Disk Setup]タブに表示されるディスクレポート

[Disk Setup]タブには、ストレージノード内の個々のディスクに関するステータスレポートが表示されます。図21で[Disk Setup]タブを示し、表11 (63ページ)では、対応するディスクレポートについて説明しています。

図21 [Disk Setup]タブの列の例
表11 ディスクレポート上の項目の説明（続き）

<table>
<thead>
<tr>
<th>列</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Disk]</td>
<td>ストレージノード内の物理スロットに対応。</td>
</tr>
<tr>
<td>[Status]</td>
<td>ディスクのステータスとして以下のいずれかを示します。</td>
</tr>
<tr>
<td></td>
<td>• [Active]（オンになっており、RAIDに参加している）</td>
</tr>
<tr>
<td></td>
<td>• [Uninitialized]（まだアレイに所属していない）</td>
</tr>
<tr>
<td></td>
<td>• [Inactive]（アレイに所属しているが、RAIDに参加していない）</td>
</tr>
<tr>
<td></td>
<td>• [Off]（オフ）または[Removed]（削除済み）</td>
</tr>
<tr>
<td></td>
<td>• [Hot Spare]（ホットスペアをサポートするRAID構成の場合）</td>
</tr>
<tr>
<td>[Health]</td>
<td>ドライブの動作状態として以下のいずれかを示します。</td>
</tr>
<tr>
<td></td>
<td>• [Normal]（正常）</td>
</tr>
<tr>
<td></td>
<td>• [Marginal]（障害が予想され、「できるだけ早期に交換する必要がある」ことを意味する状態）</td>
</tr>
<tr>
<td></td>
<td>• [Faulty]（障害が予想され、「今すぐ交換する必要がある」ことを意味する状態）</td>
</tr>
<tr>
<td>[Safe to Remove]</td>
<td>ディスクのホット取り外しを安全に行えるかどうかを示します。</td>
</tr>
<tr>
<td>[Model]</td>
<td>ディスクのモデル。</td>
</tr>
<tr>
<td>[Serial Number]</td>
<td>ディスクのシリアル番号。</td>
</tr>
<tr>
<td>[Class]</td>
<td>ディスクのクラス（タイプ）。「SATA 3.0GB」など。</td>
</tr>
<tr>
<td>[Capacity]</td>
<td>ディスクのデータストレージ容量。</td>
</tr>
</tbody>
</table>

ディスクステータスの確認

[Disk Setup]ウィンドウをチェックし、ディスクのステータスを確認して、交換の準備ができたら個々のディスクに対し、適切な処置を行います。

VSAのディスクステータスの表示

VSAの場合、[Disk Setup]ウィンドウには1つの仮想ディスクが表示されます。

注記:

VSA内のデータディスクのサイズを変更するには、『HP LeftHand P4000 VSA User Manual』に記載されているVIクライアントでのディスク再作成手順を参照してください。
HP LeftHand P4500およびHP StorageWorks P4500 G2のディスクステータスの表示

[Disk Setup]ウィンドウ（図23（64ページ））ではディスクに1〜12の番号が付与されます。これらは、図24（64ページ）に示すように、HP LeftHand P4500を正面から見たとき、左から右の順でディスクドライブに対応しています（1段目が1-4-7-10、2段目が2-5-8-11、3段目も同様）。

HP LeftHand P4500およびHP StorageWorks P4500 G2の場合は、[Health]列と[Safe to Remove]列の内容をそれぞれ確認することで、ディスクの動作状態をチェックでき、データを消失せずに交換できるかどうかを判断できます。

図23 HP LeftHand P4500およびHP StorageWorks P4500 G2の[Disk Setup]タブの表示

図24 HP LeftHand P4500およびHP StorageWorks P4500 G2のドライブベイのレイアウト

HP LeftHand P4300およびHP StorageWorks P4300 G2のディスクステータスの表示

[Disk Setup]ウィンドウ（図25（65ページ））ではディスクに1〜8の番号が付与されます。これらは、図26（65ページ）に示すように、HP LeftHand P4300およびHP StorageWorks P4300 G2を正面から見たとき、左から右の順でディスクドライブに対応しています（1段目が1-3-5-7、2段目が2-4-6-8）。

P4300およびP4300 G2の場合は、[Health]列と[Safe to Remove]列の内容をそれぞれ確認することで、ディスクの動作状態をチェックでき、データを消失せずに交換できるかどうかを判断できます。
ディスクの交換

ストレージノード内のディスクを正しく交換するための手順は、RAID構成、ポリュームおよびスナップショットのデータ保護レベル、交換するディスクの数など、いくつかの要因によって異なります。クラスターに所属しているストレージノード内のディスクを交換する場合には、交換用の新しいディスク上でデータを再構築する必要があります。ただし、RAID 0の場合は、ストレージノード全体に対してデータの再構築が必要となります。

ディスクの交換には、以下の基本的な手順が含まれます。

1. ディスク上にデータを再構築するか、ストレージノード全体に対してデータを再構築するかを計画する（すべてのプラットフォーム）
2. CMCからディスクの電源を切断する（ホットスワップ非対応プラットフォーム）
3. ストレージノード内のディスクを物理的に交換する（すべてのプラットフォーム）
4. CMCからディスクの電源を投入する（ホットスワップ非対応プラットフォーム）
5. ディスク上またはストレージノード上でRAIDを再構築する（すべてのプラットフォーム）

構成やプラットフォームに固有のディスク交換の要件は、表12に示しています。

<table>
<thead>
<tr>
<th>プラットフォームまたは構成</th>
<th>要件</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID 1, 10, 5, 50, 6で構成されている ホットスワップ対応プラットフォーム</td>
<td>RAIDステータスが[Normal]で、[Safe to Remove]のステータスが「はい」。詳細は、ホットスワップ対応プラットフォームでのディスクの交換を参照してください。</td>
</tr>
<tr>
<td>VSA</td>
<td>製造ベンダーの指示に従って、ホストサーバー上のディスクを交換します。</td>
</tr>
<tr>
<td>RAID 0の構成</td>
<td>ディスクを交換する前に、データを削減することをプランしてください。ディスクを物理的に交換する前に、CMCでディスクの電源を切断します。詳細は、RAID 0構成でのディスクの交換を参照してください。</td>
</tr>
</tbody>
</table>

ディスク交換の準備に関する追加情報が、以下のセクションに記載されています。
ディスク交換の準備

RAID 0で単一のディスクを交換する場合のベストプラクティスチェックリスト

RAID 1、RAID 10、RAID 5、RAID 50、RAID 6構成での単一ディスクの交換のベストプラクティスチェックリスト

ストレージノード修復機能の使用

ストレージノード修復機能は、ディスクを交換し、完全なストライプ化の代わりに1回だけ再同期を作動させる手順です。ストレージノード修復機能では、修復が必要なストレージノードをディスク交換のために取り外すように、クラスター内にプレースホルダーノードが作成されます。詳細は、「ストレージノードの修復」(194ページ)を参照してください。

以下の状況では、ディスクの交換時にストレージノード修復機能の使用が必要になることがあります。

RAID 0構成でストレージノード上のRAIDステータスが[Off]になっている場合

RAID 5/50構成またはRAID 6構成のストレージノード上で複数のディスクを交換する場合

RAID 10構成のストレージノードで同じミラーセット上の複数のディスクを交換する必要がある場合

ホットスワップ対応プラットフォームでのディスクの交換

RAID 1、RAID 10、RAID 5、RAID 50、RAID 6構成のホットスワップ対応プラットフォームでは、障害が発生したディスクや故障したディスクを取り外して、新しいディスクに交換することができます。RAIDが再構築され、ドライブのステータスが[Normal]に戻ります。

注意:

ホットスワップ対応プラットフォーム内のドライブを交換する前には必ず[Safe To Remove]列のステータスをチェックし、RAIDを停止させずにドライブが取り外せる状態であることを確認します。

RAID 1/10、RAID 5、RAID 50、またはRAID 6でRAIDのステータスが[Normal]であれば、すべてのドライブは安全に取り外せる状態です。ただし、ホットスワップによるドライブ交換は、1台ずつ行う必要があります。複数のドライブを交換する必要がある場合は、次のドライブを交換する前に必ず[Safe to Remove]列のステータスをチェックします。ステータスが完全に更新されるまで最大で2分ほど待ってから、ステータスを再チェックする必要があります。次のドライブが安全に取り外せる状態として表示された時点で、そのドライブが交換可能になります。

たとえば、アレイのステータスが[Rebuilding]である場合は、アレイ内の他のどのドライブも安全に取り外せる状態ではありません(使用されていないホットスペアドライブを除く)。ただし、構成に複数のアレイが含まれており、他のアレイのステータスが[Normal]である場合は、それらのアレイ内のドライブが取り外し可能として[Safe To Remove]列に表示されることがあります。

注記:

RAID 0構成では、ドライブの電源を切断しない限り、[Safe To Remove]列のステータスが常に[No]になります。ステータスが[Hot Spare]、[Inactive]、[Uninitialized]のいずれかであるドライブは常に安全に取り外せます。

ディスク交換の準備

単一のディスクを交換するにあたり、以下の条件が成立しているば、この項の説明に従ってください。

SAN/IQ監視を通じて、どのディスクの交換が必要かがわかっている。
ディスク交換の準備を行うには
ディスク交換の準備方法は、ストレージノードのRAIDレベルと、プラットフォームがホットスワップ対応かどうかによって異なります。プラットフォームがホットスワップ対応の場合でも、データの安全性が損なわれないように、ディスク交換を慎重に計画する必要があります。データの安全性を確保しながらディスクを交換するための手順の概要を以下のチェックリストに示します。

ストレージノードとディスクの物理的な位置の特定
ディスク交換手順を開始する前に、ラック内におけるストレージノードの物理的な位置とストレージノード内におけるディスクの物理的な位置の両方を特定しておく必要があります。
- ディスク交換が必要なストレージノードの名前と物理的な位置を確認します。
- ストレージノード内におけるディスクの物理的な位置を確認します。各種プラットフォームにおけるディスクレイアウトについては、「ディスクステータスの確認」(63ページ)を参照してください。
- 交換用の新しいディスクを準備し、サイズとキャリアが正しいことを確認します。

RAID 0で単一のディスクを交換する場合のベストプラクティスチェックリスト

注意:
RAID 0構成で動作しているストレージノードに対しては、ホットスワップ手順を使用しないでください。
RAID 0構成のドライブを取り外すと、データが失われます。

RAID 0の場合は、ドライブを取り外す前に必ずCMCからドライブの電源を切断します。RAID0 0自体にはフォールトトレランスが備わっていないため、ドライブの電源を切断すると、ストレージノード上のデータが失われます。したがって、RAID 0構成でディスクを交換する必要がある場合は、以下のチェックリストに従うことをお勧めします。
- すべてのボリュームとスナップショットで、ストレージノード間での冗長性を持つレベルのネットワークRAIDを構成する。この冗長性は、ネットワークRAID-0以外のすべてのレベルで提供されます。
- ボリュームグループまたはスナップショットが保護されていない（ネットワークRAID-0で構成されている）場合には、データ保護が提供されるレベルのネットワークRAIDに変更する。データの再ストライプ化が完了するのを待つ必要があります（長時間かかることもあります）。
- ネットワークRAIDのレベルを変更するための十分な領域がクラスター内に存在しない場合は、ボリュームまたはスナップショットのバックアップを作成した後、それらのボリュームまたはスナップショットをクラスターから削除します。
- ディスク交換が完了した後、ボリュームを再作成して、データをバックアップから復元できます。
- すべてのボリュームとスナップショットのステータスが[Normal]になっていること。
RAID 1、RAID 10、RAID 5、RAID 50、RAID 6構成での単一ディスクの交換のベストプラクティス

チェックリスト

この場合には、前提条件はありませんが、以下の要件を満たすことを推奨します。

・ 削除処理中のボリュームまたはスナップショットについては、削除がすべて完了していること。
・ 複数のディスクを交換する場合や、どのディスクを交換すべきかを判断できない場合
 は、「ディスク交換に関する付録」（323ページ）の指示に従ってください。

RAID 1、RAID 10、RAID 5、RAID 50、RAID 6構成での単一ディスクの交換のベストプラクティス

チェックリスト

この場合には、前提条件はありませんが、以下の要件を満たすことを推奨します。

・ すべてのボリュームとスナップショットのステータスが[Normal]になっていること。
・ 削除処理中だったボリュームまたはスナップショットについては、削除がすべて完了していること。
・ RAIDステータスが[Normal]になっていること。
・ ドライブのホットスワップをサポートしているプラットフォームでRAIDのステータスが[Rebuilding]または
 [Degraded]になっている場合は、ドライブを安全に取り外せることを意味する[Yes]が[Safe to Remove]
 列に表示されていること。

RAID 0構成でのディスクの交換

以下の、RAID 0で単一のディスクを交換する場合のチェックリストに従います。

CMCから手動でRAID 0内のディスクの電源を切断

最初に、電源を切断するディスクの電源をCMCで切断します。これにより、RAIDがオフになります。

1. ナビゲーションウィンドウで、[Available Nodes]プールからストレージノードを選択します。
2. [Storage]カテゴリを選択します。
3. [Disk Setup]タブを選択します。
4. 電源を切断するディスクをリストから選択します。
5. [Disk Setup Tasks]をクリックし、[Power Off Disk]を選択します。
6. 確認メッセージが表示されたら[OK]をクリックします。

ストレージノード内のディスクを物理的に交換するには

ストレージノードのハードウェアマニュアルを参照してください。

CMCから手動でディスクの電源を投入

ストレージノードに新しいディスクを挿入した後、[Storage]カテゴリの[Disk Setup]タブからディスクの電源
され、他の列は網かけ表示されます。図27に、ストレージノード内で未検出のディスクの表示例を示しま
す。
図27 ディスクの電源オフまたは未検出時の表示

1. ナビゲーションウィンドウでストレージノードを選択してログインします。
2. ツリーから[Storage]カテゴリを選択します。
3. [Disk Setup]タブをクリックします。
4. 電源を投入するディスクをリストから選択します。
6. 確認メッセージが表示されたら[OK]をクリックします。

ボリュームの再ストライプ化

ディスクの電源を投入すると、RAIDのステータスが[Normal]に変化します。ストレージノード全体で、ボリュームの再ストライプ化が開始されます。ボリュームの再ストライプ化が開始されたことが表示されるまでに、最大で数分程度の遅延が生じることがあります。

ホットスワップ対応プラットフォームでのディスクの交換

ホットスワップ対応プラットフォームを以下に示します。
- HP LeftHand P4300およびP4500
- HP StorageWorks P4500 G2およびP4500 G2

RAID 1、RAID 10、RAID 5、RAID 50、RAID 6構成でのディスク交換のベストプラクティスチェックリストに従います。その後、プラットフォーム用の適切な手順を実行します。

ディスクの交換

これらのホットスワップ対応プラットフォームでは、[Safe to Remove]列で交換対象のドライブのステータスが[Yes]になっていれば、そのディスクを取り外して交換できます。

ストレージノード内のディスクを物理的に交換するには

ストレージノード内のディスクドライブの物理的交換の詳細については、ストレージノードのハードウェアマニュアルを参照してください。
ゼヒセと、交换した新しいディスクに対するRAIDの再構築が開始されます。[RAID Setup]タブまたは[Disk Setup]タブにRAIDの再構築が開始されたことが表示されるまでに、最大で数分程度の遅延が生じることがあります。
4 ネットワークの管理

物理ストレージノードには、2つのTCPネットワークインターフェイス（NIC）があります。物理ストレージノードごとに、以下のタスクを実行できます。

- 個々のTCP/IPインターフェイスを構成する
- DNSサーバーをセットアップおよび管理する
- ルーティングテーブルを管理する
- TCPインターフェイスの速度と二重化、フレームサイズ、およびNICフロー制御を表示および構成する
- ストレージノードの所属先の管理グループで動作しているマネージャーのリストを更新する
- 継続的なネットワークアクセスの確保や帯域幅の向上を目的としてNICをボンディングする

VSAでは、ネットワークインターフェイスは1つだけで、以下の設定を変更することはサポートされていません。

- NICのボンディング
- NICフロー制御
- フレームサイズ
- TCPインターフェイスの速度または二重化

IPネットワークプラクティス

- SAN（CMCトラフィックを含む）は、別のネットワーク上に隔離します。パブリックネットワーク上でSANを動作させる必要がある場合は、VPNでデータとCMCトラフィックを保護します。
- 管理グループを作成する場合や、管理グループとクラスターにストレージノードを追加する場合には、事前にストレージノード上ですべてのネットワーク特性を構成しておくと推奨されます。
- 静的なIPアドレスを使用します。DHCPを使用する場合は、予約済みアドレスを使用します。
- NICをボンディングする場合や、ストレージノードを管理グループおよびクラスターに追加する場合には、事前にストレージノードの速度と二重化、フレームサイズ、およびフロー制御設定を構成しておくと推奨されます。
- ストレージノードに2番目のIPアドレスを追加する場合は、別のサブネット上のIPアドレスを2番目のIPアドレスとして使用する必要があります。2つのIPアドレスが同じサブネット上に存在する場合は、それらをボンディングする必要があります。

ネットワーク構成の変更

ストレージノードのネットワーク構成を変更すると、ネットワークおよびアプリケーションサーバーとの接続に影響が生じる可能性があります。したがって、管理グループを作成する場合や、ストレージノードを既存のクラスターに追加する場合には、事前に個々のストレージノード上でネットワーク特性を構成しておくことをお勧めします。

すでにクラスターに所属しているストレージノードに対してネットワーク特性の変更が必要になった場合は、推奨されるベストプラクティスに基づいてください。
ネットワーク特性の変更に際してのベストプラクティス

• ネットワークに関する変更による影響を最小限に抑えられるように、ネットワークに関する変更を低負荷時に実行する計画を立てます。
• 複数のストレージノードに対して同時に変更を行うのではなく、各ストレージノードに対して個別に変更を行います。
• ネットワークに対して行った変更によっては、ストレージサーバー上でSAN/iQサービスを再起動する必要が生じるため、ストレージノードが少しの間、使用できなくなります。ストレージノードごとに[Availability]タブをチェックし、ストレージノード上でのサービスの再起動に伴って使用できなくなるボリュームの有無を確認します。

サービスの再起動中に一時的にボリュームおよびスナップショットが使用できなくなることがあります。たとえば、ボリュームが複製されていない場合や、スナップショットが原因となってデータの再ストライプ化が必要となる場合などが、これに該当します。
• 変更が完了したら、iSCSIセッションを確認します。必要に応じてセッションを更新します。

アクセス方法
1. ナビゲーションウィンドウで、ストレージノードを選択します。
2. ストレージノードの下層にあるツリーを開き、[TCP/IP Network]を選択します。

図30 ストレージノードの[Storage]構成カテゴリの表示

ネットワークインターフェイス上の設定の管理

ストレージノード内のネットワークインターフェイスに対して、設定を構成または変更できます。詳細は、「IPネットワークプラクティス」（71ページ）を参照してください。

要件
これらの設定は、NICボンディングを作成する前に構成する必要があります。
[TCP Status]タブ
TCPインターフェイスのステータスを確認します。インターフェイスの速度と二重化、フレームサイズ、およびNICフロー制御を変更できます。これらの変更は、ボンディングに含まれていないインターフェイスに対してのみ適用可能です。

注記:
VSAでは、速度、二重化、フレームサイズ、およびフロー制御を変更できません。

[TCP Status]タブ
[TCP Status]タブでは、ネットワークインターフェイスのステータスを確認できます。

表13 ネットワークインターフェイスのステータスと情報

<table>
<thead>
<tr>
<th>列</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>名前</td>
<td>インターフェイスの名前です。表示されるエントリーは以下のいずれかです。</td>
</tr>
<tr>
<td></td>
<td>• bond0 - ボンディングされたインターフェイス (ストレージノードでボンディングが構成されている場合のみ表示されます)</td>
</tr>
<tr>
<td></td>
<td>HP LeftHand P4500、HP LeftHand P4300、HP StorageWorks P4500 G2、P4300 G2</td>
</tr>
<tr>
<td></td>
<td>• Motherboard:Port1</td>
</tr>
<tr>
<td></td>
<td>• Motherboard:Port2</td>
</tr>
<tr>
<td></td>
<td>VSA</td>
</tr>
<tr>
<td></td>
<td>• Eth0</td>
</tr>
<tr>
<td>説明</td>
<td>リストに表示されている各インターフェイスの説明です。たとえば、bond0の説明は[Logical Failover Device] (論理フェールオーバーデバイス) です。</td>
</tr>
<tr>
<td>[Speed/Method]</td>
<td>デバイスから報告されている実際の動作速度です。</td>
</tr>
<tr>
<td>[Duplex/Method]</td>
<td>デバイスから報告されている二重化設定です。</td>
</tr>
<tr>
<td>[Status]</td>
<td>インターフェイスの状態です。個々のNICステータスの詳細な説明については、表18 (82ページ)を参照してください。</td>
</tr>
<tr>
<td>[Frame Size]</td>
<td>デバイスのフレームサイズ設定です。</td>
</tr>
<tr>
<td>[Preferred]</td>
<td>(アクティブ/パッシブボンディングの場合) デバイスが優先インターフェイスとして設定されているかを示します。優先インターフェイスとは、アクティブ/パッシブボンディング内で、正常動作中にデータ転送に使用されるインターフェイスです。</td>
</tr>
</tbody>
</table>
速度と二重化の設定の変更

ストレージノードとスイッチの間で設定を統一する必要があります。指定可能な設定は、表14（74ページ）に示すとおりです。

表14 ストレージノードの速度と二重化の設定

<table>
<thead>
<tr>
<th>ストレージノードの速度/二重化設定</th>
<th>スイッチの速度/二重化設定</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto/Auto</td>
<td>Auto/Auto</td>
</tr>
<tr>
<td>1000/Full</td>
<td>1000/Full</td>
</tr>
<tr>
<td>100/Full</td>
<td>100/Full</td>
</tr>
<tr>
<td>100/Half</td>
<td>100/Half</td>
</tr>
<tr>
<td>10/Full</td>
<td>10/Full</td>
</tr>
<tr>
<td>10/Half</td>
<td>10/Half</td>
</tr>
</tbody>
</table>

注記：
VSAでは、速度と二重化の設定を変更できません。

要件

- これらの設定は、NICボンディングを作成する前に構成する必要があります。
- これらの設定を変更するときは、NIC ケーブルの両側で設定を統一する必要があります。たとえば、ストレージノードの設定を[Auto/Auto]にした場合は、スイッチ側の設定も同じにする必要があります。
- 無効化されているNICや、障害の発生したNIC上で速度または二重化の設定を編集した場合、そのNICが有効化されるか、接続が復旧されない限り、新しい設定は適用されません。

ベストプラクティス

変更 二重化の設定は、ストレージノードが[Available Nodes]プールに含まれており、管理グループにまだ所属していないときに行います。

速度と二重化の設定を変更するには

1. ナビゲーションウィンドウでストレージノードを選択してログインします。
2. ツリーを開き、[TCP/IP Network]を選択します。
3. タブウィンドウで[TCP Status]タブを選択します。
4. 編集対象のインターフェイスを選択します。
5. [TCP/IP Status Tasks]をクリックし、[Edit]を選択します。
6. 速度と二重化の組み合わせを選択します。

74 ネットワークの管理
7. [OK]をクリックします。
一連のステータスメッセージが表示されます。その後、変更した設定がTCPステータスレポートに表示されます。

注記:
構成インターフェースを使用してTCPの速度と二重化の設定の編集もできます。『TCP速度、二重化、フレームサイズの設定』（334ページ）を参照してください。

NICのフレームサイズの変更
ストレージノード内のネットワークインターフェイスに対して、設定を構成または変更できます。詳細は、「IPネットワークプラクティス」（71ページ）を参照してください。

要件
フレームサイズを変更する予定がある場合は、NICボンディングを作成する前に変更を実施する必要があります。

ベストプラクティス
フレームサイズの変更は、ストレージノードが[Available Nodes]プールに含まれており、管理グループにまだ所属していないときに行います。
フレームサイズは、ネットワーク上で転送されるデータパケットのサイズを指定します。デフォルトのEthernet標準フレームサイズは1500バイトです。最大許容フレームサイズは9000バイトです。
フレームサイズを大きくすると、ネットワーク上で大きいパケットを転送できるようになり、データの転送に必要となるCPU処理時間が少なくなるため、データ転送速度が向上します。しかし、フレームサイズを増やすには、ネットワーク上に存在するルーター、スイッチ、およびその他のデバイスでそのフレームサイズがサポートされている必要があります。

注記:
ネットワーク上に存在するルーター、スイッチ、およびその他のデバイスで1500バイトを超えるフレームサイズがサポートされていない場合にフレームサイズを増やすと、ネットワークパフォーマンスの低下やその他の問題が生じる可能性があります。ルーターおよびその他のデバイスで大きなフレームサイズがサポートされているかどうか不明の場合は、フレームサイズをデフォルト設定のままにしておいてください。
無効化されているNICや、障害の発生したNIC上でフレームサイズの設定を編集した場合、そのNICが有効化されるか、接続が復旧されない限り、新しい設定は適用されません。

ネットワーク上の他のデバイスとの間で接続やパフォーマンスに関する潜在的な問題を回避するには、フレームサイズをデフォルト設定のままにしておきます。ストレージノード上のフレームサイズは、WindowsおよびLinuxアプリケーションサーバー側のフレームサイズに一致させる必要があります。フレームサイズを変更する場合は、ネットワーク上のすべてのストレージノード間でフレームサイズを統一し、ストレージノードにアクセスするすべてのクライアント上で互換性のあるフレームサイズを設定します。
ストレージノードに対して推奨されるフレームサイズや環境内のWindowsクライアントおよびLinuxクライアントに応じたフレームサイズについては、ネットワーク管理者に確認してください。
ジャンボフレーム

1500バイトを超えるフレームサイズは、ジャンボフレームと呼ばれています。ストレージノードにアクセスする各WindowsクライアントおよびLinuxクライアントでジャンボフレームがサポートおよび構成されている必要があります。さらに、ストレージノードとWindowsクライアントまたはLinuxクライアントの間に存在する各ネットワークスイッチでも、ジャンボフレームがサポートおよび構成されている必要があります。

以下の条件が満たされていれば、同じサブネット上で1500バイトフレームとジャンボフレームを共存させることができます。

- サブネット上でストレージノードの下流にあるすべてのデバイスがジャンボフレームをサポートしていること。
- 802.1q仮想LANを使用している場合は、ジャンボフレームと非ジャンボフレームを個別のVLANに分離すること。

注記:

ボンディングされた論理インターフェイスのフレームサイズは、ボンディングに含まれるNICのフレームサイズに等しくなければなりません。

NICのフレームサイズの編集

フレームサイズを編集するには:

1. ナビゲーションウィンドウでストレージノードを選択してログインします。
2. ツリーを開き、[TCP/IP Network]カテゴリを選択します。
3. [TCP Status]タブを選択します。
4. 編集対象のインターフェイスを選択します。
5. [TCP Status Tasks]をクリックし、[Edit]を選択します。
6. [Frame Size]セクションで[Set To]を選択します。
7. 1500〜9000バイトの範囲内の値を[Set To]フィールドに入力します。
8. [OK]をクリックします。

一連のステータスメッセージが表示されます。その後、変更した設定がTCPステータスレポートに表示されます。

注記:

構成インターフェイスを使用してフレームサイズの編集もできます。

NICフロー制御の変更

NIC上でフロー制御を有効化すると、パケットがドロップされる原因となるデータ伝送のオーバーランを防ぐことができます。フロー制御が有効化されている場合、有効化されていない場合にドロップされるネットワークパケットを再転送する必要はありません。
注記:
VSAでは、フロー制御設定を変更できません。

要件
- これらの設定は、NICボンディングを作成する前に構成する必要があります。
- すべてのNICは同一のフロー制御設定を持つことが望ましく、NICがボンディングされている場合は同一であることが必須です。
- ポートが無効化されている場合はフロー制御を変更できません。

NICフロー制御の有効化
NICフロー制御を有効化するには、以下の手順を実行します。
1. ナビゲーションウィンドウでストレージノードを選択してログインします。
2. ツリーを開き、[TCP/IP Network]カテゴリを選択します。
3. [TCP Status]タブを選択します。
4. 編集対象のインターフェイスを選択します。
5. [TCP Status Tasks]をクリックし、[Edit]を選択します。
6. [On]を選択して、NICのフロー制御を有効化します。
7. [OK]をクリックします。
8. 複数のNICに対してフロー制御を有効化する場合は、NICごとに手順4〜手順7を繰り返します。

両方のNICに対してフロー制御を有効化した後、それらのNICをボンディングした場合、物理NICについては有効化、bond0については無効化のステータスが[NIC flow control]列に表示されます。しかし、この場合でもフロー制御が有効化されており、動作しています。

[TCP/IP]タブ
[TCP/IP]タブには、ストレージノード上のネットワークインターフェイスのリストが表示されます。[TCP/IP]タブでは、インターフェイスのボンディング、インターフェイスの無効化、IPアドレスの構成を行います。ストレージノードからサーバーへpingの送信もできます。

ネットワークインターフェイスの識別
ストレージノードには2つのEthernetインターフェイスが搭載されています。いずれかのインターフェイスを使用するには、いずれかのポートにEthernetケーブルを接続し、構成インターフェイスまたはCMCでインタフェイスを構成する必要があります。ストレージノードの背面には、これらのポートの名前を示すラベルがあります。
表15（78ページ）に、NICの識別方法を示しています。第22章（331ページ）で説明しているように、NICはCMCから構成できるほか、ストレージノードのシリアルポートを通じてアクセスできる構成インターフェイスからも構成できます。

表15 ストレージノード上のネットワークインターフェイスの識別

<table>
<thead>
<tr>
<th>Ethernetインタフェイス</th>
<th>名前</th>
</tr>
</thead>
<tbody>
<tr>
<td>表示場所</td>
<td>CMC内の[TCP/IP Network]構成カテゴリー</td>
</tr>
<tr>
<td></td>
<td>• [TCP/IP]タブ</td>
</tr>
<tr>
<td></td>
<td>• [TCP Status]タブ</td>
</tr>
<tr>
<td></td>
<td>CMC内の[TCP/IP Network]構成カテゴリー</td>
</tr>
<tr>
<td></td>
<td>• Motherboard:Port0、Motherboard:Port1</td>
</tr>
<tr>
<td></td>
<td>• G4-Motherboard:Port1、G4-Motherboard:Port2</td>
</tr>
<tr>
<td></td>
<td>• Motherboard:Port1、Motherboard:Port2</td>
</tr>
<tr>
<td></td>
<td>ボンディングされているインターフェイスの場合:</td>
</tr>
<tr>
<td></td>
<td>• BondNまたはBond0</td>
</tr>
<tr>
<td>CMC内の[TCP/IP Network]構成カテゴリー</td>
<td>• Intelギガビットイーサーネット</td>
</tr>
<tr>
<td></td>
<td>• Broadcomギガビットイーサーネット</td>
</tr>
<tr>
<td>ストレージノードのシリアルポートからアクセスできる構成インターフェイス</td>
<td>• Eth0、Eth1</td>
</tr>
<tr>
<td></td>
<td>• 以下のようなグラフィカルシンボルで表現:</td>
</tr>
<tr>
<td></td>
<td>2 または 1 または 2 または 1</td>
</tr>
</tbody>
</table>

IPアドレスへのping送信

SANはプライベートネットワーク上に置く必要がありますが、CMCを使用するとストレージノードからターゲットアドレスへpingを送信できます。[TCP/IP]タブのリストに含まれている有効なインターフェイスのいずれからもping送信が可能です。iSCSIサーバーやSNMP監視サーバーなど、任意のIPアドレスに対してpingを送信できます。

IPアドレスへのpingを送信するには

1. ストレージノードを選択し、その下層にあるツリーを開きます。
2. [TCP/IP Network]カテゴリを選択します。
3. [TCP/IP Tasks]メニュートを選択し、メニューから[Ping]を選択します。
4. pingの送信に使用するネットワークインターフェイスを選択します（複数のネットワークインターフェイスが有効化されている場合）。
 インターフェイスがボンディングされている場合は、1つのインターフェイスからのみpingを送信できます。
5. pingの送信先となるIPアドレスを入力し、[Ping]をクリックします。
 サーバーが使用可能な状態であれば、[Ping Results]ウィンドウにpingの結果が表示されます。
 サーバーが使用可能でない場合は、[Ping Results]ウィンドウにpingの失敗が示されます。

IPアドレスの手動構成

ネットワークインターフェイスのIPアドレスの追加または変更には、[TCP/IP Network]カテゴリを使用します。
1. ストレージノードを選択し、その下層にあるツリーを開きます。
2. [TCP/IP Network]カテゴリを選択し、[TCP/IP]タブをクリックします。
3. IPアドレスを構成または変更するインターフェイスをリストから選択します。
4. [Edit]をクリックします。
5. [IP Address]を選択し、IPアドレス、サブネットマスク、およびデフォルトゲートウェイの各フィールドに必要な情報を入力します。
6. [OK]をクリックします。
7. 確認メッセージが表示されたら[OK]をクリックします。
8. 自動ログアウトを通知するメッセージに対して[OK]をクリックします。

\[\text{注記:}\]
IPアドレスの変更が確定されるまで、少し待ちます。

9. 新しくアドレスが指定されたストレージノードにログインします。

\textbf{DHCPの使用}

DHCPサーバーは、システム構成内の単一障害点となります。DHCPサーバーがオフラインになると、IPアドレスが失われる可能性があります。

\[\text{注記:}\]
NICをボンディングする予定の場合には、静的IPアドレスを使用する必要があります。

\[\text{△ 注意:}\]
DHCPを使用する場合は、すべてのストレージノードに対して、静的に割り当てたIPアドレスをDHCPサーバー上で予約しておきます。管理グループではユニキャスト通信を使用するため、静的なIPアドレスが必須となります。

\textbf{DHCPを使用してIPアドレスを設定するには}

1. DHCPを使用するように構成するインターフェイスをリストから選択します。
2. [Edit]をクリックします。
3. [Obtain an address automatically using the DHCP/BOOTP protocol]を選択します。
4. [OK]をクリックします。
5. 確認メッセージが表示されたら[OK]をクリックします。
6. 自動ログアウトを通知するメッセージに対して[OK]をクリックします。

\[\text{注記:}\]
IPアドレスの変更が確定されるまで、少し待ちます。
ネットワークインターフェイスのボンディングの構成

ネットワークインターフェイスのボンディングを構成すると、ストレージノード内のネットワークインターフェイススカードに対して、高可用性、フォールトトレランス、負荷分散、帯域幅のアグリゲーションがもたらされます。ボンディングを作成するには、複数の物理NICを単一の論理インターフェイスに結合（ボンディング）します。この論理インターフェイスは「マスター」インターフェイスとして機能し、物理「スレーブ」インターフェイスを制御および監視します。

2つのインターフェイスをフェールオーバー対応としてボンディングすれば、ネットワーク通信に対するフォールトトレランスがローカルハードウェアレベルで実現されます。これにより、NIC、Ethernetケーブル、個々のスイッチポート、スイッチ全体のいずれかに発生した障害を許容しながら、データ可用性を維持できます。2つのインターフェイスをアグリゲーション対応としてボンディングすると、帯域幅のアグリゲーションとローカルなフォールトトレランスが実現されます。2つのインターフェイスを負荷分散対応としてボンディングすると、負荷分散とローカルなフォールトトレランスの両方が実現されます。

注記:
VSAでは、NICのボンディングをサポートしていません。

NICのボンディングは、ストレージノードのハードウェア、ネットワークインフラストラクチャー設計、およびEthernetスイッチの機能に応じて、以下の3通りの方法のいずれかで実施できます。

• アクティブ/パッシブ: ボンディングした論理インターフェイスで優先的に使用するNICを指定します。優先NICに障害が発生すると、論理インターフェイスはボンディングに含まれる他のNICの使用を開始し、優先NICが動作を再開するまでの間、そのNICを使用します。優先NICが動作を再開すると、優先NIC上のデータ転送が再開されます。

• リンクアグリゲーション動的モード: 論理インターフェイスが両方のNICを同時に使用してデータ転送を行います。この構成では、ネットワーク帯域幅が増加し、一方のNICに障害が発生しても他のNICが通常どおり動作を続けます。リンクアグリゲーション動的モードを使用するには、スイッチで802.3adがサポートされている必要があります。

注意:
リンクアグリゲーション動的モードでは、両方のNICを同じスイッチに接続する必要があります。このボンディング方法では、スイッチ障害に対する保護は得られません。

• アダプティブ負荷分散（ALB）: 論理インターフェイスが両方のNICを通じたデータ伝送のバランスを調整し、サーバーとネットワークの機能を強化します。アダプティブ負荷分散では、さらにフォールトトレランス機能が自動的に組み込まれます。

ベストプラクティス

• 802.3adによる伝送速度の向上とアクティブ/パッシブによるネットワーク冗長性の両方を併せ持つアダプティブ負荷分散は、最も推奨されるボンディング方法です。アダプティブ負荷分散では、追加のスイッチ構成が不要です。

• ボンディング対象の2つのインターフェイスのそれぞれについて、速度、二重化、フレームサイズ、およびフロー制御の設定を確認/変更します。

• リンクアグリゲーション動的モードでは、両方のNICを同じスイッチに接続する必要があるため、スイッチ障害に対する保護が得られません。しかし、リンクアグリゲーション動的モードには、両方のNICを通じてデータが同時に転送されるため帯域幅が大きくなるという利点があります。リンクアグリゲーション動的モードでは、両方のNICを同じスイッチに接続しなければならないことに加え、スイッチがLACP
対応であり、さらに両方のNICが802.3adアグリゲーションをサポートしており、802.3adアグリゲーション用に構成されている必要があります。

- アクティブ/パッシブでは、ストレージノード上のNICを個別のスイッチに接続します。リンクアグリゲーション動的モードではポート障害に対する保護しか得られないのに対し、アクティブ/パッシブではスイッチの障害に対する保護が得られます。

NICボンディング用のIPアドレス

論理ボンディングインタフェース（bond0）には、静的なIPアドレスを割り当てます。ボンディングIPアドレスにはDHCPを使用できません。

NICボンディングと速度、多重化、フレームサイズ、およびフロー制御の設定

<table>
<thead>
<tr>
<th>機能</th>
<th>アクティブ/パッシブ</th>
<th>リンクアグリゲーション動的モード</th>
<th>アダプティブ負荷分散</th>
</tr>
</thead>
<tbody>
<tr>
<td>帯域幅</td>
<td>NICを1つずつ使用して通常の帯域幅を提供。</td>
<td>両方のNICを同時に使用して帯域幅を拡張。</td>
<td>両方のNICを同時に使用して帯域幅を拡張。</td>
</tr>
<tr>
<td>ポート障害時の保護</td>
<td>あり</td>
<td>あり</td>
<td>あり</td>
</tr>
<tr>
<td>スイッチ障害時の保護</td>
<td>あり。NICを異なるスイッチに接続可能。</td>
<td>なし。両方のNICを同じスイッチに接続する必要あり。</td>
<td>あり。NICを異なるスイッチに接続可能。</td>
</tr>
</tbody>
</table>

802.3adリンクアグリゲーションのサポートの必要性

- 802.3adリンクアグリゲーションのサポートが必要です。

アクティブ/パッシブの仕組み

NICをアクティブ/パッシブ用にボンディングする場合は、データ転送に優先的に使用するインタフェースを指定できます。このインタフェースがアクティブインタフェースとなります。他のインタフェースはバックアップとして機能し、そのステータスは[Passive (Ready)]となります。

物理インタフェースと論理インタフェース

ストレージノード内の2つのNICには、表17(81ページ)に示すラベルが付与されます。両方のインタフェースがフェールオーバー対応としてボンディングされている場合、論理インタフェースはbond0のラベルが付与され、マスターインターフェースとして機能します。2つの物理インタフェースがスレーブインターフェースとなり、bond0はマスターサーバーインターフェースとして、これらのスレーブインターフェースを制御および監視します。

物理インタフェースと論理インタフェース

フェールオーバー名	フェールオーバーの説明
bond0 | マスターとして機能する論理インタフェース
フェールオーバーの説明

フェールオーバー名	フェールオーバーの説明
eth0またはMotherboard:Port1 | スレーブとして機能する物理インターフェイス
eth1またはMotherboard:Port2 | スレーブとして機能する物理インターフェイス
Slot1:Port0 | PCIスロット内の物理インターフェイス。このインターフェイスがスレーブとして機能。

論理マスターインターフェイスは各物理スレーブインターフェイスを監視して、そのインターフェイスから接続先デバイス（ルーター、スイッチ、リピーターなど）へのリンクが有効かどうかを判別します。インターフェイスのリンクが有効である限り、インターフェイスのステータスが維持されます。

表18 アクティブ/パッシブ構成におけるNICステータス

<table>
<thead>
<tr>
<th>NICインタフェース</th>
<th>NICの状態</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Active]</td>
<td>現在有効化されており使用中</td>
</tr>
<tr>
<td>[Passive (Ready)]</td>
<td>ボンディングのスレーブとなっており、フェールオーバーに使用可能</td>
</tr>
<tr>
<td>[Passive (Failed)]</td>
<td>ボンディングのスレーブとなっているが、リンクが失われている</td>
</tr>
</tbody>
</table>

アクティブNICに障害が発生するか、ケーブル障害のためにリンクが失われるか、またはNICケーブルの接続先のローカルデバイスに障害が発生してリンクが失われると、NICのステータスは[Passive (Failed)]に変化します。このとき、ボンディング内のもう一方のNICのステータスが[Passive (Ready)]になっていた場合は、そのNICがアクティブになります。

障害の発生した優先インターフェイスが再びオンラインになるまでの間、この構成が持続されます。障害の発生したインターフェイスは、オンラインに戻った時点でアクティブになります。もう一方のNICは[Passive (Ready)]に変化します。

アクティブ/パッシブの要件

アクティブ/パッシブを構成するには、以下の要件が必要です。

- 両方のNICが有効化されていること。
- NICがそれぞれ別のスイッチに接続されていること。

どちらの物理インターフェイスが優先されるか

アクティブ/パッシブボンディングを作成した場合、両方のNICが接続されていれば、SAN/iQソフトウェアのインターフェイスがアクティブインターフェイスとなります。もう一方のインターフェイスは[Passive (Ready)]ステータスになります。

たとえば、Eth0が優先インターフェイスになっている場合は、Eth0が[Active]ステータスになり、Eth1が[Passive (Ready)]ステータスになります。この場合、Eth0に障害が発生すると、Eth1のスイッチが[Passive (Ready)]から[Active]に切り替わります。Eth0は[Passive (Failed)]ステータスになります。

リンクが修復され、Eth0が動作を開始すると、30秒の遅延時間後にEth0がアクティブインターフェイスになります。Eth1は[Passive (Ready)]状態に戻ります。
注記:
アクティブインターフェイスが復旧してからアクティブに戻るまでに、30秒の遅延があります。

表19 アクティブ/パッシブフェールオーバーのサンプルシナリオおよび対応するNICステータス

<table>
<thead>
<tr>
<th>NICステータス</th>
<th>フェールオーバーのサンプルシナリオ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. bond0がアクティブ/パッシブで作成される。アクティブ（優先）インターフェイスはEth0。</td>
</tr>
<tr>
<td></td>
<td>Eth0がアクティブ。</td>
</tr>
<tr>
<td></td>
<td>Eth1が接続されており、[Passive (Ready)]ステータスになっている。</td>
</tr>
<tr>
<td></td>
<td>2. アクティブインターフェイスに障害が発生する。bond0が障害を検出し、Eth1が処理を引き継ぐ。</td>
</tr>
<tr>
<td></td>
<td>Eth0のステータスが[Passive (Failed)]になる。</td>
</tr>
<tr>
<td></td>
<td>Eth1のステータスが[Active]になる。</td>
</tr>
<tr>
<td></td>
<td>3. Eth0リンクが復旧される。</td>
</tr>
<tr>
<td></td>
<td>Eth0のステータスが30秒の遅延後に[Active]になる。</td>
</tr>
<tr>
<td></td>
<td>Eth1のステータスが[Passive (Ready)]になる。</td>
</tr>
</tbody>
</table>

フェールオーバー中のNICステータスのまとめ

<table>
<thead>
<tr>
<th>ETH0のステータス</th>
<th>ETH1のステータス</th>
</tr>
</thead>
<tbody>
<tr>
<td>優先: 非該当、ステータス: [Passive (Failed)]、データ転送: なし</td>
<td>優先: 非該当、ステータス: [Active]、データ転送: あり</td>
</tr>
<tr>
<td>優先: 該当、ステータス: [Active]、データ転送: あり</td>
<td>優先: 非該当、ステータス: [Passive (Ready)]、データ転送: なし</td>
</tr>
<tr>
<td>優先: 該当、ステータス: [Passive (Ready)]、データ転送: あり</td>
<td>優先: 非該当、ステータス: [Active]、データ転送: あり</td>
</tr>
</tbody>
</table>

アクティブ/パッシブでのネットワークケーブル配線トポロジの例

ここでは、高可用性環境でアクティブ/パッシブを使用した場合のケーブル配線トポロジのシンプルな例を2つ示します。
図31 サーバーフェールオーバーを伴う2スイッチトポロジでのアクティブ/パッシブ

図31 (84ページ)に示している2スイッチのシナリオは、高可用性を確保するための基本的かつ効果的な方法です。いずれかのスイッチに障害が発生するか、一方のストレージノード上のケーブルまたはNICに障害が発生すると、アクティブ/パッシブボンディングによりセカンダリ接続がアクティブとなり、処理を引き継ぎます。
1. サーバー
2. HP StorageWorks P4000
3. ストレージクラスター
4. GigEトランク
5. アクティブパス
6. パッシブパス

図32 4スイッチトポロジでのアクティブ/パッシブフェールオーバー
図32（85ページ）の図は、4スイッチトポロジにおけるアクティブ/パッシブ構成を示しています。

リンクアグリゲーション動的モードの仕組み

リンクアグリゲーション動的モードでは、ストレージノードが両方のインターフェイスを同時にデータ転送に使用できます。両方のインターフェイスがアクティブステータスになります。いずれかのNICへのインターフェイスのリンクがオフラインになると、もう一方のインターフェイスが動作を継続します。両方のNICの使用により、ネットワーク帯域幅も拡張されます。

リンクアグリゲーション動的モードの要件

リンクアグリゲーション動的モードを構成するには、以下の要件が必要です。

- 両方のNICが有効化されていること。
- NICが同じサブネット上で構成されていること。
- LACPに対応しており、802.3adリンクアグリゲーションをサポートしている単一のスイッチにNICが接続されていること。ストレージノードがサーバーに直接接続されている場合は、サーバーが802.3adリンクアグリゲーションをサポートしていること。
どちらの物理インターフェイスが優先されるか

論理インターフェイスが両方のNICを同時にデータ転送に使用するため、アグリゲーションボンディング内のどちらかのNICを優先NICとして指定することはありません。

どちらの物理インターフェイスがアクティブになるか

リンクアグリゲーション動的モードによるボンディングを作成した場合、両方のNICが接続されていれば、両方のインターフェイスがアクティブになります。いずれかのインターフェイスに障害が発生すると、もう一方のインターフェイスが継続して動作します。たとえば、Eth0とEth1がリンクアグリゲーション動的モードでボンディングされている場合、Eth0に障害が発生しても、Eth1はアクティブのままになります。

リンクが修復され、Eth0が動作を再開すると、Eth0は再びアクティブになります。Eth1はアクティブのままです。

表21 リンクアグリゲーション動的モードでのフェールオーバーのサンプルシナリオおよび対応するNICステータス

<table>
<thead>
<tr>
<th>フェールオーバーのサンプルシナリオ</th>
<th>NICステータス</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. リンクアグリゲーション動的モードでbond0が作成される。Eth0とEth1の両方がアクティブになる。</td>
<td>bond0がマスター論理インターフェイス。Eth0がアクティブ。Eth1がアクティブ。</td>
</tr>
<tr>
<td>2. Eth0のインターフェイスに障害が発生する。リンクアグリゲーション動的モードが構成されているため、Eth1は動作を続行する。</td>
<td>Eth0のステータスが[Passive (Failed)]になる。Eth1のステータスは[Active]のまま。</td>
</tr>
<tr>
<td>3. Eth0のリンク障害が修復される。</td>
<td>Eth0が[Active]ステータスに戻る。Eth1は[Active]ステータスのまま。</td>
</tr>
</tbody>
</table>

フェールオーバー中のNIC状態のまとめ

表22（86ページ）は、リンクアグリゲーション動的モードで構成されている場合のEth0およびEth1の状態を示しています。

表22 リンクアグリゲーション動的モードによるフェールオーバー中のNICステータス

<table>
<thead>
<tr>
<th>フェールオーバーのステータス</th>
<th>Eth0のステータス</th>
<th>Eth1のステータス</th>
</tr>
</thead>
<tbody>
<tr>
<td>正常に動作中</td>
<td>優先: 非該当、ステータス: [Active]、データ転送: あり</td>
<td>優先: 非該当、ステータス: [Active]、データ転送: あり</td>
</tr>
<tr>
<td>Eth0に障害が発生し、データ転送がEth1へフェールオーバーされる</td>
<td>優先: 非該当、ステータス: [Passive (Failed)]、データ転送: なし</td>
<td>優先: 非該当、ステータス: [Active]、データ転送: あり</td>
</tr>
<tr>
<td>Eth0復旧</td>
<td>優先: 非該当、ステータス: [Active]、データ転送: あり</td>
<td>優先: 非該当、ステータス: [Active]、データ転送: あり</td>
</tr>
</tbody>
</table>

リンクアグリゲーション動的モードでのネットワークケーブル配線トポロジの例

ここでは、高可用性環境でリンクアグリゲーション動的モードを使用した場合のネットワーク構成のシンプルな例を1つ示します。
アダプティブ負荷分散の仕組み
アダプティブ負荷分散では、ストレージノードは両方のインターフェイスを同時にデータ転送に使用できます。両方のインターフェイスがアクティブステータスになります。いずれかのNICへのインターフェイスリンクがオフラインになると、もう一方のインターフェイスが動作を継続します。両方のNICの使用により、ネットワーク帯域幅も拡張されます。

アダプティブ負荷分散の要件
アダプティブ負荷分散を構成するには、以下の要件が必要です。
- 両方のNICが有効化されていること。
- NICが同じサブネット上で構成されていること。
- NICが個別のスイッチに接続できること。

どちらの物理インターフェイスが優先されるか
論理インターフェイスが両方のNICを同時にデータ転送に使用するため、アダプティブ負荷分散ボニンググ内のどちらかのNICを優先NICとして指定することはありません。

どちらの物理インターフェイスがアクティブになるか
アダプティブ負荷分散によるボニンググを作成した場合、両方のNICが接続されていれば、両方のインタフェイスがアクティブになります。いずれかのインターフェイスに障害が発生すると、もう一方のイン
ターフェイスが継続して動作します。たとえば、Motherboard:Port1とMotherboard:Port2がアダプティブ負荷分散でボンディングされている場合に、Motherboard:Port1に障害が発生しても、Motherboard:Port2はアクティブのままになります。

リンクが修復され、Motherboard:Port1が動作を再開すると、Motherboard:Port1は再びアクティブになります。Motherboard:Port2はアクティブのままです。

表23 アダプティブ負荷分散フェールオーバーのサンプルシナリオおよび対応するNICステータス

フェールオーバーのサンプルシナリオ	NICステータス
1. アダプティブ負荷分散によりbond0が作成される。Motherboard:Port1とMotherboard:Port2の両方がアクティブになる。 | bond0がマスター論理インターフェイス。Motherboard:Port1がアクティブ。Motherboard:Port2がアクティブ。
2. Motherboard:Port1インターフェイスに障害が発生する。アダプティブ負荷分散が構成されているため、Motherboard:Port2が動作を続行する。 | Motherboard:Port1のステータスが[Passive (Failed)]になる。Motherboard:Port2のステータスは[Active]のまま。

フェールオーバー中のNIC状態のまとめ

フェールオーバー中のNIC状態のまとめ

表24（88ページ）は、アダプティブ負荷分散で構成されている場合のMotherboard:Port1とMotherboard:Port2の状態を示しています。

表24 アダプティブ負荷分散によるフェールオーバー中のNICステータス

フェールオーバーステータス	Motherboard:Port2のステータス	Motherboard:Port1のステータス
正常に動作中 | 優先: 非該当、ステータス: [Active]、データ転送: あり | 優先: 非該当、ステータス: [Active]、データ転送: あり
Motherboard:Port1に障害が発生し、データ転送がMOTHERBOARD:Port2へフェールオーバーされる | 優先: 非該当、ステータス: [Passive (Failed)]、データ転送: なし | 優先: 非該当、ステータス: [Active]、データ転送: あり
Motherboard:Port1復旧 | 優先: 非該当、ステータス: [Active]、データ転送: あり | 優先: 非該当、ステータス: [Active]、データ転送: あり

アダプティブ負荷分散でのネットワークケーブル配線トポロジの例

ここでは、高可用性環境でアダプティブ負荷分散を使用した場合のネットワーク構成のシンプルな例を1つ示します。
1. サーバー
2. HP StorageWorks P4000
3. ストレージクラスター
4. GigEトランク

図34 2スイッチトポロジでのアダプティブ負荷分散

NICボンディングの作成
NICボンディングを作成するには、以下のガイドラインに従ってください。

前提条件
ボンディング対象の両方のインターフェイス上で、速度、二重化、フロー制御、およびフレームサイズがすべての正しく設定されていることを確認します。ボンディングされたインターフェイス上では、これらの設定を変更できません。サポート用のインターフェイスのどちらについても、これらの設定の変更はできません。
これらの設定を適切に構成するための手順については、「ネットワークインターフェイス上の設定の管理」(72ページ)を参照してください。

ボンディングに関するガイドライン
- ストレージノードを管理グループに追加する前に、ストレージノード上でボンディングを作成します。
- 2つのインターフェイスのボンディングを作成します。
- 1つのインターフェイスを複数のボンディングに含めることはできません。
- ボンディングを作成する前に、各インターフェイスの構成情報を記録しておきます。これらの情報があれば、ボンディングを削除した場合に、必要に応じて元の構成に戻すことができます。
- アクティブ/パッシブボンディングを削除した場合は、削除した論理インターフェイスのIPアドレスと構成が優先インターフェイスに引き継がれます。
ボンディングを正しく動作させるには、ボンディングを以下のように構成します。

1. ストレージノードを管理グループに追加する前に、ストレージノード上でボンディングを作成します。
2. ボンディングが作成されたことを確認します。
3. ストレージノードを管理グループに追加した後でボンディングを作成したため、ボンディングが正しく動作しない場合は、以下の問題が生じる可能性があります。
 - ストレージノードがネットワークから失われる
 - 管理グループ内のクォーラムがしばらくの間、失われる

構成インターフェイスを通じてNICボンディングを削除する方法の詳細については、「NICボンディングの削除」(334ページ)を参照してください。

ボンディングの作成手順

1. ストレージノードにログインします。
2. ツリーからTCP/IPカテゴリを選択します。
3. TCP/IPタブで、ボンディング対象の両方のNICを選択します。
5. ドロップダウンリストからボンディングのタイプを選択します。
6. ボンディング用のIPアドレスを入力するか、デフォルト値を使用します。
7. サブネットマスクを入力します。
8. (オプション) デフォルトゲートウェイを入力します。
9. [OK]をクリックします。

注記:

ボンディングの作成中は、ストレージノードがネットワークから切断されます。これらの変更処理には2〜3分かかります。その間に、ストレージノードは検出もアクセスもできません。
10. [OK]をクリックしてTCP/IPの変更を確認します。ボンディングされたストレージノードをネットワーク上で検索するように求めるメッセージが表示されます。

![Search Network](image)

図35 ボンディングされたストレージノードをネットワーク上で検索

11. ホスト名、IPアドレス、サブネット/マスクのいずれかでストレージノードを検索します。

注記:
ストレージノードが再初期化されるまでに数分かかることがあるため、初回の検索は失敗する可能性があります。検索が失敗した場合は、1〜2分待ってから[Network Search Failed]メッセージに対して[Try Again]を選択します。

12. 新しいボンディングインタフェイスを確認します。

![Bonded Interfaces](image)

1. ボンディングされた論理ネットワークインターフェイス
2. 物理インターフェイスはスレーブとして表示

図36 新しいアクティブ/パッシブボンディングの確認
ボンディングインターフェイスは「bond0」として示され、静的IPアドレスが割り当てられています。2つの物理NICは[Mode]列にスレーブとして表示されます。

新しいボンディングの通信設定の確認
1. ストレージノードを選択し、その下層にあるツリーを開きます。
2. [TCP/IP Network]カテゴリを選択し、[Communication]タブをクリックします。

図37 SAN/iQ通信に使用するインターフェイスの確認

3. SAN/iQ通信ポートが正しいことを確認します。

NICボンディングのステータスの表示

インターフェイスのステータスは、[TCP Status]タブで確認できます。なお、アクティブ/パッシブボンディングでは、一方のNICが優先NICとなります。リンクアグリゲーション動的モードボンディングとアダプティブ負荷分散ボンディングでは、どちらの物理インターフェイスも優先インターフェイスになりません。

図38 (93ページ)に、アクティブ/パッシブボンディングのインターフェイスステータスが示されています。図39 (93ページ)に、リンクアグリゲーション動的モードボンディングのステータスが示されています。
1. 優先インターフェイス

図38 アクティブ/パッシブボンディングのステータスの表示

1. どちらのインターフェイスも優先インターフェイスにならない

図39 リングアグリゲーション動的モードボンディングのステータスの表示

注記:
ボンディングされたNICでEthernet障害が短時間で連続して発生している場合は、ストレージノードが障害発生中（赤色の点滅）としてCMCに表示されることがあり、そのストレージノード上のデータへのアクセスが失敗します。しかし、Ethernet接続が再確立されれば、ストレージノードとCMCにただちに正しい情報が表示されます。
NICボンディングの削除

アクティブ/パッシブボンディングを削除した場合は、削除した論理インターフェイスのIPアドレスと構成が優先インターフェイスに引き継がれます。その他のNICは無効になり、IPアドレスは0.0.0.0に設定されます。

リンクアグリゲーション動的モードボンディングまたはアダプティブ負荷分散ボンディングを削除した場合は、削除した論理インターフェイスのIPアドレスがボンディング内のある一方のアクティブインターフェイスに保持されます。その他のNICは無効になり、IPアドレスは0.0.0.0に設定されます。

1. ストレージノードにログインし、ツリーを展開します。
2. ツリーから[TCP/IP]カテゴリを選択します。
3. [TCP/IP]タブで、削除対象のボンディングインターフェイスまたは物理ボンディングを選択します。
4. [TCP/IP Tasks]をクリックし、[Delete Bond]を選択します。

IPアドレスが変更されるため、[Search Network]ウィンドウが表示されます。

図40 ボンディング解除されたストレージノードをネットワーク上で検索

5. ホスト名、IPアドレス、サブネット/マスクのいずれかでストレージノードを検索します。

注記:
ストレージノードが再初期化されるまでに数分かかることがあるため、初回の検索は失敗する可能性があります。検索が失敗した場合は、1〜2分待ってから[Network Search Failed]メッセージに対して[Try Again]を選択します。
構成インターフェイスを使用してNICボンディングを削除することもできます。「NICボンディングの削除」(334ページ)を参照してください。

ボンディング削除後のNICの設定と通信設定の確認
1. ストレージノードを選択し、その下層にあるツリーを開きます。
2. [TCP/IP Network]カテゴリを選択します。
3. [TCP/IP]タブで削除したインターフェイスを確認し、必要に応じてそれらのインターフェイスを再構成します。

ボンディングを削除した後には、それらのインターフェイスに正しいIPアドレスが設定されていなかったり、無効化されているインターフェイスがある場合があります。

4. 次に、[Communication]タブをクリックします。

図41 SAN/iQ通信に使用するインターフェイスの確認

5. SAN/iQ通信ポートが正しいことを確認します。

ネットワークインターフェイスの無効化

ストレージノード上のネットワークインターフェイスは無効化できます。

・ 無効化できるのは、最上位レベルのインターフェイスだけです。ボンディングされたインターフェイスのほか、ボンディングされたインターフェイスに所属していないNICが最上位レベルのインターフェイスに該当します。

・ ストレージノードへのアクセスを常時確保できるように、最後の1つのインターフェイスは無効化しないでください。最後の1つのインターフェイスを無効化する必要がある場合は、最初に別のインターフェイスを有効化してください。

△ 注意:

インターフェイスを無効化する場合は、必ず事前に他のインターフェイスを有効化しておきます。これにより、ストレージノードへのアクセスを常時確保できます。すべてのインターフェイスを無効化した場合は、構成インターフェイスを使用して、少なくとも1つのインターフェイスを再構成しなければストレージノードにアクセスできません。"ネットワーク接続の構成"(333ページ)を参照してください。

ネットワークインターフェイスの無効化

1. ストレージノードにログインし、ツリーを展開します。
2. [TCP/IP Network]カテゴリを選択します。
3. 無効化するインターフェイスを[TCP/IP]タブウィンドウ上のリストから選択します。
4. [TCP/IP Tasks]をクリックし、[Edit]を選択します。
5. [Disable Interface]をクリックします。
6. [OK]をクリックします。
確認メッセージが表示されます。唯一のインターフェイスを無効化しようとしている場合は、操作を続
行するとストレージノードへのアクセスができなくなることを警告するメッセージが出力されます。
7. [OK]をクリックします。

ストレージノードが管理グループに所属している場合
インターフェイスを無効化する対象となるストレージノードが管理グループ内でマネージャーになっている
場合は、管理グループ内のマネージャーのIPアドレスをすべて示すウィンドウが表示されます。このウィン
ドルには、更新の影響を受けるアプリケーションサーバーを再構成するように指示するメッセージが示され
ます。

無効化されたインターフェイスの構成
一方のインターフェイスがまだストレージノードに接続されているが、もう一方のインターフェイスが切断さ
れている場合は、CMCを通じて、その2番目のインターフェイスを再接続できます。「IPアドレスの手動構
成」（78ページ）を参照してください。

ストレージノードへの2つのインターフェイスが両方とも切断されている場合は、ヌルモデムケーブルで端
末、PC、またはラップトップをストレージノードに接続したうえで、構成インターフェイスを使用して少なくとも
1つのインターフェイスを構成する必要があります。「ネットワーク接続の構成」（333ページ）を参照してく
ださい。

DNSサーバーの使用
ストレージノードでは、ホスト名の解決にDNSサーバーを使用できます。たとえば、ホスト名を入力してNTP
タイムサーバーを指定すると、ストレージノードがDNSを使用して、ホスト名を対応するIPアドレスに解決し
ます。たとえば、コロラド州ボルダーにあるタイムサーバーのホスト名time.nist.govに対して、DNS
は、そのホスト名を192.43.244.18というIPアドレスに解決します。

DNSとDHCP
ストレージノードがDHCPを通じてIPアドレスを取得する構成になっている場合、DNSサーバーのIPアドレ
スがDHCPサーバーから提供されるように構成すると、最大で3つのDNSサーバーが自動的にストレージ
ノードに追加されます。「TCP/IP Network」カテゴリの[DNS]タブでは、これらのDNSサーバーのIPアドレス
がストレージノード構成ウィンドウに表示されます。これらのDNSサーバーは削除が可能ですが、削除し
た場合は、新しいDNSサーバーを入力しない限りストレージノードがホスト名を解決できなくなります。

DNSと静的IPアドレス
ストレージノードに静的IPアドレスが割り当てられている場合にストレージノードにホスト名を認識させるに
は、[Network DNS]タップにDNSサーバーを手動で追加する必要があります。

注記:
最初にストレージノードがDHCPを使用する構成になっていた場合に、静的IPアドレスを使用する構成
に変更すると、DHCPから提供されるDNSサーバーが[DNS]タップに引き続き表示されます。このDNS
サーバーは削除または変更が可能です。
アクセス方法
1. ナビゲーションウィンドウでストレージノードを選択してログインします。
2. ツリーを開き、[TCP/IP Network]カテゴリを選択します。
3. [DNS]タブを選択します。

DNSドメイン名の追加
ストレージノードが所属しているDNSドメインの名前を追加します。
1. [DNS Tasks]をクリックし、[Edit DNS Domain Name]を選択します。
2. DNSドメイン名を入力します。
3. 完了したら[OK]をクリックします。

DNSサーバーの追加
ストレージノードで使用するDNSサーバーを最大で3つ追加します。
1. [DNS Tasks]をクリックし、[Edit DNS Server]を選択します。
2. [Add]をクリックし、DNSサーバーのIPアドレスを入力します。
3. [OK]をクリックします。
4. 手順1〜手順3を繰り返して、3つまでのサーバーを追加します。
5. [Edit DNS Servers]ウィンドウの矢印ボタンを使用してサーバーの順序を設定します。
 サーバーは、リスト内に表示されているとおりの順序でアクセスされます。
6. 完了したら[OK]をクリックします。

DNSサフィックスへのDNSドメイン名の追加
DNSサフィックスリスト（ルックアップゾーン）に6つまでのドメイン名を追加します。ストレージノードは最初にサフィックスを検索した後、DNSサーバーを使用してホスト名を解決します。
2. [Add]をクリックして[Add DNS Suffixes]ウィンドウを表示します。
3. DNSサフィックス名を入力します。ドメイン名形式を使用します。
4. [OK]をクリックします。
5. 手順1〜手順4を繰り返して、6つまでのドメイン名を追加します。
6. 完了したら[OK]をクリックします。

DNSサーバーの編集
リスト内のDNSサーバーのIPアドレスを変更します。
1. ナビゲーションウィンドウでストレージノードを選択してログインします。
2. ツリーを開き、[TCP/IP Network]カテゴリを選択します。
3. [DNS]タブを選択します。
4. 編集するサーバーを選択します。
5. [DNS Tasks]をクリックし、[Edit DNS Servers]を選択します。
6. サーバーをもう一度選択して[Edit]をクリックします。
7. DNSサーバーの新しいIPアドレスを入力し、[OK]をクリックします。

DNSサフィックスリスト内のドメイン名の編集
ストレージノードのドメイン名を変更します。
1. ナビゲーションウィンドウでストレージノードを選択してログインします。
2. ツリーを開き、[TCP/IP Network]カテゴリを選択します。
3. [DNS]タブを選択します。
4. [DNS Tasks]をクリックし、[Edit DNS Domain Name]を選択します。
5. ドメイン名への変更を入力します。
6. [OK]をクリックします。

DNSサーバーの削除
DNSサーバーをリストから削除します。
1. ナビゲーションウィンドウでストレージノードを選択してログインします。
2. ツリーを開き、[TCP/IP Network]カテゴリを選択します。
3. [DNS]タブを選択します。
4. DNSサーバーリストから削除するサーバーを選択します。
5. [DNS Tasks]をクリックし、[Edit DNS Servers]を選択します。
6. [Edit DNS Servers]ウィンドウで名前をもう一度選択します。
7. [Remove]をクリックします。
8. [OK]をクリックして、DNSサーバーをリストから削除します。

DNSサフィックスリストからのドメインサフィックスの削除
1. ナビゲーションウィンドウでストレージノードを選択してログインします。
2. ツリーを開き、[TCP/IP Network]カテゴリを選択します。
3. [DNS]タブを選択します。
4. 削除するサフィックスを選択します。
5. [DNS Tasks]をクリックし、[Edit DNS Suffixes]を選択します。
6. [Edit DNS Suffixes]ウィンドウで名前をもう一度選択します。
7. [Remove]をクリックします。
8. [OK]をクリックして、DNSサフィックスをリストから削除します。
ルーティングの設定

ルーティングテーブルは[Routing]タブに表示されます。静的なルートとデフォルトルートの一方または両方を指定できます。

注記:
ここで指定したデフォルトルートは、ストレージノードを再起動またはシャットダウンすると破棄されます。ストレージノードの再起動/シャットダウン後も有効となるルートを作成するには、[TCP/IP]タブでデフォルトゲートウェイを入力する必要があります。「IPアドレスの手動構成」(78ページ)を参照してください。

リスト内にはルートごとに、デバイス、ゲートウェイ、マスク、およびフラグが表示されます。

ルーティング情報の追加
1. ナビゲーションウィンドウでストレージノードを選択してログインします。
2. ツリーを開き、[TCP/IP Network]カテゴリを選択します。
3. [Routing]タブを選択します。
5. [Add]をクリックします。
6. ルーティングに使用するポートを[Device]リストから選択します。
7. ネットワークアドレスのIPアドレス部分を[Net]フィールドに入力します。
8. ルーターのIPアドレスを[Gateway]フィールドに入力します。
9. ネットマスクを選択します。
10. [OK]をクリックします。
11. ルーティングテーブルパネルの矢印ボタンを使用して、実際のネットワーク構成に応じたデバイスの順序を設定します。

ストレージノードは、リスト内に示されているとおりの順序でルートへのアクセスを試行します。

ルーティング情報の編集
編集できるのは、追加したオプションのルートだけです。
1. ナビゲーションウィンドウでストレージノードを選択してログインします。
2. ツリーを開き、[TCP/IP Network]カテゴリを選択します。
3. [Routing]タブを選択します。
4. [Routing]タブで、変更対象のオプションのルートを選択します。
5. [Routing Tasks]をクリックし、[Edit Routing Information]を選択します。
6. ルートを選択し、[Edit]をクリックします。
7. その他の情報を変更します。
8. [OK]をクリックします。
ルーティング情報の削除
削除できるのは、追加したオプションのルートだけです。
1. ナビゲーションウィンドウでストレージノードを選択してログインします。
2. ツリーを開き、[TCP/IP Network]カテゴリを選択します。
3. [Routing]タブを選択します。
4. [Routing]タブで、削除対象のオプションのルートを選択します。
5. [Routing Tasks]をクリックし、[Edit Routing Information]を選択します。
6. 削除するルーティング情報の行を選択します。
7. [Delete]をクリックします。
8. 確認メッセージが表示されたら[OK]をクリックします。

ストレージノード通信の構成
[Communication]タブでは、ストレージノードで使用するネットワークインターネットフェイスを構成して、ネットワーク上の他のストレージノードとの通信や、ストレージノードが通信できるマネージャーのリストの更新ができます。

SAN/iQソフトウェアで使用するインタフェースの選択
SAN/iQソフトウェアでは、1つのネットワークインターネットフェイスを使用して、ネットワーク上の他のストレージノードと通信します。クラスタリングを正しく機能させるには、SAN/iQソフトウェア通信インターネットフェイスを各ストレージノード上で指定する必要があります。以下のいずれかに該当するインターネットフェイスを使用できます。

- ボンディングに所属していない単一のNIC
- ボンディングされた2つのNICで構成されるボンディングインターフェイス

注記:
通信インターフェイスとして指定できるのは、[Active]または[Passive (Ready)]のいずれかのステータスになっているNICだけです。無効化されているNICは通信インターネットフェイスにできません。

最初に構成インターネットフェイスを通じてストレージノードをセットアップした場合は、最初に構成したインターネットフェイスがSAN/iQソフトウェア通信用のインターネットフェイスとなります。
別の通信インターネットフェイスを選択するには、以下の手順を実行します。
1. ナビゲーションウィンドウでストレージノードを選択してログインします。
2. ツリーを開き、[TCP/IP Network]カテゴリを選択します。
3. [Communication]タブを選択して、ウィンドウを前面に表示します。

4. [Manager IP Addresses]リストからIPアドレスを選択します。

5. [Communication Tasks]をクリックし、[Select SAN/iQ Address]を選択します。

6. このアドレスに対応するEthernetポートを選択します。

7. [OK]をクリックします。

以上により、このストレージノードは選択したEthernetポートを通じたIPアドレスに接続します。

[Manager IP Addresses]リストの更新

このストレージノード上で動作しているマネージャーが管理グループ内のすべてのマネージャーと正しく通信するように、[Manager IP Addresses]リストを更新します。

要件

マネージャーのリストを更新するたびに、このストレージノードの所属先の管理グループを使用しているアプリケーションサーバーの再構成が必要になります。このリストを更新するのは、このストレージノード上のマネージャーとグループ内の他のマネージャーの間の通信に問題が生じていると判断できる根拠がある場合だけにしてください。

1. ナビゲーションウィンドウでストレージノードを選択してログインします。
2. ツリーを開き、[TCP/IP Network]カテゴリを選択します。
3. [Communication]タブを選択します。

4. [Communication Tasks]をクリックし、[Update Communications List]を選択します。
管理グループ内の現在のストレージノードおよびすべてのマネージャーで有効化されているネットワークインターフェイスのIPのリストを反映するように、[Manager IP Addresses]リストが更新されます。
管理グループ内のマネージャーIPアドレスを示すウィンドウが表示され、更新の影響を受けるアプリケーションサーバーを再構成するように指示するメッセージも表示されます。
5 日付と時刻の設定

管理グループ内のストレージノードでは、日付と時刻の設定を使用してデータ保存時のタイムスタンプが作成されます。管理グループ内でタイムゾーンと日付/時刻を設定すると、それらの設定がストレージノードに継承されます。

・ ネットワークタイムプロトコル（NTP）の使用
 ストレージノードで、ネットワーク内部とネットワーク外部のいずれかのタイムサービスを使用するように構成できます。

・ タイムゾーンの設定
 ストレージノードで使用するタイムゾーンを設定できます。ボリュームおよびスナップショットのタイムスタンプは、タイムゾーンにより制御されます。
 NTPを使用する場合は、どのタイムゾーンを使用するかを決定してください。すべての管理グループに対してGMTを使用するか、または各管理グループにローカルのタイムゾーンを設定できます。
 各管理グループにタイムゾーンを設定しない場合は、NTPを使用しているかどうかにかかわらず、GMTタイムゾーンが管理グループに適用されます。

・ 日付と時刻の設定
 NTPサービスを使用しない場合は、管理グループ上で日付と時刻を設定できます。

管理グループの日付/時刻

管理グループの作成時には、[Management Groups, Clusters and Volumes]ウィザードを通じてタイムゾーンと日付/時刻を設定します。これにより、管理グループ内のすべてのストレージノードの間で日付/時刻の設定が統一されます。

アクセス方法

1. ネットワークウィンドウで管理グループを選択してログインします。
2. [Time]タブをクリックします。

管理グループの日付/時刻の更新

管理グループ内のすべてのストレージノードに対して日付/時刻のビューを更新するには、[Refresh All]を使用します。このビューは自動的には更新されないため、ストレージノード上の日付/時刻の設定が適切かどうかを確認するにはビューを手動で更新する必要があります。

1. 管理グループを選択します。
2. [Time]タブをクリックします。
3. [Time Tasks]を選択し、[Refresh All]を選択します。
 処理が完了すると、すべてのストレージノードに現在の日付/時刻が表示されます。
NTPの使用

Network Time Protocol (NTP) サーバーを使用すると、ローカルシステムの日付/時刻に依存せず管理グループの日付/時刻を管理できます。NTPの更新は5分おきに行われます。（管理グループのタイムゾーン設定をしていない場合は、GMTタイムゾーンが使用されます）。

注記:

Windowsサーバーをストレージノード用の外部タイムソースとして使用する場合は、W32Time（Windowsタイムサービス）も外部タイムソースを使用する設定になっている必要があります。W32Timeが内部ハードウェアクロックを使用する設定になっていると、ストレージノードがWindowsサーバーをNTPサーバーとして認識できません。

2. 使用するNTPサーバーのIPアドレスを入力します。
3. このNTPサーバーを優先指定にするかどうかを決定します。

注記:

Preferred - 優先NTPサーバーとして使用するのは、ローカルネットワーク上のサーバーなど、信頼性に優れたNTPサーバーです。ローカルネットワーク上のNTPサーバーは、信頼性に優れ、ストレージノードに迅速に接続可能であることが求められます。Not Preferred（非優先）- 優先NTPサーバーが利用できない場合にバックアップとして使用するNTPサーバーを指定します。非優先のNTPサーバーとして指定するのは、ローカルネットワーク外のNTPサーバーや接続の信頼性に劣るNTPサーバーなどです。

4. [OK]をクリックします。
NTPサーバーが[NTP]タブ上のリストに追加されます。

NTPサーバーはリストに追加したおりの順序でアクセスされ、さらに、優先サーバーは常に非優先サーバーより前にアクセスされます。最初に追加したサーバーを優先サーバーにした場合は、そのサーバーが優先されます。優先サーバーが停止している場合は、2番目に追加したサーバーがタイムサーバーとして優先されます。

NTPサーバーの編集

NTPサーバーの優先/非優先を変更します。
1. リストからNTPサーバーを選択します。
3. NTPサーバーの優先/非優先を変更します。
4. [OK]をクリックします。
NTPサーバーの変更がNTPサーバーのリストに反映されます。

注記:

NTPサーバーのIPアドレスを変更するには、使用しなくなったサーバーを削除してから、新しいNTPサーバーを追加する必要があります。

日付と時刻の設定
NTPサーバーの削除

NTPサーバーの削除は、以下のような場合に必要になります。
・ 特定のサーバーのIPアドレスが無効になった場合
・ 特定のサーバーを今後使用しない場合
・ リスト内のサーバーの順序を変更する場合
・ このような場合には、NTPサーバーを削除します。

NTPサーバーの削除手順
1. [Time]タブウィンドウのリストからNTPサーバーを選択します。
2. [Time Tasks]をクリックし、[Delete NTP Server]を選択します。
3. 確認ウィンドウが表示されたら[OK]をクリックします。
 NTPサーバーのリストが更新され、使用可能なサーバーが反映されます。

NTPサーバーの順序の変更
ウィンドウには、NTPサーバーが追加したとおりの順序で表示されています。
日付/時刻を確立する必要が生じると、最初に追加したサーバーが最初にアクセスされます。このNTPサーバーが何らかの理由により使用できなくなっている場合は、2番目に追加され優先対象となっているNTPサーバーが使用されます。
タイムサーバーのアクセス順序を変更するには
1. 順序を変更するサーバーをリストから削除します。
2. 同じサーバーをリスト内に追加します。
 追加したサーバーはリストの一番下に配置され、最後にアクセスされます。

日付と時刻の編集
日付と時刻は、最初に[Management Groups, Clusters and Volumes]ウィザードを通じて管理グループを作成するときに設定します。必要であれば、これらの設定を後から変更できます。
1. 管理グループを選択します。
2. [Time]タブを選択して、ウィンドウを前面に表示します。
3. [Time Tasks]をクリックし、[Edit Date, Time, Time Zone]を選択します。
4. 日付と時刻を、そのタイムゾーンでの正確な日付/時刻に変更します。
 ・ [Date]グループボックスで年、月、および日を設定します。
 ・ [Time]グループボックスで、時刻の部分を強調表示し、矢印ボタンで時刻を増減します。時刻の直接入力もできます。
 ・ [Time Zone]ドロップダウンリストからタイムゾーンを選択します。

注記:
NTPサーバーを使用する場合は、タイムゾーンを設定するだけで日時を設定できます。
5. [OK]をクリックします。
時刻が再設定されるまでに若干の時間差が生じる可能性があるという警告メッセージが表示されます。

6. [OK]をクリックします。

タイムゾーンのみの編集
タイムゾーンは、最初に管理グループを作成するときに設定します。必要であれば、タイムゾーンを後から変更できます。
各管理グループにタイムゾーンを設定しない場合は、NTPを使用しているかどうかにかかわらず、GMTタイムゾーンが管理グループに適用されます。このローカルタイムゾーンに基づき、ファイルのタイムスタンプが表示されます。

1. [Time Tasks]をクリックし、[Edit Time Zone]を選択します。
2. この管理グループが存在する地域のタイムゾーンをドロップダウンリストから選択します。
3. [OK]をクリックします。
[Time]タブウィンドウの[Time]列に変更が反映されたことを確認します。
6 管理者ユーザーと管理者グループ

SAN/iQソフトウェアでは、ストレージノードの管理グループの作成時に、デフォルト管理者グループが2つ、デフォルト管理者ユーザーが1つ作成されます。さらに、管理者ユーザーおよび管理者グループを追加、編集、および削除できます。すべての管理者ユーザーおよび管理者グループは、ストレージノードの管理グループレベルで管理されます。

アクセス方法

ナビゲーションウィンドウで管理グループにログインし、[Administration]ノードを選択します。

管理者ユーザーの管理

管理グループの作成時には、デフォルト管理者ユーザーが1つ作成されます。デフォルトユーザーをそのまま使用するか、新しいユーザーの作成もできます。

デフォルト管理者ユーザー

管理グループの作成時に作成されるユーザーは、デフォルトでFull Administratorグループのメンバーになります。

新しい管理者ユーザーの追加

SAN/iQソフトウェアの管理機能へのアクセスを提供する上での必要性に応じて管理者ユーザーを追加できます。
1. 管理グループにログインし、[Administration]ノードを選択します。
2. タブウィンドウで[Administration Tasks]をクリックし、[New User]を選択します。
3. ユーザー名と説明を入力します。
4. パスワードを入力し、そのパスワードを確認します。
5. [Member Groups]セクションの[Add]をクリックします。
6. 新しいユーザーを所属させる1つ以上のグループを選択します。
7. [OK]をクリックします。
8. [OK]をクリックして管理者ユーザーの追加を完了します。

管理者ユーザーの編集

各管理グループの下層のツリーには、[Administration]ノードがあります。このノードから、管理者ユーザーを追加、編集、および削除できます。管理者ユーザーの編集作業には、パスワードの変更と管理者ユーザーのグループメンバーシップの変更が含まれます。
ユーザーの説明の変更
1. 管理グループにログインし、[Administration]ノードを選択します。
2. タブウィンドウで[Administration Tasks]をクリックし、[Edit User]を選択します。
3. 必要に応じてユーザーの説明を変更します。
4. [OK]をクリックして終了します。

ユーザーのパスワードの変更
1. 管理グループにログインし、[Administration]ノードを選択します。
2. タブウィンドウで[Administration Tasks]をクリックし、[Edit User]を選択します。
3. 新しいパスワードを入力し、そのパスワードを確認します。
4. [OK]をクリックして終了します。

ユーザーに対するグループメンバーシップの追加
1. 管理グループにログインし、[Administration]ノードを選択します。
2. [Users]テーブルからユーザーを選択します。
4. [Member Groups]セクションの[Add]をクリックします。
5. 新しいユーザーを所属させるグループを選択します。
6. [OK]をクリックします。
7. [OK]をクリックして管理者ユーザーの編集を完了します。

ユーザーからのグループメンバーシップの削除
1. 管理グループにログインし、[Administration]ノードを選択します。
2. [Users]テーブルからユーザーを選択します。
4. [Member Groups]セクションで、ユーザーの所属を解除するグループを選択します。
5. [Remove]をクリックします。
6. [OK]をクリックして管理者ユーザーの編集を完了します。

管理者ユーザーの削除
1. 管理グループにログインし、[Administration]ノードを選択します。
2. [Users]テーブルからユーザーを選択します。
4. [OK]をクリックします。

注記:
管理者ユーザーを削除すると、どの管理者グループからもそのユーザーが自動的に削除されます。

管理者グループの管理
管理グループの作成時には、デフォルト管理者グループが2つ作成されます。デフォルトグループをそのまま使用するか、新しいグループの作成もできます。

デフォルト管理者グループ

表25（109ページ）は、2つのデフォルト管理者グループおよびそれらのグループに付与される権限を示しています。これらのいずれかのグループに割り当てられたユーザーは、そのグループに関連付けられている特権を引き継ぎます。

表25 デフォルト管理者グループの使用

<table>
<thead>
<tr>
<th>グループの名前</th>
<th>グループに割り当てられている管理機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full_Administrator</td>
<td>すべての機能の管理（すべての機能への読み取り/書き込みアクセス）</td>
</tr>
<tr>
<td>View_Only_Administrator</td>
<td>すべての機能への表示専用（読み取り専用）機能</td>
</tr>
</tbody>
</table>

管理者グループには以下のアクセスが許可されます。
- ストレージノードに対する各種レベル（読み取り/書き込みなど）のアクセス
- SAN用の各種管理機能（ネットワーク機能の構成など）へのアクセス

管理者グループの追加
グループの作成時には、そのグループに割り当てられたユーザーに付与する管理権限の設定も行います。新しいグループに対して[Read Only]がデフォルトで設定されます。

1. 管理グループにログインし、[Administration]ノードを選択します。
3. グループ名を入力し、必要に応じて説明を入力します。
4. 作成中のグループに対し、機能ごとのアクセス許可レベルを選択します。表26（110ページ）を参照してください。

表26 グループ権限の説明

<table>
<thead>
<tr>
<th>管理カテゴリ</th>
<th>制御される動作</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Change Password]</td>
<td>他のユーザーのパスワードの変更がユーザーに対して許可される。</td>
</tr>
<tr>
<td>[Management Groups, RAID, Drive Hot Swap]</td>
<td>ストレージノードのRAID構成の設定、ディスクのシャットダウン、RAIDの再起動、ディスクのホットスワップ、および管理グループの作成がユーザーに対して許可される。</td>
</tr>
<tr>
<td>[Network]</td>
<td>ネットワーク接続タイプの選択、管理グループの日時およびタイムゾーンの設定、ドメインネームサーバーの指定、およびSNMPの使用がユーザーに対して許可される。</td>
</tr>
<tr>
<td>[Storage Node Administration, Boot, Upgrade]</td>
<td>管理者の追加およびSAN/iQソフトウェアの更新がユーザーに対して許可される。</td>
</tr>
<tr>
<td>[System and Disk Report]</td>
<td>ストレージノードのステータスに関するレポートの表示がユーザーに対して許可される。</td>
</tr>
</tbody>
</table>

権限レベルの意味

- [Read Only] — これらの機能に関する情報の表示だけがユーザーに対して許可されます。
- [Read-Modify] — これらの機能の既存の設定の表示と変更がユーザーに対して許可されます。
- [Full] — すべての機能におけるすべてのアクション（表示、変更、新規追加、削除）がユーザーに対して許可されます。

1. グループにユーザーを追加します。
 - [Users]セクションの[Add]をクリックします。
 - グループに追加するユーザーを1つ以上選択します。
 - [Add]をクリックします。
2. [OK]をクリックして新しいグループの作成を完了します。

管理者グループの編集

各管理グループの下層のツリーには、[Administration]ノードがあります。このノードから、管理者グループを追加、編集、および削除できます。管理者グループの編集作業には、グループの説明、権限、およびユーザーの変更が含まれます。

グループの説明の変更

1. 管理グループにログインし、[Administration]ノードを選択します。
2. タブウィンドウで[Administration Tasks]をクリックし、[Edit Group]を選択します。
3. 必要に応じて説明を変更します。
4. [OK]をクリックして終了します。

管理者グループの権限の変更

どの管理機能をグループのメンバーが使用できるかを変更します。

1. 管理グループにログインし、[Administration]ノードを選択します。
2. タブウィンドウで[Administration Tasks]をクリックし、[Edit Group]を選択します。管理者グループには以下のアクセスが許可されます。
 • ストレージノードに対する各種レベル（読み取り／書き込みなど）のアクセス
 • ストレージを対象とする各種管理機能（ボリュームの作成など）へのアクセス
 グループの作成時には、そのグループに割り当てられたユーザーにとって使用可能となる管理権限の設定も行います。新しいグループに対しては、各カテゴリに対して[Read Only]がデフォルトで設定されます。
3. 作成中のグループに対し、機能ごとのアクセス許可レベルを選択します。
 権限レベルの説明については、表26（110ページ）を参照してください。
4. [OK]をクリックして終了します。

既存のグループへのユーザーの追加
1. 管理グループにログインし、[Administration]ノードを選択します。
2. タブウィンドウで[Administration Tasks]をクリックし、[Edit Group]を選択します。
3. [Users]セクションの[Add]をクリックします。
 [Add Users]ウィンドウが開かれ、管理者ユーザーのリストが表示されます。
4. グループに追加するユーザーを1つ以上選択します。
5. [Add]をクリックします。
6. [OK]をクリックして新しいグループの作成を完了します。

グループからのユーザーの削除
1. 管理グループにログインし、[Administration]ノードを選択します。
2. タブウィンドウで[Administration Tasks]をクリックし、[Edit Group]を選択します。
3. グループから削除するユーザーを1つ以上選択します。
4. [Remove]をクリックします。
5. [OK]をクリックして終了します。

管理者グループの削除
グループを削除する前に、すべてのユーザーをグループから削除しておきます。
1. 管理グループにログインし、[Administration]ノードを選択します。
2. タブウィンドウで[Administration Tasks]をクリックし、[Delete Group]を選択します。
3. 確認ウィンドウが表示されます。
4. [OK]をクリックします。
5. [OK]をクリックして終了します。
管理者ユーザーと管理者グループ
7 SNMPの使用

ストレージノードは、SNMPクライアントを使用して監視できます。SNMPトラップを有効化してシステムアラートを受け取ることも可能です。管理情報ベース（MIB）は読み取り専用で、SNMPバージョン1および2cをサポートしています。LeftHand Networks MIBのリストについては、「LeftHand Networks MIBのインストール」（116ページ）を参照してください。

SNMPの使用

バージョン8.5をインストールすると、ストレージノード上のSNMPエージェントがデフォルトで有効化され、コミュニティストリング「public」を使用した読み取り専用アクセスが許可されます。この構成は後で変更できます。システムアラートを受信するためには、SNMPトラップを構成する必要があります。

単一のストレージノード上でSNMPを構成した後、構成のコピー機能を使用してSNMPの設定を他のストレージノードにコピーできます。詳細については、「複数のストレージノードの構成」(36ページ)を参照してください。

アクセス方法

1. ナビゲーションウィンドウでストレージノードを選択してログインします。
2. ストレージノードの下層にあるツリーを開き、[SNMP]カテゴリを選択します。

SNMPエージェントの有効化

ほとんどのストレージノードでは、SNMPエージェントの有効化/無効化が可能です。バージョン8.5をインストールすると、デフォルトでストレージノード上のSNMPが有効化されます。SNMPを無効化することも可能です。

SNMPの構成には、以下のタスクが含まれます。

- SNMPエージェントの有効化とコミュニティストリングの追加
 コミュニティストリングは認証パスワードの働きをします。SNMPデータへの読み取り専用アクセスを許可されているホストは、コミュニティストリングによって識別されます。コミュニティ「public」は一般に読み取り専用コミュニティを意味します。システムにアクセスしようとするときは、この文字列をSNMPクライアントに入力します。
- アクセス制御の構成

SNMPエージェントの有効化

1. ストレージノードにログインし、ツリーを展開します。
2. ツリーから[SNMP]カテゴリを選択します。
4. [Enabled]ラジオボタンを選択して、[SNMP Agent]フィールドをアクティブにします。
5. コミュニティストリングを入力します。
6. (オプション) ストレージノードのシステムの所在場所に関する情報を[System Location]フィールドに入力します。
 この情報には、たとえば、所在地、ビル名、部屋番号などを含めることができます。
7. (オプション) システム連絡先情報を[System Contact]フィールドに入力します。
 通常、このフィールドにはSAN/iQ管理者情報を入力します（ストレージノード管理者の電子メールアドレスや電話番号など）。

SNMPクライアントの追加

・ [Access Control]セクションで[Add]をクリックして、SNMPの表示に使用できるSNMPクライアントを追加します。

 SNMPクライアントは、IPアドレスとホスト名のいずれかを指定して追加できます。

IPアドレスによる追加

1. [By Address]を選択し、IPアドレスを入力します。
2. リストからIPネットマスクを選択します。SNMPクライアントを1つだけ追加する場合は[Single Host]をクリックします。
3. [OK]をクリックします。
 入力したIPアドレスとネットマスクが[Access Control]リストに表示されます。
4. [Edit SNMP Settings]ウィンドウで[OK]をクリックして操作を完了します。

ホスト名による追加

1. [By Name]を選択し、ホスト名を入力します。
 ここで入力するホスト名はDNSに登録済みで、DNSを通じてクライアントをそのホスト名で認識できるようにストレージノードが構成されている必要があります。
2. [OK]をクリックします。
 ホスト名が[Access Control]リストに表示されます。
3. [Edit SNMP Settings]ウィンドウで[OK]をクリックして操作を完了します。

SNMPクライアントに対するアクセス制御の構成

特定のIPアドレスを入力してIPネットマスクを省略すると、特定のホストに対するSNMPへのアクセスを許可します。あるいは、ネットワークアドレスをネットマスク値とともに指定することで、そのIPおよびネットマスクの組み合わせに一致するすべてのホストにSNMPへのアクセスを許可します。

他のストレージノードの場合と同様に、新しいエージェントおよびトラップの追加および変更もできます。

注記:

アクセス制御の構成時にIPアドレスを確認するには、CMC pingを使用します。詳細は、「IPアドレスへのping送信」（78ページ）を参照してください。
アクセス制御エントリーの編集
バージョン8.5をインストールすると、デフォルトのアクセス制御として、任意のシステムからの「public」コミュニティストリングを使用したアクセスが許可されます。このアクセス制御エントリーは「default」として一覧に表示されます。このエントリーをいったん削除した後で、再び追加する場合は、「[By Name]オプションを使用し、名前には「default」と入力してください。
1. ストレージノードにログインし、ツリーを展開します。
2. ツリーから[SNMP]カテゴリを選択します。
4. リストからアクセス制御エントリーを選択します。
5. [Edit]をクリックします。
6. 情報を適切に変更します。
7. [OK]をクリックします。
8. 編集を終えたら、[Edit SNMP Settings]ウィンドウで[OK]をクリックします。

アクセス制御エントリーの削除
1. ストレージノードにログインし、ツリーを展開します。
2. ツリーから[SNMP]カテゴリを選択します。
 [Edit SNMP Settings]ウィンドウが表示されます。
 確認メッセージが表示されます。
5. [OK]をクリックします。
6. 編集を終えたら、[Edit SNMP Settings]ウィンドウで[OK]をクリックします。

SNMP MIBの使用
LeftHand Networks MIBは、ストレージノードへの読み取り専用アクセスを提供します。ストレージノードでのSNMP実装では、MIB-II対応オブジェクトがサポートされています。
これらのファイルをSNMPクライアントにロードすると、モデル番号、シリアル番号、ハードディスク容量、ネットワーク特性、RAID構成、DNSサーバー構成の詳細など、ストレージノード固有の情報を参照できます。

注記:
バージョン8.5からは、トラップにシングルOIDが使用されなくなりました。現在使用されているOIDは、LEFTHAND–NETWORKS–NOTIFICATION–MIBに定義されています。
LeftHand Networks MIBのインストール

[Complete]オプションを使用してHP LeftHand CMCをインストールすると、標準的なSNMP MIBファイルとLeftHand Networks MIBファイル一式がインストールされます。デフォルトでは、インストーラーによりC:\Program Files\LeftHand Networks\UI\mibsディレクトリにMIBが配置されます。使用するSNMPクライアントによっては、MIBを別の場所にコピーする必要があります。また、SNMPクライアントをインストールしたシステムにMIBをコピーする必要が生じる場合もあります。

SNMPクライアントをインストールしたシステム上で、SNMPクライアントを使用して、以下に示す手順に従ってLeftHand Networks MIBをロードしてください。標準的なSNMP MIB一式をロードしていない場合は、ここで併せてロードする必要があります。

MIBのロード手順

1. 標準的なSNMP MIBをロードしていない場合は、ここでロードします。
2. HCNUM-TC.MIBをロードしていない場合は、ここでロードします。
3. LEFTHAND-NETWORKS-GLOBAL-REG-MIBをロードします。
4. LEFTHAND-NETWORKS-NSM-MIBをロードします。
5. 以下のMIBファイルは任意の順序でロードできます。
 - LEFTHAND-NETWORKS-NSM-CLUSTERING-MIB
 - LEFTHAND-NETWORKS-NSM-DNS-MIB
 - LEFTHAND-NETWORKS-NSM-INFO-MIB
 - LEFTHAND-NETWORKS-NSM-NETWORK-MIB
 - LEFTHAND-NETWORKS-NSM-NOTIFICATION-MIB
 - LEFTHAND-NETWORKS-NSM-NTP-MIB
 - LEFTHAND-NETWORKS-NSM-SECURITY-MIB
 - LEFTHAND-NETWORKS-NSM-STATUS-MIB
 - LEFTHAND-NETWORKS-NSM-STORAGE-MIB

サポートされているMIB

サポートされている標準的なMIBを以下に示します。ただし、各MIBのすべての機能がサポートされているわけではありません。

- DISMAN-EVENT-MIB
- HOST-RESOURCES-MIB
- IF-MIB
- IP-FORWARD-MIB
- IP-MIB
- NET-SNMP-AGENT-MIB
- NET-SNMP-EXTEND-MIB
- NETWORK-SERVICES-MIB
- NOTIFICATION-LOG-MIB
- RFC1213-MIB
- SNMP-TARGET-MIB
- SNMP-VIEW-BASED-ACM-MIB
SNMPエージェントの無効化

今後SNMPアプリケーションを通じてストレージノードのネットワークを監視しない場合は、SNMPエージェントを無効化します。

SNMPの無効化

1. ストレージノードにログインし、ツリーを展開します。
2. ツリーから[SNMP]カテゴリを選択します。
 [Edit SNMP Settings]ウィンドウが表示されます。
4. [Disable SNMP Agent]を選択します。
5. [Agent Status]フィールドに[disabled]と表示されていることを確認します。SNMPクライアント情報は引き続きリストに表示されますが、使用はできません。

SNMPトラップの追加

前提条件

以下のデフォルト設定が変更されていないことを確認します。
- SNMPが有効化されていること。
- 監視対象変数がSNMPトラップを送信するよう設定されていること。

SNMPトラップの有効化

クライアント側の認証に使用されるトラップコミュニケーションストリング、およびトラップ受信者を追加します。

1. ストレージノードにログインし、ツリーを展開します。
2. ツリーから[SNMP]カテゴリを選択します。
3. [SNMP Traps]タブを選択します。
4. [SNMP Trap Tasks]をクリックし、[Edit SNMP Traps]を選択します。
5. トラップコミュニケーションストリングを入力します。
 ここで入力するトラップコミュニケーションストリングは、アクセス制御に使用するコミュニケーションストリングと異なっても構いませんが、同一のコミュニケーションストリングを使用することも可能です。
6. [Add]をクリックしてトラップ受信者を追加します。
7. トラップを受信するSNMPクライアントのIPアドレスまたはホスト名を入力します。
8. トラップのバージョンを選択します。
9. [OK]をクリックします。
10. 個々のトラップ受信者について、手順 6から手順 9を繰り返します。
トラップ受信者の編集

1. ストレージノードにログインし、ツリーを展開します。
2. ツリーから[SNMP]カテゴリを選択します。
3. [SNMP Traps]タブを選択します。
 [SNMP Traps Settings]ウィンドウが表示されます。
4. [SNMP Trap Tasks]をクリックし、[Edit SNMP Traps]を選択します。
 [Edit SNMP Traps]ウィンドウが表示されます。
5. トラップコミュニティストリングを入力します。
 ここで入力するトラップコミュニティストリングは、アクセス制御に使用するコミュニティストリングと異なるなくても構いませんが、同一のコミュニティストリングを使用することも可能です。
 トラップ受信者のいずれかを選択し、[Edit]をクリックします。
6. IPアドレスまたはホスト名を変更します。
7. トラップのバージョンを変更します。
8. [OK]をクリックします。
9. すべてのトラップ受信者を編集し終えたら[OK]をクリックします。

トラップ受信者の削除

1. ストレージノードにログインし、ツリーを展開します。
2. ツリーから[SNMP]カテゴリを選択します。
3. [SNMP Traps]タブを選択します。
 [SNMP Traps Settings]ウィンドウが表示されます。
4. [SNMP Trap Tasks]をクリックし、[Edit SNMP Traps]を選択します。
 [Edit SNMP Traps]ウィンドウが表示されます。
5. トラップ受信者のいずれかを選択し、[Remove]をクリックします。
 受信者がリストから削除されます。
6. トラップ受信者を削除し終えたら、[SNMP Traps]タブで[OK]をクリックします。

テストトラップの送信

トラップ受信者が機能していることを確認するために、テストトラップを送信することも可能です。

1. ストレージノードにログインし、ツリーを展開します。
2. ツリーから[SNMP]カテゴリを選択します。
3. [SNMP Traps]タブを選択します。
4. [SNMP Trap Tasks]をクリックし、[Send Test Trap]を選択します。
 [Test SNMP Traps]ウィンドウが開き、一覧表示されている受信者にトラップが送信されたことを示すメッセージが表示されます。
SNMPトラップの無効化

SNMPトラップを無効化するには、[SNMP Traps]ウィンドウ内の設定をすべて削除する必要があります。

1. トラップ受信者ホストを削除します。
2. トラップコミュニティストリングを削除します。
3. [OK]をクリックします。
8 レポート機能

HP LeftHand Storage Solutionのレポート機能は2つのカテゴリに分けられています。

・ アクティブ監視 — [Alerts]カテゴリを使用して、選択した変数に関する警告の受信方法を構成します。[Alerts]カテゴリでは、電子メール警告を設定できるほか、オペレーティングシステムによって自動生成された警告（CMCが開かれていないときに生成された警告を含む）のログを確認できます。「アクティブ監視の概要」(121ページ)を参照してください。

・ ハードウェアレポート — [Hardware]カテゴリを使用して、監視を選択し、ハードウェア診断の実施や、ストレージノードのハードウェアレポートを生成します。[Hardware]カテゴリは、システム統計情報、ハードウェア、および構成情報のレポートを提供します。「ハードウェア情報レポートの使用」(134ページ)を参照してください。

アクティブ監視の概要

警告は、HP LeftHand Storage Solutionのハードウェアおよびストレージネットワークの状態をアクティブに報告します。各ストレージノードの下層のツリーに含まれている[Alerts]カテゴリには、さまざまな情報とレポート機能が用意されています。構成情報の確認、ログファイルの保存、電子メール警告の設定、オペレーティングシステムによって自動的に生成された警告のログの確認などができます。

警告機能を通じて以下のことができます。

・ ストレージノードに関するリアルタイムな統計情報の表示
・ ログファイルの表示と保存
・ 選択した変数を対象とするアクティブ監視の設定
・ 電子メール通知の設定
・ 警告自体の表示

さらにSNMPトラップを設定することにより、監視しきい値に達したときにSNMPに警告を送信させることができます。詳細については、「SNMPトラップの追加」(117ページ)を参照してください。

警告を使用したアクティブ監視

アクティブ監視を使用すると、ストレージノードと管理グループの動作状態および動作を追跡できます。アクティブ監視では、電子メール、CMC内の警告、およびSNMPトラップによる通知を設定できます。どの変数を監視するかを選択でき、監視対象変数に関連する警告をどのように通知するかを選択できます。監視可能な変数のセットは、ストレージノードによって異なります。監視対象変数の詳細なリストについては、「監視対象変数のリスト」(124ページ)を参照してください。

†注記:

[Temperature Status]（CPUおよびマザーボードの温度）などの重要な変数には、ストレージノードのシャットダウンをトリガーするしきい値があります。
アクセス方法

1. ナビゲーションウィンドウでストレージノードを選択し、ログインします。
2. ストレージノードの下層にあるツリーを開き、[Alerts]を選択します。

上の画面に示されているように、警告には、コンソールにのみ配信されるもの、電子メールで配信されるものの、そしてSNMPシステム経由でトラップとしてルーティングされるものがあります。

監視する警告の選択

ソフトウェアを最初にインストールしたときには、すべての変数がレポート対象として選択されています。アクティブ監視対象となる変数は必要に応じて変更できます。

アクティブ監視の対象にできるすべての変数のリストについては、「監視対象変数のリスト」（124ページ）を参照してください。

監視対象変数の追加

ストレージノード上で現在監視されている変数はボックス内のリストに表示されます。このリストに表示されている変数は、いずれもデフォルトでCMC警告およびSNMPトラップの対象として構成および設定されています。

1. [Alert Setup]タブを選択して、ウィンドウを前面に表示します。
3. 監視を開始する変数を選択し、[Next]をクリックします。
4. 変数の監視頻度を指定し、[Next]をクリックします。
5. リスト内の各しきい値に対し、受信する警告のタイプを選択します。

表27 アクティブ監視の警告のタイプ

<table>
<thead>
<tr>
<th>警告のタイプ</th>
<th>警告の送信先</th>
<th>参照先</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMC警告</td>
<td>CMCの警告ウィンドウとレポートの[Alerts]タブ。</td>
<td>「警告ウィンドウの使用」（30ページ）を参照してください。</td>
</tr>
<tr>
<td>SNMPトラップ</td>
<td>SNMPトラップコミュニティマネージャー。SNMPを使用するようストレージノードを構成し、トラップ受信者を設定する必要があります。</td>
<td>「SNMPトラップの追加」（117ページ）を参照してください。</td>
</tr>
<tr>
<td>電子メール</td>
<td>指定した電子メールアドレス。通知を受信する電子メールアドレスを複数指定するには、それらをコンマで区切って入力します。アドレスを指定した後、[Email]タブ上で電子メール通知を構成します。</td>
<td>「監視対象変数の追加」（122ページ）を参照してください。</td>
</tr>
</tbody>
</table>

注記:

アクティブ監視の設定に要する時間を短くするには、すべての変数を選択して右クリックし、[Set Threshold Actions]を選択します。これにより、同じ電子メールアドレスおよびその他の設定がすべてのストレージノードに適用されます。その後、他の変数と異なる警告アクションを設定すべき変数については、設定を編集します。
6. リスト内のしきい値項目をすべて構成し終えたら[OK]をクリックします。

監視対象変数の編集

選択した変数に対して、監視の頻度と警告の通知ルーティングを変更できます。
1. [Alert Setup]タブを選択します。
2. 編集する変数を選択します。
 [Configure Variable]ウィザードが起動し、ステップ1の画面が表示されます。

注記:
一部の変数では、通知方法だけを変更できます。たとえば、[Storage Server Latency]変数の頻度は1分に設定されており、この設定は変更できません。

4. 頻度を変更できる変数については、頻度を適切に変更し、[Next]をクリックします。
 [Configure Variable]ウィザードが起動し、ステップ2の画面が表示されます。
5. (オプション) 警告通知の方法を変更します。
6. [Finish]をクリックします。

注記:
電子メール通知が必要な場合は、必ず[Email Server Setup]タブでSMTP設定を構成します。詳細は、「電子メールサーバーの設定」(128ページ)を参照してください。

アクティブ監視の対象からの変数の削除

アクティブ監視の対象から変数を削除するには、[Remove]を使用します。変数をアクティブ監視の対象から削除しても、後で必要になったときに随時に監視対象に戻すことができます。[Cache Status]など、常時監視される恒久的な変数は監視対象から削除できません。詳細は、「監視対象変数のリスト」(124ページ)を参照してください。
1. [Alert Setup]タブウィンドウを選択します。
2. 削除する変数を選択します。
 確認メッセージが表示されます。
4. 確認ウィンドウが表示されたら[OK]をクリックします。
 変数が削除されます。

注記:
変数をアクティブ監視の対象から削除しても、実際に変数が削除されるわけではないかもしれません。変数は、後で必要になったときにいつでもアクティブ監視の対象に戻すことができます。
監視対象変数のリスト

この項の表は、アクティブ監視中（パッシブ監視中ではない）に監視される変数の一覧です。この表には、変数ごとに以下の情報が記載されています。

- 単位。
- 変数が恒久的な変数であるかどうか。（恒久的な変数は、アクティブレポートの対象から削除できません）。
- 測定が行われる頻度を変更できるかどうか。
- 測定のデフォルト頻度。
- 変数の測定値がしきい値に達したときにデフォルトで実行されるアクション。

<table>
<thead>
<tr>
<th>変数名</th>
<th>単位/ステータス</th>
<th>恒久的な変数</th>
<th>頻度の指定</th>
<th>デフォルトの頻度</th>
<th>デフォルトアクション/しきい値</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBU Capacity Test (24Hr)</td>
<td>ステータス</td>
<td>○</td>
<td>○</td>
<td>毎月1回、土曜の23:00</td>
<td>失敗時にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>BBU Capacity Test Overdue</td>
<td>ステータス</td>
<td>○</td>
<td>○</td>
<td>1時間</td>
<td>変化時にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>Boot Device Status</td>
<td>ステータス</td>
<td>×</td>
<td>○</td>
<td>1分</td>
<td>変化時にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>CPU Utilization</td>
<td>パーセント</td>
<td>×</td>
<td>○</td>
<td>1分</td>
<td>なし</td>
</tr>
<tr>
<td>Cache Status</td>
<td>ステータス</td>
<td>○</td>
<td>○</td>
<td>1分</td>
<td>変化時にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>Cache BBU Status</td>
<td>ステータス</td>
<td>○</td>
<td>○</td>
<td>1分</td>
<td>変化時にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>Cache Enabled Status</td>
<td>ステータス</td>
<td>○</td>
<td>○</td>
<td>1分</td>
<td>変化時にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>Cluster Utilization</td>
<td>パーセント</td>
<td>○</td>
<td>○</td>
<td>15分</td>
<td>値が90を超えた場合にCMC警告とSNMPトラップを出力、値が95を超えた場合にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>Cluster Virtual IP Status</td>
<td>[Normal]、[Faulty]</td>
<td>×</td>
<td>○</td>
<td>1時間</td>
<td>[Normal]でない場合にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>Drive Health</td>
<td>ステータス</td>
<td>○</td>
<td>○</td>
<td>1分</td>
<td>変化時またはクリティカル時にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>変数名</td>
<td>単位/ステータス</td>
<td>恒久的な変数</td>
<td>頻度の指定</td>
<td>頻度</td>
<td>デフォルトのアクション/しきい値</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----</td>
<td>------------------</td>
</tr>
<tr>
<td>[Drive Status]</td>
<td>ステータス</td>
<td>×</td>
<td>○</td>
<td>1分</td>
<td>変化時にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>HP LeftHand P4500, HP StorageWorks P4500 G2: 1〜12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP LeftHand P4300, HP StorageWorks P4300 G2: 1〜8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Fan Status]</td>
<td>ステータス</td>
<td>○</td>
<td>○</td>
<td>1分</td>
<td>[Normal]でない場合にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>[LogPart Utilization]</td>
<td>パーセント</td>
<td>○</td>
<td>○</td>
<td>2分</td>
<td>値が95を超えた場合にCMC警告とSNMPトラップを出力、値が80を超えた場合のデフォルト設定はなし</td>
</tr>
<tr>
<td>[Management Group Maintenance Mode]</td>
<td>[True], [False]</td>
<td>○</td>
<td>○</td>
<td>15分</td>
<td>[True]の場合にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>[Memory Utilization]</td>
<td>パーセント</td>
<td>×</td>
<td>○</td>
<td>1分</td>
<td>値が90%を超えた場合にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>[Network Interface Status]</td>
<td>ステータス</td>
<td>×</td>
<td>○</td>
<td>1分</td>
<td>NICステータスの変化時にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>[Power Supply Status]</td>
<td>ステータス</td>
<td>×</td>
<td>○</td>
<td>1分</td>
<td>ステータスの変化時にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>[RAID Status]</td>
<td>ステータス</td>
<td>○</td>
<td>○</td>
<td>15秒</td>
<td>変化時にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>[Remote Copy Complete]</td>
<td>[True], [False]</td>
<td>×</td>
<td>○</td>
<td>15分</td>
<td>[True]の場合にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>[Remote Copy Failover]</td>
<td>[True], [False]</td>
<td>×</td>
<td>○</td>
<td>15分</td>
<td>[True]の場合にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>[Remote Copy Status]</td>
<td>ステータス</td>
<td>×</td>
<td>○</td>
<td>15分</td>
<td>[Normal]でない場合にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>[Remote Management Group Status]</td>
<td>[Up], [Down]</td>
<td>×</td>
<td>○</td>
<td>1分</td>
<td>変化時にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>[SAN/iQ Memory Requirement]</td>
<td>ステータス</td>
<td>○</td>
<td>×</td>
<td>1分</td>
<td>失敗時にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>[変数名]</td>
<td>単位/ステータス</td>
<td>恒久的な変数</td>
<td>頻度の指定</td>
<td>デフォルトの頻度</td>
<td>デフォルトアクション/しきい値</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>[Snapshot Schedule Status]</td>
<td>ステータス</td>
<td>×</td>
<td>○</td>
<td>1分</td>
<td>スナップショットステータスが[Normal]でない場合にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>[Storage Server Latency]</td>
<td>ミリ秒</td>
<td>○</td>
<td>×</td>
<td>1分</td>
<td>60秒を超えた場合にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>[Storage Server Status]</td>
<td>[Up], [Down]</td>
<td>×</td>
<td>○</td>
<td>1分</td>
<td>[Up]でない場合にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>[System Watch]</td>
<td></td>
<td></td>
<td></td>
<td>2時間</td>
<td></td>
</tr>
<tr>
<td>[Temperature Status]</td>
<td>ステータス</td>
<td>○</td>
<td>○</td>
<td>1分</td>
<td></td>
</tr>
<tr>
<td>[Voltage Status]</td>
<td>ステータス</td>
<td>○</td>
<td>○</td>
<td>1分</td>
<td>[Normal]でない場合にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>[Volume Restripe Complete]</td>
<td>[True], [False]</td>
<td>×</td>
<td>○</td>
<td>1分</td>
<td>[True]の場合にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>[Volume Status]</td>
<td>ステータス</td>
<td>×</td>
<td>○</td>
<td>1分</td>
<td>ボリュームステータスの変化時にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>[Volume Threshold Change] (P4000 G2では不使用)</td>
<td>ステータス</td>
<td>○</td>
<td>○</td>
<td>1分</td>
<td>[True]の場合にCMC警告とSNMPトラップを出力</td>
</tr>
<tr>
<td>[Volume Thresholds] (P4000 G2では不使用)</td>
<td>ステータス</td>
<td>×</td>
<td>○</td>
<td>15分</td>
<td>管理グループ内の任意のボリュームまたはスナップショットしきい値を超過した場合にCMC警告とSNMPトラップを出力</td>
</tr>
</tbody>
</table>

注記: 追加の温度情報については、警告を参照するか、CMCの[Hardware Information]タブを参照

1バッテリ寿命(充電レベル)を監視するために、BBU容量テストが毎月1回実行されます。バッテリ寿命が72時間を切っている場合は、データを保護するためにキャッシュが遮断されます。キャッシュが遮断されると、パフォーマンスが低下します。

126 レポート機能
警告通知の設定
デフォルトでは、すべての警告がCMC警告およびSNMPトラップとして構成されています。CMC警告は[Alerts]ウィンドウの一番下に表示されます。CMC警告、電子メール警告、またはSNMPトラップのうち、少なくとも1つの通知方法を必ずアクティブにしてください。これらの通知方法はオン/オフを切り替えることができます。

単一の変数を対象とする警告通知の設定
単一の変数に対する警告通知は、次のいずれかの方法で構成できます。
- 個々の監視対象変数を編集します。
 「監視変数の編集」(123ページ)を参照してください。
- 目的の変数を選択し、[Set Threshold Actions]を構成します。

複数の変数を対象とする警告通知の設定
複数の変数について、しきい値に達した場合のアクションを設定することにより、警告通知方法を指定します。電子メール警告を使用する場合は、事前に電子メールサーバーとSMTP設定を構成する必要があります（「電子メールサーバーの設定」(128ページ)を参照）。また、SNMPトラップを使用する場合は、事前にSNMPエージェント、コミュニティストリング、およびトラブルを構成する必要があります（「SNMPエージェントの有効化」(113ページ)を参照）。
1. [Alert Setup]タブを選択します。
2. 変更する複数の変数を選択します。
4. 適切なチェックボックスをオンにして、警告の送信先を指定します。
5. [OK]をクリックします。

警告のCMC通知の変更
1. ナビゲーションウィンドウでストレージノードを選択し、ログインします。
2. ストレージノードの下層にあるツリーを開き、[Alerts]を選択します。
3. [Alert Setup]タブを選択します。
4. リスト内の任意の警告を選択します。
5. [Alert Setup Tasks]をクリックし、[Set Threshold Actions]を選択します。
6. [Centralized Management Console alert]チェックボックスをオフにします。
7. 代わりの警告通知方法として、電子メールまたはSNMPを選択します。
8. [OK]をクリックします。

警告のSNMP通知の設定
SNMPおよびLeftHand Networks MIBを使用してシステムを監視します。最初に、SNMPを構成する必要があります（第7章(113ページ)を参照）。次に、SNMPトラップを介して警告が通知されるよう設定します。
1. ストレージノードの下層にあるツリーを開き、[Alerts]を選択します。
2. [Alert Setup]タブを選択します。
3. リストから1つ以上の警告を選択します。
5. [SNMP Trap]チェックボックスをオンにします。
6. [OK]をクリックします。

警告の電子メール通知の設定
電子メール通知を使用してシステムを監視します。最初に、SMTP設定を構成する必要があります（「電子メールサーバーの設定」（128ページ）を参照）。次に、電子メールを介して警告が通知されるよう設定します。
1. ストレージノードの下層にあるツリーを開き、[Alerts]を選択します。
2. [Alert Setup]タブを選択します。
3. リストから1つ以上の警告を選択します。
5. [Email]チェックボックスをオンにします。
6. [OK]をクリックします。

電子メールサーバーの設定
電子メール通信のためのSMTP設定を構成するには、[Email Server Setup]タブを使用します。
1. [Alerts]カテゴリで、[Email Server Setup]タブを選択します。
2. [Email Server Setup Tasks]をクリックし、[Edit SMTP Settings]を選択します。
3. 電子メールサーバーのIPアドレスまたはホスト名を入力します。
4. 電子メールポートを入力します。
標準ポートは25です。
5. (オプション) 電子メールサーバーが着信メールの送信者アドレスが有効かどうかによって選別を行う場合は、「username@company.com」のような送信者アドレスを入力します。
送信者アドレスの入力を省略すると、電子メール通知のFromフィールドに「root@hostname」と表示されます。ここで、hostnameはストレージノードの名前です。
6. この設定を管理グループ内のすべてのストレージノードに適用する場合は、[Apply email settings to all Storage Nodes in Management Group]チェックボックスをオンにします。
送信者アドレスを入力した場合、設定を管理グループ内の他のストレージノードにも適用すると、同じ送信者アドレスがすべてのストレージノードに使用されます。
7. (オプション) ここで、必要に応じて電子メールの接続をテストします。
8. [OK]をクリックします。

注記：
電子メールメッセージ不達の通知は、送信者アドレスに送信されます。
管理グループに対するSMTP設定の適用

「電子メールサーバーの設定」（128ページ）の手順を実施し、[Apply these SMTP settings to all storage nodes in the management group]チェックボックスをオンにします。

警告の表示と保存

アクティブ監視の対象となっている変数に関する警告が出力されるたびに、ストレージノードに警告が記録されます。CMCが開かれている場合は、CMCメインウィンドウの警告ウィンドウに警告が表示されます。これらの警告はCMCが開かれていない場合でも記録され、CMCを次回開いたときに表示されます。ストレージノードをクリックし、[Alerts]をクリックして[Alert Log File]タブをクリックします。

注記:

1. ナビゲーションウィンドウでストレージノードを選択し、ログインします。
2. ストレージノードの下層にあるツリーを開き、[Alerts]を選択します。
3. [Alert Log File]タブを選択します。
4. ビューに最新のデータを反映するには[Refresh]をクリックします。

すべての変数の警告ログの保存

1. 「警告の表示と保存」（128ページ）のタスクを実行します。
2. 警告のリストを保存するには、[Alert Log File Tasks]をクリックして[Save to File]を選択します。
3. ファイルの保存場所を指定します。
4. このファイルの最大サイズは1MBです。

特定の変数の警告履歴の保存

特定のストレージノード上で特定の変数の履歴を保存するには、その変数のログファイルのコピーを保存します。このコピーは、変数と同じファイル名のテキストファイルです。

1. ナビゲーションウィンドウでストレージノードを選択し、ログインします。
2. ストレージノードの下層にあるツリーを開き、[Alerts]を選択します。
3. [Alert Setup]タブを選択します。
4. ログファイルを保存する変数を強調表示します。
5. この操作で変数が選択されます。複数の変数を選択するには、Ctrlキーを押しながらクリックします。
6. このファイルの保存場所を選択します。

P4000 SAN Solutionユーザーガイド 129
7. [Save]をクリックします。
指定した場所にファイルが保存されます。ファイルマネージャーウィンドウとテキストエディタでチェックしてください。

ハードウェア情報レポートの使用
各ストレージノードの下層のツリーに含まれている[Hardware]カテゴリには、さまざまな情報とレポート機能が用意されています。[Hardware]カテゴリは、システム統計情報、ハードウェア、および構成情報のレポートを提供します。

[Hardware]カテゴリでは以下のことができます。

- ハードウェア診断の実行。「診断レポートの実行」(130ページ)を参照してください。
- ストレージノードハードウェアのリアルタイム表示。「ハードウェア情報レポートの使用」(134ページ)を参照してください。
- ストレージノードのログファイルの表示と保存。「ログファイルの保存」(144ページ)を参照してください。
- リモートコンピューターに対するログファイルの表示と保存。「ハードウェア情報ログファイルの使用」(143ページ)を参照してください。

診断レポートの実行
診断機能を使用すると、ストレージノードハードウェアの動作状態をチェックできます。実行可能な診断テストのセットは、ストレージノードによって異なります。

注記:
診断は、ストレージノードの動作状態の監視に役立つほか、ハードウェア障害のトラブルシューティングにも役立ちます。

アクセス方法
1. ナビゲーションウィンドウでストレージノードを選択し、ログインします。
2. ストレージノードの下層にあるツリーを開き、「Hardware」を選択します。
3. 実行する診断テストをリストから選択します。

デフォルト設定では、すべてのテストが実行されます。すべてのチェックボックスがオフになっている場合は、「Diagnostic Tasks」をクリックし、「Check All」を選択します。実行対象から除外するテストについては、チェックボックスをオフにします。すべてのテストの選択を解除するには、「Clear All」をクリックします。

注記:
診断テストをすべて実行する場合は、数分かかります。テストの所要時間を短縮するには、不要なテストのチェックボックスをオフにします。

4. 「Diagnostic Tasks」をクリックし、「Run Tests」を選択します。
進捗状況メッセージが表示されます。テストが完了すると、各テストの結果が「Result」列に表示されます。
5. （オプション）テストの完了後、テスト結果のレポートを表示するには、[Save to File]をクリックします。次に、診断レポートファイルの保存場所を選択して、[Save]をクリックします。診断レポートは、.txtファイルとして指定された場所に保存されます。

診断レポートの表示

診断テストの結果はレポートファイルに書き込まれます。このレポートでは、診断テストごとに、テストが実行されたかどうか、テストは成功したのか失敗したのか、もしくは警告が出力されたかが示されます。

注記:
結果が[Failed]になっている診断が1つでも存在する場合は、HPのサポート窓口にお問い合わせください。

レポートファイルを表示するには:
1. 診断テストが完了したら、レポートをファイルに保存します。
2. 診断レポート（.txt）ファイルを保存した場所にアクセスします。
3. レポートファイルを開きます。

診断テストのリスト
ここでは、ストレージノードで使用できる診断テストの一覧を示します。下の表には、テストごとに以下の情報が記載されています。
- テストの説明
- 成功/失敗の基準
ご使用のプラットフォームに応じた表を参照してください。

HP LeftHand P4500、HP StorageWorks P4500 G2、およびHP LeftHand P4300、HP StorageWorks P4300 G2の場合: 表29（131ページ）

表29 HP LeftHand P4500、HP StorageWorks P4500 G2、およびHP LeftHand P4300、HP StorageWorks P4300 G2で使用できるハードウェア診断テストと成功/失敗基準のリスト

<table>
<thead>
<tr>
<th>診断テスト</th>
<th>説明</th>
<th>成功基準</th>
<th>失敗基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Fan Test]</td>
<td>すべての冷却ファンのステータスをチェックします。</td>
<td>冷却ファンが正常</td>
<td>冷却ファンが故障しているか、または検出されない</td>
</tr>
</tbody>
</table>

P4000 SAN Solutionユーザーガイド 131
<table>
<thead>
<tr>
<th>診断テスト</th>
<th>説明</th>
<th>成功基準</th>
<th>失敗基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Power Test]</td>
<td>すべての電源装置のステータスをチェックします。</td>
<td>電源が正常</td>
<td>電源が故障しているか、または検出されない</td>
</tr>
<tr>
<td>[Temperature Test]</td>
<td>すべての温度センサーのステータスをチェックします。</td>
<td>温度が正常動作範囲内</td>
<td>温度が正常動作範囲を超えていている</td>
</tr>
<tr>
<td>[Cache Status]</td>
<td>ディスクコントローラーキャッシュのステータスをチェックします。</td>
<td>キャッシュが正常</td>
<td>キャッシュが破損している</td>
</tr>
<tr>
<td>[Cache BBU Status]</td>
<td>バッテリバックアップ式 (BBU) キャッシュのステータスをチェックします。</td>
<td>BBUが正常で、充電もテストも行われていない</td>
<td>BBUが充電中、テスト中、または故障中</td>
</tr>
<tr>
<td>[Disk Status Test]</td>
<td>すべてのディスクドライブが存在することをチェックします。</td>
<td>すべてのディスクドライブが存在する</td>
<td>1つ以上のドライブが検出されない</td>
</tr>
<tr>
<td>[Disk Temperature Test]</td>
<td>すべてのディスクドライブの温度をチェックします。</td>
<td>温度が正常動作範囲内</td>
<td>温度が正常動作範囲を超えてている</td>
</tr>
</tbody>
</table>

HP LeftHand P4500、HP StorageWorks P4500 G2

HP LeftHand P4300、HP StorageWorks P4300 G2
<table>
<thead>
<tr>
<th>診断テスト</th>
<th>説明</th>
<th>成功基準</th>
<th>失敗基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.M.A.R.T. (Self-Monitoring, Analysis, and Reporting Technology)</td>
<td>すべてのドライブが動作状態テストに成功</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>[Disk SMART Health Test]</td>
<td>1つ以上のドライブが動作状態テストに失敗すると、警告または失敗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Generate SMART logs] (分析についてはHPのサポート窓口へ)</td>
<td>レポートが正常に生成された</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>レポートが生成されなかった</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HP LeftHand P4300、HP StorageWorks P4500 G2

失敗基準成功基準説明診断テスト

1つの以上のドライブが動作状態テストに失敗すると、警告または失敗

S.M.A.R.T. (Self-Monitoring, Analysis, and Reporting Technology) は、最新のすべてのディスクに実装されています。ドライバー、ディスクヘッド、表面状態、電子装置など、さまざまな重要特性がディスク内部のプログラムによってリアルタイム追跡されます。この情報はハードディスクドライプ障害の予測に役立ちます。

レポートが生成されなかったレポートが正常に生成された
<table>
<thead>
<tr>
<th>診断テスト</th>
<th>説明</th>
<th>成功基準</th>
<th>失敗基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Disk Status Test]</td>
<td>すべてのディスクドライブが存在することをチェックします。</td>
<td>すべてのディスクドライブが存在する</td>
<td>1つ以上のディスクドライブが検出されない</td>
</tr>
</tbody>
</table>

ハードウェア情報レポートの使用

ハードウェア情報レポートには、ストレージノード、ノード内のドライブ、および構成に関する統計情報が表示されます。ハードウェアレポート内の統計情報は、[Hardware Information]タブ上の[Refresh]ボタンをクリックした時点で収集される瞬間的なデータです。

ハードウェア情報レポートの生成

ハードウェア情報レポートを生成する方法は以下のとおりです。
1. [Hardware Information]タブを選択します。

1. ハードウェア統計情報を取得するためのリンク

2. [Hardware]テーブルで、[Click to Refresh]リンクをクリックして最新のハードウェア統計情報を取得します。

ハードウェア情報レポートの保存

1. [Hardware Information Tasks]をクリックし、[Save to File]を選択して、報告された統計情報のテキストファイルをダウンロードします。

[Save]ダイアログが表示されます。

2. レポートの保存場所と名前を選択します。

3. [Save]をクリックします。

レポートは、.html拡張子付きのファイルとして保存されます。
ハードウェア情報レポートの詳細

ここでは、以下のプラットフォームについて、ハードウェア情報レポートに関する詳細情報を示します。

- VSAの場合: 表31 (136ページ)
- HP LeftHand P4500とHP StorageWorks P4500 G2、およびHP LeftHand P4300とHP StorageWorks P4300 G2の場合: 表32 (139ページ)

表31 VSAのハードウェアレポートの選択詳細

<table>
<thead>
<tr>
<th>レポート内の用語</th>
<th>意味</th>
<th>VSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Last Refreshed]</td>
<td>レポートが作成された日時。</td>
<td>--</td>
</tr>
<tr>
<td>[Hardware information]</td>
<td>レポートが作成された日時。</td>
<td>--</td>
</tr>
<tr>
<td>[Name or hostname]</td>
<td>ストレージノードのホスト名。</td>
<td>●</td>
</tr>
<tr>
<td>[IP address]</td>
<td>ストレージノードのIPアドレス。</td>
<td>●</td>
</tr>
<tr>
<td>[Storage node software]</td>
<td>ストレージノードソフトウェアの完全なバージョン番号。ストレージノードにパッチが適用されている場合は、それらのパッチも示されます。</td>
<td>●</td>
</tr>
<tr>
<td>[Support Key]</td>
<td>サポートキーは、テクニカルサポート担当者がストレージノードにログインするときに使用します。（デモバージョンには用意されていません）。</td>
<td>●</td>
</tr>
<tr>
<td>[DNS data]</td>
<td>DNSサーバーが使用されている場合には、DNSサーバーのIPアドレスなど、DNSに関する情報が示されます。</td>
<td>●</td>
</tr>
<tr>
<td>[Memory]</td>
<td>ストレージノード内のRAMメモリに関する情報。メモリの合計容量値、空き容量値、キャッシュメモリ容量、およびバッファーサイズが必要に応じて示されます。</td>
<td>●</td>
</tr>
</tbody>
</table>
レポート内の用語 意味 VSA

<p>| [CPU] | CPUに関する詳細情報（モデル名、クロック速度、キャッシュサイズなど）。 | — |
| [CPU] | CPUに関する情報。 | — |
| | • [CPU seconds]には、ユーザータスク、カーネルタスク、アイドル状態のそれぞれに使用されているCPU秒数が示されます。 | — |
| | • [Machine uptime]には、最初の起動時以降にストレージノードが動作している合計時間が示されます。 | — |
| [Stat] | バックプレーン、ファームウェアバージョン、シリアル番号、およびLEDに関する選択された情報。 | — |
| [Backplane Information] | マザーボードに関する選択された情報（IPMI、ファームウェアなど）。 | — |
| [Motherboard Information] | ドライブごとに、ステータス、動作状態、および温度を報告します。（VSAのみ）VSAの場合は温度が報告されません。ドライプが存在し、電源が投入されていれば、動作状態は正常となります。 | — |
| [Drive status] | ドライブごとに、モデル、シリアル番号、および容量を報告します。 | — |
| [Drive Info] | RAIDに関する情報。 | — |
| [RAID] | RAIDカードスループットに対する割合（%）としてRAID再構築速度が示されます。 | — |
| [Rebuild Rate] | 他のオペレーティングシステムタスクに対する優先度としてRAID再構築速度が示されます。 | — |</p>
<table>
<thead>
<tr>
<th>レポート内の用語</th>
<th>意味</th>
<th>VSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Unused Devices]</td>
<td>次に示すような、RAIDに参加していない任意のデバイス。</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>- 検出されないドライプ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 未構成のドライプ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 電源が切断されたドライプ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 障害が発生したドライプ (I/Oエラーによりアレイから拒否）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 再構築されていないドライプ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ホットスペアドライブ</td>
<td></td>
</tr>
<tr>
<td>[Statistics]</td>
<td>ストレージノードのRAIDに関する情報。</td>
<td>●</td>
</tr>
<tr>
<td>[Unit Number]</td>
<td>RAID構成に含まれているデバイスを識別する情報。以下の情報が含まれます。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ストレージのタイプ (BOOT、LOG、SANIQ、DATA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- RAIDレベル (0、1、5、Virtual)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>- ステータス (Normal、Rebuilding、Degraded、Off)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 容量</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 再構築統計情報 (% complete、time remaining)</td>
<td></td>
</tr>
<tr>
<td>[RAID O/S Partitions]</td>
<td>O/S RAIDに関する情報。</td>
<td>●</td>
</tr>
<tr>
<td>[Minimum Rebuild Speed]</td>
<td>O/S RAID再構築中の最小データ転送速度 (MB/秒)。システムはこの速度を下回るデータ転送を行いません。したがって、この値が高いほど、ユーザーにとって使用可能となる帯域幅が少なくなります。</td>
<td>●</td>
</tr>
<tr>
<td>[Maximum Rebuild Speed]</td>
<td>O/S RAID再構築中の最大データ転送速度 (MB/秒)。</td>
<td>●</td>
</tr>
<tr>
<td>[Statistics]</td>
<td>ストレージノードのO/S RAIDに関する情報。</td>
<td>●</td>
</tr>
</tbody>
</table>
レポート内の用語 意味 VSA

<table>
<thead>
<tr>
<th>[Unit Number]</th>
<th>O/S RAID構成に含まれているデバイスを識別する情報。以下の情報が含まれます。</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• ストレージのタイプ（BOOT、LOG、SANIQ、DATA）</td>
</tr>
<tr>
<td></td>
<td>• RAIDレベル（0、1、5）</td>
</tr>
<tr>
<td></td>
<td>• ステータス（Normal、Rebuilding、Degraded、Off）</td>
</tr>
<tr>
<td></td>
<td>• 容量</td>
</tr>
<tr>
<td></td>
<td>• 再構築統計情報（% complete、time remaining）</td>
</tr>
</tbody>
</table>

| [Boot Device Statistics] | ディスク番号、フラッシュステータス、容量、ドライバーバージョン、デバイスの使用メディア、およびモデル番号。 |

| [Power supply] | ストレージノード内の電源装置のタイプに関する情報。 |

| [Power supplies] | それらの電源装置に関するステータス情報。 |

| [Controller Cache Items] | RAMに関する情報。たとえば、モデル、シリアル番号、ステータス、バッテリステータス、バージョン、キャッシュサイズ、メモリサイズ、電圧などが含まれます。 |

| [Sensor Data] | リストに含まれているハードウェアに対して、マザーボード上の冷却ファン、電圧、および温度センサーに関する情報（最大値および最小値を含む）を示します。 |

| 表32 HP LeftHand P4500、HP StorageWorks P4500 G2、およびHP LeftHand P4300、HP StorageWorks P4300 G2に関するハードウェアレポートの選択詳細 |

<table>
<thead>
<tr>
<th>レポート内の用語</th>
<th>意味</th>
<th>HP LeftHand P4500、HP StorageWorks P4500 G2</th>
<th>HP LeftHand P4300、HP StorageWorks P4300 G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Last Refreshed]</td>
<td>レポートが作成された日時。</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>[Hostname]</td>
<td>ストレージノードのホスト名。</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>レポート内の用語</td>
<td>意味</td>
<td>HP LeftHand P4500、HP Storage-Works P4500 G2</td>
<td>HP LeftHand P4300、HP Storage-Works P4300 G2</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>[Storage node software]</td>
<td>ストレージノードソフトウェアの完全なバージョン番号。ストレージノードにパッチが適用されている場合は、それらのパッチも示されます。</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>[IP address]</td>
<td>ストレージノードのIPアドレス。</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>[Support Key]</td>
<td>サポートキーは、テクニカルサポート担当者がストレージノードにログインするときに使用します。</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>[DNS data]</td>
<td>DNSサーバーが使用されている場合に、DNSサーバーのIPアドレスなど、DNSに関する情報が示されますが。</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>[Memory]</td>
<td>ストレージノード内のRAMに関する情報。メモリの合計容量値と空き容量値（ともにGB単位）が含まれます。</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>レポート内の用語</td>
<td>意味</td>
<td>HP LeftHand P4500、HP Storage-Works P4500 G2</td>
<td>HP LeftHand P4300、HP Storage-Works P4300 G2</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>[CPU]</td>
<td>CPUに関する詳細情報 (CPUのモデル名またはメーカー、CPUのクロック速度、キャッシュサイズなど)。</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>[Stat]</td>
<td>CPUに関する情報。[CPU seconds]には、ユーザータスク、カーネルタスク、アイドル状態のそれぞれに使用されているCPU秒数が示されます。[Machine uptime]には、最初の起動時以降にストレージノードが動作している合計時間が示されます。</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>[Backplane Information]</td>
<td>バックプレーンLEDに関する選択された情報 (LEDサポートとID LED)。</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>[Motherboard Information]</td>
<td>シャーシのシリアル番号とBIOSバージョンを含みます。</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>[Drive info]</td>
<td>ドライブごとに、モデル、シリアル番号、および容量を報告します。</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>[Drive status]</td>
<td>ドライブごとに、ステータス、動作状態、および温度を報告します。</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>[RAID]</td>
<td>RAIDに関する情報。</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>[Rebuild Rate]</td>
<td>他のオペレーティングシステムタスクに対する優先度としてRAID再構築速度が示されます。</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>レポート内の用語</td>
<td>意味</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| [Unused Devices] | 次に示すような、RAIDに参加していない任意のデバイス。
 • 検出されないドライブ
 • 未構成のドライブ
 • 電源が切断されたドライブ
 • 障害が発生したドライブ（I/Oエラーによりアレイから拒否）
 • 再構築されていないドライブ
 • ホットスペアドライブ |
| [Statistics] | ストレージノードのRAIDに関する情報。 |
| [Unit Number] | RAID構成に含まれているデバイスを識別する情報。以下の情報が含まれます。
 • ストレージのタイプ（BOOT、LOG、SANIQ、DATA）
 • RAIDレベル（0、1、5）
 • ステータス（Normal、Rebuilding、Degraded、Off）
 • 容量
 • 再構築統計情報（%complete、time remaining） |
<p>| [RAID O/S Partitions] | O/S RAIDに関する情報。 |

| [Statistics] | ストレージノードのO/S RAIDに関する情報。 |</p>
<table>
<thead>
<tr>
<th>レポート内の用語</th>
<th>意味</th>
<th>HP LeftHand P4300、HP Storage-Works P4500 G2</th>
<th>HP LeftHand P4300、HP Storage-Works P4300 G2</th>
</tr>
</thead>
</table>
| [Unit Number] | O/S RAID構成に含まれているデバイスを識別する情報。以下の情報が含まれます。
| | - ストレージのタイプ(BOOT、LOG、SANIQ、DATA)
| | - RAIDレベル(0、1、5)
| | - ステータス(Normal、Rebuilding、Degraded、Off)
| | - 容量
| | - 再構築統計情報(% complete、time remaining) | | |
| [Controller/Cache Items] | RAIDコントローラーおよびパッテリバックアップユニット（BBU）に関する情報。モデル番号、シリアル番号、キャッシュステータス、パッテリステータス、ハードウェアバージョン、およびファームウェアバージョンが含まれます。 | | |
| [Power supply] | 電源装置のタイプと数を示します。 | | |
| [Power supplies] | 電源装置に関するステータス情報。 | | |
| [Sensors] | リストに含まれているハードウェアに対して、ステータス、実測値、最小値、および最大値を示します。 | | |

ハードウェア情報ログファイルの使用

ハードウェア情報を格納するログファイルは、常に個々のストレージノード上に保存されます。これらのログファイルは他のコンピューターに保存できます。他のコンピューターに保存しておくと、ストレージノードがオフラインになっても、ログファイルを使用できます。
ここでは、ローカルストレージノードまたはリモートコンピューターにハードウェア情報ログファイルをtxtファイルとして保存する方法を説明します。以下の項を参照してください。

・「ログファイルの保存」(144ページ)
・「リモートログファイルの使用」(144ページ)

ログファイルの保存

テクニカルサポートからログファイルのコピーを送信するように求められた場合は、[Log Files]タブから、そのログファイルをテキストファイルとして保存します。

[Log Files]タブには、ログのタイプとして以下の2つが示されます。

・ストレージノード上にローカルに格納されるログファイル（タブの左側に表示されます）。
・リモートログサーバーに書き込まれるログファイル（タブの右側に表示されます）。

注記:
ストレージノード上にローカルに格納されるログファイルを保存します。リモートログファイルの詳細については、「リモートログファイルの使用」(144ページ)を参照してください。

1. ナビゲーションウィンドウでストレージノードを選択し、ログインします。
2. ストレージノードの下層にあるツリーを開き、[Hardware]を選択します。
3. [Log Files]タブを選択します。
5. [Choose Logs to Save]リストを下の方へスクロールし、保存する1つ以上のファイルを選択します。
6. [Log File Tasks]をクリックし、[Save Log Files]を選択します。
7. ファイルの保存場所を選択します。
8. [Save]をクリックします。
 指定した場所にファイルが保存されます。

リモートログファイルの使用

リモートログファイル機能を使用すると、ストレージノード以外のコンピューターにログファイルを自動的に書き込むことができます。たとえば、1つ以上のストレージノードのログファイルをリモートサイト内の単一のログサーバーに転送できます。ログファイルを受信するコンピューターのことをリモートログターゲットと呼びます。

ログファイルを受信するターゲットコンピューターについても構成が必要です。

リモートログの追加

1. ナビゲーションウィンドウでストレージノードを選択し、ログインします。
2. ストレージノードの下層にあるツリーを開き、[Hardware]を選択します。
3. [Log Files]タブを選択します。
5. [Log Type]ドロップダウンリストから、リモートコンピューターに転送するログを選択します。
 [Log Type]リストには、syslogをサポートしているログだけが表示されます。
6. [Destination]フィールドに、ログを受信するコンピューターのIPアドレスまたはホスト名を入力します。
 Windowsオペレーティングシステムの場合は、[コントロール パネル] - [システムのプロパティ] - [コンピュータ名] にアクセスして、リモートコンピューターのホスト名を確認します。
7. [OK]をクリックします。
 [Log Files]ウィンドウの[Remote logs]リストにリモートログが表示されます。

リモートログターゲットコンピューターの構成
リモートログターゲットコンピューター上でsyslogを構成します。syslogの構成の詳細については、syslogの製品マニュアルを参照してください。

注記:
[Log Files]タブ上でリモートログ名の隣にかっこで囲まれる文字列には、syslogで構成したファシリティおよびレベル情報が含まれます。たとえば、「auth error (auth.warning)」というログファイル名の場合なら、「auth」がファシリティ、「warning」がレベルです。

リモートログターゲットの編集
異なるログファイルを選択したり、リモートログのターゲットコンピューターを変更したりできます。
1. ナビゲーションウィンドウでストレージノードを選択し、ログインします。
2. ストレージノードの下層にあるツリーを開き、[Hardware]を選択します。
3. [Log Files]タブを選択します。
4. [Remote logs]リストからログを選択します。
 [Edit Remote Log]ウィンドウが表示されます。
6. ログタイプまたはターゲットを変更し、[OK]をクリックします。
7. ターゲットとなるリモートコンピューター上でsyslogが適切に構成されていることを確認します。

リモートログの削除
使用しなくなったリモートログは削除できます。
1. ナビゲーションウィンドウでストレージノードを選択し、ログインします。
2. ストレージノードの下層にあるツリーを開き、[Hardware]を選択します。
3. [Log Files]タブを選択します。
 確認メッセージが表示されます。
5. [OK]をクリックします。
注記:
ストレージノードからリモートログファイルを削除した後、ターゲットコンピューター上のsyslog構成から、このログファイルへの参照を削除します。

サポートログのエクスポート

カスタマーサポートから依頼された場合は、特定の管理グループまたはストレージノードのサポートログをエクスポートできます。

1. ナビゲーションウィンドウで管理グループまたはストレージノードを選択し、ログインします。
2. 選択した項目に応じて、次のどちらかの操作を実行します。
 - [Storage Node Tasks]をクリックし、[Export Storage Node Support Bundle]を選択します。
3. サポートログを格納したzipファイルの保存先を選択します。
 - zipファイルの名前を変更することはできません。
4. [Save]をクリックします。
管理グループの操作

管理グループは、1つ以上のストレージノードからなるグループです。管理グループというコンテナーの中で、ストレージノードをクラスター化し、ストレージ用のボリュームを作成します。SAN/iQソフトウェアでIP SANを作成するには、最初のステップとして管理グループを作成します。

管理グループの機能

管理グループには、以下の目的があります。

- 管理グループはSANの最上位の管理ドメインになります。通常、ストレージ管理者はデータセンター内に少なくとも1つの管理グループを構成します。
- アプリケーションとデータのカテゴリに応じてストレージノードを異なるグループに分類できます。たとえば、Oracleアプリケーション用の管理グループとExchange用の管理グループを個別に作成することなどが考えられます。
- 管理上のセキュリティを強化できます。たとえば、Exchange担当のシステム管理者に、Exchangeの管理グループへのアクセス権だけを与え、Oracleの管理グループへのアクセス権を与えない場合があります。
- 特定のストレージリソースが誤って使用されるのを防止します。ストレージノードが管理グループに所属していない場合、その管理グループではそのストレージノードをストレージリソースとして使用できません。たとえば、管理グループ中のすべてのストレージノードは、そのグループ中でボリュームとして使用するために、クラスターにプールされます。新しいストレージノードがこのストレージプールに含まれないようにするには、そのストレージノードを別の管理グループに所属させます。
- 複数のクラスター・マネージャーを包含します。管理グループ内で1つ以上のストレージノードがデータ転送と複製を制御するマネージャーとして機能します。

管理グループ作成の要件

- グループに所属するストレージノードのIPアドレス。
- 計画しているクラスターのタイプ: 標準またはMulti-Site。
- Multi-Site構成の場合は、物理サイトおよびグループに所属するストレージノードが作成済みであること。
- クラスターの仮想IPアドレスとサブネットマスク。
- （オプション）ボリュームのストレージ要件。

マネージャーの概要

管理グループ内におけるマネージャーとは、そのグループ内のすべてのストレージノードのアクティビティを制御するストレージノードのことです。すべてのストレージノードに管理ソフトウェアが含まれますが、どのストレージノードで管理ソフトウェアを実行するかを(マネージャーを起動することによって)指定する必要があります。これらのストレージノードでは、PCで各種サービスが実行されるのと同じように、マネージャーが「実行」されます。
マネージャーの機能

マネージャーには以下の機能があります。

- データ複製を制御する。（注記：マネージャーはデータパス内に直接存在していません）。
- クラスター内のストレージノードの間の通信を管理する。
- ストレージノードの状態が変化したときにデータ再同期する。
- ストレージノードのオンライン/オフラインが切り替わったときの再構成を調整する。

調整マネージャーは、いずれか1つのストレージノード上で動作します。管理グループを選択して[Details]タブをクリックすると、どのストレージノードが調整マネージャーであるか確認できます。一番上の[Status]フィールドに調整マネージャーが示されます。

マネージャーとクォーラム

マネージャーでは、多数決のアルゴリズムを使用してストレージノードの動作を調整します。この多数決のアルゴリズムでは、厳密に過半数のマネージャー（クォーラム）が動作して、互いに通信していなければSAN/iQソフトウェアが機能しません。過半数を容易に維持できるように、マネージャーの数を奇数にすることが推奨されます。マネージャーの数が偶数だと、ちょうど半分ずつになり、半数が残りの半数に同意しない状態、つまり過半数が存在しない状態が起こり得ます。この状態は「スプリットブレイン」と呼ばれ、管理グループが使用不能になる可能性があります。

単一サイト構成で最適なフォールトトレランスを達成するには、フォールトトレランスとパフォーマンスのバランスが最も適切になるように、管理グループ内に3つまたは5つのマネージャーを含めてください。サポートされるマネージャーの最大数は5です。表33（148ページ）を参照してください。

<table>
<thead>
<tr>
<th>マネージャーの数</th>
<th>クォーラムの数</th>
<th>フォールトトレランス</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>なし</td>
<td>マネージャーに障害が発生すると、データ制御が失われます。この構成は推奨されません。</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>なし</td>
<td>特定の構成を除き、マネージャーの数を偶数にすることは推奨されません。詳細については、HPのサポート窓口にお問い合わせください。</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>高</td>
<td>いずれか1つのマネージャーに障害が発生しても、2つのマネージャーが残るため、クォーラムが成立します。（注記：ただし、マネージャーが2つの場合、フォールトトレランスが得られません。上記を参照してください。）</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>高</td>
<td>特定の構成を除き、マネージャーの数を偶数にすることは推奨されません。詳細については、HPのサポート窓口にお問い合わせください。</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>高</td>
<td>1つまたは2つのマネージャーに障害が発生しても、3つのマネージャーが残るため、クォーラムが成立します。</td>
</tr>
</tbody>
</table>

標準マネージャーと特殊マネージャー

標準マネージャーは、管理グループ内のストレージノード上で動作します。SAN/iQソフトウェアには、標準マネージャーのほか、2つの特殊マネージャーとして、以下に述べるフェールオーバーマネージャーおよ
び仮想マネージャーがあります。特殊マネージャーの詳細および使用方法については、第10章（167ページ）を参照してください。

フェールオーバーマネージャー

フェールオーバーマネージャーは、2ノード構成およびMulti-Site構成のSANで、自動クォーラム管理をサポートするために使用されます。管理グループ内でフェールオーバーマネージャーを構成すると、ストレージノード上で標準マネージャーを実行しなくても、SAN内で自動フェールオーバーを実現できます。フェールオーバーマネージャーは、VMware ServerまたはESX上の仮想ミシンとして実行され、SAN内のストレージノード以外のネットワークハードウェア上にインストールする必要があります。図46（149ページ）は、インストールおよび構成が完了し、CMC内に表示されているフェールオーバーマネージャーを示したものです。

図46 [Available Nodes]プール内のフェールオーバーマネージャー

インストールと構成が完了したフェールオーバーマネージャーは、ストレージノードと同様に動作し、ストレージノードと同様に管理グループに追加できます。ただし、フェールオーバーマネージャーは管理グループ内で過半数のクォーラムを維持するだけのマネージャーとして機能します。

仮想マネージャー

仮想マネージャーは、図47（150ページ）に示すように管理グループに追加されます。システム内の障害が原因となってクォーラムが失われたときに初めてストレージノード上で起動されます。常時実行されるフェールオーバーマネージャーとは異なり、仮想マネージャーはクォーラムが失われた後で、手動操作によりストレージノード上で起動する必要があります。仮想マネージャーは、クォーラムが失われるリスクが伴う2ノードのシステムまたは2サイトのシステムでの使用を目的としています。
図47 管理グループに追加された仮想マネージャー

管理グループとデフォルトマネージャーの作成

管理グループの作成時には、そのグループの作成に使用するストレージノードの数に合わせて、最適なマネージャー構成がウィザードにより作成されます。デフォルトのマネージャー構成については、表34（150ページ）を参照してください。

管理グループの作成が完了したら、実際のSAN構成を最適化できるようにマネージャーを適切に再構成します。

表34 管理グループの作成時にデフォルトで追加されるマネージャーの数

<table>
<thead>
<tr>
<th>ストレージノードの数</th>
<th>マネージャー構成</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1つのマネージャー</td>
</tr>
<tr>
<td>2</td>
<td>2つのマネージャーと1つの仮想マネージャー</td>
</tr>
<tr>
<td>3以上</td>
<td>3つのマネージャー</td>
</tr>
</tbody>
</table>

構成サマリーの概要

実際のSANのサイズと最適構成を管理するときは、構成サマリーを通じて必要な情報を容易に確認できます。最初の管理グループを作成したときに、構成サマリーテーブルが作成されます。構成サマリーテーブルは、ナビゲーションウィンドウの[Getting Started Launch Pad]のすぐ下にあります。図48（151ページ）に示すように、2番目以降に作成した管理グループがこの構成サマリーに追加されています。構成サマリーでは、管理グループ内のボリューム、スナップショット、およびストレージノードの概要が管理グループごとに示されます。サマリーロールアップは構成情報を表示し、管理グループ内および各クラスター内のボリュームとスナップショット、iSCSIセッション、およびストレージノード数の最適な構成へのガイドを提供します。

サマリーロールアップ

構成サマリーパネルに用意されているサマリーロールアップは、管理グループ別に分類されています。管理グループ別のリストに、管理グループ内のボリュームとスナップショット、ストレージノード、およびiSCSIセッションの合計数が示されます。
構成のガイド

構成サマリーは、ストレージ項目の数を報告するとともに、パフォーマンスとスケーラビリティに基づいて、各カテゴリの安全限界に関する警告を表示します。最初に表示されるのは、カテゴリが限界に近づいていることを示す警告です。この場合、カテゴリがオレンジ色になります。1つのカテゴリがオレンジ色になると、ナビゲーションウィンドウ内の[Configuration Summary]カテゴリもオレンジ色になります。カテゴリが推奨構成の上限に達すると、そのカテゴリは赤色になります。そのカテゴリ内の数が減ると、カテゴリは新しくな状態を示す色にただちに変化します。たとえば、スナップショットの作成および削除スケジュールが多数設定されたボリュームが多数存在する場合は、スナップショット数が増加した結果、サマリーバーが緑色からオレンジ色に変化する可能性があります。スケジュールにより十分な数のスナップショットが削除されて合計数が減ると、サマリーーバーはただちに緑色に戻ります。

ベストプラクティス

管理グループ内におけるストレージ項目的最適数および推奨数は、ネットワーク環境、SANの構成、ボリュームにアクセスするアプリケーション、およびスナップショットの使用目的に大きく依存しますが、実際の環境で最良なパフォーマンスとスケーラビリティが最大安全に得られるように、SANを管理するための一般的なガイドラインを示すことができます。これらのガイドラインは、SANの一般的な構成および用途に対して当社でテストした限界に基づいています。これらのガイドラインを超える問題が発生する可能性があります。最適なパフォーマンスが得られなくなることがあり、フェールオーバーおよびリカバリを伴う状況下では、ボリュームの可用性に関する問題が生じる可能性があります。

ボリュームとスナップショット

ボリュームとスナップショットの最適な合計数は、1,000が上限です。管理グループに1,001〜1,500ボリュームのボリュームおよびスナップショットが格納されている場合、構成サマリーでは、その管理グループの行にオレンジ色のバーが表示されます。ボリュームとスナップショットの合計数が1,500を超える場合は、警告がトリガーされ、その行が赤色になります。合計数が限界を下回れば、ただちにサマリーーバーが元の表示（オレンジ色または緑色）に戻ります。

iSCSIセッション

管理グループ内のボリュームに接続されているiSCSIセッションの最適数は、4,000が上限です。管理グループ内のiSCSIセッション数が4,001〜5,000の場合、構成サマリーでは、その管理グループの行にオレンジ色のバーが表示されます。iSCSIセッションの数が5,001を超える場合は、警告がトリガーされ、そ
の行が赤色になります。iSCSIセッションの数が限界を下回れば、ただちにサマリーバーが元の表示（オレンジ色または緑色）に戻ります。

管理グループ内のストレージノード
管理グループ内のストレージノードの最適な数は、20が上限です。管理グループ内のストレージノード数が21〜30の場合、構成サマリーでは、その管理グループの行にオレンジ色のバーが表示されます。ストレージノードの数が30を超える場合は、警告がトリガーされ、その行が赤色になります。ストレージノードの数が限界を下回れば、ただちにサマリーバーが元の表示（オレンジ色または緑色）に戻ります。

クラスター内のストレージノード
クラスター内のストレージノードの最適な数は、10が上限です。クラスター内のストレージノード数が11〜16の場合、構成サマリーでは、その管理グループの行にオレンジ色のバーが表示されます。クラスター内のストレージノードの数が16を超える場合は、警告がトリガーされ、その行が赤色になります。ストレージノードの数が限界を下回れば、ただちにサマリーバーが元の表示（オレンジ色または緑色）に戻ります。

構成サマリーの読み方
構成サマリーには、SAN内の各管理グループのリストが表示されます。各管理グループの下側には、ストレージノード、ボリューム、iSCSIセッションなど、追跡されているストレージ項目のリストがあります。管理グループに項目を追加するにつれて、サマリーが長くなり、グラフ内にカウント数が表示されます。サマリーが長くなる前に、管理グループ内におけるその項目の最適な数（「ベストプラクティス」（151ページ））を基準としています。

最適な構成
最適な構成は緑色で示されます。たとえば図49（153ページ）では、管理グループ「CJS1」内に15個のストレージノードが存在しており、この15個のストレージノードが「c」、「c2」、「c3」の3つのクラスターに分けられています。グラフの長さは、各カテゴリで推奨される最大値との相対関係で示されます。たとえば、クラスターc3内には3つのストレージノードがあり、管理グループ内には43のiSCSIセッションがあります。クラスターc3のストレージノード数の方が推奨数の上限に近いため、管理グループ内のiSCSIセッション数よりもグラフが長くなっています。
1. 管理グループ内の項目はいずれも最適数の制限に収まっています。グラフの長さは、最適数の上限を基準としています。

図49 サマリーグラフの理解

構成に関する警告

推奨数の上限に近づいた項目はオレンジ色に変化します。項目の数が最適な範囲に戻るまで、オレンジ色のままになります。図50（153ページ）を参照してください。

図50 管理グループ内の項目が安全限界に接近したときの警告

構成に関するエラー表示

推奨数の上限を超過した項目は赤色に変化します。項目の数が上限を下回るまで、赤色のままになります。図51（154ページ）を参照してください。
1. ボリュームとスナップショットが推奨数の上限を超過しています。最適数の上限に近づいているクラスターが1つあります。

図51 管理グループ内の項目が安全限界を超過したときのエラー表示

ベストプラクティスサマリーの概要

[Best Practice summary]では、SAN構成の信頼性やパフォーマンスを向上するためのベストプラクティスを容易に確認できます。ベストプラクティスサマリーは管理グループの作成時に利用でき、[Configuration Summary]の下に示されます。SAN上に複数の管理グループを構成している場合は、サマリー内にすべてのグループが表示されます。

図52 SANを適正に構成するためのベストプラクティスサマリー

サマリー内の管理グループを展開すると、個々のカテゴリに関するベストプラクティスが示されます。サマリーでは、各カテゴリのステータスに加えて、ベストプラクティスから逸脱している点も指摘されます。各行をクリックすると、その項目に関するベストプラクティスの詳細を確認できます。
ディスクレベルのデータ保護
ディスクレベルのデータ保護は、ストレージノードに適切なディスクRAIDレベルが設定されているかどうかを示します。ディスクのRAIDレベル構成の詳細については、「RAID構成のプランニング」(56ページ)を参照してください。

RAIDを使用したディスク保護
RAIDを0以外のレベルに構成することで、個々のストレージノードに対するデータ保護を実現できます。RAIDレベルの詳細については、「RAID構成の定義」(51ページ)を参照してください。

大容量の単一ノードSATAクラスター
クラスター内で単一の大容量SATAストレージノードを使用している場合は、そのノード上でRAID 6を構成することでデータ保護を実現できます。RAID 6では通常の運用中に冗長性を確保し、さらに障害の影響を受けやすい劣化モード中の新たなもう1台のドライバ障害にも耐えることで、RAIDアレイを劣化モード中のデータ消失から保護します。

クラスターレベルのデータ保護
複数ノードで構成されるクラスターでは、最大級のデータ可用性を実現できます。クラスター化されたストレージノードにより、データボリューム用のストレージ容量が作成されます。個々のクラスターは、2〜10個のストレージノードで構成することが推奨されます。詳細は、「クラスター内のストレージノード」(152ページ)を参照してください。

ボリュームレベルのデータ保護
ストレージノードに障害が発生した場合にもデータ可用性を維持するために、ネットワークRAID-0より上のデータ保護レベルを使用してください。データ保護の詳細については、「データ保護のプランニング」(200ページ)を参照してください。

マネージャーを実行するノード
管理グループとボリュームの可用性を最適化するために、推奨される数とタイプのマネージャーを使用してください。大部分の単一サイト環境では、3〜5個のマネージャー構成が推奨されます。3〜5個のストレージノード上でマネージャーを実行するようにしてください。ストレージノード数がこれより少ない場合は、3番目のマネージャーとしてフェールオーバーマネージャーを使用することをお勧めします。特定の構成下では、仮想マネージャーも使用可能です。マネージャーとクォーラムの詳細については、「マネージャーとクォーラム」(148ページ)を参照してください。

ネットワーク速度と帯域幅
各ストレージノード内の使用可能なNICカードをボンディングすると、SANのパフォーマンスと信頼性を向上できます。大部分の環境では、推奨されるボンドとしてアダプティブ負荷分散の使用をお勧めします。詳細は、「ベストプラクティス」(80ページ)を参照してください。

管理グループの作成
ストレージ用のクラスターとボリュームを作成するには、最初のステップとして管理グループを作成します。管理グループの作成には以下のタスクが含まれます。
管理グループの構成を計画する
• [Management Groups, Clusters, and Volumes]ウィザードを通じて管理グループを作成する
• マネージャーの構成が適切であることを確認する

管理グループの作成ガイド

[Management Groups, Clusters, and Volumes]ウィザードの実行中に、表35（156ページ）に示す特性を構成する必要があります。

表35 管理グループの要件

<table>
<thead>
<tr>
<th>管理グループの要件</th>
<th>意味</th>
</tr>
</thead>
<tbody>
<tr>
<td>管理グループの要件</td>
<td>管理グループを作成する前に、クラスター用のストレージノードに対して実際のネットワーク環境に最も適した監視、警告、およびネットワークバウンドの設定が構成されていることを確認します。</td>
</tr>
<tr>
<td>ストレージノードの構成</td>
<td>注意：(VSA) VSAを管理グループに追加した後は、VSAのクローン作成ができなくなるです。VSAのクローン作成は、VSAがまだ[Available Nodes]プール内にあるときにのみ行う必要があります。</td>
</tr>
<tr>
<td>管理者ユーザーについての計画</td>
<td>管理グループの作成時には、最初の管理者ユーザーを追加する必要があります。このユーザーには、完全な管理権限が付与されます。その他のユーザーは後から追加します。「新しい管理者ユーザーの追加」(107ページ)を参照してください。</td>
</tr>
<tr>
<td>日付と時刻の構成に関する計画</td>
<td>管理グループに対しては、NTPサーバーを使用するか、または手動操作で日付、時刻、およびタイムゾーンを設定する必要があります。ウィザードを開始する前に、構成を把握してください。「第5章(103ページ)」を参照してください。</td>
</tr>
<tr>
<td>仮想IPアドレス（VIP）に関する計画</td>
<td>VIPは各クラスターで必要となります。クラスターに対するフォールトトレランスなサーバーアクセスおよびSCSI負荷分散は、VIPを通じて実現されます。「iSCSI用の仮想IPおよびiSNSの構成」(188ページ)を参照してください。</td>
</tr>
<tr>
<td>マネージャーの起動</td>
<td>管理グループでは、最適な数のマネージャーが動作している必要があります。[Management Groups, Clusters, and Volumes]ウィザードでは、管理グループの作成に使用するストレージノードの数に応じてマネージャー数が適切な数に設定されます。</td>
</tr>
<tr>
<td>マネージャーに対するIPアドレスの割り当て</td>
<td>マネージャーを実行するストレージノードには、静的なIPアドレス（DHCP使用時にに関しては、予約されたIPアドレス）を割り当てが必要があります。このため、ストレージノードがマネージャーである限りは、IPアドレスを変更できません。</td>
</tr>
</tbody>
</table>

アクセス方法

管理グループは、[Management Groups, Clusters, and Volumes]ウィザードを通じて作成します。このウィザードには、以下のいずれかの方法でアクセスします。

• ナビゲーションウィンドウ内で使用可能なストレージノードを右クリックします。
新しい管理グループの作成
1. ナビゲーションウィンドウで[Getting Started]を選択して[Getting Started Launch Pad]にアクセスします。
2. [Management Groups, Clusters, and Volumes]ウィザードを選択します。
3. (オプション) 管理グループおよびクラスターの作成に必要となる情報を先に確認しておくには、[Know what information you should have available]リンクをクリックします。
4. [Next]をクリックして、管理グループの作成を開始します。

管理グループの作成とストレージノードの追加
1. 新しい管理グループの名前を入力します。
 管理グループを破棄しない限り、この名前を後から変更できません。
2. 管理グループに追加するストレージノードを選択します。
 複数のノードを選択するには、[Ctrl]キーを押しながらクリックします。

管理者ユーザーの追加
1. [Next]をクリックして管理者ユーザーを追加します。
2. 管理者ユーザーの名前、説明、およびパスワードを入力します。
 最初の管理者は、常にFull Administratorレベルとなります。
3. [Next]をクリックして、管理グループの日の設定を開始します。

管理グループの日の設定
1. 管理グループの日の設定方法を選択します。
 • (推奨) NTPサーバーを使用するには、ウィザードを開始する前にサーバーのURLまたはIPアドレスを確認しておく必要があります。
 注記: URLを使用する場合は、グループ内のストレージノード上でDNSが構成されている必要があります。
 • 日時を手動で設定するには、[Edit]を選択して[Date and Time Configuration]ウィンドウを表示します。管理グループ内のすべてのストレージノードに対して日時を設定するには、このウィンドウ上の各フィールドをチェックします。
2. [Next]をクリックしてクラスターの作成を開始します。

クラスターの作成とVIPの割り当て
この後の手順では、標準クラスターを作成します。Multi-Siteクラスターを作成する場合は、『HP StorageWorks P4000 Multi-Site HA/DR Solution Packユーザーガイド』の第2章にある「Multi-Siteクラスターとボリュームの作成」の項を参照してください。
1. [Standard Cluster]を選択し、[Next]をクリックします。
2. [Create a Cluster]ウィンドウにクラスター名を入力します。
3. リストから、クラスターに含めるストレージノードを選択します。
4. [Next]をクリックして仮想IPを割り当てます。
5. VIPとサブネットマスクを追加します。
ボリュームを作成して管理グループの作成を完了

1. ボリュームの名前、複製レベル、サイズ、およびプロビジョニングタイプを入力します。
2. [Finish]をクリックします。
 数分後、サマリーウィンドウが開かれ、新しい管理グループ、クラスター、およびボリュームの詳細が表示されます。
3. [Close]をクリックします。
4. 登録が必要であることを通知するメッセージが表示されます。
 マルチノードクラスターやリモートコピーなどの高度な機能を使用するには、この登録を済ませる必要があります。高度な機能の登録の詳細については第19章(307ページ)を参照してください。
5. [OK]をクリックします。
 新しい管理グループ、クラスターとストレージノード、およびボリュームがナビゲーションウィンドウに表示されます。
6. 最後のステップとして、管理グループ全体の構成データをバックアップします。
 「管理グループの構成のバックアップ」(162ページ)を参照してください。

既存の管理グループへのストレージノードの追加
ストレージノードは、管理グループに随時追加できます。ストレージノードをクラスターに追加するには、最初にストレージノードを管理グループに追加します。

1. ナビゲーションウィンドウで、使用可能なストレージノードのうち、管理グループに追加するストレージノードを選択します。
2. [Details]タブで[Storage Node Tasks]をクリックし、[Add to Existing Management Group]を選択します。
3. 既存の管理グループのドロップダウンリストから目的の管理グループを選択します。
4. [Add]をクリックします。
5. (オプション)ストレージノード上でマネージャーを実行するには、管理グループ内でストレージノードを選択して右クリックし、[Start Manager]を選択します。
6. 複数のストレージノードを追加するには、ストレージノードごとに手順1〜手順4を繰り返します。
7. 変更した管理グループの構成データを保存します。
 「管理グループの構成のバックアップ」(162ページ)を参照してください。

管理グループへのログイン
管理グループの機能を管理するには、その管理グループにログインする必要があります。

1. ナビゲーションウィンドウで、管理グループを選択します。
2. 以下のいずれかの方法でログインします。

 • 管理グループをダブルクリックします。
 • [Details]タブ上の[Log in to view]リンクのいずれかをクリックします。
3. ユーザー名とパスワードを入力し、[Log In]をクリックします。

 管理グループ内のいずれかのストレージノードにログインすると、そのグループ内のすべてのストレージノードにログインしたことになります。

ログイン先のストレージノードの選択

管理グループ内のどのストレージノードにログインするか選択できます。

1. [Log in to Node]ウィンドウが表示されたら、[Cancel]をクリックします。
 異なるストレージノードにログインするかどうかを確認するメッセージが表示されます。
2. [OK]をクリックします。
3. [Log in to Node]ウィンドウが開かれ、異なるストレージノードが示されます。
4. そのストレージノードが目的のストレージノードであれば、そのままログインします。目的のストレージノードと異なる場合は、目的のストレージノードが表示されるまで手順1および手順2を繰り返します。

管理グループからのログアウト

管理グループからログアウトすると、ログアウトした管理グループやグループ内のストレージノードへの不正アクセスを防止できます。

1. ナビゲーションウィンドウで、ログアウトする管理グループを選択します。

管理グループのメンテナンスタスク

作成した管理グループに対しては、必要に応じて以下のメンテナンスタスクを実行します。

 • 「マネージャーの起動と停止」（159ページ）
 • 「管理グループの編集」（161ページ）
 • 「管理グループの構成のバックアップ」（162ページ）
 • 「管理グループの復元」（163ページ）
 • 「管理グループの安全なシャットダウン」（163ページ）
 • 「管理グループの起動」（164ページ）
 • 「管理グループからのストレージノードの削除」（165ページ）
 • 「管理グループの削除」（166ページ）

マネージャーの起動と停止

管理グループにストレージノードを追加した後、それらのストレージノード上でマネージャーを起動します。起動するマネージャーの数は、ストレージシステムの全体的な設定によって異なります。追加するマネージャーの数の詳細については、「マネージャーの概要」（147ページ）を参照してください。
追加のマネージャーの起動
1. ナビゲーションウィンドウから、管理グループ内のストレージノードのうち、マネージャーを起動するストレージノードを選択します。
2. [Details]タブで[Storage Node Tasks]をクリックし、[Start Manager]を選択します。
他のストレージノード上でもマネージャーを起動するには、これらのステップを繰り返します。

マネージャーの停止
通常は、管理グループからストレージノードを削除するときにマネージャーを停止します。管理グループ内の最後の1つのマネージャーは停止できません。マネージャーを停止するとフォールトトレランスへの影響が生じる場合は、注意すべき項目を示すアイコンが管理グループに表示されます。

図53 マネージャーのクォーラムが失われるリスク
管理グループを削除する以外の方法では最後の1つのマネージャーを停止できません。

マネージャーの停止が及ぼす影響
- ストレージノードのクォーラムが低下する可能性があります。
- 維持される構成データのコピー数が減ります。
- 構成データのフォールトトレランスが失われる可能性があります。
- データの整合性と可用性が損なわれる可能性があります。

注意:
マネージャーを停止すると、フォールトトレランスが失われる結果を招くことがあります。

1. ナビゲーションウィンドウで管理グループを選択してログインします。
2. マネージャーを停止するストレージノードを選択します。
3. [Details]タブで[Storage Node Tasks]をクリックし、[Stop Manager]を選択します。
 確認メッセージが表示されます。
4. [OK]をクリックしてマネージャーを停止します。
管理グループの編集

管理グループの編集には、以下のタスクが含まれます。

- ローカル帯域幅の優先度の変更。
- リモート帯域幅の編集。このタスクは、リモートスナップショットが格納されている管理グループに対して行います。（『HP StorageWorks P4000 Remote Copyユーザーガイド』の第2章「Remote Copyの使用方法」で、リモート帯域幅の設定に関する項を参照してください）。

特別な編集タスクとして以下の2つがあります。

- 管理グループの関連付け解除
- 管理グループの通常モードへの変更

管理グループに変更を加えた後は、編集した管理グループの構成データを必ず保存しておきます。「管理グループの構成のバックアップ」(162ページ)を参照してください。

ローカル帯域幅の優先度の設定または変更

管理グループの作成後、管理グループを編集してローカル帯域幅の優先度を変更できます。これは、データ移動などの非アプリケーション処理をマネージャーが毎秒何MBまで実行するかを示す値です。デフォルト値は、4MB/秒です。この値は0.25MB/秒より小さく設定できません。

ローカル帯域幅の優先度の設定

帯域幅設定は、每秒のMB数です。ローカル帯域幅を設定するにあたっては、表36（161ページ）を目安にしてください。

表36 ローカル帯域幅の優先度設定の目安

<table>
<thead>
<tr>
<th>ネットワークタイプ</th>
<th>スループット (MB/秒)</th>
<th>定格スループット</th>
</tr>
</thead>
<tbody>
<tr>
<td>最小</td>
<td>0.25</td>
<td>2Mbps</td>
</tr>
<tr>
<td>Ethernet</td>
<td>1.25</td>
<td>10Mbps</td>
</tr>
<tr>
<td>工場出荷時のデフォルト設定</td>
<td>4.00</td>
<td>32Mbps</td>
</tr>
<tr>
<td>Fast-Ethernet</td>
<td>12.50</td>
<td>100Mbps</td>
</tr>
<tr>
<td>Half Gigabit-Ethernet</td>
<td>62.50</td>
<td>500Mbps</td>
</tr>
<tr>
<td>Gigabit-Ethernet</td>
<td>128.00</td>
<td>1Gbps</td>
</tr>
<tr>
<td>ボンディングされたGigabit-Ethernet (2)</td>
<td>256.00</td>
<td>2Gbps</td>
</tr>
<tr>
<td>ボンディングされたGigabit-Ethernet (4)</td>
<td>512.00</td>
<td>4Gbps</td>
</tr>
</tbody>
</table>

ローカル帯域幅の優先度の設定または変更

1. ナビゲーションウィンドウで管理グループを選択してログインします。
3. スライダーを使用してローカル帯域幅の優先度を変更します。
デフォルトでは、スライダーの[Application Access]ラベル側の4に設定されています。この設定は、日常的に多数のサーバーがポリュームを頻繁に使用する場合により適しています。スライダーの[Data Rebuild]ラベル側にある設定値40は、破損したポリュームを再構築または移動する目的でデータの移行またはコピーを短時間で完了する必要がある場合に最もよく使用されます。
4. [OK]をクリックします。
管理グループのタブウィンドウ内の[Details]タブに新しい設定値が表示されます。

管理グループの構成のバックアップ
管理グループの構成のバックアップでは、以下の2種類の構成ファイルの一方または両方を保存します。

- 構成のバックアップ — 管理グループの構成のバイナリファイル (.bin) を作成します。
- 構成の記述の保存 — 管理グループの構成特性を記述するテキストファイル (.txt) を作成します。

バイナリファイルを保存しておくと、同じ構成の管理グループを自動的に再作成できます。テキストファイルは、サポート用の情報として使用します。このバックアップの復元に際しては、サポート担当者がお手伝いします。

注記:
管理グループの構成のバックアップでは、その管理グループ内の個々のストレージノードに関する構成に関する情報やデータは保存されません。ストレージノードの構成をバックアップする方法については、「ストレージノード構成ファイルのバックアップ」 (42ページ) を参照してください。

リモートコピー関係のある管理グループのバックアップ
リモートコピーに参加している管理グループをバックアップする場合は、関連付けられているリモートコピー管理グループを同時にバックアップすることが重要です。これらを異なるタイミングでバックアップすると、いずれかのグループを復元しようとするとときにバックアップファイルが一致しなくなります。この不一致が原因となって復元に問題が生じます。

管理グループ構成のバックアップ
1. ナビゲーションウィンドウで管理グループを選択してログインします。
3. [Save]をクリックします。
 [Save]ウィンドウが表示されるので、.binファイルまたは.txtファイルの保存場所を選択します。
4. [Save]ウィンドウで、ファイルのデフォルト名をそのまま使用するか、異なる名前を入力します。
5. [Files of Type]ドロップダウンメニューからファイルタイプとして [.bin]を選択します。
6. 同じ手順を繰り返します。ただし、今回はステップ5でファイルタイプとして [.txt]を選択します。
 .txtファイルには構成が記述されます。
管理グループの復元

.binファイルを使用して管理グループを復元する必要が生じた場合は、HPのサポート窓口にご連絡ください。

管理グループの安全なシャットダウン

管理グループを安全にシャットダウンし、データの安全性を確保できます。管理グループをシャットダウンすると、以下のことができます。

- その管理グループ内のストレージノードに対するメンテナンス
- データセンター内でのストレージノードの移動
- スイッチやUPSユニットなどの他の機器に対するメンテナンス
- 自然災害の発生に備えた準備

UPSの制御による電源切断に備えて、スクリプトで安全なシャットダウンを構成できます。第16章（275ページ）を参照してください。シンプルなスクリプトをCustomer Resource Centerから入手できます。

管理グループのシャットダウンは、個々のストレージノードの電源切開とポリュームへのアクセス維持にも関連しています。C:¥Program Files¥LeftHand Networks¥CLIディレクトリにインストールされているコマンドラインドキュメント『Cliq User Manual』を参照してください。

前提条件

- 管理グループ内のポリュームにアクセスしているホストまたはサーバーをすべて切断します。
- ポリュームまたはスナップショットの再ストライプ化が進行中の場合は、完了するまで待機します。

管理グループのシャットダウン

1. シャットダウンする管理グループにログインします。
3. [Shut Down Group]をクリックします。

管理グループがシャットダウンされ、CMCに表示されなくなります。

ポリュームがまだサーバーまたはホストに接続されている場合

[Shut Down Group]をクリックした後、確認ウィンドウが開かれ、まだ接続されているポリュームのリストが示されます。管理グループのシャットダウンを続行すると、これらのポリュームは使用できなくなります。
図54 ボリュームをオフラインにするときの通知
1. リスト内のボリュームへのサーバーアクセスまたはホストアクセスを停止します。
2. [Shut Down Group]をクリックします。

管理グループがシャットダウンされ、CMCに表示されなくなります。

管理グループの起動
管理グループを起動する準備ができたら、そのグループに所属しているストレージノードの電源を投入します。
1. シャットダウンされたストレージノードの電源を投入します。
2. CMCの[Find]を使用して、ストレージノードを検出します。

すべてのストレージノードが適切に動作すると、ボリュームが使用可能になり、ホストまたはサーバーとの再接続が可能となります。

メンテナンスモードでの管理グループの再起動
特定の条件下では、管理グループがメンテナンスモードで起動することがあります。通常、メンテナンスモードになると、管理グループが完全に再起動されていないか、ボリュームが再同期されている場合です。管理グループが完全に動作している状態になり、再同期が完了すると、管理グループのステータスが通常のモードになります。

管理グループがメンテナンスモードで起動するのは、主に以下のような場合です。
- ストレージノードが使用不能になり、そのストレージノードの修理または交換中に管理グループがシャットダウンされた場合。ストレージノードが修理または交換され、管理グループが起動された後でも、修理または交換されたストレージノードが管理グループ内の他のストレージノードと再同期されるまでの間は、管理グループがメンテナンスモードのままになります。
- 管理グループのシャットダウン後にストレージノードのサブセットに対して電源が投入された場合。他のストレージノードが電源を投入され、CMCで検出されるまでの間は、管理グループがメンテナンスモードのままになります。
- ストレージノードが起動されたが、何らかの理由で完全に機能していない場合。

手動による管理グループの通常モードへの変更
管理グループがメンテナンスモードである間は、ボリュームとスナップショットを使用できません。クラスターとボリュームの構成に応じて、管理グループを手動でメンテナンスモードから通常モードに変更すると、ボリュームおよびスナップショットをオンラインに復帰させることができます。ただし、メンテナンスモー
ドから通常モードに手動で変更した場合は、再同期が完了するか、すべてのストレージノードが動作を開始するか、または問題の原因が修正されるまでの間、管理グループ内のボリュームは劣化モードで動作します。

△ 注意:
手動で管理グループを通常モードに設定することによりデータをオンラインに復帰できるかどうか不明な場合や、今すぐデータへのアクセスを回復する必要がない場合は、この設定を変更しないでください。

1. ナビゲーションウィンドウで管理グループを選択してログインします。

 図55 手動による管理グループの通常モードへの変更
3. [Set To Normal]をクリックします。
 管理グループが通常モードにリセットされます。

管理グループからのストレージノードの削除

前提条件
・ ストレージノード上でマネージャーが動作している場合は、マネージャーを停止します。クォーラムと最適なフォールトトレランスを維持するために必要であれば、異なるストレージノード上でマネージャーまたは仮想マネージャーを起動できます。詳細は、「マネージャーの停止」（160ページ）を参照してください。
・ (オプション) ストレージノードを削除した結果、クラスター内のストレージノード数がボリューム複製レベルを下回ることになる場合は、クラスターからストレージノードを削除する前に、ク
 サー上のボリュームの複製レベルを減らしておきます。
・ クラスターからストレージノードを削除します。詳細は、「クラスターからのストレージノードの削除」（190ページ）を参照してください。
・ 進行中の再ストライプ処理がある場合は、処理が完了するまで待機します。

ストレージノードの削除
1. ストレージノードを削除する管理グループにログインします。
2. ナビゲーションウィンドウで、削除するストレージノードを選択します。
4. 確認メッセージが表示されたら[OK]をクリックします。

ナビゲーションウィンドウ内の管理グループからストレージノードが削除され、[Available Nodes]プールに戻されます。

管理グループの削除

SANを完全に再構成し、SAN上のデータをすべて削除する場合は、管理グループを削除します。

△ 注意:
管理グループを削除すると、その管理グループ内のストレージノードに格納されているすべてのデータが失われます。

前提条件

- 管理グループにログインします。
- すべてのボリュームおよびスナップショットを削除します。
- すべてのクラスターを削除します。

管理グループの削除

1. ナビゲーションウィンドウで管理グループにログインします。
3. [Delete Management]ウィンドウで、管理グループ名を入力して[OK]をクリックします。

管理グループが削除されると、ストレージノードは[Available Nodes]プールに戻されます。
10 特殊マネージャーの使用

SAN/iQソフトウェアには、特定の状況で使用するための特殊マネージャーが2つ用意されています。フェアールオーバーマネージャーは、2ノード構成およびマルチサイト構成のSANで、自動クォーラム管理をサポートするために使用されます。仮想マネージャーは管理グループに追加されますが、システム内の障害が原因でクォーラムが失われたときに初めて、ストレージノード上で起動されます。仮想マネージャーは、クォーラムが失われるリスクが伴う2ノードまたは2サイトのシステムでの使用を目的としています。

用語の定義

この章で使用する用語

・ 仮想マネージャー — 管理グループに追加されるマネージャーですが、システム内の障害が原因でクォーラムが失われたときに初めて、ストレージノード上で起動されます。仮想マネージャーは、クォーラムが失われるリスクのある、特定のシステム構成での使用を目的としています。
・ フェールオーバーマネージャー — VMwareゲストオペレーティングシステムとして実行される特殊マネージャーです。このマネージャーはネットワーク内の3番目の場所にインストールされ、クォーラムの過半数を判定するノードとして機能します。これにより、Multi-Site SANクラスターの自動フェールオーバー/フェールバックが実現されます。
・ 標準マネージャー — ストレージノード上で起動され、「マネージャーの概要」（147ページ）で説明されているように動作するマネージャーです。
・ マネージャー — 上記の各種マネージャーの総称です。

フェールオーバーマネージャーの概要

フェールオーバーマネージャーは、VMware環境内で仮想アプライアンスとして動作するように設計された特殊バージョンのSAN/iQソフトウェアです。フェールオーバーマネージャーはシステム内の実際のマネージャーとして管理グループに参加しますが、クォーラム処理にのみ関与し、データの移動処理は行いません。Multi-Site SANでマルチサイト構成用のクォーラムの管理にフェールオーバーマネージャーを使用すると、物理ハードウェアをサイトに追加する必要がないため、非常に便利です。

フェールオーバーマネージャーの要件

・ 静的なIPアドレス（DHCPを使用している場合は、予約済みアドレス）。
・ VMwareコンソールを通じたブリッジ接続か、またはVMware Viクラウド内の割り当て済みネットワーク。
・ フェールオーバーマネージャーをインストールするサーバー。
・ フェールオーバーマネージャーの数は管理グループごとに1つだけ。
・ 仮想マネージャーとフェールオーバーマネージャーは、同じ管理グループ内で併用できません。
・ VMware Serverが動作している仮想Windowsマシン内ではフェールオーバーマネージャーを実行できません。

VMware ServerまたはVMware Playerとともに使用する場合の最小システム要件

・ 10/100 Ethernet
VMware ESX Serverとともに使用する場合の最小システム要件

- VMware ESX Serverバージョン3.x
- 1024MBのRAM

△ 注意:
フェールオーバーマネージャーの目的にそぐわないため、HP LeftHand Storage Solution上にフェールオーバーマネージャーをインストールしないでください。

仮想ネットワーク構成のプランニング

フェールオーバーマネージャーをネットワーク上にインストールする前に、以下の項目を含む仮想ネットワーク構成の計画を立てます。

- 仮想スイッチおよびネットワークアダプターの設計と構成。
- フェールオーバーマネージャーのディレクトリ、ホスト名、およびIPアドレス。
- フェールオーバーマネージャーはiSCSIネットワーク上に置く必要があります。iSCSIネットワーク/仮想スイッチ上で構成されている仮想マシンネットワークが存在しない場合は、フェールオーバーマネージャー用の新しい仮想マシンネットワークを作成します。

7.0フェールオーバーマネージャーのアップグレード

SAN/iQソフトウェアバージョン7.0でリリースされたフェールオーバーマネージャーは、アップグレードもパッチ適用もできません。SAN/iQソフトウェアバージョン8.0でリリースされたフェールオーバーマネージャーにアップグレードするには、旧バージョンをアンインストールする必要があります。バージョン8.0からはフェールオーバーマネージャーをアップグレードできます。

1. 管理グループからフェールオーバーマネージャーを削除します。
2. 「VMware ServerまたはVMware Player上のフェールオーバーマネージャーのアンインストール」(172ページ)の手順に従ってフェールオーバーマネージャーをアンインストールします。
3. フェールオーバーマネージャーの新しいバージョンをインストールします。
4. 名前とIPアドレスを構成します。
5. 新しいフェールオーバーマネージャーを管理グループに追加します。

VMware ServerまたはVMware Player上でのフェールオーバーマネージャーの使用

フェールオーバーマネージャーのインストールと構成

HP LeftHand VSA CDからフェールオーバーマネージャーをインストールするか、または、HP LeftHand Networks Webサイトからフェールオーバーマネージャーをダウンロードします。
フェールオーバーマネージャーの構成

フェールオーバーマネージャーはインストール時、以下のように自動構成されます。
• VMwareコンソールまたはホストサーバーのいずれかの再起動時に自動起動するように構成されます。
• フェールオーバーマネージャーの下層にある仮想ネットワークアダプターはブリッジネットワークアダプターとして構成されます。

フェールオーバーマネージャーのインストール後、VMwareコンソール上でフェールオーバーマネージャーが起動されます。起動が完了したら、構成インターフェイスを通じてIPアドレスを設定します。

フェールオーバーマネージャーのインストール

フェールオーバーマネージャーは、ネットワーク上の個別のサーバー上にインストールします。

△ 注意:
フェールオーバーマネージャーの目的にそぐわないため、HP LeftHand Storage Solution上にフェールオーバーマネージャーをインストールしないでください。

HP LeftHand Management DVDの使用
1. HP LeftHand Management DVDの開始画面で[Install]をクリックします。

2. ソフトウェアのインストール画面が表示されます。
3. [Failover Manager]をクリックします。
4. インストールウィザードの各画面に表示される指示に従ってインストールを続行します。

インストールウィザードの終了後、フェールオーバーマネージャーの起動がデフォルトの選択肢となります。
5. [Finish]をクリックしてウィザードを終了し、フェールオーバーマネージャーを起動します。

HP LeftHand Networks Webサイトからのダウンロード
1. Webサイト上で[download]を選択すると、インストールウィザードが起動します。
2. インストールウィザードの各画面に表示される指示に従ってインストールを続行します。

インストールウィザードの終了後、フェールオーバーマネージャーの起動がデフォルトの選択肢となります。
3. [Finish]をクリックしてウィザードを終了し、フェールオーバーマネージャーを起動します。

フェールオーバーマネージャーの構成

フェールオーバーマネージャーのインストールと登録が完了するまでシステムが休止した後、VMwareコンソールが表示されます（図56（170ページ））。
図56 フェールオーバーマネージャーのインストールおよび登録後に表示されるVMwareコンソール

この後、フェールオーバーマネージャーの電源が自動的に投入されます。

図57 フェールオーバーマネージャーの起動画面

1. システムログプロンプトが表示されたら、ウィンドウ内をクリックし、「start」と入力して[Enter]を押します。
 カーソルをVMwareコンソールから戻すには、[Ctrl]+[Alt]を押します。
 構成インターフェイスのログインウィンドウが表示されます。
2. [Enter]を押して構成インターフェイスのメインメニューを開きます。
 [Available Devices]ウィンドウが表示されます。
4. eth0が選択されていることを確認し、[Enter]を押します。
[Network Settings]ウィンドウが表示されます。

5. [Tab]キーを押して、フェールオーバーマネージャーのIPアドレスの設定方法を選択します。
DHCPでIPアドレスを割り当てる場合は、そのIPを必ず予約します。

6. [Tab]キーを押して[OK]を選択し、[Enter]を押します。
[Modify Network Settings]確認ウィンドウが表示されます。

7. [Tab]キーを押して[OK]を選択し、[Enter]を押して変更を確定します。
1分以内に[IP address]ウィンドウが表示されます。

8. IPアドレスをメモし、[Enter]を押して[IP address]ウィンドウを閉じます。
[Available Network Devices]ウィンドウが表示されます。

構成インターフェイスのメインメニューが表示されます。

構成インターフェイスのログインウィンドウが表示されます。

11. [File] - [Exit]をクリックしてVMwareコンソールを閉じます。

図58 ホスト名とIPアドレスの設定

図59 新しいIPアドレスの構成

P4000 SAN Solutionユーザーガイド 171
VMware ServerまたはVMware Player上のフェールオーバーマネージャーのアンインストール

フェールオーバーマネージャーをアンインストールするには、SAN/iQ Management Software DVDを使用します。

1. 管理グループからフェールオーバーマネージャーを削除します。
2. SAN/iQ Management Software DVDをCD/DVD Aドライブに挿入し、開始画面で[Install]をクリックします。
3. [Failover Manager]をクリックします。
4. フェールオーバーマネージャーのインストールウィザードが起動します。
5. ウィザード内でクリック操作で進み、[Repair or Uninstall]ウィンドウが表示されたら[Uninstall]を選択します。
 フェールオーバーマネージャーがサーバーから削除されます。

VMware ServerまたはVMware Player上のフェールオーバーマネージャーのトラブルシューティング

フェールオーバーマネージャーの実行時には、以下の2つの問題が生じることがあります。

- 再起動時にフェールオーバーマネージャーが自動的に再起動されないことがあります。デフォルトの[Startup/Shutdown Options]設定が誤って変更されたことが原因として考えられます。
- CMC内でフェールオーバーマネージャーを検出できず、ネットワークでpingを送信しても応答がないことがあります。デフォルト構成が不正確なホストアダプターにブリッジされていることが原因として考えられます。

上記のいずれかの問題が生じた場合は、以下の手順に従ってVMware Server設定を修正してください。

起動/シャットダウンオプションの修正

1. VMware Serverコンソールを開きます。
2. [Inventory]リストから[Failover Manager]仮想マシンを選択します。
3. フェールオーバーマネージャーの電源を切ります。
4. メニューから[VM] - [Settings]を選択するか、フェールオーバーマネージャーを右クリックして[Settings]を選択します。
 [Virtual Machine Settings]ウィンドウが表示されます。
5. [Options]タブを選択し、[Startup/Shutdown]を選択します。
6. 右側にある[Virtual machine account]セクションで、仮想マシンのアカウント ([Local system account]など) を選択します。
7. 右側にある[Startup/Shutdown Options]セクションで、以下のオプションを選択します。
 - [On host startup]:
 [Power on virtual machine]
 - [On host shutdown]:
 [Power off virtual machine]
8. 設定が完了したら、[OK]をクリックして変更を保存します。
9. フェールオーバーマネージャーの電源を投入します。

フェールオーバーマネージャーが検出されるようにネットワーク設定を修正
1. Windowsホストサーバー上のどのインターフェイスがSANネットワーク用に構成されているかを確認します。
2. VMware Serverコンソールを開きます。
3. [Inventory]リストから[Failover Manager]仮想マシンを選択します。
4. メニューから[Host] - [Virtual Network Settings]を順に選択します。
5. [Automatic Bridging]タブをクリックします。
6. [Automatic Bridging]セクションのチェックボックスがオンになっていることを確認します。
7. [Excluded Adapters]セクションの[Add]をクリックします。
 ネットワークアダプターのリストが表示されます。
8. ステップ1で特定したアダプター以外のすべてのアダプターをリストに追加します。
9. 完了したら[OK]をクリックします。

ESX Server上でのフェールオーバーマネージャーの使用

△ 注意:
フェールオーバーマネージャーの目的にそぐわないため、HP LeftHand Storage Solution上にフェールオーバーマネージャーをインストールしないでください。

ESX Server上でのフェールオーバーマネージャーのインストール
HP LeftHand Management DVDからフェールオーバーマネージャーをインストールするか、またはHP LeftHand Networks WebサイトにZIPパッケージとして用意されているフェールオーバーマネージャーをダウンロードします。

フェールオーバーマネージャー初めてインストールするときは、以下のタスクを実行する必要があります。
- VMware Infrastructureクライアント (VIクライアント) を起動します。
- 仮想マシンをESX Serverに転送またはアップロードします。
- インベントリにフェールオーバーマネージャーを追加します。
- フェールオーバーマネージャーの電源を投入します。
- フェールオーバーマネージャーのIPアドレスまたはホスト名を設定します。

△ 注記:
デフォルトでは、sshコマンドとscpコマンドがルートユーザーに対して無効化されています。アクセスを有効化するには、ESX Server Basic AdministrationのVMwareドキュメントを参照してください。
HP LeftHand Management DVDの使用
1. HP LeftHand Management DVDの開始画面で[Install]をクリックします。
ソフトウェアのインストール画面が表示されます。
2. [Failover Manager for ESX]をクリックします。
3. インストールウィザードの各画面に表示される指示に従ってインストールを続行します。

HP LeftHand Networks Webサイトからのダウンロード
1. Webサイト上で[download]を選択すると、インストールウィザードが起動します。
2. インストールウィザードの各画面に表示される指示に従ってインストールを続行します。
インストールウィザードの終了後、フェールオーバーマネージャーの起動がデフォルトの選択肢となります。
3. [Finish]をクリックします。

ESX Server上でのフェールオーバーマネージャーファイルのインストール
ESX Serverソフトウェアのバージョンに応じて、以下のいずれかの方法を使用します。

ESX 3.5+またはESXiの場合
1. VCまたはVIクライアント経由でESXiホストに接続します。
2. ESXiホストをクリックし、[Configuration]タブに移動します。
3. [Storage]を選択します。
4. フェールオーバーマネージャーがホストされることになるローカルVMFSデータストアを探します。
5. 右クリックし、[Browse DataStore]を選択します。
6. 新しいディレクトリを作成し、[upload files]アイコンをクリックします。

ESX Server 3.0〜3.0.2の場合
1. フェールオーバーマネージャーの解凍済みフォルダーをアップロードします。
2. 次の場所にフェールオーバーマネージャー用のディレクトリを作成します。
 /vmfs/volumes/“実際のデータストア名”
3. ESX Server上に作成したディレクトリにフェールオーバーマネージャーファイルをコピーします。ファイルのコピーには、次の例のようにscpコマンド（Linux）またはpscpコマンド（Windows）を使用します。
 scp *.* <ユーザー>@<ESX ServerのIPアドレス>:/vmfs/volumes/datastore
4. chmod 755 FOM.vmxコマンドを使用して、.vmxファイルに対する実行権限を開放します。

VIクライアントによるフェールオーバーマネージャーの構成
ESX Server上にフェールオーバーマネージャーファイルをインストールし終えたら、VIクライアントを使用してフェールオーバーマネージャーを構成します。

174 特殊マネージャーの使用
インベントリへのフェールオーバーマネージャーの追加
1. [Inventory]パネルでVMware ESX Serverを選択します。
2. [Information]パネルで、[Configuration]タブを選択します。
3. [Hardware]セクションで[Storage (SCSI, SAN, and NFS)]を選択します。
 [Datastore Browser]ウィンドウが表示されます。
5. FailoverMgr.vmxファイルを右クリックし、[Add to Inventory]を選択します。
6. [Add to Inventory]ウィザードで、新しいフェールオーバーマネージャーの名前を入力し、[Next]をクリックします。
7. [Add to Inventory]ウィザードで、[Inventory Locations]を選択してフェールオーバーマネージャーを配置します。
8. 情報を確認して、[Finish]をクリックします。
9. [DataStore Browser]を閉じます。

ネットワーク接続の選択
1. [Inventory]パネルで、[Failover Manager]を選択します。
 [Virtual Machine Properties]ウィンドウが表示されます。
3. [Hardware]タブで、[Network Adapter 1]を選択します。
4. 右側にある[Network label]リストから適切なネットワーク接続を選択します。
5. [OK]をクリックして[Virtual Machine Properties]ウィンドウを閉じます。

フェールオーバーマネージャーの電源投入とIPアドレスおよびホスト名の構成
1. [Inventory]パネルで、新しいフェールオーバーマネージャーを選択し、Informationパネル上の[Power On]コマンドを使用してフェールオーバーマネージャーの電源を投入します。
2. [Console]タブをクリックし、フェールオーバーマネージャーが起動するまで待機します。
3. フェールオーバーマネージャーの起動が完了すると、ログインプロンプトが表示されます。

![SAN/iQ構成インターフェイスへのログイン](image)

図60 SAN/iQ構成インターフェイスへのログイン

4. フェールオーバーマネージャーのIPアドレスとホスト名を構成するには、SAN/iQ構成インターフェイスにログインして使用します。

IPアドレスの設定

フェールオーバーマネージャーのIPアドレスを設定するには、構成インターフェイスを使用します。

1. 「Start」と入力し、[Enter]を押します。
2. [Enter]を押してログインします。
5. 必要に応じて、[Tab]キーを押して[Hostname]フィールドに移動します。
6. [Hostname]フィールドで[Backspace]を押してデフォルト名を削除し、適切なホスト名を入力します。

このホスト名はCMCに表示されます。このホスト名を変更しても、オリジナルのFOM.vmxファイルは変更されず、VMware内の名前も変更されません。
7. 次のどちらかの方法でIPアドレスを構成します。

<table>
<thead>
<tr>
<th>DHCPを使用する場合</th>
<th>IPアドレスを手動で構成する場合</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. [Tab]キーを押して[OK]を選択し、[Enter]を押します。短い休止の後、新しいIPアドレスを示す別のメッセージが表示されます。このIPアドレスを後で使用できるように記録しておきます。</td>
<td>2. [Tab]キーを押して各フィールドに移動し、適切な情報を入力します。[Gateway]は入力必須フィールドです。ゲートウェイがない場合は、「0.0.0.0」と入力します。</td>
</tr>
</tbody>
</table>

8. [Tab]キーを押して[OK]を選択し、[Enter]を押します。
確認メッセージが表示されます。

9. [Enter]を押します。
ネットワークインターフェイスの構成が完了します（数秒後）。[Available Network Devices]ウィンドウが表示されます。

構成インターフェイスのログインウィンドウが再表示されます。

12. [Ctrl]+[Alt]を押してコンソールからカーソルを戻します。

VIクライアントによる構成の完了

1. VIクライアントの[Information]パネルで、[Summary]タブを選択します。

2. [Summary]タブのGeneralセクションで、IPアドレスとホスト名が正しいこと、およびVMware Toolsが動作品することを確認します。

注記：
VMware Toolsに「out of date」と表示された場合でも、VMware Toolsは正しく動作しています。「out of date」ステータスであっても問題ありません。VMware Toolsは、SAN/iQソフトウェアのアップグレード時に更新されます。

3. [Inventory]パネルで、フェールオーバーマネージャーを右クリックし、[Rename]を選択します。
4. フェールオーバーマネージャーの名前を必要に応じて、ホスト名に一致する名前に変更します。
 以上で、フェールオーバーマネージャーを使用する準備が完了しました。
5. VIクライアントセッションを最小化します。
次に、CMC内で[Find]機能を使用してフェールオーバーマネージャーを検出し、フェールオーバーマネージャーを管理グループに追加します。
ESX Serverからのフェールオーバーマネージャーのアンインストール

1. 管理グループからフェールオーバーマネージャーを削除します。
2. VIクライアントで[Failover Manager]仮想マシンの電源を切断します。
3. 電源を切断したフェールオーバーマネージャーを右クリックし、[Delete from Disk]を選択します。

ESX Server上でのフェールオーバーマネージャーのトラブルシューティング

ここでは、ESX Server上のフェールオーバーマネージャーに関して発生しうる問題の解決方法を示します。

<table>
<thead>
<tr>
<th>問題</th>
<th>解決策</th>
</tr>
</thead>
<tbody>
<tr>
<td>フェールオーバーマネージャーを再インストールしたい。</td>
<td>1. CMCセッションを終了する。 2. VIクライアントからフェールオーバーマネージャーの電源を切断する。 3. 右クリックして[Delete from Disk]を選択する。 4. ダウンロードしたZIPファイルか、または配布メディアから新しいファイルを仮想マシンフォルダーにコピーする。 5. VIクライアントを開いて、セッションを再開する。</td>
</tr>
<tr>
<td>CMCでフェールオーバーマネージャーを検出できず、フェールオーバーのIPアドレスを思い出せない。</td>
<td>1. CMCがノードを検出した場合は、そのノードのIPアドレスがCMCに表示される。 2. VIクライアントセッションを開始し、目的のノードの[Summary]タブを選択。[General information]セクションにIPアドレスとDNS名が表示される。</td>
</tr>
<tr>
<td>Linuxの場合</td>
<td>1. インストールが自動的に起動しない。</td>
</tr>
<tr>
<td>VIクライアントの場合</td>
<td>カーソルまたはキーボードを使用できない。</td>
</tr>
<tr>
<td>フェールオーバーマネージャーを確認しようとしてもウィンドウが黒くなって何も表示されない。</td>
<td>コンソールウィンドウがタイムアウトになった。マウスでウィンドウをクリックし、任意のキーを押す。</td>
</tr>
</tbody>
</table>

仮想マネージャーの概要

仮想マネージャーは管理グループに追加されるグループですが、クォーラムの回復が必要となった場合にのみストレージノード上で起動されます。仮想マネージャーは、以下の2つの構成のいずれかに対して障害復旧を提供します。
どのような場合に仮想マネージャーを使用するか

仮想マネージャーは、以下の構成で使用します。

- データを共有する2つのサイト間の管理グループ
- 2つのストレージノードが存在する単一サイト内の管理グループ

仮想マネージャーは、障害復旧の目的で使用できます。仮想マネージャーによる障害復旧では、仮想マネージャーをオンデマンドで起動してクォーラムの回復を実行します。

データ共有する2つのサイト間の管理グループ

仮想マネージャーを使用すると、2つのサイトのどちらかのサイトが障害に見舞われた場合にも、他のサイトで処理を続けることができます。仮想マネージャーでは、一つのサイトが障害に見舞われた場合でも、別サイトでクォーラムを回復し、データへのアクセスを維持することができます。

2つのストレージノードが存在する単一サイト内の管理グループ

2つのストレージノードが存在する管理グループでは、仮想マネージャーを有効にすることで、ストレージノードの障害を回復することができます。仮想マネージャーを使用すると、一方のストレージノードが障害に見舞われた場合でも、別のストレージノードで処理を続けることができます。また、仮想マネージャーを使用すると、管理グループのクォーラムが維持され続けることができます。

仮想マネージャーによるストレージノードのメンテナンス

仮想マネージャーは、メンテナンス中にもクォーラムの維持を目的で使用できます。仮想マネージャーを追加すると、ストレージノードをメンテナンスする必要が生じたときに仮想マネージャーを起動できます。
仮想マネージャーの利点

仮想マネージャーを実行することにより、ディザスタトレラント構成が実現され、完全なサイトフェールオーバーが可能になります。仮想マネージャーが実行されていれば、マネージャーを実行しているストレージノードに障害が発生した場合や、マネージャー間の通信が失われた場合（2サイトシナリオ）にクォーラムを回復して、データへのアクセスを維持できます。

仮想マネージャーを使用するための要件

仮想マネージャーは正しく使用することが重要です。仮想マネージャーは管理グループに追加されますが、管理グループで障害が発生してクォーラムが失われたときに初めてストレージノード上で起動されます。クォーラムを回復するには、まだ動作している方のストレージノード上と、動作中またはプライマリになっている方のサイト内で、仮想マネージャーを起動します。

表38 仮想マネージャーを使用するための要件

<table>
<thead>
<tr>
<th>要件</th>
<th>意味</th>
</tr>
</thead>
<tbody>
<tr>
<td>ストレージノード上で動作している標準マネージャーの数が偶数の場合、そのマネージャーとともに仮想マネージャーを起動すること</td>
<td>仮想マネージャーを含むマネージャーの合計数</td>
</tr>
<tr>
<td>障害復旧シナリオ</td>
<td>動作している標準マネージャーの数</td>
</tr>
<tr>
<td>データを共有している2つの別個のサイト</td>
<td>4</td>
</tr>
<tr>
<td>管理グループ内の2つのストレージノード</td>
<td>2</td>
</tr>
<tr>
<td>管理グループの作成時に仮想マネージャーを追加すること</td>
<td>クォーラムが失われた後では仮想マネージャーを追加できません。仮想マネージャーは、障害が発生する前に管理グループに追加しておく必要があります。</td>
</tr>
<tr>
<td>仮想マネージャーは、サイトが復元されるか、通信が復旧されるまでの間のみ実行すること</td>
<td>仮想マネージャーを実行するのは、サイトが復元されてデータが再同期されるか、または通信が復旧してデータが再同期されるまでの間だけです。</td>
</tr>
</tbody>
</table>

図61（181ページ）。
図61 仮想マネージャーを正しく使用している2サイト障害シナリオ

障害復旧に備えたクラスターの構成

単に仮想マネージャーを使用するだけでなく、クラスターとボリュームを障害復旧に備えて正しく構成しておく必要があります。ここでは、仮想マネージャーを含むシステムの構成方法について説明します。

ベストプラクティス

以下の例では、1つのクラスターに4つのストレージノードが含まれている管理グループの構成を説明しています。このクラスターは、2つの地理的に異なるサイトにまたがっており、各サイトにはストレージノードが2つずつ存在します。このクラスター内には、両方のサイトにわたる単一のネットワークRAID-10ボリュームが存在します。

構成手順

各サイトですべてのデータが複製されるように構成し、マネージャーが障害復旧を正しく処理するように構成するには、以下的手順に従ってください。
1. サイトを識別できるホスト名をストレージノードに付与する

各サイトにどのストレージノードが存在しているかを識別しやすくするために、ストレージノードの場所を識別するホスト名を使用します。詳細は、「ストレージノードのホスト名の変更」(40ページ)を参照してください。

管理グループ名 — TransactionData

ストレージノード名

- Boulder-1
- Golden-1
- Boulder-2
- Golden-2

2. 管理グループを作成する — マネージャーと仮想マネージャーのプランニング

2サイトシナリオで管理グループを作成する場合は、サイトごとにマネージャーを2つずつ実行し、管理グループに仮想マネージャーを追加する計画を立てます。これにより、フォールトトレランス用のマネージャーが5つ存在することになります。「マネージャーの概要」(147ページ)を参照してください。

3. ストレージノードを交互にクラスターに追加

クラスターを作成します。下記の箇条書きに示すように、サイトを交互にした順番でストレージノードをクラスターに追加します。データのコピーがポリュームに書き込まれる順序は、ストレージノードをクラスターに追加した順序によって決定されます。ストレージノードをサイトの場所に応じて交互に追加すると、ポリュームの作成時に構成したネットワークRAID-10の一部としてデータが各サイトに書き込まれるようになります。「追加のクラスターの作成」(187ページ)を参照してください。

クラスター名 — CreditData

ストレージノードを以下の順序でクラスターに追加します。

- 1番目のストレージノード — Boulder-1
- 2番目のストレージノード — Golden-1
- 3番目のストレージノード — Boulder-2
- 4番目のストレージノード — Golden-2

△注意:

ストレージノードをクラスターに追加した順序が交互でないと、各サイト上に維持されるデータのコピーが不完全になります。

182 特殊マネージャーの使用
4. ネットワークRAID-10構成のポリュームを作成する

ネットワークRAID-10構成では、データの2つのコピーがポリュームに書き込まれます。ストレージノードを交互の順序でクラスターに追加してあるため、各サイト上に完全なデータのコピーが維持されることになります。 「データ保護のプランニング」(200ページ)を参照してください。

仮想マネージャーの追加

1. ナビゲーションウィンドウで管理グループを選択し、ログインします。
 確認メッセージが表示されます。
3. [OK]をクリックして操作を続行します。仮想マネージャーが管理グループに追加されます。仮想マネージャーが追加されたことが[Details]タブに示され、管理グループ内に仮想マネージャーのアイコンが表示されます。

1. 追加された仮想マネージャー

図64 仮想マネージャーが追加された管理グループ

仮想マネージャーは、必要時まで管理グループに追加された状態となります。

クォーラム回復のための仮想マネージャーの起動

仮想マネージャーは、管理グループ内のクォーラムを回復する必要が生じた場合にのみ起動してください。図61(181ページ)は、クォーラムの回復が必要になった場合の仮想マネージャーの正しい起動方法を示したものです。

2サイトシナリオ: 一方のサイトが使用不能になった場合

たとえば、2サイトの障害復旧モデルで、どちらか1つのサイトが使用不能になったとします。まだ動作している方のサイトでは、すべてのマネージャーが実行されている必要があります。動作している方のサイトに存在するストレージノードのいずれかを選択し、選択したノード上で仮想マネージャーを起動します。これにより、動作している方のサイトでのクォーラムが回復し、もう一方のサイトが復旧するまで処理を継続できるようになります。もう一方のサイトが復旧したら、両方のサイト内のマネージャーが通信を再確立し、両方のサイト内のデータが再同期されます。データの再同期が完了したら、仮想マネージャーを停止し、ディザスタトレラント構成に復帰します。

注記:

使用不能になったサイトを復旧できない場合は、新しいストレージノードを有する新しいサイトを作成して、クラスタを再構築することで対処できます。クラスタ復旧手順の詳細については、HPのサポート窓口にお問い合わせください。サポート窓口にお問い合わせ時には、ご使用のストレージノードのいずれかのシリアル番号をご提示いただく必要があります。

2サイトシナリオ: サイト間の通信が失われた場合

サイト間の通信が失われると、2つのサイトがそれぞれ独立して動作します。実際の構成に応じて、適切な方のサイト上でいずれかのストレージノードを選択し、選択したノード上で仮想マネージャーを起動します。これにより、そのサイトでクォーラムが回復され、選択したサイトがプライマリサイトとして動作するよ
うになります。サイト間の通信が復旧したら、両方のサイト内のマネージャーが通信を再確立し、両方のサイト内のデータが再同期されます。データの再同期が完了したら、仮想マネージャーを停止し、デイザスタトレラント構成に復帰します。

仮想マネージャーの起動
仮想マネージャーは、いずれかのストレージノード上で起動する必要があります。まだマネージャーが実行されていないストレージノード上で起動するのが理想的ですが、必要に応じて、すでにマネージャーを実行中のストレージノード上で仮想マネージャーを起動することも可能です。

1. 仮想マネージャーを起動するストレージノードを選択します。
2. [Details]タブで[Storage Node Tasks]をクリックし、[Start Virtual Manager]を選択します。

図65 マネージャーを実行しているストレージノードが使用不能になった場合の仮想マネージャーの起動

注記:
CMC内で正常と表示されているストレージノード上で仮想マネージャーを起動しようとしたのに、ストレージノードが使用できないことを示すメッセージが表示された場合は、異なるストレージノード上で仮想マネージャーを起動してください。このような状況は、クオーラムが失われたときに起こります。ストレージノードが実際には使用できないにもかかわらず、CMCでは正常な状態のまま表示される場合があるからです。

仮想マネージャーのステータスの確認
仮想マネージャーがすでに起動しているかどうかを確認し、起動している場合は、どのストレージノード上で仮想マネージャーが実行されているかを確認します。

• ナビゲーションウィンドウで仮想マネージャーのアイコンを選択します。
仮想マネージャーの場所とステータスが[Details]タブに表示されます。

仮想マネージャーの停止
仮想マネージャーが必要となる状況が解決、つまり、使用不能になったサイトが復旧または通信リンクが復旧した場合は、仮想マネージャーを停止する必要があります。仮想マネージャーを停止すると、管理グループはフォールトトレラント構成に戻ります。
1. 仮想マネージャーが実行されているストレージノードを選択します。
2. [Details]タブで[Storage Node Tasks]をクリックし、[Stop Virtual Manager]を選択します。
 確認メッセージが表示されます。
3. [OK]をクリックします。
 仮想マネージャーが停止します。ただし、仮想マネージャーは停止後も、管理グループおよびクォーラムに含まれます。

仮想マネージャーの削除
管理グループから仮想マネージャーを削除できます。
1. 仮想マネージャーを削除する管理グループを選択し、そのグループにログインします。
 確認ウィンドウが表示されます。
3. [OK]をクリックして操作を続行します。
 仮想マネージャーが削除されます。

注記:
マネージャーまたは仮想マネージャーを削除するとクォーラムが失われる場合は、CMCからマネージャーまたは仮想マネージャーの削除はできません。
11 クラスターの使用

クラスターとは、管理グループ内で作成するサブグループで、ストレージノードから編成されます。ボリュームの作成に使用するストレージノードをクラスターでグループ化できます。クラスター内の複数のストレージノードにシームレスにまたがるボリュームを作成できます。

クラスターは、ストレージのプールのようなものと考えることができます。このプールへのストレージの追加は、ストレージノードを追加することにより行います。プール内のストレージは、ボリュームやスナップショットの作成に使用できます。

クラスターを作成する前に、第20章（315ページ）に記載されているiSCSIの情報をよく理解しておいてください。

クラスターとストレージノード容量

一般的に、クラスターは容量が同一のストレージノードで構成されます。容量が異なるストレージノードをクラスター内に混在させることも可能です。同一クラスター内のすべてのストレージノードは、最小容量のストレージノードの容量で動作します。ただし、既存のクラスターにストレージノードを追加する際は、容量に関するこの制限事項に注意してください。

前提条件

・ クラスターを作成する前に、管理グループを作成しておく必要があります。

追加のクラスターの作成

管理グループの作成時には、その管理グループ内の最初のクラスターが作成されます。既存の管理グループ内に追加のクラスターを作成するには、以下の手順に従ってください。

前提条件

・ 既存の管理グループが存在すること。
・ クラスターにまだ所属していないストレージノードが少なくとも1つ管理グループ内に存在すること。

クラスター内のストレージノードの数

クラスターに安全に追加できるストレージノードの推奨最大数については、「構成サマリーの概要」（150ページ）または第9章（147ページ）を参照してください。

追加のクラスターを作成するには

1. クラスターを作成する管理グループにログインします。
2. ストレージノードを右クリックし、[Add to Existing]または[New Cluster]を選択します。
4. クラスターの有意な名前を入力します。
クラスター名は、大文字と小文字が区別され、1〜127文字の範囲内で指定する必要があります。クラスターをいったん作成すると、この名前は変更できません。

5. (オプション) クラスターの説明を入力します。

6. リストから1つ以上のストレージノードを選択します。
リスト内でストレージノードの順位を上げるには上向き矢印ボタン、順位を下げるには下向き矢印ボタンを使用します。これにより、ストレージノードが表示される論理順序を設定できます。これにより、ストレージノードが重要される特定の障害復旧構成の詳細については、「障害復旧に備えたクラスターの構成」(181ページ)を参照してください。

7. [iSCSI]タブをクリックします。

iSCSI用の仮想IPおよびiSNSの構成
VIP（仮想IPアドレス）はiSCSIの負荷分散およびフォールトトレランスに必要であり、HP LeftHand DSM for MPIOでも必要となります。詳しくは、第20章（315ページ）を参照してください。

仮想IPマネージャーの使用
SAN/iQソフトウェアバージョン8.0以降では、すべてのクラスターに対して仮想IP（VIP）アドレスが必須です。

1. [iSCSI]タブを選択して、ウィンドウを前面に表示します。
リリース8.0以降ではVIPが必須であるため、8.0 CMCでは仮想IPを使用するオプションが無効化されています。7.0またはそれ以前のソフトウェアを実行している管理グループの場合は、VIPを使用するオプションが有効なままであります。

2. IPアドレスとサブネットマスクを追加します。

iSNSサーバーの追加
(オプション) iSNSサーバーを追加します。

注記：iSNSサーバーを使用する場合は、Microsoft iSCSIイニシエーターでターゲットポートルの追加が不要になることがあります。

[Add iSNS Server]ウィンドウが表示されます。
2. iSNSサーバーのIPアドレスを入力します。
3. [OK]をクリックします。
4. 完了したら[OK]をクリックします。
クラスターが作成され、管理グループの中に表示されます。
5. [Clusters]タブウィンドウで目的のクラスターを開きます。

188 クラスターの使用
クラスターの使用状況の追跡

[Use Summary]、[Volume Use]、および[Node Use]の各タブには、クラスター内のボリュームのプロビジョ ニング、スナップショット、および容量の使用状況に関する詳細情報が表示されます。これらのタブで報告 される情報の詳細については、「継続的な容量管理」(208ページ)を参照してください。

注記:
すべてのボリュームとスナップショットの合計プロビジョニング容量がクラスター上の使用可能な物理 容量を超えていると、クラスターのオーバープロビジョニングが発生します。オーバープロビジョニング は、クラスターにスナップショット作成スケジュールやシンプロビジョニングされたボリュームが関連付 けられている場合に発生することがあります。

クラスターの編集

クラスターの編集では、説明の変更とストレージノードの追加または削除が可能です。クラスターに関連 付けられている仮想IPおよびISNSサーバーの編集または削除もできます。

前提条件
クラスターを編集するには、そのクラスターが含まれている管理グループにログインする必要があります。

アクセス方法
1. ナビゲーションウィンドウで、編集するクラスターを選択します。
2. [Cluster Tasks]をクリックし、[Edit Cluster]を選択します。

既存のクラスターへの新しいストレージノードの追加

既存のクラスターに新しいストレージノードを追加して、そのクラスターのストレージを拡張できます。

注記:
ストレージノードをクラスターに追加すると、そのクラスター内のデータが再ストライプ化されます。再 ストライプ化には数時間以上かかることがあります。

新しいストレージノードを追加する操作は、ストレージノードを修復してディスクを新品と交換する操作とは 異なります。クラスター内のストレージノードを修復してディスクを交換する場合は、「ストレージノードの修 復」(194ページ)を参照してください。

前提条件
• 既存のクラスターが含まれている管理グループにストレージノードを追加すること。

ストレージノードとクラスターの容量

クラスターに追加するストレージノードは、クラスター内の既存のストレージノードと容量が一致している か、容量が近いものを使用してください。クラスター内のすべてのストレージノードが最小容量のストレー
ジノードの容量で動作することになります。容量の小さいストレージノードを追加すると、クラスター全体の容量が減る結果になります。

同じクラスター内で異なるRAIDレベルのストレージノードを混在させることが可能ですが、rawディスク容量ではなく、RAIDによって決定される使用可能容量に対して容量上の制限が適用されることに留意してください。

例

3つのストレージノードがあり、そのうち2つの容量が1TB、1つの容量が2TBの場合なら、3つのストレージノードがいずれも1TBの容量で動作します。

クラスターへのストレージの追加

1. ナビゲーションウィンドウで、クラスターを選択します。
2. [Cluster Tasks]をクリックし、[Edit Cluster]を選択します。
 クラスターへの追加が可能なストレージノードが管理グループ内に存在しない場合は、[Add Nodes]ボタンが淡色表示されます。
3. [Add Nodes]をクリックします。
4. リストから1つ以上のストレージノードを選択します。
5. [OK]をクリックします。
6. [Edit Clusters]ウィンドウで[OK]をもう一度クリックします。
 ストレージノードをクラスターに追加すると再ストライプ化が行われることを示す確認メッセージが表示されます。
7. [OK]をクリックしてクラスターへのストレージノードの追加を完了します。

クラスターからのストレージノードの削除

既存のボリュームおよびそれらのデータ保護レベルを維持するのに十分なストレージノードがクラスター内に存在する場合に限り、クラスターからストレージノードを削除できます。ボリュームの編集については、「ボリューム作成の手引き」（220ページ）を参照してください。

1. [Edit Cluster]ウィンドウで、リストからストレージノードを選択します。
2. [Remove Nodes]をクリックします。
 ナビゲーションウィンドウでは、選択したストレージノードはクラスター内に表示されなくなりますが、管理グループには所属したままになります。
3. 完了したら[OK]をクリックします。

注記:
ストレージノードを削除すると、クラスター全体が再ストライプ化されます。

仮想IPの変更または削除

iSCSIボリュームの仮想IPアドレスを追加、変更、または削除するたびに、サーバーが使用する構成が変更されます。変更を行った後は、iSCSIセッションのバランスを再調整してください。iSCSIセッションのバランス調整用コマンドは、SAN/iQコマンドラインインターフェイス（CLIQ）から実行できます。コマンド構文
サーバーの準備
・ クラスター内のボリュームにアクセスしているアプリケーションを停止します。
・ それらのボリュームを対象としているiSCSIイニシエーター内のアクティブセッションからログオフします。

仮想IPアドレスの変更
1. [Edit Cluster]ウィンドウで、[iSCSI]タブを選択してタブを前面に表示します。
2. 変更するVIPを選択します。
3. [Edit VIP and Subnet Mask]ウィンドウ内の情報を変更します。
4. [OK]をクリックして[Edit Cluster]ウィンドウに戻ります。

仮想IPアドレスの削除
クラスターに複数のVIPが割り当てられている場合に限り、VIPを削除できます。
1. [Edit Cluster]ウィンドウで、[iSCSI]タブを選択します。
2. VIPを選択して[Delete]をクリックします。
 確認メッセージが表示されます。
3. [OK]をクリックして削除を確定します。

最後に
1. VIPを変更または削除し終えたら[OK]をクリックします。
2. 変更した設定でiSCSIイニシエーターを再構成します。
3. ボリュームに再接続します。
4. ボリュームを使用するアプリケーションを再起動します。

iSNSサーバーの変更または削除
iSNSサーバーのIPアドレスを変更するか、またはサーバーを削除した場合は、クライアントが使用している構成の変更が必要になることがあります。このため、変更を開始する前にクライアントを必要に応じて切断しておきます。

クライアントの準備
・ クラスター内のボリュームにアクセスしているアプリケーションを停止します。
・ それらのボリュームを対象としているiSCSIイニシエーター内のアクティブセッションからログオフします。

iSNSサーバーの変更
1. 変更するiSNSサーバーを選択します。
2. [Edit]をクリックします。
 [Edit iSNS Server]ウィンドウが表示されます。
3. IPアドレスを変更します。
4. [OK]をクリックします。

iSNSサーバーの削除
1. 削除するiSNSサーバーを選択します。
2. [Delete]をクリックします。
 確認メッセージが表示されます。
3. [OK]をクリックします。

最後に
1. iSNSサーバーを変更または削除終了したら[OK]をクリックします。
2. 変更した設定でiSCSIイニシエーターを再構成します。
3. ボリュームに再接続します。
4. ボリュームを使用するアプリケーションを再起動します。

クラスターのトラブルシューティング
クラスター内のボリュームに影響を及ぼすパフォーマンス上の問題に関係する個々のストレージノードの動作状態は、パフォーマンスの自動保護機能によって監視されます。

クラスター内のボリュームに影響を及ぼすパフォーマンス上の問題に関係する個々のストレージノードの動作状態は、パフォーマンスの自動保護機能によって監視されます。

クラスター内のボリュームに影響を及ぼすパフォーマンス上の問題に関係する個々のストレージノードの動作状態は、パフォーマンスの自動保護機能によって監視されます。

パフォーマンスの自動保護
クラスター内でパフォーマンスに関する問題が認められた場合は、特定のストレージノードでI/Oパフォーマンスの低下、過負荷、またはレイテンシに関する問題が発生している可能性があります。ストレージノードの[Details]タブでストレージノードのステータスをチェックすると、パフォーマンスの自動保護機能が動作しているかどうかを確認できます。

パフォーマンスの自動保護機能の状態は、[Details]タブで報告される2つの特別なステータスによって示されます。また、これらのステータスに関しては、警告通知が受信されます。

- ストレージノードが過負荷: [Overloaded]ステータスは、ストレージノードに対するI/O処理が完了するまでの時間が異常に長くなっていることを示します。過負荷状態になっている間は、クラスター内でストレージノードが隔離されたまま、ボリュームの可用性が維持されます。ストレージノードは隔離されている間I/Oに参加しないため、パフォーマンスの低下が緩和されます。処理が正常に戻ると（10分後）、ストレージノードの隔離が解除され、隔離中に変更されたデータを反映するように再同期されます。このストレージノードに依存しているボリュームの[Details]タブには、[Resyncing]ステータスが表示されます。

- ストレージノードが動作不能: [Inoperable]ステータスは、ストレージノードがI/Oパフォーマンスの低下を修復できないことを示します。ハードウェア障害がその原因となっている可能性があります。このストレージノードに依存しているボリュームは使用不能です。ボリュームの可用性を確認する方法については、「ボリュームとスナップショットの可用性の確認」(46ページ)を参照してください。

 ストレージノードを再起動するとステータスが[Normal]に戻ることがあります。

192 クラスターの使用
パフォーマンスの自動保護とVSA

VSAの場合は、基盤となっているハードウェア上でI/Oに影響を及ぼしている要因を特定できないため、[Overloaded]ステータスが報告されません。ただし、VSAでもI/Oが完了しない場合については正確な報告が可能なため、[Inoperable]ステータスが報告されます。

パフォーマンスの自動保護と他のクラスター

1つのクラスター内のストレージノード上でパフォーマンスの自動保護が動作していても、管理グループ内の他のクラスターのパフォーマンスは影響を受けません。

ストレージノードのステータスのチェック

パフォーマンス上の問題がある場合、クラスター内のストレージノード上でパフォーマンスの自動保護がアクティブであるかどうかを容易にチェックできます。
1. ナビゲーションウィンドウで問題のあるストレージノードを選択します。
 問題のあるストレージノードのアイコンはナビゲーションツリー内で点滅します。
2. [Details]タブの[Status]行をチェックします。

ステータスが[Storage Server Overloaded]になっている場合

最大で10分待ってから、ステータスを再チェックします。ステータスが[Normal]に戻ることがあり、その場合はストレージノードが再同期されます。

ステータスが[Storage Server Inoperable]になっている場合

ストレージノードを再起動し、動作再開時にステータスが[Normal]に戻るかどうかを確認します。
これらのステータスが繰り返される場合
基盤となっているハードウェアに障害が発生している可能性があります。

ストレージノードの修復
ネットワークRAID-0以外のデータ保護を使用するよう構成されたボリュームが格納されているストレージノードでは、ノードの修復機能を使用して、ノード内の故障したディスクをストレージを交換できます。この場合、完全な再ストライプ化は行われず、データの再同期だけが行われます。データの再同期は、再ストライプ化よりも短時間で完了します。

前提条件
• ボリュームにネットワークRAID-10、ネットワークRAID-10+1、ネットワークRAID-10+2、ネットワークRAID-5、またはネットワークRAID-6が構成されていること。
• ナビゲーションウィンドウ内でストレージノードのアイコンに赤と黄で点滅する三角形が表示されていること。
• ストレージノード上でマネージャーが動作している場合は、そのマネージャーを停止してもクォーラムが失われないこと。

ストレージノードの修復機能の仕組み
ストレージノードの修復機能 ([Repair Storage Node]コマンド) を使用して故障したディスクを交換する手順は、以下のとおりです。
• [Storage Node Tasks]メニューから[Repair Storage Node]を選択して、クラスターからストレージノードを削除します。
• ストレージノード内のディスクを交換します。
• ストレージノードをクラスターに戻します。
データ保護レベルがあるため、ストレージノードの修復機能を使用しない場合は、ストレージノードをクラスターから削除するとクラスター内の他のストレージノードでディスクが再ストライプ化され、そのストレージノードのディスクをクラスターに戻したときにも他のストレージノードでディスクが再ストライプ化され、合わせて2回の再ストライプ化が行われることになります。
[Repair Storage Node]コマンドでは、クラスター内のデータベースホルダーを作成し、ストレージノードを「ゴースト」として表示します。ストレージノードを削除してから、ディスクを交換し、RAIDを構成してストレージノードをクラスターに戻すまでの間は、このゴーストストレージノードによりクラスターの構成が維持されます。クラスターに戻したストレージノードに対して、クラスター内の他の2つのストレージノードとの再同期を行うだけで済みます。

[Repair Storage Node]コマンドの使用
クラスター内のストレージノードにディスク障害が発生した場合は、ナビゲーションウィンドウのツリー内で、問題の生じたストレージノードとクラスターの手前に点滅する三角形が表示されます。警告ウィンドウには警告が表示され、タブウィンドウの[Status]ラベルにも障害の発生が示されます。
1. ストレージノード上でマネージャーが動作している場合は、マネージャーを停止します。「マネージャーの停止」(160ページ)を参照してください。
2. ストレージノードを右クリックし、[Repair Storage Node]を選択します。
3. [Repair Storage Node]ウィンドウから、解決しようとしている問題に該当する項目を選択します。各項目の詳細を表示するには、「More」をクリックします。
 - [Repair a disk problem]（ディスク障害の修復）
 ストレージノードに不良ディスクがある場合は、修復を開始する前に「ディスクの交換」（65ページ）を参照してください。
 - [Storage Node problem]（ストレージノードの問題）
 問題を解決するためにストレージノードを管理グループから削除する必要があると判断した場合は、この項目を選択します。ストレージノードの修復機能でディスクを交換する手順の詳細については、「ディスクの交換」（324ページ）を参照してください。
 - [Not sure]（不明）
 この選択肢を選択すると、[Disk Setup]ウィンドウが表示されるため、ディスクのステータスを確認してストレージノードにディスク障害が発生しているかどうか確認できます。最初の選択肢の場合と同様に、ディスクの交換を慎重に計画してください。

4. [OK]をクリックします。
 ストレージノードが管理グループから削除され、[Available Nodes]プールに移動します。プレースホルダーである「ゴースト」ストレージノードがクラスター内に残されます。このノードには、ホスト名ではなくIPアドレスが示され、次の特別なアイコンが表示されます。

5. ストレージノード内のディスクを交換し、その他の物理的修復処置を行います。
 - モデルによっては、ディスクの電源を投入してRAIDを再構成する必要があります。詳細は、「ディスクの交換」（65ページ）を参照してください。

6. 修復したストレージノードを管理グループに戻します。
 クラスター内にはゴーストストレージノードが残されます。

 注記：
 修復したストレージノードはクラスター内の元の位置に戻されるため、クラスターでは再ストライプ化ではなく再同期化が行われます。再ストライプ化および再同期の定義については、用語集（343ページ）を参照してください。

7. （オプション）修復したストレージノード上でマネージャーを起動します。
修復したストレージノードをクラスターに戻すには
1. クラスターを右クリックし、[Edit Cluster]ウィンドウを選択します。

図67 ゴーストストレージノードの置換

2. ゴーストストレージノード（リスト内のIPアドレス）を選択し、[Exchange Node]をクリックします。

図68 修復したストレージノードを元に戻す
3. ゴーストストレージノードを置き換える修復済みストレージノードを選択し、[OK]をクリックします。ストレージノードが元の位置に戻され、クラスター内のボリュームが再同期化されます。

図69 修復したストレージノードがクラスター内の適切な位置に戻される

クラスターの削除

クラスターを削除する前に、ボリュームおよびスナップショットを削除するか、別のクラスターに移動しておく必要があります。詳細については、「ボリュームの削除」(225ページ) および「スナップショットの削除」(248ページ) を参照してください。

前提条件

クラスターを削除するには、そのクラスターが含まれている管理グループにログインする必要があります。

1. 削除するクラスターが含まれている管理グループにログインします。
2. ナビゲーションウィンドウで、削除するクラスターを選択します。
3. このクラスターに対してボリュームのスナップショットを作成するスケジュールか、ボリュームのリモートスナップショットを作成するスケジュールが設定されている場合は、それらのスケジュールを削除します。「ボリュームのスナップショットのスケジュールの削除」(243ページ) を参照してください。
4. [Cluster Tasks]から[Delete Cluster]を選択します。
 確認メッセージが表示されます。クラスターが使用中であることを通知するメッセージが表示された場合は、クラスター上のスナップショットおよびボリュームを削除する必要があります。
 • 必要に応じて、ボリュームおよびスナップショットを削除してください。

クラスターが削除され、ストレージノードは使用可能なノードとして管理グループに戻されます。
SAN/iQソフトウェアでは、アプリケーションサーバーへのストレージのプロビジョニングやリカバリ用のデータバックアップなどの目的で、ボリューム（SmartCloneボリュームを含む）とスナップショットを使用します。ボリュームの作成や、ボリュームのスナップショット作成スケジュールの構成にあたっては、ボリュームやスナップショットに使用する構成のプランを事前に立てておく必要があります。

ストレージ構成のプランを立てるには、プラットフォームのRAIDレベルがSANの容量に及ぼす影響とSAN/iQソフトウェアの機能を理解する必要があります。また、構成要件およびストレージ要件に適したデータ保護レベルについてもプランを立てておく必要があります。

たとえば、MS Exchange用のストレージをプロビジョニングする場合なら、データベースおよびログファイルに使用するボリュームの数とサイズを事前に決定しておきます。ボリュームおよびスナップショットを格納するクラスターの容量は、ストレージノードおよびそれらに適用されているRAIDレベルによって決まります。データ保護レベルは、個々の環境で必要とされるデータの可用性と冗長性を考慮して決定してください。

SANの容量はどのように使用されるか

SANの容量は、複数の要因の組み合わせです。

1番目の要因は、ストレージノードのクラスタ化容量です。この容量は、ディスク容量およびストレージノード上で構成されているRAIDレベルによって決まります。「RAID構成のプランニング」（56ページ）を参照してください。

2番目の要因は、ボリュームおよびスナップショットに対するデータ保護の影響です。「データ保護のプランニング」（200ページ）を参照してください。

3番目の要因は、スケジュールと保存ポリシーを含むスナップショット構成です。「ボリュームサイズとスナップショットによる容量の管理」（207ページ）を参照してください。

4番目の要因は、バックアップ/リカバリ戦略の一部としてリモートコピーの使用がもたらす影響です。リモートスナップショットを使用してリモートクラスターにデータをコピーした後、そのデータをアプリケーションストレージクラスターから削除することにより、アプリケーションストレージクラスター上のスペースをより迅速に解放できます。「HP StorageWorks P4000 Remote Copyユーザーガイド」の「Remote Copyの詳細とプランニング」の章を参照してください。

ストレージのプロビジョニング

SAN/iQソフトウェアによるストレージのプロビジョニングでは、オペレーティングシステムおよびアプリケーションに提供するボリュームのサイズを最初に決定する必要があります。次に、スケジュールと保存ポリシーを含むスナップショット構成を決定します。
ボリュームのプロビジョニング

実際のデータニーズ、ボリュームのプロビジョニングプラン、およびスナップショットを使用するかどうかに基づいて、ボリュームサイズを構成します。SAN/iQソフトウェアでは、ボリュームのフルプロビジョニングとシンプロビジョニングの両方をサポートしています。

表39 ボリュームのプロビジョニング方法

<table>
<thead>
<tr>
<th>方法</th>
<th>設定</th>
</tr>
</thead>
<tbody>
<tr>
<td>フルプロビジョニング</td>
<td>ボリュームサイズ × ネットワークRAIDレベル = SAN上で割り当てられるスペース</td>
</tr>
<tr>
<td>シンプロビジョニング</td>
<td>ボリュームサイズ × ネットワークRAIDレベル ≥ SAN上で割り当てられるスペース</td>
</tr>
</tbody>
</table>

フルプロビジョニング

フルプロビジョニングでは、アプリケーションサーバーに提供されるのと同じ量のスペースをSAN上で予約します。フルプロビジョニングの場合、アプリケーションサーバーが書き込みに失敗することがありません。フルプロビジョニングされたボリュームが容量に近づくと、ディスクが満杯になりかけていることを警告するメッセージが受信されます。

シンプロビジョニング

シンプロビジョニングでは、アプリケーションサーバーに提供するより小さいスペースをSANで予約します。ボリュームにデータが書き込まれるたびに、SAN/iQソフトウェアによりスペースが割り当てられます。ストレージクラスター上でシンプロビジョニングを使用する場合は、アプリケーションサーバーに対して、クラスター内に物理的に存在している以上のストレージをプロビジョニングすることも可能です。そのため、クラスターがオーバープロビジョニング状態になっている場合に、ストレージクラスターのディスクスペース不足が原因で、アプリケーションサーバーが書き込みに失敗するリスクがあります。クラスター使用率が100%近くに達すると、SAN/iQソフトウェアから警告が送信されます。その場合は、クラスターに容量を追加するか、あるいは不要になったスナップショットを削除することにより、ボリュームの拡大に対応してください。

注記:

オーバープロビジョニング状態のストレージクラスターでは、シンボリュームへの書き込み失敗を防止するため、スペース使用率に関する警告に特に注意してください。

ボリュームサイズの設定に関するベストプラクティス

現在必要なサイズでボリュームを作成します。より大きなサイズのボリュームが必要になったら、その時点でCMCからボリュームサイズを増やし、サーバー上のディスクを拡張します。Microsoft Windowsで基本ディスクを拡張するには、Windowsディスクの管理とDiskpartを使用します。詳細は、「サーバー上のボリュームサイズの変更」(215ページ)を参照してください。

データ保護のプランニング

データ保護とは、SAN上のボリュームに対するデータ冗長性の実現を意味します。ボリューム作成時に、ネットワークRAIDと呼ばれるデータ保護レベルを構成してください。ネットワークRAID-10、ネットワークRAID-10+1、またはネットワークRAID-10+2を使用すると、それぞれ2〜4個のミラー化されたデータコピー
が保存されます。また、ネットワークRAID-5およびネットワークRAID-6を使用すると、クラスター内の複数のストレージノード上にパリティが保存されます。データの書き込み頻度が低いワークロードでは、ネットワークRAID-5またはネットワークRAID-6を使用することで、使用率を向上しつつ、ネットワークRAID-10やRAID-10+1に近い高可用性を実現できます。データ保護を構成すると、複数のストレージノード上にデータが冗長的に保存されることになるため、すべてのデータ保護レベルはクラスター内で使用可能なストレージノード数と密接に関係します。

以前の用語
リリース8.5より前のバージョンでは、ボリュームの構成時に複製レベルを指定していました。

<table>
<thead>
<tr>
<th>ボリューム複製レベル</th>
<th>データ保護レベル</th>
</tr>
</thead>
<tbody>
<tr>
<td>なし</td>
<td>ネットワークRAID-0（なし）</td>
</tr>
<tr>
<td>2ウェイ複製</td>
<td>ネットワークRAID-10（2ウェイミラー）</td>
</tr>
<tr>
<td>3ウェイ複製</td>
<td>ネットワークRAID-10+1（3ウェイミラー）</td>
</tr>
<tr>
<td>4ウェイ複製</td>
<td>ネットワークRAID-10+2（4ウェイミラー）</td>
</tr>
<tr>
<td>-</td>
<td>ネットワークRAID-5（シングルパリティ）（新規）</td>
</tr>
<tr>
<td>-</td>
<td>ネットワークRAID-6（デュアルパリティ）（新規）</td>
</tr>
</tbody>
</table>

データ保護レベル
クラスター内で使用可能なストレージノードの数に応じて、6種類のデータ保護レベルを使用できます。

表40 ボリュームのデータ保護レベルの設定

<table>
<thead>
<tr>
<th>クラスター内で使用可能なストレージノードの数</th>
<th>選択可能なデータ保護レベル</th>
<th>コピーの数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ネットワークRAID-0（なし）</td>
<td>クラスター内にデータコピーを1つ維持</td>
</tr>
<tr>
<td>2</td>
<td>ネットワークRAID-0（なし）</td>
<td>クラスター内にデータコピーを1つ維持</td>
</tr>
<tr>
<td></td>
<td>ネットワークRAID-10（2ウェイミラー）</td>
<td>クラスター内にデータコピーを2つ維持</td>
</tr>
<tr>
<td>3</td>
<td>ネットワークRAID-0（なし）</td>
<td>クラスター内にデータコピーを1つ維持</td>
</tr>
<tr>
<td></td>
<td>ネットワークRAID-10（2ウェイミラー）</td>
<td>クラスター内にデータコピーを2つ維持</td>
</tr>
<tr>
<td></td>
<td>ネットワークRAID-10+1（3ウェイミラー）</td>
<td>クラスター内にデータコピーを3つ維持</td>
</tr>
<tr>
<td>4以上</td>
<td>ネットワークRAID-0（なし）</td>
<td>クラスター内にデータコピーを1つ維持</td>
</tr>
<tr>
<td></td>
<td>ネットワークRAID-10（2ウェイミラー）</td>
<td>クラスター内にデータコピーを2つ維持</td>
</tr>
<tr>
<td></td>
<td>ネットワークRAID-10+1（3ウェイミラー）</td>
<td>クラスター内にデータコピーを3つ維持</td>
</tr>
<tr>
<td></td>
<td>ネットワークRAID-10+1（4ウェイミラー）</td>
<td>クラスター内にデータコピーを4つ維持</td>
</tr>
<tr>
<td></td>
<td>ネットワークRAID-5（シングルパリティ）</td>
<td>3つのストレージノードにわたってデータをストライプ化し、4番目のストレージノード上にパリティを保存</td>
</tr>
</tbody>
</table>
データ保護レベルが機能する仕組み
すべてのデータ保護レベルについて、実際に必要とされるストレージリソース容量がシステムにより自動的に計算されます。

ネットワークRAID-10、ネットワークRAID-10+1、またはネットワークRAID-10+2を選択した場合は、それぞれクラスター内の2〜4個の隣接するストレージノードにわたって、データがストライプ化およびミラーラ化されます。

ネットワークRAID-5を選択した場合は、3つのストレージノードにわたってデータがストライプ化され、4番目のノード上にパリティが保存されます。ネットワークRAID-6を選択した場合は、4つのストレージノードにわたってデータがストライプ化され、残る2つのノード上にパリティが保存されます。

注意:
2つのストレージノードと1つのフェールオーバーマネージャーが含まれている管理グループが、自動フォールトレランス処理の最小構成となります。SAN/iQソフトウェアでは2つ以上のストレージノード上でネットワークRAID-10を構成できますが、マネージャー間の通信要件を考慮すると、いずれかのストレージノードが使用不能になると、データ可用性が保証されなくなります。マネージャーの概要」(147ページ)を参照してください。

注意:
ネットワークRAID-0構成のポリュームは、完全なノード障害や再起動に対して耐障害性がありません。

ネットワークRAID-10 (2ウェイミラーラー)
ネットワークRAID-10では、2つのストレージノードにわたってデータがストライプ化およびミラーラ化されます。クラスター内に2つ以上のストレージノードが存在する場合は、デフォルトのデータ保護レベルとして、ポリューム作成時にネットワークRAID-10が割り当てられます。ネットワークRAID-10で構成されたポリュームは、1つのストレージノードが使用不能になった場合でもデータが失われることなく可用性を保持できます。

一般的に、ポリュームへの書き込みを頻繁に実施し、複数のノード障害に備える必要がないアプリケーションについては、ネットワークRAID-10が最適な選択肢です。この種のアプリケーションには、データベース、電子メール、サーバーの仮想化などが含まれます。ネットワークRAID-10は、Multi-Site SANにも適しています。Multi-Site SAN環境でネットワークRAID-10を使用すると、一部のサイトが使用不能になった場合でもデータの可用性を保つことができます。
場合でも、データの可用性が保持されます。ただし、一方のサイトがダウンしている間、ネットワークRAID-10ボリュームは完全なノード障害や再起動に対して耐障害性がありません。

図70(203ページ)は、ネットワークRAID-10で構成された4つのストレージノードを持つクラスター上での書き込みパターンを示したものであります。

ネットワークRAID-10-10+1（3ウェイミラー）
ネットワークRAID-10+1では、3つ以上のストレージノードにわたってデータがストライプ化およびミラー化されます。ネットワークRAID-10+1で構成されたボリュームは、任意の2つのストレージノードが使用不能になった場合でもデータが失われることなく可用性を保持できます。

ネットワークRAID-10+1は、クラスター内の2つのストレージノードが使用不能になった場合でもデータ可用性を保持する必要があるアプリケーションに適しています。

図71(203ページ)は、ネットワークRAID-10+1で構成された4つのストレージノードを持つクラスター上での書き込みパターンを示したものであります。

ネットワークRAID-10+2（4ウェイミラー）
ネットワークRAID-10+2では、4つ以上のストレージノードにわたってデータがストライプ化およびミラー化されます。ネットワークRAID-10+2で構成されたボリューム内のデータは、任意の3つのストレージノードが使用不能になった場合でも可用性が保持されます。ネットワークRAID-10+2は、Multi-Site SAN環境下で1つのサイト全体が使用不能になった場合でもデータ可用性を保持することを目的に設計されています。
ネットワークRAID-10+2ボリュームは、2つのサイト間で同期的にデータを複製する必要があり、一方のサイトがダウンした場合に備えた完全なデータ冗長性が求められる環境に適しています。ネットワークRAID-10+2を使用している場合は、SANの半分が使用不能になった場合でも可用性を保つことができ、さらに存在するサイトの一部がサイト全体がダウンした場合にも可用性が失われることはありません。

図72（204ページ）は、ネットワークRAID-10+2で構成された4つのストレージノードを持つクラスター上での書き込みパターンを示したものです。

図72 ネットワークRAID-10+1 (4ウェイミラー) における書き込みパターン

ネットワークRAID-5 (シングルバーリティ)

ネットワークRAID-5ではデータがストライプに分割されます。各ストライプはクラスター内の3つのストレージノード上に保存され、4番目のストレージノード上にパリティが保存されます。データストライプとバーリティは、すべてのノードにわたって均等に分散されます。ネットワークRAID-5で構成されたボリュームは、任意の単一ストレージノードが使用不能になった場合でもデータが失われることなく可用性を保つことができます。

ネットワークRAID-5ボリュームは、デフォルトでシンプロビジョニングボリュームとして構成されます。ネットワークRAID-5ボリュームは、スナップショット作成スケジュールが必要とします。新しいネットワークRAID-5ボリュームを作成すると、基本的なスナップショット作成スケジュールが自動的に作成されます。また、スナップショット作成スケジュールが存在しない既存のボリュームをネットワークRAID-5に変換した場合も、ボリューム変換時に基本的なスケジュールが自動的に作成されます。この基本的なスナップショット作成スケジュールは、ボリュームのニーズに合わせて編集可能です。

ネットワークRAID-5ボリュームは、読み取り操作が大部分を占めるシーケンシャルなワークロードを持つアプリケーション（ファイル共有やアーカイブ作成など）に適しています。

図73は、ネットワークRAID-5で構成された4つのストレージノードを持つクラスター上での書き込みパターンを示したものです。
ネットワークRAID-5 (シングルパリティ) における書き込みパターン

1. P1はデータブロックA、B、Cのパリティ
2. P2はデータブロックD、E、Fのパリティ
3. P3はデータブロックG、H、Iのパリティ
4. P4はデータブロックJ、K、Lのパリティ

ネットワークRAID-6 (デュアルパリティ)

ネットワークRAID-6ではデータがストライプに分割されます。各ストライプはクラスター内の4つのストレージノード上に保存され、5番目と6番目のストレージノード上にパリティが保存されます。ネットワークRAID-6で構成されたボリュームは、任意の2つのストレージノードが使用不能になった場合でもデータが失われることなく可用性を保持できます。

ネットワークRAID-6ボリュームは、デフォルトでシンプロビジョニングボリュームとして構成されます。ネットワークRAID-6ボリュームは、スナップショット作成スケジュールを必要とします。新しいネットワークRAID-6ボリュームを作成すると、基本的なスナップショット作成スケジュールが自動的に作成されます。また、スナップショット作成スケジュールが存在しない既存のボリュームをネットワークRAID-6に変換した場合も、ボリューム変換時に基本的なスケジュールが自動的に作成されます。この基本的なスナップショット作成スケジュールは、ボリュームのニーズに合わせて編集可能です。

ネットワークRAID-6ボリュームは、大規模クラスター内での、読み取り操作が大部分を占めるシーケンシャルなワークロードを持つアプリケーション（ファイル共有やアーカイブ作成など）に適しています。

図74は、ネットワークRAID-6で構成された6つのストレージノードを持つクラスター上での書き込みパターンを示したものです。
1. P1はデータブロックA、B、C、Dのパリティ
2. P2はデータブロックE、F、G、Hのパリティ
3. P3はデータブロックI、J、K、Lのパリティ
4. P4はデータブロックM、N、O、Pのパリティ

図74 ネットワークRAID-6 (デュアルパリティ) における書き込みパターン

スナップショットのプロビジョニング

スナップショットとは、バックアップや他のアプリケーションで使用するためのボリュームのコピーです。

スナップショットは常にシンプロビジョニングされます。シンプロビジョニングされるスナップショットはSAN内
の実スペースを節約するために、多くのスナップショットを作成してもクラスタースペースが不足する心配
がありません。

スナップショットは、以下の目的に使用できます。

・データマイニングおよび他のデータ用のソースボリューム
・バックアップ用のソースボリューム
・ソフトウェアをアップグレードする前のデータやファイルシステムの保存
・データ削除に対する保護
・テープやバックアップソフトウェアを使用しないファイルレベルの復元

スナップショットとバックアップの違い

通常、バックアップはテープなどの異なる物理デバイスに保存されます。一方、スナップショットはボリューム
と同じクラスター上に保存されます。つまり、スナップショットにはデータ削除に対する保護機能はありません。
デバイスやストレージメディアの障害に対する保護機能はありません。データ全体のバックアップ戦略を向上させるには、スナップショットとバックアップを併用してください。
任意の時点で特定のスナップショットへのロールバックが可能です。ロールバックを実行するときは、そのスナップショットより後で作成されたスナップショットをすべて削除する必要があります。また、iSCSIイニシエーターを使用すると、スナップショットを別のサーバーにマウントして、スナップショットからそのサーバーにデータを復旧できます。

スナップショットがクラスタースペースに及ぼす影響

スナップショットはクラスター上のスペースを消費します。しかし、スナップショットはシンプロビジョニングされるスペースであり、フルプロビジョニングされるスペースに比べて、スペースが節約されます。

スナップショットの使用方法を計画し、その作成スケジュールおよびそのスケジュールに対する保持ポリシーも計画してください。スナップショットではデータに対する変更がポリュームに保存されるため、ボリュームのスナップショット作成スケジュールのプランニングにおいては、クライアントアプリケーション内のデータ変更率を計算することが重要となります。

注記:
ボリュームサイズ、プロビジョニング、およびスナップショットの使用をまとめて計画する必要があります。スナップショットを使用する予定の場合は、第14章（229ページ）を参照してください。

ボリュームサイズとスナップショットによる容量の管理

スナップショットはどのように作成されるか

ボリュームのスナップショットの作成時には、実際にはオリジナルのボリュームがスナップショットとして保存され、新しいボリューム（「書き込み可能」ポリューム）がオリジナルの名前で作成されます。スナップショットの作成後にポリュームに対して行われた変更は、この書き込み可能ボリュームに記録されます。それ以前に作成したスナップショットでは、前のスナップショット以降にポリュームに対して加えられた変更だけを記録します。スナップショットはオリジナルボリュームがフルプロビジョニングされているかシンプロビジョニングされているかに関係なく、常にシンプロビジョニングされたスペースとして作成されます。

ボリュームサイズとスナップショット

ボリュームとスナップショットの関係がもたらす影響の1つとして、最後のスナップショットの作成時以降に発生したレコードだけが書き込み可能ボリュームに書き込まれる場合は書き込み可能ボリュームに使用されるスペースが非常に小さくなる可能性があります。これは、書き込み可能ボリュームに消費されるスペースが少なくなることを意味します。時間経つにつれて、スナップショットに割り当てられているスペースが大きくなり、ボリューム全体が比較的小さくなることがあります。

ボリュームのスナップショットの作成スケジュールと容量

スナップショットの作成スケジュールを複数立てる場合、そのスケジュールの作成回数、頻度、および保持ポリシーによってクラスター内に対応されるスペースに影響を受けます。たとえば、新しいスナップショットを作成する一方で、既存のスナップショットを削除するスケジュールを作成した場合、その2つのスナップショットは、クラスター内にある間共存することとなります。両方のスナップショットを格納する十分なスペースがクラスター内に存在しない場合は、既存のスナップショットが削除されるまでスケジュールされている新しいスナップショットは作成されず、スケジュールが継続されません。この例のように、n個のスナップショットを保存するには、n+1個のスペースがクラスター内に必要となります。

P4000 SAN Solutionユーザーガイド 207
スナップショットの削除

スナップショットを削除する場合に、容量のプランニングの際に考慮すべき別の要因があります。新しいスナップショットのデータが、削除予定のスナップショットやボリューム上に直接追加されていることです。つまり、削除されたスナップショットのすぐ上にあるボリュームまたはスナップショットに割り当てられるスペースが増加します。このデータ移行の影響は、クラスターの[Volume Usage]タブにある[Max Provisioned Space]列および[Used Space]列で確認できます。容量の確認の詳細については、継続的な容量管理を参照してください。

継続的な容量管理

SAN監視の重要な機能の1つは、使用状況と容量の監視にあります。CMCでは、クラスター全体の容量および使用状況に関する詳細情報と、プロビジョニングおよびストレージノード容量に関する詳細情報が表示されます。

ボリュームとスナップショットの数

管理グループ内に作成できるボリュームおよびスナップショットの推奨される最大数については、「構成サマリーの概要」（150ページ）を参照してください。

SAN容量と使用状況の確認

クラスターの容量、クラスター内のボリューム、およびクラスター内のストレージノードのプロビジョニングに関する詳細情報を確認できます。これらの情報は、クラスターレベルで表示される一連のタブウィンドウで確認できます。

図75 [Cluster]タブビュー

クラスターの[Use Summary]

[Use Summary]ウィンドウには、クラスター内の使用可能スペースの合計、ボリュームおよびスナップショット用にプロビジョニングされているスペースの量、そのスペースのうちボリュームおよびスナップショットに現在使用されているスペースの量に関する情報が表示されます。
図76 [Use Summary]タブの表示

[Use Summary]ウィンドウの[Storage Space]セクションは、クラスター内のストレージノード上の使用可能スペースを反映します。ストレージスペースに関する情報が表41（209ページ）に示す各項目として表示されます。

表41 [Use Summary]タブ上の情報

<table>
<thead>
<tr>
<th>カテゴリ</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>テーブル情報</td>
<td></td>
</tr>
<tr>
<td>ストレージスペース</td>
<td></td>
</tr>
<tr>
<td>[Total]</td>
<td>ストレージボリュームおよびスナップショットに使用できるクラスター内のスペースの合計値。</td>
</tr>
<tr>
<td>[Provisioned]</td>
<td>ストレージ（ボリュームとスナップショットの両方を含む）に割り当てられているスペースの量。スナップショットが作成されるか、シンプロビジョニングされたボリュームが拡大するにつれて、この値が増えます。</td>
</tr>
<tr>
<td>[Not provisioned]</td>
<td>クラスター内で、まだストレージノードに割り当てられずに残っているスペース。ボリュームまたはスナップショットが作成されるか、シンプロビジョニングされたボリュームが拡大するにつれて、この値が減ります。</td>
</tr>
<tr>
<td>プロビジョニングされたスペース</td>
<td></td>
</tr>
<tr>
<td>[Volumes]</td>
<td>ボリュームに割り当てられているスペースの量。フルプロビジョニングされたボリュームの場合、サイズをデータ保護レベルで乘算した値になります。シンプロビジョニングされたボリュームの場合は、スペースの割り当て量がシステムによって決定されます。</td>
</tr>
<tr>
<td>[Snapshots]</td>
<td>スナップショットおよび一時スペース（必要時）に割り当てられているスペースの量。少なくとも1つのスナップショットが作成されるまでは、この値はゼロです。すべてのスナップショットが削除されると、この値はゼロに戻ります。</td>
</tr>
<tr>
<td>[Total]</td>
<td>ボリューム、スナップショット、および一時スペースに割り当てられているスペースの合計。</td>
</tr>
</tbody>
</table>

使用済みスペース

[Volumes] ボリュームに実際に使用されているスペースの量。
<table>
<thead>
<tr>
<th>カテゴリ</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Snapshots]</td>
<td>スナップショット（一時スペースを含む）に実際に使用されているスペースの量。</td>
</tr>
<tr>
<td>[Total]</td>
<td>ボリュームおよびスナップショットに使用されているスペースの合計。詳細については、「ディスク容量とボリュームサイズの測定」(214ページ)を参照してください。</td>
</tr>
<tr>
<td>節約されたスペース</td>
<td></td>
</tr>
<tr>
<td>[Thin provisioning]</td>
<td>シンプロビジョニングボリュームによって節約されているスペース。このスペースはシステムによって計算されます。</td>
</tr>
<tr>
<td>[SmartClone feature]</td>
<td>SmartCloneボリュームの使用により節約されているスペース。クローンポイント内のデータ量に基づいて計算されます。SmartCloneボリュームでSAN上のスペースが消費されるのは、個々のSmartCloneボリュームにデータが追加されたときだけです。</td>
</tr>
<tr>
<td>[Total]</td>
<td>シンプロビジョニングおよびSmartCloneボリュームの使用により節約されているスペースの合計量の概算値。</td>
</tr>
<tr>
<td>グラフ情報</td>
<td></td>
</tr>
<tr>
<td>[Provisioned for volumes]</td>
<td>ボリュームに割り当てられているスペースの量。フルプロビジョニングされたボリュームの場合、サイズをデータ保護レベルで乗算した値になります。シンプロビジョニングされたボリュームの場合は、スペースの割り当て量がシステムによって決定されます。</td>
</tr>
<tr>
<td>[Provisioned for snapshots]</td>
<td>スナップショットおよび一時スペース（必要時）に割り当てられているスペースの量。少なくとも1つのスナップショットが作成されるまで、この値はゼロです。すべてのスナップショットが削除されると、この値はゼロに戻ります。</td>
</tr>
<tr>
<td>[Not provisioned]</td>
<td>クラスター内で、まだストレージノードに割り当てられずに残っているスペース。ボリュームまたはスナップショットが作成されるか、シンプロビジョニングされたボリュームが拡大するにつれて、この値が減ります。</td>
</tr>
<tr>
<td>[Total space]</td>
<td>ストレージボリュームおよびスナップショットに使用できるクラスター内のスペースの合計値。</td>
</tr>
<tr>
<td>[Max provisioned space]</td>
<td>ボリュームおよびスナップショットに使用できる最大スペースの合計値。注記: オーバープロビジョニングになった場合は、この値がSANの物理容量を超えることがあり</td>
</tr>
</tbody>
</table>

1使用中のスペースです。ボリューム、スナップショット、または一時スペースをSANから削除すると、この値が減ります。ボリュームが移動されたときにも、クラスター・サマリーの[Used Space]の値が減ります。クライアントアプリケーションからファイルまたはデータを削除しても、使用中のスペースは減りません。

[Volume Use]サマリー

[Volume Use]ウィンドウには、クラスターの使用に影響を及ぼすボリューム特性に関する詳細情報が表示されます。ボリュームおよびスナップショットがリストに示されるほか、クラスターのスペースおよび使用量の合計値も示されます。

表42 [Volume Use]タブ上の情報

<table>
<thead>
<tr>
<th>カテゴリ</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Name]</td>
<td>ボリューム、スナップショット、またはクラスターの名前。</td>
</tr>
<tr>
<td>[Size]</td>
<td>サーバーに提供されているボリュームまたはスナップショットのサイズ。スナップショットの場合は、サイズが自動的に決定され、スナップショット作成時の値ボリュームのサイズに設定されます。</td>
</tr>
<tr>
<td>カテゴリ</td>
<td>説明</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>[Data protection level]</td>
<td>ネットワークRAID-0、ネットワークRAID-5、ネットワークRAID-6、ネットワークRAID-10、ネットワークRAID-10+1、またはネットワークRAID-10+2のいずれか。スナップショットは、親ボリュームのデータ保護レベルを継承します。</td>
</tr>
<tr>
<td>[Provisioning type]</td>
<td>ボリュームのプロビジョニングには、フルプロビジョニングとシンプロビジョニングがあります。バージョン6.6以前のSAN/iQソフトウェアでフルプロビジョニングされるスナップショットを表示している場合を除き、スナップショットは常にシンプロビジョニングされています。図77(212ページ)に示すとおり、[Provisioning Type]列にはSAN上に作成可能な各種のボリュームおよびスナップショットに関するスペース節約オプションの詳細も示されます。スペースの計算では、ボリュームのタイプとボリュームまたはスナップショットのデータ保護レベルが考慮されます。この情報は、SAN上のスペース使用の管理に役立ちます。</td>
</tr>
<tr>
<td>[Provisioned space]</td>
<td>1. シンプロビジョニングでは、構成済みボリュームサイズのごく一部だけを割り当てることによりスペースを節約します。したがって、この列にはSAN上で節約されているスペースが反映されます。ボリュームにデータが追加されるにつれて、シンプロビジョニングで割り当てられているスペースが増えます。ボリューム上のデータが増えずに、スペース節約値が減ることになります。 2. フルプロビジョニングでは、ボリュームのサイズに応じてスペースの全量を割り当てます。再利用可能なスペースとは、上記のフルプロビジョニングボリュームがシンプロビジョニングボリュームに変更された場合の、SAN上のスペースの量です。リスクの最下に示されるクラスターレベルの合計値は、節約されているスペースと再利用可能なスペース両方の合計値を表します。</td>
</tr>
<tr>
<td>[Max provisioned space]</td>
<td>プロビジョニングされているスペース。これは、SAN上のデータに予約されているスペースの量です。一時スペースは、シンプロビジョニングにアクセスして書き込みを行う必要のあるアプリケーションやオペレーティングシステムによって使用されます。図78(212ページ)に示すとおり、一時スペースは削除またはボリュームへの変換が可能です。</td>
</tr>
<tr>
<td></td>
<td>1. フルプロビジョニングボリュームの場合は、割り当てられているスペース全体の量、つまりボリュームサイズとデータ保護レベルを乗算した値がこの列に表示されます。たとえば、ボリュームサイズが10GBで、データ保護レベルがネットワークRAID-10（2ウェイミラー）であれば、[Provisioned space]は20GBになります。 2. シンプロビジョニングボリュームの場合は、計算されたスペースの総量のごく一部が割り当てられます。[Provisioned Space]は、最大プロビジョニングスペース([Max Provisioned Space])に達するか、クラスターが満杯になるまで必要に応じて増加します。注記：シンプロビジョニングを使用する場合は、SAN/iQソフトウェアからクラスター使用率が100%近くに達していることを警告されたときに、クラスター内の容量を増やすことが大切です。クラスター容量が不足すると、アプリケーションによる書き込みが失敗する恐れがあります。 3. スナップショットは自動的にシンプロビジョニングされます。[Provisioned Space]には、スナップショット作成時の割り当てスペースが表示されます。スナップショットが削除されるにつれて、[Provisioned Space]の値が変更します。 4. 一時スペースは、スナップショットと同じサイズになります。たとえば、スナップショットサイズが2GBであれば、一時スペースも2GBになります。</td>
</tr>
</tbody>
</table>

P4000 SAN Solutionユーザーガイド 211
説明カテゴリ

[Used space]
ボリュームまたはスナップショット内の実際のデータに使用されているスペースの量。ボリューム、スナップショット、または一時スペースをSANから削除した場合にのみ、この値が減ります。クラスターの使用中スペースの合計値は、ボリュームが削除されるか、または異なるクラスターに移動されると減ることがあります。クライアントアプリケーションからファイルまたはデータを削除しても、使用中のスペースは減りません。詳細については、「ディスク容量とボリュームサイズの測定」(214ページ)を参照してください。

[Utilization]

1. 節約されているスペースまたは再利用可能なスペースがここに表示されます。

図77 節約されているスペースまたは再利用可能なスペースを[Volume Use]タブで確認

1. 一時スペースは削除またはボリュームへの変換が可能です。

図78 [Provisioned Space]列に示される一時スペースの使用スペース

[Node Use]サマリー

[Node Use]ウィンドウには、クラスター内のストレージノード上でプロビジョニングされているスペースに関する情報が表示されます。
表43 [Node Use]タブ上の情報

<table>
<thead>
<tr>
<th>カテゴリ</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Name]</td>
<td>ストレージノードのホスト名。</td>
</tr>
<tr>
<td>[Raw space]</td>
<td>ストレージノード上のディスク容量の合計値。[Raw Space]列には、同じクラスター内に異なる容量のストレージノードが混在している場合の影響も示されます。たとえば、図80 (214ページ)の「Denver-3」の行には、rawスペース値が太字で示されており、一部のストレージスペースがストラングされていることが示されています (「some storage space is stranded」)。ストレージのストラグは、クラスター内のストレージノードの容量が統一されていない場合に発生します。同じクラスター内で他のストレージノードより容量の大きいストレージノードは、最も容量の小さいストレージノードの容量でしか動作できません。こうして未使用のまま残された容量はストラングされているとみなされ、[Raw Space]列では、容量の大きいストレージノードに対して値が太字で示されます。ストラングされているストレージスペースは、クラスター内のストレージノードの容量を統一すると再利用できます。</td>
</tr>
<tr>
<td>[RAID configuration]</td>
<td>ストレージノード上で構成されているRAIDレベル。</td>
</tr>
<tr>
<td>[Usable space]</td>
<td>RAIDの構成後にストレージへの使用が可能になるスペース。</td>
</tr>
<tr>
<td>[Provisioned space]</td>
<td>ボリュームおよびスナップショットに割り当てられているスペースの量。</td>
</tr>
<tr>
<td>[Used space]</td>
<td>このストレージノード上のボリュームデータまたはスナップショットデータに消費されているスペースの量。ボリューム上でファイルシステムが構成されている場合は、ファイルシステムを通じてデータが操作されるために実際の使用可能スペースが増減することがありますが、SAN/iQソフトウェア内に表示される[Used space]の値が減少することはありません。詳細については、「ディスク容量とボリュームサイズの測定」(214ページ)を参照してください。</td>
</tr>
</tbody>
</table>
1. Denver-3でストレージスペースのストラップが生じています。図80 クラスター内でストラップされているストレージ

ディスク容量とボリュームサイズの測定

iSCSI経由でSANに接続が可能なオペレーティングシステムはいずれも、2つのディスクスペースアカウンティングシステム、つまりブロックシステムおよびネイティブファイルシステム（Windowsでは通常NTFS）と通信します。

表44 代表的なネイティブファイルシステム

<table>
<thead>
<tr>
<th>OS</th>
<th>ファイルシステム名</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>NTFS, FAT</td>
</tr>
<tr>
<td>Linux</td>
<td>Ext2, Ext3</td>
</tr>
<tr>
<td>Netware</td>
<td>NWFS</td>
</tr>
<tr>
<td>Solaris</td>
<td>UFS</td>
</tr>
<tr>
<td>VMware</td>
<td>VMFS</td>
</tr>
</tbody>
</table>

ブロックシステムとファイルシステム

オペレーティングシステムでは、直接接続（DAS）とiSCSI接続（SAN）のいずれのハードディスクドライブも「ブロックデバイス」と呼ばれる抽象化デバイスとして認識されます。このストレージスペースは、必要に応じ、読み書き可能です。

一方、ディスク上のファイルは（ハードディスクとは）異なる抽象化が行われ、処理されます。それがファイルシステムです。ファイルシステムは、ブロックデバイス上に配置されます。ファイルシステムには、ブロックデバイスに対する読み取りと書き込みの権限が付与されます。

iSCSIは、ファイルシステムの抽象化レベルでは動作しません。その代わりに、iSCSIはMicrosoft WindowsなどのOSにiSCSI SANボリュームをブロックデバイスとして提供します。通常は、ファイルシステムがこのブロックデバイスの上に構築され、ブロックデバイスがストレージとして使用されるようになります。これに対し、Oracleデータベースでは、iSCSI SANボリュームをrawブロックデバイスとして使用できます。

ブロックシステムへのファイルシステムデータの格納

Windowsファイルシステムでは、iSCSIブロックデバイスを単に別のハードディスクドライブとして扱います。つまり、ブロックデバイスは、ファイルシステムがデータの格納に使用できるブロックのアレイとして扱われます。iSCSIイニシエーターがファイルシステムからSAN/iQソフトウェアに書き込みを渡すと、SAN/iQソフトウェアはそれらのブロックをそのままSAN上のボリュームに書き込みます。CMCに表示されるスペースの使用量は、このボリュームに対して何個の物理ブロックが書き込まれたかに基づいています。
ファイルを削除すると、一般的にファイルシステムはディレクトリ情報を更新し、そのファイルの削除を反映します。ファイルシステムは、そのファイルが格納されていたブロックが現在解放されていることを認識します。これにより、ファイルシステムは、削除されたファイルが格納されていたスペースを上書き可能と判断します。したがって、後で、空きスペースをファイルシステムに問い合わせると、削除されたファイルが格納されていたスペースが空きスペースの一部として表示されます。

しかし、ファイルシステムは、その下層にあるブロックデバイス（SAN/iQボリューム）に対しては、スペースが解放されたことを通知しません。実際、それらの情報を転送するメカニズムは存在せず、「ブロック198646は解放済みである」ことを通知するようなSCSIコマンドはありません。ブロックデバイスレベルでは読み書き操作のみが存在しています。

したがって、iSCSIブロックデバイスをファイルシステムと正しく連携させるためには、ブロックへの書き込みを行うときは常に、割り当て済みのマークをそのブロックに恒久的に付与します。ファイルシステム側で「使用可能なブロック」のリストが確認され、解放されたブロックが再使用されます。このため、ファイルシステムビュー（Windowsのディスク管理など）で空きスペースがXと表示されているにもかかわらず、CMCビューでは[Used Space]が100%使用中と表示されることがあります。

△ 注意:
一部のファイルシステムでは、ブロックデバイス上のデータを本質的に並べ替える「デフラグ」機能がサポートされています。この機能を使用すると、SANがボリュームに新しいストレージを不要に割り当てる結果を生じることがあります。したがって、ファイルシステムにとって必須でない限り、SAN上のファイルシステムのデフラグは避けてください。

サーバー上のボリュームサイズの変更

△ 注意:
ボリュームサイズを減らすことは推奨されません。サーバーファイルシステム側でボリュームのサイズを縮小せずにCMCでボリュームのサイズを縮小すると、データが破損または消失します。

SAN上でボリュームのサイズを増やすときは、サーバー側でも対応するボリューム（LUN）のサイズを増やす必要があります。

Microsoft Windowsでのボリュームサイズの拡大

SAN上でボリュームサイズを増やしたら、Windowsパーティションを拡張して、ディスク上の全使用可能スペースを使用できるようにする必要があります。

どのWindowsオペレーティングシステムにも付属している、Windowsのデフォルトディスク管理プログラムの論理ディスクマネージャーでは、Windows内からDiskpart.exeというツールを使用してボリュームを拡大します。対話型コマンドライン実行可能プログラムであるDiskpart.exeでは、ディスクとパーティションを選択して操作できます。この実行可能プログラムおよび関連ドキュメントは、Microsoft Webサイトから必要に応じてダウンロードできます。

SANでボリュームサイズを増やしてからWindows内でボリュームを拡大するには、以下の手順に従ってください。

1. Windowsの論理ディスクマネージャーを起動して、ディスクを再スキャンし、新しいボリュームサイズを確認します。
2. Windowsのコマンドラインを開き、diskpart.exeを実行します。
3. list volumeコマンドを入力して、このホストからアクセスできるボリュームのリストを表示します。
4. select volume #と入力して、拡張するボリュームを選択します（ここでの#は、リスト内のボリュームに対応する番号のことです）。

5. extendと入力して、拡張したディスク全体のサイズまでボリュームを拡大します。

ボリュームの隣にアスタリスク（*）が表示されており、新しいボリュームサイズが示されていることを確認します。以上により、ディスクが拡張され、使用する準備が整いました。

その他の環境でのボリュームサイズの拡大

Windows以外の環境では、ディスク管理ツールとしてExpart.exeと呼ばれるユーティリティを使用します。Diskpart.exeとの唯一の大きな違いとして、このユーティリティではボリューム番号ではなくドライブ文字を選択します。

スペース管理のための構成特性の変更

クラスター上のスペースの管理には、以下のオプションがあります。

- スナップショットの保存設定の変更 — 保存するスナップショットの数を減らすと、スペースの消費が減ります。
- ボリュームのスナップショット作成スケジュールの変更 — スナップショットの作成頻度を減らすと、スペースの消費が減ります。
- ボリュームの削除または別のクラスターへの移動
- スナップショット一時スペースの削除

注記:
ファイルシステム上のファイルを削除しても、SANボリューム上のスペースは解放されません。詳細については、「ブロックシステムとファイルシステム」(214ページ)を参照してください。ファイルレベルの容量管理には、アプリケーションレベルまたはファイルシステムレベルのツールを使用します。

スナップショット一時スペース

スナップショットをマウントすると、スナップショットへのアクセス時に書き込みを必要とするアプリケーションおよびオペレーティングシステムで使用するための追加のスペースが、クラスター内に作成されます。この追加スペースのことを一時スペースと呼びます。たとえば、MS Windowsでは、iSCSI経由でスナップショットがマウントされているときに書き込みを行います。Microsoftのボリュームシャドウコピーサービス（VSS）およびその他のバックアッププログラムでは、バックアップ時にスナップショットへの書き込みを行います。

SAN上で最初にプロビジョニングされる一時スペースは最小必要量だけです。しかし、スナップショットにデータを書き込むと、そのデータが一時スペースに格納されます。こうして、一時スペースは、書き込まれたデータ量に応じて拡大されます。スナップショットに使用されている一時スペースの量は、[Cluster]タブウィンドウの[Volume Use]タブで確認できます。

スナップショットの一時スペースの管理

一時スペースに対しては、削除するか、ボリュームに変換するかのいずれかの管理操作が可能です。
一時スペースを削除してクラスター上のスペースを解放

スナップショットを削除すると、追加された一時スペースも削除されます。スナップショットを削除せずにスペースを解放する必要がある場合は、CMCから手動で一時スペースを削除するか、スナップショットスクリプトを通じて削除できます。次回にアプリケーションまたはオペレーティングシステムがスナップショットにアクセスすると、新しい空の一時スペースが作成されます。

スナップショット一時スペースの削除手順については、「一時スペースの削除」（238ページ）を参照してください。

一時スペースをボリュームに変換

マウントされているスナップショットにデータを書き込んだ後、そのデータを恒久的に保存するか、今後もアクセスできるようにする必要が生じた場合は、一時スペースをボリュームに変換できます。変換後のボリュームには、オリジナルのスナップショットデータが格納されるほか、スナップショットがマウントされていた間に行われた追加のデータ書き込みも格納されます。

スナップショット一時スペースの変換手順については、「一時スペースの変換」（237ページ）を参照してください。
13 ボリュームの使用

ボリュームは、1つ以上のストレージノード上のストレージからなる論理エンティティです。ボリュームはrawデータストレージとして使用できますし、また、ファイルシステムでフォーマットして、ホストやファイルサーバーでも使用できます。ボリュームは、1つ以上のストレージノードが含まれているクラスター上に作成します。

ボリュームを作成する前に、ボリュームの使用戦略として、ボリュームの使用方法、サイズ、サーバーからボリュームへのアクセス方法、およびデータバックアップの管理方法のプランを立てます。さらに、リモートコピーを通じてボリュームを使用するか、サードパーティアプリケーションを通じて使用するか、その両方の組み合わせにするかを決定します。

ボリュームとサーバーアクセス

ボリュームを作成したら、そのボリュームを1つ以上のサーバーに割り当てて、アプリケーションサーバーからボリュームへのアクセスを提供します。詳細は、第17章（277ページ）を参照してください。

前提条件

ボリュームを作成する前に、管理グループと、少なくとも1つのクラスターを作成しておく必要があります。詳細については、以下のトピックを参照してください。

- 第9章（147ページ）
- 「追加のクラスターの作成」（187ページ）

ボリュームのプランニング

ボリュームのプランを立てるにあたっては、以下の複数の要因を考慮します。

- 必要なボリュームの数
- 作成するボリュームのタイプ（プライマリまたはリモート）
- 各ボリュームのサイズ
- スナップショットを使用するかどうか
- 必要なデータ保護レベル
- ボリュームを将来的に拡大するか、作成時のサイズで固定するか

注記:

ファイルシステムをマウントする予定の場合には、マウントするファイルシステムごとにボリュームを1つずつ作成します。これにより、各ファイルシステムを個別に拡張できるようになります。
ボリューム数のプランニング

管理グループ内に作成できるボリュームおよびスナップショットの推奨される最大数については、「構成サマリーの概要」(150ページ)を参照してください。

ボリュームタイプのプランニング

・ プライマリボリュームは、データストレージに使用されるボリュームです。
・ リモートボリュームは、ビジネス継続性のためのリモートコピー、バックアップとリカバリー、またはデータマイニング/移行構成用のターゲットボリュームとして使用されます。リモートボリュームの詳細については、『HP StorageWorks P4000 Remote Copyユーザーガイド』を参照してください。
・ SmartCloneボリュームは、既存のボリュームまたはスナップショットから作成されるボリュームです。SmartCloneボリュームの詳細については、第15章(251ページ)を参照してください。

ボリューム作成の手引き

ボリュームの作成時には、以下の特性を定義します。

表45 新しいボリュームの特性

<table>
<thead>
<tr>
<th>ボリュームの特性</th>
<th>構成可能なボリュームのタイプ (プライマリまたはリモート)</th>
<th>意味</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Basic]タブ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Volume Name]</td>
<td>両方</td>
<td>CMCに表示するボリュームの名前。ボリューム名は、1〜127文字の範囲内で指定します。大文字と小文字が区別されます。ボリューム名は後から変更できません。ボリュームのデフォルト命名規則を有効化およびカスタマイズできます。詳細については、「命名規則の設定」(30ページ)を参照してください。</td>
</tr>
<tr>
<td>[Description]</td>
<td>両方</td>
<td>(オプション) ボリュームの説明。</td>
</tr>
<tr>
<td>[Size]</td>
<td>プライマリ</td>
<td>ボリュームの論理ブロックストレージサイズ。ホストおよびファイルシステムは、このストレージサイズに等しい量のストレージスペースがクラスター内で利用可能であるかのように動作します。このボリュームサイズは、クラスター上でデータストレージに割り当てられている実際のディスクスペースを超過できます。これにより、後でストレージノードを追加して、ストレージをシームレスに拡張できます。ただし、ボリュームサイズが実際に割り当てられているディスクスペースを超過すると、スナップショットの作成機能に影響が生じることがあります。第14章(229ページ)を参照してください。</td>
</tr>
</tbody>
</table>

リモートボリュームは、プライマリスナップショットのコピーをシステムに指示するポインターとして機能し、実際のデータは格納されません。そのため、リモートボリュームにはサイズ特性がありません。
<table>
<thead>
<tr>
<th>ボリュームの特性</th>
<th>構成可能なボリュームのタイプ（プライマリまたはリモート）</th>
<th>意味</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Servers]</td>
<td>両方</td>
<td>(オプション) アプリケーションホストをボリュームに接続させるためには、ホストサーバーを管理マネージャーに登録する必要があります。作成するボリュームにアクセスしたいサーバーを選択してください。このボリュームにアクセスさせるサーバーを選択します。</td>
</tr>
<tr>
<td>[Advanced]タブ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Cluster]</td>
<td>両方</td>
<td>管理グループに複数のクラスターが含まれる場合は、ボリュームを配置するクラスターを指定する必要があります。</td>
</tr>
<tr>
<td>[Data Protection Level]</td>
<td>両方</td>
<td>データ保護レベルは、クラスター内のストレージノード上に作成されるデータコピーの数と構成を示します。次の6つのデータ保護レベルが存在します。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ネットワークRAID-0（なし）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ネットワークRAID-5（シングルパリティ）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ネットワークRAID-6（デュアルパリティ）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ネットワークRAID-10（2ウェイミラー）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ネットワークRAID-10+1（3ウェイミラー）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ネットワークRAID-10+2（4ウェイミラー）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>デフォルト値は[Network RAID-10]です。データ保護レベルの詳細については、「データ保護のプランニング」（200ページ）を参照してください。</td>
</tr>
<tr>
<td>[Type]</td>
<td>両方</td>
<td>ブライマリボリュームは、データストレージに使用されます。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>リモートボリュームは、ビジネス継続性のためのリモートコピー、バックアップとリカバリ、またはデータマイニング/移行の構成に使用されます。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>デフォルト値: [Primary]</td>
</tr>
</tbody>
</table>

P4000 SAN Solutionユーザーガイド 221
ボリュームの特性	構成可能なボリュームのタイプ（プライマリまたはリモート）	意味
	フルプロビジョニングされたボリュームは、アプリケーションサーバーに対して提供されるサイズに等しいスペースをSAN上で使用します。	
	シンプロビジョニングされたボリュームの場合は、SAN上で予約されるスペースがアプリケーションサーバーに対して提供されるサイズより小さくなります。データがボリュームに書き込まれるにつれて、SAN/iQソフトウェアが自動的にSAN上の割り当てスペースを拡大します。	

以下のデータ保護レベルの場合、デフォルト値は[Full]になります。
- ネットワークRAID-0（なし）
- ネットワークRAID-10（2ウェイミラー）
- ネットワークRAID-10+1（3ウェイミラー）
- ネットワークRAID-10+2（4ウェイミラー）

以下のデータ保護レベルの場合、デフォルト値は[Thin]になります。
- ネットワークRAID-5（シングルパリティ）
- ネットワークRAID-6（デュアルパリティ）

ネットワークRAID-5およびネットワークRAID-6のボリュームについては、シンプロビジョニング構成をお勧めします。

注記:
SAN/iQソフトウェアは必要に応じてスペースを割り当てますが、シンプロビジョニングを使用している場合にあらゆる警告を無視すると、SANのディスクスペース不足が原因で、アプリケーションサーバーが書き込みに失敗するリスクがあります。

ボリュームの作成

ボリュームは、クラスターに含まるストレージノード上に配置されます。基本ボリュームは容易に作成できます。高度な設定のカスタマイズもできます。基本ボリュームの作成手順と高度な設定のカスタマイズ手順は以下のとおりです。

1. ボリュームを作成する管理グループにログインします。
2. ナビゲーションウィンドウで、ボリュームを作成するクラスターを選択します。
3. [Cluster Tasks]をクリックし、[New Volume]を選択します。

基本ボリュームの作成

基本ボリュームは、ボリューム名とボリュームサイズを入力するだけで作成できます。

1. ボリュームの名前を入力します。
2. （オプション）ボリュームの説明を入力します。
3. ボリュームのサイズを指定します。
4. （オプション）ボリュームにサーバーを割り当てます。
5. [OK]をクリックします。

SAN/iQソフトウェアによってボリュームが作成されます。新しいボリュームがナビゲーションウィンドウ内で選択され、ボリュームのタブビューに[Details]タブが表示されます。

注記:
データ保護レベルに応じて設定が自動的に調整されます。たとえば、データ保護レベルをネットワークRAID-10（2ウェイミラーレvel）に設定してフルプロビジョニングされる500GBのボリュームを作成すると、そのボリュームに対して自動的に1000GBが割り当てられます。

ボリュームの高度な特性を設定する場合は、[New Volume]ウィンドウの[Advanced]タブを使用します。

ボリュームの高度な設定の構成（オプション）

[New Volume]ウィンドウの[Advanced]タブを使用すると、ボリュームの高度な特性を設定できます。高度な設定には、以下の設定があります。
・ クラスター（クラスターの変更は主に、ボリュームを後から別のクラスターに移行する場合に行います）
・ データ保護レベル
・ ボリュームタイプ
・ プロビジョニング
これらの特性の説明は、表45（220ページ）に記載されています。

ボリュームの高度な設定の構成

新しいボリュームの作成時にデフォルト設定を使用する代わりに高度な設定を構成できます。

2. 特性を適切に変更します。変更し終えたら[OK]をクリックします。

ネットワークRAID-5またはネットワークRAID-6のボリュームを構成すると、スナップショット作成スケジュールが自動的に作成されます。このデフォルトスケジュールにはVolumeName_Schedule形式の名前が付加され、毎日1回実行されて1つのコピーのみが保持されます。最初のスナップショットは、スケジュールを作成した翌日に作成されます。必要な場合、このデフォルトスケジュールを編集することも可能です。詳細は、「スケジュール設定されたスナップショットの編集」（242ページ）を参照してください。

ボリュームの編集

プライマリボリュームの編集では、説明やサイズのほか、クラスター、データ保護レベル、複製の優先度、タイプ、プロビジョニングなどの高度な設定を変更できます。
注記:
ボリュームを異なるクラスターに移動した場合は、両方のクラスター内でデータの再ストライプ化が必要になります。再ストライプ化には数時間、または数日かかる場合もあります。

表46 ボリューム特性の変更に関する要件

<table>
<thead>
<tr>
<th>項目</th>
<th>変更に関する要件</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Description]</td>
<td>1〜127文字の範囲内で指定すること。</td>
</tr>
<tr>
<td>[Server]</td>
<td>管理グループ内でサーバーを事前に作成しておくこと。</td>
</tr>
</tbody>
</table>
| [Cluster] | ターゲットクラスターは以下の条件を満たしている必要があります。
 - 同じ管理グループ内に存在すること。
 - 移動するボリュームのサイズとデータ保護レベルをサポートするために十分な数のストレージノードと十分な量の未割り当てスペースが存在すること。
 - 移動元のクラスターに仮想IPがある場合はその仮想IPを使用すること。
すべてのデータを新しいクラスターに移動し終えるまでの間は、ボリュームが両方のクラスター上に存在することになります。そのため、両方のクラスター上でデータの再ストライプ化が実行されます。たとえば、ストレージを再構築し、追加のクラスターを作成したとします。このような場合に、再構築の一環として、既存のボリュームを新しいクラスターに移動することが考えられます。注記：移動中もボリュームはフォールトトレラントな状態が維持されます。 |
| [Data protection level] | クラスター内には、新しいデータ保護レベルをサポートするために十分な数のストレージノードと十分な量の未割り当てスペースが存在している必要があります。たとえば、クラスターにストレージを追加して容量を拡張し、ボリュームのデータ保護レベルをネットワークRAID-0からネットワークRAID-10に変更すると、データの冗長性を確保できます。 |
| [Size] | ボリュームのサイズを変更する前に、「サーバー上のボリュームサイズの変更」（215ページ）の説明をお読みください。 ボリュームのサイズを増やすには：
 - クラスター内に十分な空きスペースがある場合は、新しいサイズをそのまま入力します。
 - クラスター内の空きスペースが十分でない場合は、ボリューム/スナップショットを削除するか、クラスターに新しいストレージノードを追加します。 ボリュームのサイズを減らすには（非推奨）：
 - ボリュームが任意のオペレーティングシステムにマウントされている場合は、ボリューム上のファイルシステムを縮小した後で、CMCからボリュームを縮小する必要があります。
 - また、ボリュームのサイズは、ボリュームに現在格納されているデータで必要となるサイズより小さく設定しないでください。 |

注意：
ボリュームサイズを減らすことは推奨されません。サーバーファイルシステム側でボリュームのサイズを縮小せずにCMCでボリュームのサイズを縮小すると、データが破損または消失します。

ボリュームを編集するには

1. ナビゲーションウィンドウで、編集するボリュームを選択します。
2. [Volume Tasks]をクリックし、[Edit Volume]を選択します。
[Edit Volume]ウィンドウが表示されます。

ボリュームの説明の変更
1. [Description]フィールドの説明を編集します。
2. 完了したら[OK]をクリックします。

クラスターの変更

要件
クラスターの変更前または変更後に、ボリュームにアクセスしているアプリケーションをすべて停止し、関連するすべてのiSCSIセッションからログオフする必要があります。
HP LeftHand DSM for MPIOを使用している場合でも、サーバーからボリュームをログオフし、もう一方のクラスター内のストレージノードのVIPまたは個々のアドレスを追加して、ボリュームを検索およびマウントします。
1. [Edit Volume]ウィンドウで[Advanced]タブを選択します。
2. [Cluster]ドロップダウンリストから異なるクラスターを選択します。
3. [OK]をクリックします。

データ保護レベルの変更
1. [Data Protection Level]ドロップダウンリストから、目的のネットワークRAIDレベルを選択します。
ボリュームをネットワークRAID-5またはネットワークRAID-6に変更した場合は、ボリュームのスナップショット作成スケジュールが必要になります。ボリュームに関連付けられたスナップショット作成スケジュールがまだ存在していない場合は、スケジュールが自動的に作成されます。このデフォルトスケジュールにはVolumeName_Schedule形式の名前が付加され、毎日1回実行されて1つのコピーのみが保持されます。必要に応じてこのデフォルトスケジュールを編集することも可能です。詳細は、「スケジュール設定されたスナップショットの編集」(242ページ)を参照してください。
2. 完了したら[OK]をクリックします。

サイズの変更
1. [Size]フィールドで、サイズの値を変更します。必要に応じて単位も変更できます。
2. 完了したら[OK]をクリックします。

注意:
ボリュームサイズを減らすことは推奨されません。サーバーのファイルシステム側でボリュームのサイズを縮小せずにCMCでボリュームのサイズを縮小すると、データが破損または消失します。

ボリュームの削除
ボリュームを削除すると、そのボリュームのデータがストレージノードから削除され、使用可能なスペースが増えます。ボリュームの削除時には、そのボリュームの下層にあるすべてのスナップショットも削除され
ます。ただし、クローンポイントと共用スナップショットは削除されません。詳細については、「クローンポイント」（261ページ）および「共有スナップショット」（262ページ）を参照してください。

△ 注意:
ボリュームを削除すると、そのボリュームのデータがストレージノードから恒久的に削除されます。

ボリュームの削除に関する制限事項
リモートコピーやスケジュールされているボリュームを削除することはできません。この場合は、最初にリモートコピーをスケジュールを削除する必要があります。

△ 注意:
ボリュームセット内のボリュームを個別に削除することは通常ありません。たとえば、StorageGroupをサポートするために2つのボリューム（メールボックスデータ用およびログデータ用）を使用するようExchangeをセットアップしたとします。この場合、この2つのボリュームによりボリュームセットが形成されます。一般的には、ボリュームセット内のすべてのボリュームを保持するか、または削除するかのどちらかになります。

前提条件
ボリュームにアクセスしているアプリケーションをすべて停止し、関連するすべてのiSCSIセッションからログオフします。

リリース8.xでの変更点
ボリュームを削除すると、そのボリュームの下層にあるすべてのスナップショットも自動的に削除されます。ただし、SmartCloneボリューム構成の一部になっているクローンポイントまたは共有スナップショットは削除されません。8.xより前のリリースでは、ボリュームを削除する前に、関連するすべてのスナップショットを手動で削除する必要がありました。

ボリュームを削除するには
1. ナビゲーションウィンドウで、削除するボリュームを選択します。
 [Volume]タブウィンドウが表示されます。
2. [Volume Tasks]をクリックし、[Delete Volume]を選択します。
 確認ウィンドウ表示されます。
3. [OK]をクリックします。
 ボリュームがクラスターから削除されます。
複数のボリュームを削除するには

1. ナビゲーションウィンドウで[Volumes and Snapshots]を選択します。

図81 複数のボリュームおよびスナップショットの表示

2. [Shift]キーまたは[Ctrl]キーを押しながら、削除する複数のボリュームを選択します。

図82 1回の操作で複数のボリュームを削除

3. 右クリックして、[Delete Volumes]を選択します。

ボリュームをその中に格納されているデータとともにすべて削除するかどうかを確認するように求め
る警告メッセージが表示されます。

4. チェックボックスをオンにして削除を確認し、[Delete]をクリックします。

5. ボリュームおよび関連するスナップショット（クローンポイントと共有スナップショットを除く）がクラスタ
ーから削除されます。
スナップショットとは、バックアップや他のアプリケーションで使用されるボリュームのコピーです。スナップショットには、以下のタイプがあります。

- アプリケーション管理スナップショット：対象となるボリュームを更新するアプリケーションが静止している間に作成されるボリュームスナップショット。アプリケーションの静止中に作成されるため、このスナップショット内のデータは、アプリケーション側で認識しているデータと整合性がとれています。つまり、処理中のデータや書き込み待ちでキャッシュに入れられているデータは存在しません。このタイプのスナップショットを作成するには、HP LeftHand P4000 VSS Provider（VSS Provider）が必要です。詳しくは、「アプリケーション管理スナップショットの要件」（232ページ）を参照してください。

- ポイントインタイムスナップショット：特定の時点で作成されるスナップショットであり、対象となるボリュームへの書き込みを行うアプリケーションが静止しているとは限りません。そのため、処理中のデータやキャッシュに入れられているデータが存在し、ボリューム上の実データとアプリケーション側で認識しているデータとの間で整合性が失われている可能性があります。

スナップショットとバックアップの違い

通常、バックアップはテープなどの異なる物理デバイスに保存されます。一方、スナップショットはボリュームと同じクラスター上に保存されます。つまり、スナップショットにはデータ削除に対する保護機能はありませんが、デバイスやストレージメディアの障害に対する保護機能はありません。データ全体のバックアップ戦略を向上させるには、スナップショットとバックアップを併用してください。

前提条件

スナップショットを作成する前に、管理グループ、クラスター、および格納先となるボリュームを作成する必要があります。これらの作成には、[Management Groups, Clusters and Volumes]ウィザードを使用します。詳細については、以下を参照してください。

- 「管理グループの作成」（155ページ）
- 「追加のクラスターの作成」（187ページ）
- 「ボリュームの作成」（222ページ）
- 「スナップショットがクラスタースペースに及ぼす影響」（207ページ）

スナップショットの使用

クラスター上でボリュームからスナップショットを作成します。必要に応じていつでも特定のスナップショットからボリュームをロールバックしたり、スナップショットからSmartCloneボリュームを作成したり、[Remote Copy]を使用してコピーを作成することが可能です。また、スナップショットを別のサーバーにマウントし、スナップショットからそのサーバー上にデータをリストアすることもできます。

スナップショットは以下のような目的で使用できます。

- バックアップを作成するためのソース
- ソフトウェアをアップグレードする前のデータやファイルシステムの保存
- データ削除に対する保護
シングルスナップショットとスケジュール設定されたスナップショットの違い

スナップショットの一部のシナリオでは、シングルスナップショットを作成し、必要がなくなればそれを削除します。その他のシナリオでは、指定した数または指定した期間に応じて一連のスナップショットを作成し、新しいスナップショットを作成するときに最初に作成したスナップショットを削除します（スケジュールで作成されるスナップショット）。

たとえば、毎日のスナップショットを1週間、最大5つ保持するように計画するとします。その場合、6つ目のスナップショットを作成すると最初のスナップショットが削除され、ボリュームのスナップショット数は5つに保たれます。

リリース8.5での新要件

スナップショットを作成する前に、VSSを使用してアプリケーションを静止することにより、アプリケーション管理スナップショットを作成できます。アプリケーションの静止中に作成されるため、このスナップショット内のデータは、アプリケーション側で認識しているデータと整合性がとれているため、より、処理中のデータや書き込み待ちでキャッシュに入れているデータは存在しません。

スナップショットのガイド

スナップショットを正しく構成するには、「ボリュームのプランニング」(219ページ)および第13章(219ページ)をよく読んでください。スナップショットの作成時には、以下の特性またはオプションを定義します。

表47 スナップショットの特性

<table>
<thead>
<tr>
<th>スナップショットのパラメーター</th>
<th>意味</th>
</tr>
</thead>
</table>
| [Application-Managed Snap-
 shot] | このオプションを使用すると、SAN/iQによりスナップショットが作成される前に、サーバー上のVSS対応アプリケーションが静止されます。このオプションを使用するにはVSS Providerが必要です。詳しくは、「アプリケーション管理スナップショットの要件」(232ページ)を参照してください。VSS Providerがインストールされていない場合は、SAN/iQから(VSSを使用しない)ポイントタイムスナップショットを作成するよう指示されます。 |
| [Snapshot Name] | CMCに表示されるスナップショットの名前。スナップショットの名前は1〜127文字で、大文字小文字が区別されます。スナップショット名については、CMCのインストール時にデフォルトの命名規則が有効になります。この命名規則は変更したり、無効化したりできます。この命名規則の詳細については、「命名規則の設定」(30ページ)を参照してください。カンマ (,), 一重引用符 (‘), 二重引用符 ("), セミコロン (;), コロン (;), 等号 (=) は使用できません。 |
| [Description] | (オプション) スナップショットの説明。 |
| [Assign and Unassign Serv-
 ers] | (オプション) スナップショットへのサーバーアクセスを構成します。 |

230 スナップショットの使用
スナップショットの計画

スナップショットの使用を計画する場合は、その目的とサイズを考慮します。スケジュールを使用してボリュームのスナップショットを作成する計画を立てている場合は、「ストレージノードとクラスターの容量」(189ページ)および表48(231ページ)を参照して、いくつかの一般的なアプリケーションのデータ変更レートの概算を確認してください。

表48 一般的なアプリケーションの日次変更レート

<table>
<thead>
<tr>
<th>アプリケーション</th>
<th>日次変更レート</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fileshare</td>
<td>1〜3%</td>
</tr>
<tr>
<td>電子メール/Exchange</td>
<td>10〜20%</td>
</tr>
<tr>
<td>データベース</td>
<td>10%</td>
</tr>
</tbody>
</table>

注記:
クラスター内のスナップショットのサイズを検討する場合、ボリュームのデータ保護レベルがスナップショット内でも二重になることを忘れていください。

テープバックアップのためのソースボリューム

ベストプラクティス
シングルスナップショットを使用して、作業が終了したらそれを削除するように計画します。この計画の場合は、以下の問題について検討します。
・スナップショットを作成するための容量をクラスター上で確保できるかどうか。

ソフトウェアをアップグレードする前のデータ保存

ベストプラクティス
シングルスナップショットを使用して、作業が終了したらそれを削除するように計画します。この計画の場合は、以下の問題について検討します。
・スナップショットを作成するための容量をクラスター上で確保できるかどうか。

自動バックアップ

ベストプラクティス
一連のスナップショットを使用して、スケジュールに基づいて最も古いスナップショットを削除するように計画します。この計画の場合は、以下の問題について検討します。
・スナップショットを作成するための容量をクラスター上で確保できるかどうか。
・ボリュームのスナップショットを作成するために最適なスケジュールと、そのスケジュールの保管ポリシーはどのようなものか。一般的なアプリケーションの平均的な日次変更レートについては、「スナップショットの計画」(231ページ)を参照してください。
たとえば、障害復旧計画の一部としてこれらのバックアップを使用する場合、ポリュームのスナップショットを毎日作成するようにスケジュールし、コピーを7つ保持しておくことをお勧めします。2番目のスケジュールは、週次の実行で、5つのコピーを保持するように設定します。3番目のスケジュールは、月次の実行で、4つのコピーを保持するように設定します。

スナップショットの数の計画
管理グループ内で作成可能なポリュームとスナップショットの推奨される最大数については、「構成サマリーの概要」(150ページ)および第9章(147ページ)を参照してください。

単独のスナップショットの作成
指定した時点のポリュームのバージョンを保存しておくために、スナップショットを作成します。スナップショットの特性については、「スナップショットのガイド」(230ページ)を参照してください。

1. 新しいスナップショットを作成するポリュームを含む管理グループにログインします。
2. ボリュームを右クリックし、[New Snapshot]を選択します。
3. スナップショットを作成する前にVSSを使用してアプリケーションを静止する必要がある場合は、[Application-Managed Snapshot]チェックボックスをオンにします。

このオプションを使用するにはVSS Providerが必要です。詳しくは、「アプリケーション管理スナップショットの要件」(232ページ)を参照してください。VSS Providerがインストールされていない場合は、SAN/iQから(VSSを使用しない)ポイントインタイムスナップショットを作成するよう指示されます。

このオプションを使用すると、SAN/iQによりスナップショットが作成される前に、サーバー上のVSS対応アプリケーションが静止されます。
システムにより自動的に[Description]フィールドが埋められ、[Servers]フィールドが無効化されます。スナップショットの作成後にサーバーを割り当てることも可能です。

4. スナップショット名を入力するか、またはデフォルト名をそのまま使用します。
5. (オプション) スナップショットの説明を入力します。
6. (オプション) スナップショットにサーバーを割り当てます。
7. 完了したら[OK]をクリックします。

注記:
ナビゲーションウィンドウでは、スナップショットはポリュームの下に日付の降順(新しい日付が上)で表示されます。

アプリケーション管理スナップショットの要件
シングルスナップショットおよびスケジュール設定されたスナップショットの両方について、アプリケーション管理スナップショットを作成可能です。アプリケーション管理スナップショットの作成時には、事前にVSS ProviderによりVSS対応アプリケーションが静止されます。アプリケーション管理スナップショットを作成するための要件は、以下のとおりです。
・ SAN/iQバージョン8.5以降
・ CMCまたはCLIの最新アップデート
・HP LeftHand P4000 Solution Pack。具体的には、HP LeftHand P4000 VSS Provider（最新アップデート）がアプリケーションサーバー上にインストールされていること（詳細は『HP StorageWorks P4000 Windows Solution Packユーザーガイド』を参照）
・VSS Provider用に管理グループ認証がセットアップされていること（詳細は『HP StorageWorks P4000 Windows Solution Packユーザーガイド』を参照）
・サーバー上にVSS対応アプリケーションが存在すること
・SAN/iQ内でサーバーのiSCSI接続がセットアップされていること（第17章（277ページ）を参照）
・Microsoft iSCSI Initiator

SAN/iQを使用してアプリケーション管理スナップショットを作成する手順は、その他のスナップショットの場合とほぼ同じです。ただし、『Application-Managed Snapshot』オプションを選択する必要があります。スナップショットの作成方法の詳細については、「単独のスナップショットの作成」（232ページ）を参照してください。

ボリュームセット用のスナップショットについて

アプリケーションが相互に関連付けられた複数のボリュームを保有している場合のみ、アプリケーション管理スナップショットの作成時に、その他のスナップショットとは異なる操作が必要になります。相互に関連付けられたボリュームとは、アプリケーションによって使用される2つ以上のボリューム（ボリュームセット）を指します。

たとえば、StorageGroupをサポートするために2つのボリューム（メールボックスデータ用およびログデータ用）を使用するようなExchangeをセットアップするとします。この場合、この2つのボリュームによりボリュームセットが形成されます。

ボリュームセットに含まれるボリュームのアプリケーション管理スナップショットを作成しようとすると、CMCにより、そのボリュームがボリュームセットのメンバーであることが認識されます。その結果、ボリュームセット内のすべてのボリュームについてスナップショットを作成するよう促すプロンプトがSAN/iQから返されます。指示に従って、ボリュームセットに対応するスナップショットセットを作成できます。関連付けられたスナップショットを調べるには、目的のスナップショットを選択し、[Details]タブをクリックして[Snapshot Set]フィールドを確認します。

注記:
ボリュームセット用のスナップショットをいったん作成した後で、スナップショットセット内のスナップショットを個別に削除することは通常ありません。一般的には、ボリュームセット用のすべてのスナップショットを保持するか、または削除するかのどちらかになります。また、スナップショットからのロールバックが必要になった場合は、ボリュームセット内のすべてのボリュームを、対応するスナップショットからロールバックするのが一般的です。関連付けられているすべてのボリュームを自動的に削除またはロールバックするためのオプションも用意されています。

ボリュームセット用のスナップショットの作成

以下に示す手順は、ボリュームセットのメンバーであるボリュームを選択してスナップショットを作成する方法を示したものです。ボリュームセット用のスナップショットの詳細については、「ボリュームセット用のスナップショットについて」（233ページ）を参照してください。

1. 新しいスナップショットを作成するボリュームを含む管理グループにログインします。
2. ボリュームを右クリックし、[New Snapshot]を選択します。
3. [Application-Managed Snapshot]チェックボックスをオンにします。

このオプションを使用するにはVSS Providerが必要です。詳しくは、「アプリケーション管理スナップショットの要件」（232ページ）を参照してください。

このオプションを使用すると、SAN/iQによりスナップショットが作成される前に、サーバー上のVSS対応アプリケーションが静止されます。

システムにより自動的に[Description]フィールドが埋められ、[Servers]フィールドが無効化されます。スナップショットの作成後にサーバーを割り当てることも可能です。

4. スナップショット名を入力するか、またはデフォルト名をそのまま使用します。

5. [OK]をクリックします。

[New Snapshot – Associated Volumes]ウィンドウが開き、ボリュームセット内のボリュームが一覧表示されます。

6. (オプション) 各スナップショットの[Snapshot Name]および[Description]を編集します。

注記:

[Application-Managed Snapshots]チェックボックスはオンのままにしておいてください。このオプションがオンであると、ボリュームとスナップショットの関連付けが維持され、スナップショットを作成する前にアプリケーションが静止されます。このオプションをオフにすると、一覧に示されている各ボリュームのポイントインタイムスナップショットが作成されます。

7. [Create Snapshots]をクリックして、各ボリュームのスナップショットを作成します。

CMC内にすべてのスナップショットが表示されます。関連付けられたスナップショットを調べるには、目的のスナップショットを選択し、[Details]タブをクリックして[Snapshot Set]フィールドを確認します。

スナップショットの編集

スナップショットの説明とサーバーの割り当ては、両方も編集できます。説明は0〜127文字の範囲でなければなりません。

1. 編集対象のスナップショットを含む管理グループにログインします。
2. ナビゲーションウィンドウで、スナップショットを選択します。
4. 必要に応じて説明を変更します。
5. 必要に応じてサーバーの割り当てを変更します。
6. 完了したら[OK]をクリックします。

スナップショットの[Details]タブの内容が更新されます。

スナップショットのマウントとアクセス

スナップショットはボリュームのコピーです。スナップショットのデータにアクセスするには、以下の2つの方法を選択できます。

- スナップショットからSmartCloneボリュームを作成して、データマイニング、開発、テストに使用したり、複数のコピーを作成します。「スナップショットからSmartCloneボリュームを新規作成」（247ページ）を参照してください。

234 スナップショットの使用
バックアップやデータリカバリ用にスナップショットをマウントします。スナップショットを読み取り/書き込みボリュームとしてサーバーに割り当て、iSCSIイニシエーターを使用して接続します。スナップショットをサーバーにマウントすると、スナップショットに一時スペースが追加されます。一時スペースの詳細については、「スナップショットの一時スペースの管理」（237ページ）を参照してください。

ホストへのスナップショットのマウント
サーバーは作成時にスナップショットに追加したり、後から追加したりできます。サーバーの作成と使用方法については、第17章（277ページ）を参照してください。

1. スナップショットをマウントするサーバーを管理グループにまだ追加していなければ、これを追加します。
2. スナップショットをサーバーに割り当て、スナップショットに読み取り/書き込みアクセスを構成します。
3. スナップショットへのサーバーアクセスを構成します。
4. アプリケーション管理スナップショットをポリュームとしてマウントした場合は、diskpart.exeを使用してマウント後のポリュームの属性を変更します。

詳しくは、「アプリケーション管理スナップショットの使用準備」（235ページ）を参照してください。

アプリケーション管理スナップショットの使用準備
アプリケーション管理スナップショットを使用して以下の操作を実行するためには、diskpart.exeを使用してポリューム使用可能な状態にする必要があります。

- 一時スペースの変換
- SmartCloneの作成
- 以下のいずれかの方法で、リモートポリュームをプライマリポリュームに昇格
 - [Failover/Failback Volume]ウィザードの[Failover the Primary Volume to the Selected Remote Volume Below]オプションを選択
 - ポリュームを編集し、リモートスナップショットをプライマリポリュームに変更

スタンドアロンサーバー上でのアプリケーション管理スナップショットの使用準備
(Microsoftクラスターの一部ではない)スタンドアロンサーバー上でアプリケーション管理スナップショットを使用可能にするには、以下の手順を実行します。

1. iSCSIセッションの接続を切断します。
2. （アプリケーション管理スナップショットの使用目的に応じて）以下のいずれかを実行します。
 - 一時スペースを変換します。
 - SmartCloneを作成します。
 - 以下のいずれかの方法で、リモートポリュームをプライマリポリュームに昇格します。
 - [Failover/Failback Volume]ウィザードの[Failover the Primary Volume to the Selected Remote Volume Below]オプションを選択します。
 - ポリュームを編集し、リモートスナップショットをプライマリポリュームに変更します。
3. iSCSIセッションを新しいターゲットポリュームに接続します。
4. Windowsディスクの管理を起動します。
5. ディスクをオンラインにします。
6. Windowsのコマドラインを開き、diskpart.exeを実行します。
7. list diskコマンドを入力して、このサーバーからアクセスできるディスクのリストを表示します。
8. select disk #(#にはリスト内の該当するディスクに対応する番号を指定)と入力して、作業対象のディスクを選択します。
9. detail diskと入力して、ディスクレベルのオプションセットを表示します。
 ディスクがread-onlyになっている場合は、att disk clear readonlyと入力して設定を変更します。
10. select volume #(#にはリスト内の該当するボリュームに対応する番号を指定)と入力して、作業対象のボリュームを選択します。
11. att volと入力して、ボリュームの属性を表示します。
 ボリュームの属性として、hidden、read-only、またはshadow copyが示されます。
12. att vol clear readonly hidden shadowcopyと入力して、これらの属性を変更します。
13. exitと入力して、diskpartを終了します。
14. サーバーを再起動します。
15. Windowsディスクの管理を起動し、ディスクが使用可能であることを確認します。
 ドライブ文字の割り当てが必要になる場合もありますが、ディスクがオンラインで使用可能になっていないければなりません。
17. サーバーを再起動します。

Microsoftクラスター内のサーバー上でのアプリケーション管理スナップショットの使用準備
Microsoftクラスター内のサーバー上でアプリケーション管理スナップショットを使用可能にするには、以下の手順を実行します。

注記:
この手順を実行する場合は、事前にHPのサポート窓口にお問い合わせいただくことをお勧めします。

1. iSCSIセッションの接続を切断します。
2. (アプリケーション管理スナップショットの使用目的に応じて) 以下のいずれかを実行します。
 • 一時スペースを変換します。
 • SmartCloneを作成します。
 • 以下のいずれかの方法で、リモートボリュームをプライマリボリュームに昇格します。
 • [Failover/Failback Volume]ウィザードの[Failover the Primary Volume to the Selected Remote Volume Below]オプションを選択します。
 • ボリュームを編集し、リモートスナップショットをプライマリボリュームに変更します。
3. iSCSIセッションを新しいターゲットボリュームに接続します。
4. Windowsディスクの管理を起動します。
5. ディスクをオンラインにします。
6. システムイベントログを開き、作業を行っているディスクのIDを探します。
 ディスクには新しいディスクIDが設定されています。ログにはディスクに関するエラーと、クラスターが各ディスクについて予期していたIDが示されます。
7. Windowsのコマンドラインを開き、diskpart.exeを実行します。
8. list diskコマンドを入力して、このサーバーからアクセスできるディスクのリストを表示します。
9. select disk #(リスト内の該当するディスクに対応する番号を指定) と入力して、作業対象のディスクを選択します。
10. detail diskと入力して、ディスクレベルのオプションセットを表示します。
 ディスクがread-onlyになっている場合は、att disk clear readonlyと入力して設定を変更します。
 各ディスクについて予期されるIDが示されます。サーバー上でWindows 2003を実行している場合は、Microsoft KB 280425でディスクIDの変更方法を確認してください。
12. select volume #(リスト内の該当するボリュームに対応する番号を指定) と入力して、作業対象のボリュームを選択します。
13. att volと入力して、ボリュームの属性を表示します。
 ボリュームの属性として、hidden、read-only、またはshadow copyが示されます。
14. att vol clear readonly hidden shadowcopyと入力して、これらの属性を変更します。
15. exitと入力して、diskpartを終了します。
16. サーバーを再起動します。
17. Windowsディスクの管理を起動し、ディスクが使用可能であることを確認します。
 ドライブ文字の割り当てが必要になる場合もありますが、ディスクがオンラインで使用可能になっていない必要はありません。
19. サーバーを再起動します。

スナップショットの一時スペースの管理
クラスター上の領域を開放するために一時スペースを削除できます。一時スペースに書き込まれたデータが必要な場合は、一時スペースをSmartCloneボリュームに変換します。

一時スペースの変換
マウントしたスナップショットにデータを書き込む済みで、そのデータを永久に保存またはアクセスする必要がある場合は、スナップショットの一時スペースを変換します。一時スペースを変換すると、オリジナル
のスナップショットデータと、スナップショットのマウント後に追加で書き込まれたデータの両方を含むSmartCloneボリュームが作成されます。

前提条件
スナップショットにアクセスしているアプリケーションをすべて停止し、関連するすべてのiSCSIセッションをログオフします。

1. 追加のデータを保存するスナップショットを右クリックします。
2. メニューから[Convert Temporary Space]を選択します。
3. ボリュームの名前と、オプションで説明を入力します。
4. [OK]をクリックします。

一時スペースが、割り当てた名前のボリュームに変換されます。オリジナルのスナップショットは、新しいボリュームの下のクローンポイントになります。クローンポイントの詳細については、「スナップショットまたはクローンポイントからのボリュームのロールバック」(244ページ)を参照してください。

5. 一時スペースをアプリケーション管理スナップショットから変換した場合は、diskpart.exeを使用して変換後のボリュームの属性を変更します。

詳しくは、「アプリケーション管理スナップショットの使用準備」(235ページ)を参照してください。

一時スペースの削除
スナップショットの一時スペースは、スナップショットの削除時に削除されます。ただし、クラスター上の領域を開放する必要がある場合、スナップショットの一時スペースは手動で削除できます。

前提条件
スナップショットにアクセスしているアプリケーションをすべて停止し、関連するすべてのiSCSIセッションをログオフします。

スナップショットにすでに何らかのデータを書き込み済みの場合、一時スペースと共にそのデータも削除されます。データを保存したい場合は、一時スペースをボリュームに変換してください。

1. ナビゲーションウィンドウで、一時スペースを削除するスナップショットを選択します。
2. 右クリックして、[Delete Temporary Space]を選択します。

警告メッセージが表示されます。
3. [OK]をクリックして削除します。

ボリュームのスナップショットのスケジュール作成
ボリュームの自動更新スナップショットのスケジュールを設定できます。ボリュームの自動更新スナップショットは、さまざまな頻度とさまざまな保管ポリシーでスケジュール設定できます。ボリュームのスナップショットは、30分以上の間隔でスケジュール設定でき、最大50個のスナップショットを保持できます。

必要な場合は、ボリュームのスナップショットのスケジュールを一時停止し、再開できます。

注記：
サーバー側でスナップショットのスクリプトの実行もできます。スクリプト化されたスナップショットによって、スナップショットの実行中にホストを停止させたり、ボリュームやそのスナップショットに関連付けられたタスクを自動化できるので、非常に大きな柔軟性がもたらされます。

238 スナップショットの使用
ボリュームのスナップショットのスケジュール作成に対するベストプラクティス

- ボリュームのスナップショットのスケジュール作成には、容量管理に対する特別な注意が必要になります。「SANの容量はどのように使用されるか」(199ページ)を参照してください。
- NTPサーバーを構成していない場合は、スケジュールを作成する前に管理グループの時刻設定を更新して、すべてのストレージノードに正しい時刻が確実に設定されるようにしてください。
- ボリュームのスナップショットのスケジュールを、オフピークの時間帯に設定します。複数ボリュームのスケジュールを設定する場合、それぞれの開始時刻を1時間以上ずらしてスケジュール設定すると、最適な結果が得られます。

<table>
<thead>
<tr>
<th>要件</th>
<th>意味</th>
</tr>
</thead>
</table>
| 容量管理のための計画 | スナップショットのスケジュールを計画する場合は、「ボリュームサイズとスナップショットによる容量の管理」(207ページ)で説明されているように、容量管理を十分に検討する必要があります。スナップショットの保管期間とクラスター内の容量に注意してください。 <n>個のスナップショットを保持する場合、クラスターには<n+1>の領域が必要です。新しいスナップショットと、削除される予定のスナップショットを、一定期間クラスター内に共存させることも可能です。

スケジュールと保管ポリシーを計画する | スナップショットに設定できる最短の更新間隔は30分です。保持できるスナップショットの最大数（スケジュールと手動によるものを合わせて）は、ボリュームあたり50個です。現実的には、特定のSANによってサポートされ、しかも適切なパフォーマンスを維持できるスナップショットの数には制限があります。最適な構成制限、パフォーマンス、スケーラビリティについては、「構成サマリーの概要」(150ページ)を参照してください。

ボリュームのスナップショットのスケジュール作成

ボリュームのスナップショットには、1つ以上のスケジュールを作成できます。たとえば、バックアップとリカバリのために3つのスケジュールを作成し、1番目のスケジュールで毎日1回スナップショットを作成し（7日間保持）、2番目のスケジュールで毎週1回スナップショットを作成し（4週間保持）、3番目のスケジュールで毎月1回スナップショットを作成（5か月間保持）することが可能です。

<table>
<thead>
<tr>
<th>項目</th>
<th>説明と要件</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Name]</td>
<td>CMCに表示されるスケジュールの名前。スケジュール設定されたスナップショットの名前は1〜127文字で、大文字小文字が区別されます。スケジュールによって作成されたスナップショットには、CMCのインストール時にデフォルトの命名規則が有効になります。この命名規則は変更したり、無効化したりできます。この命名規則の詳細については、「命名規則の設定」(30ページ)を参照してください。[Create Schedule to Snapshot a Volume]ウィンドウで入力した名前には、連番が付けられます。たとえば、「Backup」という名前を付けた場合、このスケジュールによって作成されるスナップショットのリストには、「Backup.1」、「Backup.2」、「Backup.3」という名前が表示されます。</td>
</tr>
<tr>
<td>[Description]</td>
<td>(オプション) 0〜127文字以内でなくてはなりません。</td>
</tr>
<tr>
<td>[Start at]</td>
<td>過去の日時です。</td>
</tr>
</tbody>
</table>
説明と要件項目
繰り返しは、分、時、日、週単位で設定できます。繰り返しなしに設定することも可能です。最小間隔は30分です。

Application-managed snapshot
このオプションを使用すると、SAN/iQによりスナップショットが作成される前に、サーバー上のVSS対応アプリケーションが静止されます。

Retention
保管条件は、スナップショットの数を指定するか、期間を指定することで設定できます。

1. ナビゲーションウィンドウで、スナップショットのスケジュールを作成するボリュームを選択します。[Volume]タブウィンドウが表示されます。
2. [Details]タブの[Volume Tasks]をクリックして、[New Schedule to Snapshot a Volume]を選択します。
3. スケジュールの名前を入力します。
4. (オプション) スナップショットの説明を入力します。
5. [Edit]をクリックして、開始日と開始時刻を指定します。
 [Date and Time Configuration]ウィンドウが表示されます。このウィンドウを使用して、このスケジュールによって最初のスナップショットが作成される日付と時刻を設定します。
6. 日付と時刻の設定が完了したら、[OK]をクリックします。
7. 自動更新スケジュールを選択します。
8. スナップショットを作成する前にVSSを使用してアプリケーションを静止する必要がある場合は、[Application-managed Snapshot]チェックボックスをオンにします。
 このオプションを使用するにはVSS Providerが必要です。詳しくは、「アプリケーション管理スナップショットの要件」(232ページ)を参照してください。VSS Providerがインストールされていない場合は、SAN/iQから(VSSを使用しない)ポイントインタイムスナップショットを作成するよう指示されます。
 このオプションを使用すると、SAN/iQによりスナップショットが作成される前に、サーバー上のVSS対応アプリケーションが静止されます。
9. スナップショットの保管条件を指定します。
10. スケジュールの作成が完了したら[OK]をクリックします。

<table>
<thead>
<tr>
<th>ボリュームがボリュームセットのメンバーで「ない」場合</th>
<th>ボリュームがボリュームセットのメンバーである場合</th>
</tr>
</thead>
<tbody>
<tr>
<td>スケジュールを表示するには、[Schedules]タブビューを選択します。</td>
<td>[Volume Associations Found]タブウィンドウが表示されます。このウィンドウに、スケジュールを作成中のボリューム1つ以上が選択されていることが示されます。システムにより、関連付けられている個々のボリュームのスナップショットが作成されます。ボリュームセットの詳細については、「ボリュームセット用のスナップショットについて」(233ページ)を参照してください。</td>
</tr>
<tr>
<td>スケジュールを作成しても、ボリュームがボリュームセットのメンバーである場合</td>
<td>ボリュームセット内の各ボリュームについてスケジュール設定されたスナップショットを作成しない場合は、[Cancel]をクリックします。</td>
</tr>
<tr>
<td>注記:</td>
<td>注記:</td>
</tr>
<tr>
<td>このスケジュールに関連付けられているボリュームを変更したときは（ボリュームを追加または削除した場合）、スケジュールを編集することによりボリューム情報が更新できます。詳細は、「スケジュール設定されたスナップショットの編集」(242ページ)を参照してください。</td>
<td>1つ以上のボリュームと関連付けられているボリューム（ボリュームセット内のボリューム）のスナップショット作成スケジュールを構成すると、関連付けられているすべてのボリュームのスナップショットが自動的に作成されるようになります。ボリュームセットの詳細については、「ボリュームセット用のスナップショットについて」(233ページ)を参照してください。</td>
</tr>
</tbody>
</table>

ボリュームセットのスナップショットを作成するためのスケジュールについて

1つ以上のボリュームと関連付けられているボリューム（ボリュームセット内のボリューム）のスナップショット作成スケジュールを構成すると、関連付けられているすべてのボリュームのスナップショットが自動的に作成されるようになります。ボリュームセットの詳細については、「ボリュームセット用のスナップショットについて」(233ページ)を参照してください。

注記:

ボリュームのリモートスナップショット作成スケジュールについては、アプリケーションを使用してボリュームセットにボリュームを追加した場合に、前述の方法でボリュームセット情報を自動的に更新することはできません。この場合はスケジュールをいったん削除し、現在のボリュームセットの状態を反映した新しいスケジュールを作成してください。

スケジュールには、スケジュールの作成時に選択したボリュームをベースとするボリュームの関連性も反映されます。このボリュームが「所有者」ボリュームになります。スケジュールの[Volume Set]フィールド
では、所有者ボリュームの隣に（O）マークが付加されています。このフィールドに、スナップショットを作成する必要があるすべてのボリュームが表示されていることを確認してください。所有者ボリュームが、関連付けられているすべてのボリュームを認識しているとは限りません。不足しているボリュームがある場合は、関連付けられているすべてのボリュームを認識しているボリュームを選択し、このボリュームをベースにスケジュールを作成しなおしてください。

スケジュール設定されたスナップショットの編集
スケジュール設定されたスナップショットのウィンドウでは、名前以外のすべての項目を編集できます。

編集するスナップショットがスナップショットセットのメンバーである場合は、ボリュームセット内のすべてのボリュームがスケジュールに含まれていることも確認してください。詳しくは、「ボリュームセットのスナップショットを作成するためのスケジュールについて」（241ページ）を参照してください。

1. ナビゲーションウィンドウで、スケジュール設定されたスナップショットを編集するボリュームを選択します。
2. タブウィンドウで、[Schedules]タブをクリックして、前面に表示させます。
3. 編集対象のスケジュールを選択します。
4. [Schedule Tasks]をクリックして、[Edit Schedule]を選択します。
5. 必要な情報を変更します。
6. （オプション）[Verify Volume Associations]が表示されている場合は、この項目をクリックして、ボリュームセットの最新状態がスナップショットセットに反映されていることを確認します。

ここで、ボリュームセットに関する最新情報を確認できます。[OK]をクリックすると情報が自動的に更新されます。

スケジュールされたスナップショットの一時停止と再開
場合によっては、スケジュール設定されたスナップショットを実行しない方が便利なこともあるでしょう。以下の手順では、スナップショットのスケジュールを一時停止して、さらに再開します。

スナップショットのスケジュールを一時停止すると、そのスケジュールのスナップショットの削除も一時的に停止します。スケジュールを再開すると、スナップショットとスナップショットの削除の両方が、スケジュールに沿って再開されます。

スケジュールの一時停止
1. ナビゲーションウィンドウで、スナップショットのスケジュールを一時停止するボリュームを選択します。
2. [Schedules]タブをクリックして、前面に表示させます。
3. 必要なスケジュールを選択します。
4. [Details]タブの[Schedule Tasks]をクリックして、[Pause Schedule]を選択します。
5. [Confirm]ウィンドウで[OK]をクリックします。

[Schedules]タブウィンドウの[Next Occurrence]列に、このスナップショットのスケジュールが一時停止中としてマークされます。
6. 都合のよいときにこのスナップショットのスケジュールを再開するようにメモしておきます。

スケジュールの再開
1. ナビゲーションウィンドウで、スナップショットのスケジュールを再開するボリュームを選択します。
2. [Schedules]タブをクリックして、前面に表示させます。
3. 必要なスケジュールを選択します。
5. [Confirm]ウィンドウで[OK]をクリックします。

タブウィンドウの[Next Occurrence]列に、このスナップショットのスケジュールによって次のスナップショット作成される日付と時刻が示されます。

ボリュームのスナップショットのスケジュールの削除

注記:
スナップショットのスケジュールを削除した後に、そのスケジュールで作成されたスナップショットを削除する場合は、手動で削除する必要があります。

1. ナビゲーションウィンドウで、スナップショットのスケジュールを削除するボリュームを選択します。
2. [Schedules]タブをクリックして、前面に表示させます。
3. 削除するスケジュールを選択します。
4. [Details]タブの[Schedule Tasks]をクリックして、[Delete Schedule]を選択します。
5. 削除を行うには、[OK]をクリックします。

[Schedules]タブが更新され、削除されたスナップショットのスケジュールが表示されなくなります。

6. (オプション) このスケジュールに関連付けられたスナップショットを削除するには、[Volumes and Snapshots]ノードを選択します。ここで、リストから複数のスナップショットを削除できます。

図83 [Volumes and Snapshots]ノードから複数のスナップショットを削除
スナップショットのスクリプト化

スナップショットの実行には、アプリケーションベースのスクリプトを使用できます。アプリケーションベースのスクリプトを使用すると、ボリュームのスナップショットを自動化できます。詳細は、第16章（275ページ）、およびCMC Program Filesの下のDocumentationディレクトリに保存されている『Cliq User Manual』に記載されているSAN/iQコマンドラインインターフェイスに関する説明を参照してください。

スナップショットまたはクローンポイントからのボリュームのロールバック

ボリュームをスナップショットやクローンポイントにロールバックすると、オリジナルのボリュームが、選択したスナップショットの読み取り/書き込みコピーに置き換えられます。ボリュームをスナップショットにロールバックすると、新しいスナップショットが存在していてもすべて削除されるため、新しいスナップショットのデータを保持するために以下のオプションが用意されています。

リリース8.0での変更点

リリース8.0での変更点

ボリュームをスナップショットにロールバックする場合、ボリュームはオリジナルの名前を保持します。リリース8.0より前では、ロールバックしたボリュームに新しい名前を付ける必要がありました。

ボリュームのロールバックのための要件

ベストプラクティス

ポリュームにアクセスしているアプリケーションをすべて停止し、関連するすべてのiSCSIセッションをログオフします。

通常、目的のポリュームがポリュームセットのメンバーである場合は、対応するスナップショットを使用してポリュームセット内のすべてのポリュームをロールバックする必要があります。関連するすべてのポリュームを自動的にロールバックするためのオプションも用意されています。関連付けられたスナップショットを調べるには、目的のスナップショットを選択し、[Details]タブをクリックして[Snapshot Set]フィールドを確認します。詳しくは、「ポリュームセット用のスナップショットの作成」（233ページ）を参照してください。

ボリュームのロールバックに関する制限事項

ロールバックに使用するスナップショットよりも新しいクローンポイントが存在している場合は、ボリュームをロールバックできません。この場合は、目的のスナップショットからSmartCloneを作成するか、そのクローンポイントに依存しているボリュームのうち1つだけを残して他のすべて削除してください。クローンポイントに依存しているボリュームのうち1つだけを残して他のすべて削除すると、クローンポイントが標準のスナップショットに戻ります。
前提条件
オリジナルのボリュームや、ロールバックに使用するものより新しいスナップショットを保持する必要がある場合は、ロールバック操作を開始する前に、SmartCloneボリュームを作成するか、[Remote Copy]を使用してボリュームまたはスナップショットのコピーを作成します。

注意:
ロールバックを実行すると、ロールバック対象のスナップショットよりも新しいスナップショットは削除されます。また、ロールバック対象のスナップショットの作成以降に保存されたすべてのデータが失われます。ロールバックの実行前に、SmartCloneボリュームを作成するか、または[Remote Copy]を実行して、データを保持することを検討してください。

スナップショットまたはクローンポイントからのボリュームのロールバック
クローンポイントを使用してボリュームをロールバックすることも可能です。選択したクローンポイントは、ナビゲーションビューの下に表示されている親ボリュームにロールバックされます。
1. ロールバック対象のボリュームを含む管理グループにログインします。
2. ナビゲーションウィンドウで、ロールバックするスナップショットを選択します。
 スナップショットの[Details]タブで、正しいスナップショットが選択されていることを確認します。
警告メッセージが表示されます。このメッセージには、ロールバックの実行によって発生する可能性があるすべての結果が以下のとおり示されます。
- 既存のiSCSIセッションに、データの矛盾が発生する危険性があります。
- 新しいスナップショットがすべて削除されます。
- スナップショットの作成時点以降に行ったオリジナルボリュームへの変更が失われます。
接続されたiSCSIセッションや新しいスナップショットが存在しない場合、これらの問題はメッセージに表示されません。

<table>
<thead>
<tr>
<th>スナップショットがスナップショットセットのメンバーで「ない」場合</th>
<th>スナップショットがスナップショットセットのメンバーである場合</th>
</tr>
</thead>
<tbody>
<tr>
<td>このメッセージウィンドウから、以下の3つの操作のいずれかを実行できます。</td>
<td>このメッセージウィンドウから、以下のいずれかの操作を実行できます。</td>
</tr>
<tr>
<td>• [OK]をクリックします。「標準的なロールバック操作の続行」(246ページ)を参照してください。</td>
<td>• [Roll Back ALL Associated Volumes]をクリックします。「関連付けられているボリュームのロールバック」(248ページ)を参照してください。</td>
</tr>
<tr>
<td>• [New SmartClone Volume]をクリックします。「スナップショットからSmartCloneボリューム新規作成」(247ページ)を参照してください。</td>
<td>• [Roll Back Selected Volume Only]をクリックします。「標準的なロールバック操作の続行」(246ページ)を参照してください。</td>
</tr>
<tr>
<td>• [Cancel]をクリックします。「ロールバック操作のキャンセル」(248ページ)を参照してください。</td>
<td>• [Roll Back Volume]をクリックします。「標準的なロールバック操作の続行」(246ページ)を参照してください。</td>
</tr>
</tbody>
</table>

注記：
この場合は、選択したスナップショットに対応するボリュームだけがロールバックされます。続行する場合は、[OK]をクリックしてください。この操作はお勧めしません。

注記：
この操作を実行すると、一部のスナップショットセットが不完全な状態になります。
- [Cancel]をクリックします。「ロールバック操作のキャンセル」(248ページ)を参照してください。

標準的なロールバック操作の続行
オリジナルの名前が付いたままのオリジナルのボリュームにスナップショットをロールバックして、以前の状態に戻ったら、以下の手順を実行することになります。スナップショットセットのメンバーでスナップショットについては、この操作はお勧めしません。

ボリュームがスナップショットからロールバックされ、それより新しいスナップショットはすべて削除されます。ロールバックされたスナップショットは、ボリュームの下に完全な状態で維持され、データも保持されます。スナップショットの作成時点以降にボリュームに追加されたデータは、すべて削除されます。
1. アプリケーション管理スナップショットからロールバックした場合は、diskpart.exeを使用してロールバック後のボリュームの属性を変更します。
詳しくは、「アプリケーション管理スナップショットの使用準備」（235ページ）を参照してください。
2. iSCSIセッションをボリュームに再接続し、アプリケーションを再起動します。

スナップショットからSmartCloneボリュームを新規作成

標準的なロールバック操作を続ける代わりに、選択したスナップショットから新しいSmartCloneボリュームを新しい名前で作成することも可能です。この方法では、新しいスナップショットや新しいデータがオリジナルボリューム内に保持されます。

1. [New SmartClone Volume]をクリックします。
2. 名前を入力して、追加の設定を構成します。
 SmartCloneボリュームの特性については、「SmartCloneボリュームの特性の定義」（255ページ）を参照してください。
3. SmartCloneボリュームの設定を完了し、テーブルを更新したら、[OK]をクリックします。
 ナビゲーションウィンドウに新しいボリュームが表示されます。ここでは、スナップショットが両方のボリュームのクローンポイントを示しています。
4. サーバーを割り当て、必要に応じて、新しいボリュームにアクセスするためのホストを構成します。

1. オリジナルのボリューム
2. スナップショットからの新しいSmartCloneボリューム
3. 共有のクローンポイント

図84 クローンポイントを共有する新しいボリューム

5. アプリケーション管理スナップショットからSmartCloneを作成した場合は、diskpart.exeを使用して作成後のボリュームの属性を変更します。
詳しくは、「アプリケーション管理スナップショットの使用準備」（235ページ）を参照してください。
関連付けられているボリュームのロールバック

スナップショットセットのメンバーであるスナップショットをロールバックする場合は、スナップショットセット内のスナップショットに対応するすべてのボリュームをロールバックすることをお勧めします。スナップショットセットの詳細については、「ボリュームセット用のスナップショットについて」（233ページ）を参照してください。

1. [Roll Back ALL Associated Volumes]をクリックします。
 関連付けられているすべてのボリュームが、対応するスナップショットからロールバックされます。
2. diskpart.exeを使用してロールバック後のボリュームの属性を変更します。
 詳しくは、「アプリケーション管理スナップショットの使用準備」（235ページ）を参照してください。
3. iSCSIセッションをボリュームに再接続し、アプリケーションを再起動します。

ロールバック操作のキャンセル

iSCSIセッションをログオフする必要がある場合は、アプリケーションサーバー（またはその他の処理）を停止し、操作をキャンセルして、必要なタスクを実行してから、ロールバックを実行します。

1. [Cancel]をクリックします。
2. 必要な処理を実行します。
3. もう一度ロールバックを開始します。

スナップショットの削除

スナップショットを削除すると、ボリュームの一貫性を維持するために必要なデータが、次のスナップショットまたはボリューム（プライマリボリュームの場合）まで移動し、ナビゲーションウィンドウからスナップショットが削除されます。スナップショットに関連付けられた一時スペースも削除されます。

スナップショットの削除に関する制限事項

以下の条件に該当する場合は、スナップショットを削除できません。
・ スナップショットがクローンポイントである。
・ スナップショットが削除中またはリモートの管理グループにコピー中である。
・ [Remote Copy]を使用してコピーされたプライマリスナップショットであり、操作を行っているユーザーがコピー先のリモート管理グループにログインしていない。

注意:
スナップショットセット内のスナップショットを個別に削除することは通常ありません。関連付けられたスナップショットを調べるには、目的のスナップショットを選択し、[Details]タブをクリックして[Snapshot Set]フィールドを確認します。スナップショットセットの詳細については、「アプリケーション管理スナップショットの要件」（232ページ）を参照してください。一般的には、ボリュームセット用のすべてのスナップショットを保持するか、または削除するのがどちらかになります。また、スナップショットからのロールバックが必要な場合は、ボリュームセット内のすべてのボリュームを対応するスナップショットからロールバックします。関連付けられているすべてのボリュームを自動的に削除またはロールバックするためのオプションも用意されています。
△注意:
ネットワークRAID-5およびネットワークRAID-6のボリュームは、スペース使用率を向上するためにスナップショットが必要とします。たとえば、ネットワークRAID-5ボリュームの最新スナップショットを削除すると、ネットワークRAID-10（2ウェイミラー）ボリュームと同じスペースが必要になります。同様に、ネットワークRAID-6ボリュームの最新スナップショットを削除すると、ネットワークRAID-10+1（3ウェイミラー）ボリュームと同じスペースが必要になります。そのため、ストレージクラスター内のスペース不足により、スナップショットの削除に対応できない可能性があります。ネットワークRAID-5またはネットワークRAID-6ボリュームの最新スナップショットの削除はお勧めしません。

前提条件

・ スナップショットにアクセスしているアプリケーションをすべて停止し、関連するすべてのiSCSIセッションをログアウトします。

スナップショットの削除

1. 削除対象のスナップショットを含む管理グループにログインします。
2. ナビゲーションウィンドウで、削除対象のスナップショットを選択します。
3. [Details]タブで、正しいスナップショットが選択されていることを確認します。
4. [Details]タブの[Snapshots Tasks]をクリックして、[Delete Snapshot]を選択します。

<table>
<thead>
<tr>
<th>スナップショットがスナップショットセットのメンバーで「ない」場合</th>
<th>スナップショットがスナップショットセットのメンバーである場合</th>
</tr>
</thead>
<tbody>
<tr>
<td>確認メッセージが表示されます。</td>
<td>警告メッセージが表示されます。</td>
</tr>
<tr>
<td>・ [OK]をクリックします。</td>
<td>・ スナップショットセット内のすべてのスナップショットを削除するには、[Delete All Associated Snapshots]をクリックします。</td>
</tr>
<tr>
<td></td>
<td>・ 選択したスナップショットのみを削除するには、[Delete Selected Snapshot Only]をクリックします。</td>
</tr>
<tr>
<td></td>
<td>・ 削除を中止するには、[Cancel]をクリックします。</td>
</tr>
</tbody>
</table>
SmartCloneボリュームは、既存のボリュームまたはスナップショットから作成されるスペース効率に優れた コピーです。これらのボリュームは、クローンポイントと呼ばれる（共通）スナップショットを共有する、複数 のボリュームとして表示されます。このスナップショットデータはSAN上で共有されます。SmartCloneボ リュームを使用すると、構成または環境を複製して広範な用途に使用できます。SmartCloneボリューム は、複製データのためのスペースを消費することもなく、すばやく作成できます。SmartClone処理では、1 回の操作で25個までのボリュームを作成できます。この処理を繰り返せば、多数のボリュームを作成で きます。またはCLIを通じたスクリプト処理で、さらに多数のボリュームを一度に作成できます。ボリューム

SmartCloneボリュームとは

SmartCloneボリュームは、瞬時に作成可能なフル機能の書き込み可能ボリュームです。SmartCloneボ リュームは、クローンポイント、つまり作成元のスナップショットに依存します。これ以外の点では、通常の ボリュームやスナップショットと基本的に同じです。さらに、SmartCloneボリュームには、SAN上のスペー ス消費が最小限に抑えられるという利点があります。たとえば、特定のOS構成でボリュームを作成した 後、SmartClone処理を使用すると、同じOS構成にアクセスする複数のボリュームを作成できます。しか も、この場合に必要となる構成のインスタンスは1つだけです。SmartCloneボリュームが消費するSAN上 のスペースが増加するのは、異なるSmartCloneボリュームに追加のデータが書き込まれたときだけです。 節約されているスペースは、「[Cluster]タブウィンドウの[Use Summary]タブ（「クラスターの[Use Summary]」（208ページ））に反映されます。

複数のSmartCloneボリュームは通常のボリュームと同様に個別に管理できます。また、SmartCloneボ リュームは、本番環境内で長期的に使用できます。SmartCloneボリュームの一般的な用途の例を以下に示します。

・仮想サーバーと仮想デスクトップを含む多数の仮想マシンクローンを展開する
・本番データをテスト環境および開発環境で使用できるようにコピーする
・データベースボリュームをデータマイニング用にクローンする
・Boot from SANイメージを作成して展開する

前提条件

・管理グループ、クラスター、および少なくとも1つのボリュームを作成済みであること。
・目的の構成をサポートするために十分なスペースがSAN上に存在すること。
・SAN/iQソフトウェアバージョン8.0以降を使用していること。
表51は、SmartCloneボリューム機能に関して使用される用語の定義をまとめたものです。図85（252ページ）では、SmartCloneボリュームおよび関連する要素がCMC内にどのように表示されるかを示しています。

<table>
<thead>
<tr>
<th>用語</th>
<th>定義</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmartCloneボリューム</td>
<td>SmartCloneプロセスを使用して作成されるボリューム。図85（252ページ）では、ボリュームC#class_1がSmartCloneボリュームです。</td>
</tr>
<tr>
<td>クローンポイント</td>
<td>SmartCloneボリュームの作成元のスナップショット。クローンポイントは削除できません。図85（252ページ）では、スナップショットC#.SCsnapがクローンポイントです。</td>
</tr>
<tr>
<td>共有スナップショット</td>
<td>ツリー内で古いスナップショットの上層にある新しいスナップショットからクローンポイントを作成すると、共有スナップショットが作成されます。共有スナップショットは削除可能です。図85（252ページ）では、スナップショットC#.snap1およびC#.snap2が共有スナップショットです。</td>
</tr>
<tr>
<td>Map View（マップビュー）</td>
<td>[Map View]タブには、クローンポイントとSmartCloneボリュームの間の関係が表示されます。マップビューの表示例については、図99（268ページ）および図100（268ページ）を参照してください。</td>
</tr>
</tbody>
</table>

図85（252ページ）では、3つのスナップショットがある標準ボリューム（左右）、1つのSmartCloneボリュームがある標準ボリューム、および2つの共有スナップショットがあるクローンポイントが示されています。

SmartCloneボリュームの使用シナリオの例

SmartCloneボリュームの最も典型的な用途の例を以下にいくつか示します。

複数の仮想サーバーまたはBoot from SANサーバーの展開

複数の仮想サーバーまたはBoot from SANサーバーで同じベースオペレーティングシステムを使用すれば、環境内のスペースを大幅に節約できます。サーバーのオペレーティングシステムは相当量のストレージを消費しますが、頻繁な変更は生じません。オペレーティングシステムを複製できるように、オペレーティングシステムのマスターアイメージをボリューム上に作成できます。そして、そのマスターアイメージから多数のSmartCloneボリュームを作成できます。このとき、追加のストレージノード容量が必要になることはありません。マスターアイメージから作成した各SmartCloneボリュームは、完全に読み取り/書き込み可能なものであることが必要です。
オペレーティングシステムのバージョンであり、HP LeftHand Storage Solutionの標準ボリュームと同じ管理機能を備えています。

コンピュータートレーニングラボ
技術研修会社でコンピューターラボを運営しているとしましょう。その場合、プログラミング言語、データベース開発、Web設計、およびその他のアプリケーションの講座のためにトレーニング環境をセットアップする作業が日常的に生じます。これらの講座は2日間から1週間の間で期間設定され、ラボの定員は75名です。

HP LeftHand Storage Solution上で、各講座用のデスクトップイメージの原本を維持しています。これらのデスクトップイメージには、各講座の受講者が必要とするすべてのソフトウェアアプリケーションが含まれており、その構成は講座を開始するために必要なデフォルト構成になっています。

この次に予定されている受講者50名の講座に備え、50名分のデスクトップをマスターメージからクローンします。このとき、SAN上で余分なスペースを消費することはありません。そして、iSCSI接続を構成すれば、受講者が実習を行う準備が整います。講座中にSANに追加されるデータは、受講者の学習内容だけです。講座が終了したら、50個のSmartCloneボリュームをクローンポイントにロールバックして、デスクトップの再作成ができます。

本番データをテスト、開発、およびデータマイニングに安全に使用
新しいアプリケーションや現行アプリケーションへのアップグレードを本番環境に導入する前に、テスト環境および開発環境でSmartCloneボリュームを使用すれば、本番環境に対する開発やテストを安全に実施できます。あるいは、本番データのクローンコピーをデータマイニングや分析にも使用できます。

テストと開発
SmartClone処理を使用すると、本番LUNのクローンコピーを瞬時に作成して他の環境にマウントできます。その後、新しいソフトウェアを実行したり、アップグレードをインストールしたり、その他のメンテナンスタスクを実行したりできます。新しいソフトウェアまたはアップグレードのテストが完了したら、これまで使用してきたSmartCloneボリュームにアプリケーションをリダイレクトするか、またはSmartCloneボリュームを削除して、本番環境内でインストールまたはアップグレードを開始します。

データマイニング
たとえばWeb要求の毎月のトレンドから、特定のタイプの情報を追跡する場合なら、WebサーバートランザクションのSmartCloneボリュームを毎月作成し、そのボリュームを異なるサーバーにマウントした後、使用状況やその他のトレンドの経時変化を分析および追跡します。この毎月のSmartCloneボリュームは、SAN上で必要最小限の追加スペースしか消費しないにもかかわらず、Webサーバーデータベースからのデータをすべて提供します。

ボリュームのクローン
SmartCloneボリュームは、上記の用途に限らず、多様な用途に使用できます。これらのボリュームは、既存ボリュームの正確なコピーを提供します。しかも、新しいデータを書き込まない限り、追加スペースのプロビジョニングを必要としません。

SmartCloneボリュームのプランニング
SmartCloneボリュームをプランニングするにあたっては、スペース要件、サーバーアクセス、SmartCloneボリュームの命名規則など、複数の要因を考慮する必要があります。
スペース要件

SmartCloneボリュームは、ソースボリュームおよびスナップショットのサイズとデータ保護レベルを継承します。SmartCloneボリュームの作成時には、最初にソースボリュームのスナップショットを作成した後で、「クローンポイント」と呼ばれるそのスナップショットからSmartCloneボリュームを作成します。SmartCloneボリュームの作成時には、プロビジョニングの方法を選択できます。ボリュームおよびスナップショットの特性とスペースのプランニングの詳細については、第12章（199ページ）を参照してください。

・ SmartClone処理で作成したボリュームに必要となるスペースは、SAN上のその他のボリュームの場合と同じです。SmartCloneボリュームにも、他のボリュームと同様、ボリュームのスナップショット作成スケジュールやリモートスナップショット作成スケジュールを設定できます。したがって、SmartCloneボリュームのスペース要件では、ローカルスナップショットおよびリモートスナップショットに必要となるスペースを考慮する必要があります。

・ SmartCloneボリュームの数 — 作成するSmartCloneボリュームの総数をスペース要件の一部として計画します。

なお、HP LeftHand集中管理コンソールでは1回の操作でSmartCloneボリュームを25個まで作成できます。この操作を繰り返すことで、任意の数のSmartCloneボリュームを作成できます。

1回の操作で多数のSmartCloneボリュームを作成するには、CLIを使用します。

・ シンプロビジョニングまたはフルプロビジョニング — 標準ボリュームの場合と同様に、どちらのタイプのプロビジョニングを選択するかによって、SAN上で必要となるスペースが異なります。

・ データ保護レベル — SmartCloneボリュームの作成時にはソースボリュームのデータ保護レベルを維持する必要がありますが、データ保護レベルはSmartCloneボリュームの作成後に変更できます。ただし、いずれかのSmartCloneボリュームのデータ保護レベルを変更すると、すべての複製ボリュームのデータ保護レベルが自動的に変更されます。

SmartCloneボリュームの命名規則

命名規則を十分に計画しておくと、多数のSmartCloneボリュームの管理が容易になります。ボリューム名およびスナップショット名は作成後には変更できないため、命名規則を事前に決定しておきます。

SmartCloneボリュームの作成時に使用する命名規則はカスタマイズ可能です。

サーバー内での複数の同一ディスクと名前

複数の同一ディスクをサーバーにマウントする場合は、一般的にサーバーが新しいディスクをよりディスクに書き込む必要があります。たとえば、VMware ESX Serverでは再署名を有効化する必要があり、重複するデータストアに自動的に名前が付与されます。ほとんどのサーバーでは、重複するディスクの名前を変更できます。
サーバーアクセス

SmartCloneボリュームにどのサーバーを割り当てるか計画します。ボリュームを作成する前にサーバーを構成しておくと、ボリュームの作成時にサーバーを割り当てることができます。第17章 (277ページ) を参照してください。

SmartCloneボリュームの特性の定義

SmartCloneボリュームの作成時には、以下の特性を定義します。

表52 新しいSmartCloneボリュームの特性

<table>
<thead>
<tr>
<th>SmartCloneボリュームの特性</th>
<th>意味</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Quantity]</td>
<td>作成するSmartCloneボリュームの数。CMCでは1回の操作でSmartCloneボリュームを25個まで作成できます。この操作を繰り返すことで、任意の数のSmartCloneボリュームを作成できます。1回の操作で多数のSmartCloneボリュームを作成するには、CLIを使用します。</td>
</tr>
<tr>
<td>[SmartClone Name]</td>
<td>CMCに表示するSmartCloneボリュームの名前。ボリューム名は、1〜127文字の範囲内で指定します。大文字と小文字が区別されます。ボリュームをいったん作成すると、この名前は変更できません。</td>
</tr>
<tr>
<td>[Provisioning]</td>
<td>SmartCloneボリュームのプロビジョニングタイプは、デフォルトでシンプロビジョニングになります。SmartCloneボリュームの作成時にフルプロビジョニングの選択もできます。また、個々のボリュームを作成後に編集すると、プロビジョニングのタイプの変更も可能です。</td>
</tr>
<tr>
<td>[Server]</td>
<td>ボリュームに割り当てるサーバー。SmartCloneボリュームの作成時に割り当てることが可能でサーバーは1つだけですが、後から追加のクラスタ化されたサーバーを割り当てることもできます。詳細については、「ボリュームへのサーバー接続アクセスの割り当て」 (280ページ) を参照してください。</td>
</tr>
<tr>
<td>[Permission]</td>
<td>ボリュームへのアクセスのタイプ。[Read], [Read/Write], [None]のいずれかです。</td>
</tr>
</tbody>
</table>
SmartCloneボリュームの命名

SmartCloneボリュームは大量に作成可能なため、SmartCloneボリュームの命名規則を十分に計画しておく必要があります。SAN/iQソフトウェアに組み込まれているデフォルト命名規則の詳細については、「命名規則の設定」(30ページ)を参照してください。

SmartCloneボリュームの作成時に、ボリュームのベース名を指定できます。このベース名には、作成したSmartCloneボリュームの総数に至るまで1つずつ増えていく番号が付加されます。たとえば、図87(256ページ)には、ベース名「C#」を持つSmartCloneボリュームと10個のクローンがあります。(カッコ内の番号は、そのボリュームの下層に存在するスナップショットの数を示します)。

図87 10個のSmartCloneボリュームが存在する場合のベース名使用例

SmartCloneボリュームの作成中にSmartCloneボリュームのベース名を指定した後、テーブルリスト内で個々のSmartCloneボリュームの名前を編集できます。この編集を終えてからSmartCloneボリュームの作成を完了します。

注記:
SmartCloneボリュームの名前は、リストの一番下で変更します。番号のシーケンスが維持されます。
共有特性と個別特性

SmartCloneボリュームの特性は、標準ボリュームの場合と同じです。ただし、共通クローンポイントから作成されたすべてのSmartCloneボリュームおよびスナップショットの間で共有される特性もあります。あるSmartCloneボリュームに対して、これらの共有特性のいずれかを変更すると、オリジナルボリュームとSmartCloneボリュームの作成元のスナップショットを含む、すべての関連するボリュームおよびスナップショットに対して、その変更が適用されます。選択したボリュームに対して単に[Edit Volume]を使用し、ボリュームに変更を加えます。すべての関連ボリュームを示し、それらのボリュームのすべてに対して変更が適用されることを警告するメッセージが表示されます。

たとえば図89（258ページ）の例では、「Programming」というクラスターの中に、1つのソースボリュームおよびクローンポイントから作成されたSmartCloneボリュームが10個あります。ここで、最初のSmartCloneボリュームであるC#class_1をクラスターSysAdmに移動する場合を考えてみましょう。
1. ソースボリューム

2. クローンポイント

3. SmartCloneボリューム（10）

図89 10個のSmartCloneボリューム、1つのクローンポイント、およびソースボリュームが存在するProgrammingクラスター

ボリュームC#class_1を編集し、[Advanced]タブでクラスターをSysAdmに変更します。確認メッセージウィンドウが表示されます。このメッセージには、C#class_1を変更した結果としてクラスターが変更されたボリュームとスナップショットがすべて示されます。この例の場合は、12個のボリュームおよびスナップショット、つまりオリジナルのC#ボリューム、10個のSmartCloneボリューム、およびクローンポイントがクラスターSysAdmに移動されます。
図90 あるSmartCloneボリュームの変更で、関連するすべてのボリュームとスナップショットも変更
このメッセージに対して[OK]をクリックすると、12個のボリュームおよびスナップショットがクラスターSysAdmへ移動されます。
図91 SysAdmクラスターに移動された10個のSmartCloneボリューム、1つのクローンポイント、およびスナップショット

表53(260ページ)は、SmartCloneボリュームの共有特性および個別特性を示しています。いずれかのSmartCloneボリュームのクラスターまたはデータ保護レベルを変更すると、すべての関連するボリュームおよびスナップショットのクラスターとデータ保護レベルが変更されます。

表53 SmartCloneボリュームの特性

<table>
<thead>
<tr>
<th>共有特性</th>
<th>個別特性</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Cluster]</td>
<td>[Name]</td>
</tr>
<tr>
<td>[Data protection level]</td>
<td>[Description]</td>
</tr>
<tr>
<td></td>
<td>[Size]</td>
</tr>
<tr>
<td></td>
<td>[Type] ([Primary]または[Remote])</td>
</tr>
<tr>
<td></td>
<td>[Provisioning] ([Thin]または[Full])</td>
</tr>
<tr>
<td></td>
<td>[Server]</td>
</tr>
</tbody>
</table>

注記:
スナップショットスケジュールおよびリモートコピースケジュールも、各SmartCloneボリュームに個別に適用されます。

260 SmartCloneボリューム
クローンポイント

上のアイコンは、ナビゲーションウィンドウ内でクローンポイントを表すアイコンです。クローンポイントは、SmartCloneボリュームの作成元のスナップショットです。クローンポイントには、複数のボリューム間で共有されるスナップショットデータが格納されます。SmartCloneボリュームおよびそれらのスナップショットはクローンポイントに依存するため、クローンポイントがクローンポイントとして使用されている間はクローンポイントの削除ができません。クローンポイントがクローンポイントでなくなるのは、そのクローンポイントから作成されたSmartCloneボリュームが1つだけになった場合です。つまり、SmartCloneボリュームを1つだけ残して他のSmartCloneボリュームをすべて削除すると、クローンポイントの削除が可能になります。

1. オリジナルボリューム
2. クローンポイント
3. SmartCloneボリューム

図92 ナビゲーションウィンドウでのクローンポイントの表示
図92（261ページ）の例では、「C#」がオリジナルボリュームです。
- C#のSmartCloneボリュームの作成時には、最初にC#_SCsnapが作成されます。
- スナップショットが作成された後で、少なくとも1つのSmartCloneボリューム（C#class_1）を作成します。

表54 クローンポイントの仕組み

<table>
<thead>
<tr>
<th>最初にボリューム</th>
<th>C#</th>
</tr>
</thead>
<tbody>
<tr>
<td>次にスナップショット</td>
<td>C#_SCsnap</td>
</tr>
<tr>
<td>次にスナップショットからSmartClone</td>
<td>C#class_1</td>
</tr>
<tr>
<td>スナップショットがクローンポイントになる</td>
<td></td>
</tr>
</tbody>
</table>

SmartCloneボリュームは作成元のクローンポイントに依存するため、ナビゲーションウィンドウでは各SmartCloneボリュームの下側にクローンポイントが表示されます。クローンポイントは、繰り返し表示されているが、SAN内では単一のスナップショットとしてのみ存在しています。したがって、使用されるのは、そのスナップショット1個分のスペースだけです。ナビゲーションウィンドウでは、このことを示すために、同じ
クローンポイントから作成された各SmartCloneボリュームの下でクローンポイントがハイライト表示されるようになっています。

1. クローンポイントは繰り返し表示されます。どの位置に表示されるクローンポイントもまったく同一のものです。

図93 クローンポイントは各SmartCloneボリュームの下に表示される

注記：SAN上ではクローンポイント1個分のスペースだけが消費されるということを忘れないようにしてください。

共有スナップショット

ツリー内で古いスナップショットの上層にある新しいスナップショットからクローンポイントを作成すると、共有スナップショットが作成されます。ナビゲーションウィンドウ内では、上のアイコンで共有スナップショットが示されます。
1. オリジナルボリューム
2. クローンポイント
3. 共有スナップショット

図94 ナビゲーションウィンドウでの共有スナップショットの表示

図94(263ページ)の例では、C#がオリジナルボリュームです。C#から以下の3つのスナップショットが作成されています。

- C#_snap1
- C#_snap2
- C#_SCsnap

最新のスナップショットであるC#_SCsnapからSmartCloneボリュームが作成されています。このボリュームには、ベース名としてC#classが使用されています。このSmartCloneボリュームは2つの古いスナップショットC#_snap1およびC#_snap2の両方に格納されているデータに依存しているため、C#_snap1とC#_snap2は共有スナップショットになっています。

表55 共有スナップショットの仕組み

最初にボリューム

<table>
<thead>
<tr>
<th>最後にスナップショットからSmartCloneボリュームを作成</th>
</tr>
</thead>
<tbody>
<tr>
<td>2つの古いスナップショットはクローンポイントとSmartCloneボリュームの間で共有される</td>
</tr>
</tbody>
</table>

共有スナップショットも、それらを共有しているすべてのボリュームの下に表示されます。図94(263ページ)の例では、作成元のオリジナルボリュームの下と、共有先の単一のSmartCloneボリュームの下に共有スナップショットが表示されています。ナビゲーションウィンドウ内で共有スナップショットを選択すると、その
スナップショットを共有している両方のボリュームの下で共有スナップショットがハイライト表示されます。共有スナップショットは削除可能です。

SmartCloneボリュームの作成

SmartCloneボリュームは、既存のボリュームまたはスナップショットから作成します。他のボリュームからSmartCloneボリュームを作成するときは、最初にオリジナルボリュームのスナップショットを作成します。スナップショットからSmartCloneボリュームを作成するときは、別にスナップショットを作成する必要はありません。

SmartCloneボリュームを作成するには

SmartCloneボリュームの作成時には、グループ全体に対して特性を設定するか、または各SmartCloneボリュームに対して個別に特性を設定します。

1. 複数のSmartCloneボリュームの特性をここで設定
2. 個々のクローンをここで編集

図95 SmartCloneボリュームの特性の設定

SmartCloneボリュームの特性の詳細については、「SmartCloneボリュームの特性の定義」（255ページ）を参照してください。

1. SmartCloneボリュームを作成する管理グループにログインします。
2. SmartCloneボリュームの作成に使用するボリュームまたはスナップショットを以下のいずれかの方法で選択します。
 表示されたリストから目的のボリュームまたはスナップショットを選択します。
 - または、ナビゲーションウィンドウで、SmartCloneボリュームの作成に使用するクラスターとボリュームまたはスナップショットを選択します。
3. ボリュームまたはスナップショットを右クリックし、[New SmartClone Volumes]を選択します。
4. 他のボリュームからSmartCloneボリュームを作成する場合は、[New Snapshot]をクリックして最初にオリジナルボリュームのスナップショットを作成しておきます。
詳しくは、「単独のスナップショットの作成」（232ページ）を参照してください。スナップショットからSmartCloneボリュームを作成する場合は、他のスナップショットを作成する必要がありません。

5. 次に、以下の特性を選択します。
 • SmartCloneボリュームのベース名
 • プロビジョニングのタイプ
 • ボリュームに接続するサーバー
 • 適切な権限

6. [Quantity]フィールドで、作成するSmartCloneボリュームの数を選択します。
7. [Update Table]をクリックしてテーブルを更新し、指定した数のSmartCloneボリュームを反映させます。

図96 複数のSmartCloneボリュームの作成

1. [Quantity]フィールドにボリューム数を入力し、[Update Table]をクリック

図97 複数のSmartCloneボリュームの作成

8. 個別特性を変更する場合は、この時点で変更を行います。その後、[OK]をクリックしてSmartCloneボリュームを作成します。

たとえば、一部のSmartCloneボリュームに対して、割り当てられているサーバーを変更できます。このリストでは、個々のボリュームのサーバー割り当てを変更できます。
9. [OK]をクリックしてボリュームを作成します。

ナビゲーションウィンドウ内で、ボリュームフォルダーの下に新しいSmartCloneボリュームが表示されます。

1. クローンポイント
2. 新しいSmartCloneボリューム

図98 ナビゲーションウィンドウ内の新しいSmartCloneボリューム

SmartCloneボリュームの表示

複数のSmartCloneボリュームの作成時には、それらのボリュームおよび関連付けられているボリュームと
スナップショットをナビゲーションウィンドウと[Map View]タブの両方で確認できます（図99(268ページ)）。

SmartCloneボリュームは他のボリュームと同様に扱われるため、表示されるアイコンも標準のボリューム
アイコンです。しかし、クローンポイントと共用スナップショットについては、図92(261ページ)に示すように
専用のアイコンが表示されます。

Map View（マップビュー）

[Map View]タブには、クローンポイントスナップショット、共有スナップショット、および関連ボリュームの間
の関係が表示されます。たとえば、ボリュームを別のクラスターに移動したり、共有スナップショットを削除
したりするなどの変更を行う場合は、その変更の影響を受けるスナップショットとボリュームの数を[Map
View]タブから容易に特定できます。
ビューの使用

デフォルトのビューは、図99(268ページ)に示すようなツリーレイアウトです。ツリーレイアウトでは、クローンのクローンや共有スナップショットなどの複数のクローンポイントが含まれる小規模で複雑な階層が最も効果的に表示されます。

マップビューはオーガニックレイアウトでの表示もできます。オーガニックレイアウトは、多数のボリュームが含まれる仮想デスクトップ環境のように、単一のクローンポイントに多数のボリュームが関連付けられている場合に役立ちます。このような場合は、ツリーレイアウトを使用しているとすぐに表示が困難になるため、オーガニックレイアウトで表示すると、複数のボリュームの識別がはるかに容易になります。

マップビューの操作

[Map View]ウィンドウには、ツリーレイアウトまたはオーガニックレイアウトのいずれかでSmartCloneボリュームのビューを制御および操作するための表示ツールが用意されています。これらの表示ツールには、[Map View Tasks]メニューからアクセスできるほか、ウィンドウの上端に配置されているツールバーからもアクセスできます。ツールバーと[Map View Tasks]メニューのどちらからアクセスした場合も、これらのツールの機能に違いはありません。マップビュー
表示ツールの使用

表56は、表示ツールの機能を示しています。これらのツールを使用すると、マップ内の特定の領域を選択して、表示、拡大、回転、ウィンドウ内での移動などの操作を実行できます。複雑に構成されたSmartCloneボリュームが存在する場合は、[Map View]ツールを使用することで、構成の確認および監視が容易になります。図102(270ページ)は、Magnifyツールの例を示しています。

表56 マップビューの表示ツール

<table>
<thead>
<tr>
<th>ツールアイコン</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔍</td>
<td>ズームイン — [Map View]ウィンドウの表示内容を段階的に拡大します。</td>
</tr>
<tr>
<td>🔍</td>
<td>ズームアウト — [Map View]ウィンドウの表示内容を段階的に縮小します。</td>
</tr>
<tr>
<td>🔍</td>
<td>拡大 — 拡大鏡のように機能する拡大領域を表示します。マップビュー内の各部分の上でこの拡大領域を移動できます。拡大ツールはオン/オフ切り替え式です。このツールを使用するにはアイコンをクリックしてオンにする必要があります。使用しない場合は、アイコンをクリックしてオフにする必要があります。</td>
</tr>
<tr>
<td>🔍</td>
<td>ウィンドウに合わせてズーム — マップビューをデフォルトのサイズとビューに戻します。</td>
</tr>
<tr>
<td>🔍</td>
<td>選択してズーム — マップビュー内の領域を選択すると、その領域だけにズームインできます。</td>
</tr>
<tr>
<td>🔍</td>
<td>回転 — マップビューを90°ずつ回転します。</td>
</tr>
<tr>
<td>🔍</td>
<td>クリックアンドドラッグ — [Map View]ウィンドウ内で左クリックしてドラッグすると、ウィンドウ内を移動できます。</td>
</tr>
</tbody>
</table>
図102 マップビューツリーでの拡大ツールの使用

クローニングツリー、ボリューム、およびスナップショットの表示

ナビゲーションウィンドウに表示されるSmartCloneボリューム、クローニングツリー、およびスナップショットの
ビューでは、関連項目の間の関係がハイライト表示により示されます。たとえば、図103(270ページ)は、
ツリー内でクローニングを選択した状態を示しています。このクローニングツリーや7個のC#トレーニング
講座用SmartCloneボリュームをサポートしており、それらの7つのボリュームすべての下に表示されま
す。このクローニングツリーとオリジナルボリュームの関係、およびこのクローニングツリーと7個のSmartClone
ボリューム（オリジナルボリュームから作成されたボリューム）の関係がハイライト表示により示されてい
ます。

図103 ナビゲーションウィンドウ内のすべての関連するクローニングツリーのハイライト表示

クローニングツリーとSmartCloneボリュームの使用状況の表示

クローニングツリーのデータは複数のSmartCloneボリューム間で共有されるため、SmartCloneボリュームご
とにデータを複製する必要がありません。クローニングツリーおよびSmartCloneボリュームの[Details]タブに
は、[Utilization]グラフがあります。クローニングツリーの[Utilization]グラフを表示してから、SmartCloneボ
リュームの[Utilization]グラフを表示し、両者を比較してみましょう。SmartCloneボリューム間で共有される
データはクローニングツリーに格納されているため、ボリューム自体にはそのデータの個別コピーが格納
されません。ボリュームの[Utilization]グラフが0%を示しているのは、この理由によるです。

下に示す例では、C#トレーニング講座デスクトップ構成でクローニングツリーのスペース使用率が5GB容量
に対して90%になっています。5個のSmartCloneボリュームが5名のユーザー用に作成された時点では、
データが格納されていません。そのポリュームにマウントされたファイルシステムを通じて各ユーザーが自分用のポリュームにデータを書き込んだときにのみ、これらのポリュームがSAN上のスペースを消費します。

図104（271ページ）は、[Details]タブに表示されるクローンポイントの[Utilization]グラフを示しています。

1. クローンポイントの[Utilization]グラフ

図104 クローンポイントの[Details]タブに表示される[Utilization]グラフ

図105（271ページ）は、クローンポイントから作成されたSmartCloneポリューム作成の使用状況を示しています。

1. [Utilization]グラフの値が0%

図105 SmartCloneボリュームの[Details]タブに表示される[Utilization]グラフ

SmartCloneボリュームの編集

SmartCloneボリュームの特性を変更するには、[Edit Volume]ウィンドウを使用します。

表57 SmartCloneポリューム特性の変更に関する要件

<table>
<thead>
<tr>
<th>項目</th>
<th>共有/個別</th>
<th>変更に関する要件</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Description]</td>
<td>個別</td>
<td>127文字以内で指定すること。</td>
</tr>
</tbody>
</table>
変更に関する要件

<table>
<thead>
<tr>
<th>項目</th>
<th>共有/個別</th>
<th>変更に関する要件</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Size]</td>
<td>個別</td>
<td>クラスター上の使用可能スペース。</td>
</tr>
<tr>
<td>[Servers]</td>
<td>個別</td>
<td>既存のサーバーを定義。</td>
</tr>
<tr>
<td>[Cluster]</td>
<td>共有</td>
<td>関連付けられているすべてのボリュームおよびスナップショットが自動的にターゲットクラスターに移動されます。ターゲットクラスターは以下の条件を満たしている必要があります。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 同じ管理グループ内に存在すること。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 移動するボリュームと、その他すべての関連付けられているボリュームおよびスナップショットのサイズとデータ保護レベルをサポートするため、十分な数のストレージノードと十分な量の未割り当てスペースが存在すること。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ボリュームを異なるクラスターに移動したときは、それらのボリュームが一時的に両方のクラスター上に存在することになります。</td>
</tr>
<tr>
<td>[Data protection level]</td>
<td>共有</td>
<td>すべての関連付けられているボリュームおよびスナップショットを同じデータ保護レベルに変更する必要があります。すべての関連ボリュームに対して新しいデータ保護レベルをサポートするのに十分な数のストレージノードと十分な未割り当てスペースがクラスター内に存在している必要があります。</td>
</tr>
<tr>
<td>[Type]</td>
<td>個別</td>
<td>ボリュームがプライマリか、リモートか。</td>
</tr>
<tr>
<td>[Provisioning]</td>
<td>個別</td>
<td>ボリュームをフルプロビジョニングするか、シンプロビジョニングするか。</td>
</tr>
</tbody>
</table>

SmartCloneボリュームを編集するには

1. ナビゲーションウィンドウで、変更対象のSmartCloneボリュームを選択します。

2. [Volume Tasks]をクリックし、[Edit Volume]を選択します。

 [Edit Volume]ウィンドウが表示されます。SmartCloneボリューム特性の変更の詳細については、表57(271ページ)を参照してください。

3. ボリュームに対して必要な変更操作を行って、[OK]をクリックします。

 他の関連付けられているボリュームおよびスナップショットが変更されるSmartCloneボリューム特性を変更する場合は、変更の影響を受けるボリュームのリストを示す警告メッセージが表示されます。ボリュームが多すぎてリストに表示しきれない場合は、そのサブセットのみがリストに表示され、影響を受ける他のボリュームの数が示されます。

SmartCloneボリュームの削除

SmartCloneネットワークに含まれているボリュームとスナップショットは、すべて他のボリュームやスナップショットと同様に削除できます。唯一の例外はクローンポイントで、クローンポイントでなくなるまで削除ができません。

注意:

ボリュームまたはスナップショットを削除する場合は、ボリュームにアクセスしているアプリケーションを事前にすべて停止し、ボリュームに接続されているすべてのiSCSIセッションからログオフする必要があります。

1. 注意:

 ボリュームまたはスナップショットを削除する場合は、ボリュームにアクセスしているアプリケーションを事前にすべて停止し、ボリュームに接続されているすべてのiSCSIセッションからログオフする必要があります。
クローンポイントの削除

クローンポイントに依存しているボリュームを1つだけ残して他のボリュームをすべて削除すると、クローンポイントの削除が可能になります。クローンポイントに依存しているボリュームを1つだけ残して他のボリュームをすべて削除した後、クローンポイントは標準のスナップショットに戻り、他のスナップショットと同様に管理できるようになります。

たとえば、図106（273ページ）の例では、5つのC#class_xボリュームのうち4つを先に削除しなければ、クローンポイントを削除できません。

複数のSmartCloneボリュームの削除

クラスターの[Volumes and Snapshots]ノードから1回の操作で複数のSmartCloneボリュームを削除できます。最初に、ボリュームを使用しているアプリケーションサーバーをすべて停止し、すべてのiSCSIセッションからログアウトする必要があります。

1. [Volumes and Snapshots]ノードを選択して、クラスター内のSmartCloneボリュームのリストを表示します。
2. [Shift]キーを押しながらクリックして、削除対象の複数のSmartCloneボリュームを選択します。
3. 右クリックして、[Delete Volumes and Snapshots]を選択します。

確認メッセージが表示されます。
4. アプリケーションがすべて停止されており、すべてのiSCSIセッションからログオフ済みであることを確認したうえで、削除を確認するチェックボックスをオンにし、[Delete]をクリックします。

SANからボリュームおよびスナップショットが削除されるまでに数分かかることがあります。
16 スクリプトの使用

リリース7.0までのSAN/iQソフトウェアのスクリプトは、java.commandline.CommandLineスクリプトツールによって作成されていました。

SAN/iQソフトウェアリリース8.0では、java.commandline.CommandLineスクリプトツールは、SAN/iQ CLIQ、HP LeftHand Storage Solutionコマンドラインインターフェイス(CLI)に置き換えられました。このCLIは、新しいSAN/iQ APIを利用するもので、SAN/iQソフトウェアの機能全体を総合的に提供し、スクリプト化、統合化、自動化をサポートしています。

java.commandline.CommandLineスクリプトツールはリリース8.0以降も引き続きサポートされ、java.commandline.CommandLineを使用する既存のスクリプトを新しいCLI構文に変換する場合に利用できます。

スクリプトのマニュアル

・『Command-Line Interface User Manual』は、HP LeftHand NetworksのWebサイトから入手でき、CLIと共にインストールされます。
・『SAN/iQ 8.0 Readme』も提供され、java.commandline.CommandLineから新しいCLI構文への変更点に関する説明が収録されています。
・HP LeftHand NetworksのWebサイトでは、CLIを使用したサンプルスクリプトも提供されています。
17 ボリュームへのサーバーアクセスの制御

アプリケーションサーバー（クライアントまたはホストとも呼ばれる）は、iSCSIプロトコルを使用してSANのストレージボリュームにアクセスします。ユーザーは、SAN/iQソフトウェアの管理グループ内のボリュームに接続する必要のある各サーバーの設定を行います。この設定のことを「サーバー接続」と呼びます。

サーバーのボリュームへの接続は、以下の3通りの方法で設定できます。この3通りの方法では、すべて仮想IP（VIP）を使用して、検出を行ったり、サーバーのiSCSIイニシエーターからボリュームにログインします。

- VIPと負荷分散を使用したiSCSI — SAN/iQソフトウェアでサーバー接続を設定するときに、負荷分散機能を使用してSANへの接続のバランスを取ります。
- HP LeftHand DSM for MPIO（使用する場合）— SANへの複数接続を自動的に確立します。
- VIPのみを使用したiSCSI

注記:
サーバー接続を設定する前に、第20章（315ページ）に記載されているiSCSIの情報をよく理解しておいてください。

ボリュームへのサーバー接続では、以下に示す一般的なタスクを行う必要があります。

表58 ボリュームへのサーバーアクセスの構成概要

<table>
<thead>
<tr>
<th>手順</th>
<th>参考情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. iSCSIイニシエーターがサーバー上にインストールされていることを確認します。</td>
<td>HP LeftHand DSM for MPIOを使用する場合は、Microsoft MPIOとSAN/iQ HP LeftHand DSM for MPIOもサーバー上にインストールされていることを確認します。詳細については、『HP StorageWorks P4000 Windows Solution Packユーザーガイド』を参照してください。</td>
</tr>
<tr>
<td>2. CMCで、サーバー接続を管理グループに追加し、そのサーバーのiSCSIアクセスを構成します。</td>
<td>「管理グループへのサーバー接続の追加」（278ページ）を参照してください。</td>
</tr>
<tr>
<td>3. CMCで、ボリュームをサーバーに割り当てます。</td>
<td>「ボリュームへのサーバー接続アクセスの割り当て」（280ページ）を参照してください。</td>
</tr>
<tr>
<td>4. サーバー上のiSCSIイニシエーターで、ボリュームにログオンします。</td>
<td>「iSCSIイニシエーターとディスク設定の完了」（283ページ）を参照してください。</td>
</tr>
<tr>
<td>5. サーバー上で、ディスク管理ツールを使用してボリュームを構成します。</td>
<td>「iSCSIイニシエーターとディスク設定の完了」（283ページ）を参照してください。</td>
</tr>
</tbody>
</table>

従来の用語（リリース7.0以前）

リリース8.0より前は、認証グループとボリュームリストを使用して、ボリュームへのサーバーアクセスを制御していました。リリース8.0からは、サーバーとボリュームの接続を使用します。
リリース8.0以降では、各サーバーを管理グループに追加し、サーバー接続をボリュームやスナップショットに割り当てます。ボリュームまたはサーバーのどちらからでも割り当てを行うことができます。

1. ナビゲーションウィンドウには、1つのサーバーによるサーバー接続が表示されます。
2. [Volumes and Snapshots]タブには、そのサーバーがアクセスできる2つの割り当てられたボリュームが表示されます。

図108 ナビゲーションウィンドウのサーバー割り当てと[Volumes and Snapshots]タブ

管理グループへのサーバー接続の追加

ボリュームへのアクセスが必要な各サーバー接続を、そのボリュームの存在する管理グループに追加します。管理グループにサーバー接続を追加したら、そのサーバー接続を1つ以上のボリュームまたはスナップショットに割り当てることができます。詳細については、「ボリュームへのサーバー接続アクセスの割り当て」(280ページ)」を参照してください。

前提条件

- 各サーバーにiSCSIイニシエーターがインストールされている必要があります。
- iSCSIイニシエーター内のイニシエーターノード名の確認方法を知っている必要があります。「iSCSIとCHAPの用語」（319ページ）」を参照してください。

1. ナビゲーションウィンドウで、管理グループにログインします。
3. サーバー接続の名前と説明（オプション）を入力します。
 サーバー接続の名前は大文字と小文字を区別します。この名前は後で変更できません。変更する場合は、接続をいったん削除して再作成する必要があります。
4. [allow access via iSCSI]のチェックボックスをオンにします。
5. iSCSIの負荷分散を使用する場合は、ウィンドウ内の[Information on compliant initiators]をクリックして、準拠するiSCSIイニシエーターのリストを確認してください。

注意:
非準拠のiSCSIイニシエーターを使用して負荷分散を行うと、iSCSIのフェールオーバーイベント時のボリュームの可用性に問題が生じる可能性があります。

278 ボリュームへのサーバーアクセスの制御
6. iSCSIの負荷分散を使用する予定で、イニシエーターが準拠するものである場合は、チェックボックスをオンにして負荷分散を有効にします。
7. [Authentication]セクションでは、「CHAP not required」を選択します。
CHAPを使用したい場合は、サーバー接続を編集できます（手順10を参照）。詳細については、「認証（CHAP）」（317ページ）を参照してください。
8. [Initiator Node Name]フィールドに、iqn文字列を入力します。
使用するiSCSIイニシエーターを開き、この文字列を探します。その文字列をコピーしてこのフィールドに貼り付けることができます。
詳細については、「iSCSIとCHAPの用語」（319ページ）を参照してください。
9. [OK]をクリックします。
10. CHAPを使用している場合は、直前に設定したサーバー接続を編集し、構成しようとしているCHAPのタイプに必要なフィールドに入力します（表59（279ページ）を参照）。

表59 新しいサーバーのCHAP情報の入力

<table>
<thead>
<tr>
<th>CHAPモード</th>
<th>入力するフィールド</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ウェイCHAP</td>
<td>・ [CHAP name]</td>
</tr>
<tr>
<td>2ウェイCHAP</td>
<td>・ [Target Secret] - 12文字以上</td>
</tr>
<tr>
<td>2ウェイCHAP</td>
<td>・ [CHAP name]</td>
</tr>
<tr>
<td>2ウェイCHAP</td>
<td>・ [Target Secret] - 12文字以上</td>
</tr>
</tbody>
</table>
| 2ウェイCHAP | ・ [Initiator secret] - 12文字以上。英数字のみ使用できます。

11. [OK]をクリックします。
ナビゲーションウィンドウで、管理グループ内にサーバー接続が表示されます。
これで、このサーバー接続をボリュームに割り当て、ボリュームにサーバーアクセスを設定できるようになりました。詳細については、「ボリュームへのサーバー接続アクセスの割り当て（280ページ）」を参照してください。

サーバー接続の編集
サーバー接続については、以下のフィールドを編集できます。
・ 説明のフィールド
・ 負荷分散に関するフィールド
・ CHAPのオプション
管理グループからサーバー接続の削除もできます。詳細については、「サーバー接続の削除（280ページ）」を参照してください。

△ 注意:
サーバーの編集を行うと、ボリュームへのアクセスが中断することがあります。必要に応じて（サーバーが切断されるとき問題が発生するような場合）、サーバーの編集を行う前にサーバーアクセスを停止してください。

1. ナビゲーションウィンドウで、編集対象のサーバー接続を選択します。
2. [Details]タブをクリックします。
3. [Server Tasks]をクリックして、[Edit Server]を選択します。
4. 該当する情報を変更します。

[Enable Load Balancing]を変更すると、このウィンドウの入力を完了して閉じるときに、警告メッセージが表示されます。iSCSIの負荷分散構成の変更後は、サーバーをいったんログオフして、再度ボリュームにログオンする必要があります。

△ 注意:
負荷分散やCHAPのオプションを変更した場合は、変更内容を有効にするために、iSCSIイニシエーター内のターゲットからいったんログオフして再度ログオンする必要があります。

5. 完了したら[OK]をクリックします。
6. [Enable Load Balancing]オプションを変更した場合、ボリュームからサーバーをログオフする必要があります。

このために、アプリケーションを停止し、切断して、アプリケーションをボリュームに再接続し、さらに再起動する必要が生じる可能性があります。

図109 負荷分散のチェックボックスを変更した後の警告

サーバー接続の削除
サーバー接続を削除すると、そのサーバー接続を使用するサーバーによるボリュームへのアクセスが停止します。ほかのサーバーによる同じボリュームへのアクセスは継続されます。
1. ナビゲーションウィンドウで、削除対象のサーバー接続を選択します。
2. [Details]タブをクリックします。
3. [Server Tasks]をクリックして、[Delete Server]を選択します。
4. [OK]をクリックしてサーバーを削除します。

ボリュームへのサーバー接続アクセスの割り当て
管理グループにサーバー接続を追加したら、1つ以上のボリュームまたはスナップショットをサーバー接続に割り当て、これらのボリュームやスナップショットにサーバーアクセスを設定できます。
共有ストレージアクセス（ホストクラスタリングまたはクラスター化されたファイルシステム）テクノロジーを使用せずに複数のiSCSIアプリケーションサーバーにボリュームへの同時アクセスを許可し、クラスター対応のアプリケーションまたは読み取り/書き込みモードのファイルシステムがない場合は、データが破損する可能性があります。

以下の2通りの割り当て方法があります。
- 「ボリュームからのサーバー接続の割り当て」（281ページ）
- 「サーバー接続からのボリュームの割り当て」（282ページ）

前提条件
- 割り当てを行うサーバー接続が、管理グループ内にあらかじめ存在している必要があります。「管理グループへのサーバー接続の追加」（278ページ）を参照してください。
- 割り当てを行うボリュームまたはスナップショットが、管理グループ内にあらかじめ存在している必要があります。「ボリュームの作成」（222ページ）を参照してください。

サーバー接続とボリュームまたはスナップショットの割り当てを行うときには、各サーバー接続の各ボリュームまたはスナップショットに対するアクセス許可を設定します。使用可能なアクセス許可については、表60に説明しています。

表60 サーバー接続のアクセス許可レベル

<table>
<thead>
<tr>
<th>アクセスタイプ</th>
<th>許可内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>アクセス不可</td>
<td>サーバーはボリュームまたはスナップショットにアクセスできません。</td>
</tr>
<tr>
<td>読み取りアクセス</td>
<td>サーバーは、ボリュームまたはスナップショット上のデータに対して、読み取り専用のアクセスに制限されます。</td>
</tr>
<tr>
<td>読み取り/書き込みアクセス</td>
<td>サーバーは、ボリュームに対する読み取りと書き込みのアクセスが許可されます。</td>
</tr>
</tbody>
</table>

Microsoft Windowsでは、ボリュームに対する読み取り/書き込みアクセスが必要です。

ボリュームからのサーバー接続の割り当て

1つ以上のサーバー接継を、任意のボリュームまたはスナップショットに割り当てることができます。前提条件については、「ボリュームへのサーバー接続アクセスの割り当て」（280ページ）を参照してください。

1. ナビゲーションウィンドウで、サーバー接続の割り当て先にするボリュームを右クリックします。
2. [Assign and Unassign Servers]を選択します。
3. ボリュームまたはスナップショットに割り当てる各サーバー接続の[Assigned]チェックボックスをオンにします。
4. [Permission]ドロップダウンリストから、各サーバー接続がボリュームまたはスナップショットに対して持つ必要のあるアクセス許可を選択します。
サーバー接続からのボリュームの割り当て

1つ以上のボリュームまたはスナップショットを、任意のサーバー接続に割り当てることができます。前提条件については、「「ボリュームへのサーバー接続アクセスの割り当て」（280ページ）」を参照してください。

1. ナビゲーションウィンドウで、割り当てるサーバー接続を右クリックします。
2. [Assign and Unassign Volumes and Snapshots]を選択します。
3. サーバー接続に割り当てる各ボリュームまたはスナップショットの[Assigned]チェックボックスをオンにします。
4. [Permission]ドロップダウンリストから、サーバーが持つ必要のあるアクセス許可を選択します。
5. [OK]をクリックします。

これで、サーバーのiSCSIイニシエーターからボリュームに接続できます。「「iSCSIイニシエーターとディスク設定の完了」（283ページ）」を参照してください。

サーバー接続とボリュームの割り当ての編集

以下の目的で、ボリュームとサーバー接続の割り当てを編集できます。
- ボリュームまたはサーバー接続の割り当て解除
- アクセス許可の変更

ボリュームからのサーバー接続の割り当ての編集

1つ以上のサーバー接続の任意のボリュームまたはスナップショットへの割り当てを編集できます。

△ 注意:
サーバー接続の割り当てを解除したり、アクセス許可を制限しようとする場合は、アプリケーションのボリュームやスナップショットへのアクセスを停止させ、iSCSIセッションをホストからログオフしてください。

1. ナビゲーションウィンドウで、編集対象のサーバー接続割り当てのあるボリュームを右クリックします。
2. [Assign and Unassign Servers]を選択します。
3. 必要に応じて設定を変更します。
4. [OK]をクリックします。

サーバー接続からのサーバーの割り当ての編集

1つ以上のボリュームまたはスナップショットの任意のサーバー接続への割り当てを編集できます。

△ 注意:
サーバー接続の割り当てを解除したり、アクセス許可を制限したりする場合は、アプリケーションのボリュームやスナップショットへのアクセスを停止させ、iSCSIセッションをホストからログオフしてください。

282 ボリュームへのサーバーアクセスの制御
1. ナビゲーションウィンドウで、編集対象のサーバー接続を右クリックします。
2. [Assign and Unassign Volumes and Snapshots]を選択します。
3. 必要に応じて設定を変更します。
4. [OK]をクリックします。

iSCSIイニシエーターとディスク設定の完了
サーバー接続を1つ以上のボリュームに割り当てたら、サーバー上で該当するiSCSI設定を構成する必要があります。iSCSIについては、第20章（315ページ）を参照してください。

永続的ターゲットまたは優先ターゲット
iSCSIイニシエーターを構成したら、ボリュームにログオンできます。ログオン時には、自動的に接続をリストアするオプションを選択します。これによって、再起動後に自動的に再接続する永続的ターゲットが設定されます。

永続的ターゲットに対しては、必ずiSCSIサービスが起動してセッションが接続されてからサーバー上のアプリケーションが起動するように、依存関係を設定する必要もあります。

HP LeftHand DSM for MPIOの設定
HP LeftHand DSM for MPIOを使用しており、サーバーに2つのNICが存在する場合は、ボリュームにログオンするときに[Enable multi-path]オプションを選択して、各NICからログオンします。

HP LeftHand DSM for MPIOの詳細については、『HP StorageWorks P4000 Windows Solution Packユーザーガイド』を参照してください。

ディスク管理
オペレーティングシステムのディスク管理ツールを使用して、サーバーからボリュームをフォーマット、構成、およびラベル付けする必要もあります。
パフォーマンスの監視

パフォーマンスモニターは、iSCSIとストレージノードのI/Oに関するパフォーマンス統計を提示します。このパフォーマンス統計は、ユーザーとHP LeftHand Networksのサポート担当者や技術スタッフがSANによる負荷を理解するために役立ちます。

パフォーマンスモニターは、CMCに統合された機能として、リアルタイムのパフォーマンスデータを表形式とグラフィック形式の両方で表示します。またCMCでは、データを短期間（数時間または数日間）記録し、動作の長時間の表示もできます。データにはSNMP経由でもアクセスできるため、現在の環境への統合や、キャッシュプランニングのためにデータのアーカイブもできます。「第7章（110ページ）」を参照してください。

リアルタイムのパフォーマンスマニター機能により、SANにおける現在の負荷を理解することで、以下のような問題への対処の決定に役立つ追加データを提供できます。

- 構成オプション（ネットワークボンディングが必要か）
- 容量拡張（ストレージノードをさらに追加するべきか）
- データ配置（このボリュームはSATAクラスターとSASクラスターのどちらに配置すべきか）

パフォーマンスデータは直接解答を示すわけではありませんが、問題の解析や対処の決定に役立ちます。

これらのパフォーマンス統計は、クラスター、ボリューム、およびストレージノードベースで入手できます。特定のボリュームにおけるワークロードの理解に役立ち、スループット、平均I/Oサイズ、読み取り/書き込み比率、未処理I/Oの数などのデータを提供します。こうしたデータを入手することで、所定の構成において期待できるパフォーマンスを詳しく理解できるようになります。ストレージノードのパフォーマンスデータを使用すると、たとえば、クラスター内の他のストレージノードよりもレイテンシの大きい特定のストレージノードを簡単に分離できます。

前提条件

- iSCSIセッションを通じて接続されている1つ以上のストレージノードと1つ以上のボリュームのあるクラスターを装備していること。
- 管理グループ内のすべてのストレージノードに、SAN/iQソフトウェアバージョン8.0以降がインストールされていること。「Registration」タブに表示されている管理グループのバージョンが8.0であること。
- サーバーがボリュームにアクセスして、データの読み取り、書き込み、またはその両方を行っていること。

パフォーマンス情報の用途の紹介

パフォーマンスモニターでは、各クラスターに関連する多くの統計を監視できます。

以下のセクションでは、SANを効果的に管理するために役立つ統計の使用方法をいくつか紹介します。ここでは一般的な疑問や問題のごく一部の例を紹介しているだけで、パフォーマンスモニターが提供する機能をすべて網羅して説明しているわけではありません。

パフォーマンスの監視や解析に関する一般的な概念については、「「パフォーマンス監視と解析の概念」（298ページ）」を参照してください。
使用しているSANについての理解

SANについて以下のような疑問がある場合、パフォーマンスモニターが役立ちます。

- 現時点で、SANにはどのような種類の負荷がかかっているか。
- 既存のクラスターには、あとどのくらい負荷を追加できるか。
- SANでの夜間バックアップの影響はどのようなものか。
- SANはアイドル状態と思われるが、ドライブのライトは非常に激しい点滅を繰り返している。何が起こっているか。

一般に、パフォーマンスモニターは以下の決定に役立ちます。

- 現在のSANの動作状況
- ワークロードの特性付け
- 障害の分離

現在のSANの動作状況の例

この例では、Denverクラスターが、平均スループット600万バイト/秒以上、平均キュー深度31.76で、平均で747を上回るIOPSを処理していることを示しています。

![クラスターの動作状況の概要を示す例](圖110)

ワークロードの特性付けの例

この例では、サーバー（ExchServer-1）によって生成されるワークロードを解析しています。ここには、IOPSの読み取り、書き込み、および合計と、平均IOサイズなどが含まれます。
図111 ボリュームのワークロードのタイプを示す例

障害の分離の例

この例は、Denver-1ストレージノード（グラフの上部に点線で表示）のIO読み取りレイテンシが、Denver-3ストレージノードよりもはるかに大きいことを示しています。このような大きな相違の原因としては、Denver-1におけるRAIDの再構築が考えられます。レイテンシを改善するには、再構築の比率を低くできます。

図112 障害の分離を示す例

使用しているボリュームに関する理解

ボリュームについて以下の質問がある場合、パフォーマンスモニターが役立ちます。

- アクセスされる回数が最も多いボリュームはどれか。
- 特定のボリューム上で生成される負荷にはどのようなものがあるのか。

パフォーマンスモニターによって、以下のことが確認できます。

- 最もアクティブなボリューム
- 特定のサーバーによって生成される動作

最もアクティブなボリュームの例

この例では、2つのボリューム（DB1とLog1）を示し、この2つのボリュームの合計IOPSを比較しています。Log1の平均が、DB1のIOPSの約2倍であることがわかります。どちらのボリュームの方がビジーであるか知りたい場合、この情報が役立つと考えられます。
図113 2つのボリュームのIOPSを示す例
この例では、2つのボリューム（DB1とLog1）を示し、この2つのボリュームの合計スループットを比較しています。Log1の平均が、DB1のスループットの約18倍であることがわかります。どちらのボリュームの方がビジーであるか知りたい場合、この情報が役立つと考えられます。

特定のサーバーによって生成される動作の例
この例は、2つのボリューム上でサーバー（ExchServer-1）によって生成される合計のIOPSとスループットを示しています。

図115 特定のサーバーによって生成される動作を示す例
SANの向上計画
SANの向上計画について以下のような疑問がある場合、パフォーマンスモニターが役立ちます。
・ ストレージノード上でNICボンディングを有効にすると、パフォーマンスが向上するか。
・ 2つのクラスター間で負荷分散は行われているか。行われていない場合、どうしたらよいか。
・ 2つのストレージノードを新規購入する予算がある。
 ・ パフォーマンスを向上するには、どのボリュームをその2つのストレージノードに移動すればよいか。
 ・ その2つのストレージノードにはどのクラスターを追加したらよいか。

パフォーマンスモニターによって、以下のことが確認できます。
・ ストレージノード上のNICボンディングによるパフォーマンス向上を判断するためのネットワーク使用率
・ 2つのクラスターの負荷の比較
・ 2つのボリュームの負荷の比較

NICボンディングによるパフォーマンス向上を判断するためのネットワーク使用率の例

この例は、3つのストレージノードのネットワーク使用率を示しています。Denver-1は、平均すると79%を超える使用率であることがわかります。ストレージノード上でNICボンディングを有効にすることで、そのストレージノードで使用可能なネットワーク容量を増やせます。また、iSCSIの負荷分散を使用して、ストレージノード全体に負荷を分散させることもできます。

図116 3つのストレージノードのネットワーク使用率を示す例

2つのクラスターの負荷の比較の例

この例は、2つの異なるクラスター（DenverとBoulder）の合計のIOPS、スループット、キュー深度を示しており、これによってクラスターの使用率を比較できます。また、CMCで他のタスクを実行しているときに、別のウィンドウで1つのクラスターの監視もできます。
図117 2つのクラスターの比較例

2つのボリュームの負荷の比較の例

この例は、クラスターの合計スループットと、クラスター内の各ボリュームの合計スループットを示しています。Log1ボリュームが、クラスターのスループットの大部分を生成していることがわかります。
図118 2つのボリュームの比較例

パフォーマンスモニターウィンドウへのアクセスと理解

パフォーマンスモニターは、各クラスターの下でツリーノードとして使用できます。

パフォーマンスモニターウィンドウを表示するには、次の手順に従います。

1. ナビゲーションウィンドウで、管理グループにログインします。
2. 目的のクラスターの[Performance Monitor]ノードを選択します。

パフォーマンスモニターウィンドウが表示されます。デフォルトで、このウィンドウには、クラスター合計IOPS、クラスター合計スループット、クラスター合計キュー深度が表示されます。
図119 パフォーマンスモニターウィンドウの各部

ユーザーは、自分の必要とする統計が表示されるようにパフォーマンスモニターを設定できます。ユーザーが監視を一時停止したり統計を変更するまで、統計は継続して監視されます。

統計グラフやテーブルに加えた変更は、現在のCMCセッションの間だけ維持されます。この変更内容は、次回CMCにログインしたときには、デフォルトに戻ります。

パフォーマンスモニターウィンドウの詳細については、以下を参照してください。

- 「パフォーマンスモニターのツールバー」(292ページ)
- 「パフォーマンスモニターのグラフ」(294ページ)
- 「パフォーマンスモニターのテーブル」(294ページ)

パフォーマンスモニターのツールバー

ツールバーでは、設定の一部を変更したり、データをエクスポートできます。
<table>
<thead>
<tr>
<th>ボタンまたはステータス</th>
<th>定義</th>
</tr>
</thead>
</table>
| 1. パフォーマンスモニターのステータス | - Normal — クラスターのパフォーマンス監視が正常に行われています。
- Warning — 1つ以上のストレージノードの監視について、パフォーマンスモニターに問題が発生しています。詳細については、[Warning]の文字をクリックしてください。 |
| 2. 統計の追加 | [Add Statistics]ウィンドウが表示されます。 |
| 3. グラフの表示/非表示 | グラフの表示/非表示を切り替えます。 |
| 4. 監視の再開 | 一時停止の後、監視を再開します。 |
| 5. 監視の一時停止 | 監視を一時的に停止します。 |
| 6. サンプル間隔 | データ更新の頻度を示す数値。 |
| 7. サンプル間隔の単位 | データ更新頻度の測定単位(分または秒)。 |
| 8. エクスポートのステータス | - N/A — エクスポートは要求されていません。
-サンプル間隔と期間 — データをエクスポートすると、サンプル間隔と期間が表示されます。
-Paused — エクスポートは一時停止されています。
-Stopped — エクスポートは停止されました。
-Warning — データをエクスポートできませんでした。詳細については、[Warning]の文字をクリックしてください。
-Error — ファイルIOエラーによって、エクスポートが停止されました。もう一度エクスポートを試みてください。 |
| 9. エクスポートログの開始/再開 | コンマ区切り値 (CSV) ファイルへのデータのエクスポートを設定するためのウィンドウが表示されます。エクスポートが一時停止されると、エクスポートログの再開ボタンに変わります。 |
| 10. エクスポートログの一時停止 | データのエクスポートを一時停止します。 |
| 11. エクスポートログの停止 | データのエクスポートを停止します。 |
| 12. エクスポートログの進行状況 | 選択した期間と経過時間に基づいて、現在のデータエクスポートの進行状況を表示します。 |

図120 パフォーマンスモニターのツールバー
図121 警告メッセージの例

パフォーマンスモニターのグラフ

パフォーマンスモニターのグラフには、各統計が色分けされた線で表示されます。

図122 パフォーマンスモニターのグラフ

グラフには最新の100のデータサンプルが表示され、サンプル間隔の設定に基づいて更新されます。縦軸には0〜100のスケールを使用します。グラフのデータは、このスケールに合うように自動的に調整されます。測定値が100より大きい場合、たとえば4,000.0であれば、スケール係数0.01によって自動的にスケール調整され、40.0になります。絶対値が10.0よりも小さい場合、たとえば7.5であれば、スケール係数10によって自動的にスケール調整され、75になります。統計テーブルの[Scale]列に現在のスケール係数が表示されています。スケール係数は、必要に応じて変更できます。詳細については、「スケール係数の変更」(304ページ)を参照してください。

横軸には、現地時間またはグリニッジ標準時 (GMT) のいずれかが表示されます。デフォルトでは、CMCを実行するコンピューターの現地時間が設定されています。このデフォルト設定はGMTに変更できます。「サンプル間隔とタイムゾーンの変更」(298ページ)を参照してください。このタイムゾーンの設定は、管理グループのタイムゾーンの設定とは関係ありません。

グラフの外観の調整方法については、「グラフの変更」(302ページ)を参照してください。

パフォーマンスモニターのテーブル

パフォーマンスモニターのテーブルの各行には、選択した統計が表示されます。
図123 パフォーマンスモニターのテーブル

このテーブルには、監視対象として選択した統計に関する情報が表示されます。テーブル内の値は、サンプル間隔の設定に基づいて更新されます。

統計の定義を表示するには、マウスポインタをテーブルの行の上に置きます。

表61 (295ページ) では、パフォーマンスモニターのテーブルの各列について説明しています。

表61 パフォーマンスモニターのテーブルの列

<table>
<thead>
<tr>
<th>列</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>グラフの線の表示/非表示を切り替えます。</td>
</tr>
<tr>
<td>Line</td>
<td>グラフの統計の線の現在の色やスタイルを示します。</td>
</tr>
<tr>
<td>Name</td>
<td>監視対象のクラスター、ストレージノード、ボリュームの名前。</td>
</tr>
<tr>
<td>Server</td>
<td>ボリュームやスナップショットの場合、アクセスするサーバー。</td>
</tr>
<tr>
<td>Statistic</td>
<td>監視対象に選択した統計。</td>
</tr>
<tr>
<td>Units</td>
<td>統計の計測単位。</td>
</tr>
<tr>
<td>Value</td>
<td>統計の現在のサンプル値。</td>
</tr>
<tr>
<td>Minimum</td>
<td>直近に記録された100のサンプル値の中の最低値。</td>
</tr>
<tr>
<td>Maximum</td>
<td>直近に記録された100のサンプル値の中の最高値。</td>
</tr>
<tr>
<td>Average</td>
<td>直近に記録された100のサンプル値の平均。</td>
</tr>
<tr>
<td>Scale</td>
<td>グラフの0〜100のスケールにデータを適合させるために使用するスケール係数。スケール調整されるのはグラフ上の線だけで、テーブル上の値はスケール調整されません。ファイルをエクスポートした場合、ログファイル内の値もスケール調整されません。</td>
</tr>
</tbody>
</table>

統計の追加方法については、「「統計の追加」(299ページ)」を参照してください。

パフォーマンス統計の理解

監視対象のパフォーマンス統計を選択できます。

クラスター、ボリューム、スナップショットの場合、レポートされる統計はクライアントIOに基づくものです。これはiSCSIのトラフィックで、複製、リモートスナップショット、および管理機能など、その他のトラフィックは含まれません。

ストレージノードおよびデバイスの場合は、統計は合計のトラフィックをレポートします。ここにはiSCSIのトラフィックと共に、複製、リモートスナップショット、管理機能のトラフィックも含まれます。

つまり、クラスター、ボリューム、スナップショットによるレポート内容と、ストレージノードとデバイスによるレポート内容の差は、オーバーヘッド（複製、リモートスナップショット、管理機能）です。
図124 パフォーマンス統計とその測定場所
以下の統計情報を入手できます。

表62 パフォーマンスモニターで確認できる統計情報

<table>
<thead>
<tr>
<th>統計情報</th>
<th>説明</th>
<th>クラスター</th>
<th>ボリュームまたはスナップショット</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOPS読み取り</td>
<td>サンプル間隔における1秒あたりの平均読み取り要求数</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IOPS書き込み</td>
<td>サンプル間隔における1秒あたりの平均書き込み要求数</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IOPS合計</td>
<td>サンプル間隔における1秒あたりの平均読み取り要求数+書き込み要求数</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>スループット読み取り</td>
<td>サンプル間隔における1秒あたりの平均読み取りバイト数</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>スループット書き込み</td>
<td>サンプル間隔における1秒あたりの平均書き込みバイト数</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>スループット合計</td>
<td>サンプル間隔における1秒あたりの平均読み取りバイト数+書き込みバイト数</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>平均読み取りサイズ</td>
<td>サンプル間隔における平均読み取り転送サイズ</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>平均書き込みサイズ</td>
<td>サンプル間隔における平均書き込み転送サイズ</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>平均I/Oサイズ</td>
<td>サンプル間隔における平均読み取りおよび書き込み転送サイズ</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>統計情報</td>
<td>説明</td>
<td>クラスター説明統計情報</td>
<td>ボリュームまたはスナップショット</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>読み取りのキー深度</td>
<td>未処理の読み取り要求数</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>書き込みのキー深度</td>
<td>未処理の書き込み要求数</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>合計キー深度</td>
<td>未処理の読み取り要数+書き込み要求数</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>読み取りIOレイテンシ</td>
<td>読み取り要求を処理するまでの平均時間（ミリ秒）</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>書き込みIOレイテンシ</td>
<td>書き込み要求を処理するまでの平均時間（ミリ秒）</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>合計IOレイテンシ</td>
<td>読み取りおよび書き込み要求を処理するまでの平均時間（ミリ秒）</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>読み取りキャッシュヒット</td>
<td>サンプル間隔においてキャッシュから提供される読み取りの比率 (%)</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>[CPU Utilization]</td>
<td>サンプル間隔における該当のストレージノードでのプロセッサの使用率 (%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>[Memory Utilization]</td>
<td>サンプル間隔における該当のストレージノードでのメモリの合計使用率 (%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ネットワーク使用率</td>
<td>サンプル間隔における該当のストレージノード上の該当のネットワークインタフェースでの双方向ネットワーク容量の使用率 (%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>読み取りネットワークバイト数</td>
<td>サンプル間隔におけるネットワークからの読み取りバイト数</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>書き込みネットワークバイト数</td>
<td>サンプル間隔におけるネットワークへの書き込みバイト数</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>合計ネットワークバイト数</td>
<td>サンプル間隔におけるネットワーク上での読み取りおよび書き込みバイト数</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ストレージサーバーの合計レイテンシ</td>
<td>RAIDコントローラーが読み取りおよび書き込み要求を処理するまでの平均時間（ミリ秒）</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

複数クラスターの監視と比較
パフォーマンスモニターは、クラスターごとに別々のウィンドウで開くことができます。これにより、複数のクラスターを同時に監視して比較できます。クラスター別のウィンドウを開き、必要に応じてそのウィンドウを再調整できます。

1. パフォーマンスモニターウィンドウで、任意の場所を右クリックして、[Open in Window]を選択します。
 パフォーマンスモニターウィンドウが別のウィンドウとして開きます。
 [Performance Monitoring Tasks]メニューを使用して、ウィンドウの設定を変更します。
2. 別のウィンドウを使用する必要がなくなったら、[Close]をクリックします。
パフォーマンス監視と解析の概念
ここでは、パフォーマンスの監視や解析に関する一般的な概念について説明します。

ワークロード
ワークロードは、ディスク動作の固有の特性を定義するものです。こうした特性には、アクセスの種類、アクセスサイズ、アクセスパターン、キューディプ度などがあります。アプリケーションとシステムのワークロードは分析可能で、定義された特性を使用して説明されます。これらのワークロード特性を基に、iometerなどのテストツールを使用してワークロードのシミュレーションを行うことができます。

アクセスタイプ
ディスクアクセスは、読み取り操作か書き込み操作のどちらかです。ディスクまたはコントローラーのキャッシュがない場合は、読み取り操作と書き込み操作は同じ速度です。

アクセスサイズ
読み取りまたは書き込み操作のサイズ。ディスクアクセスはシークとデータ転送で構成されるため、通常は、このサイズが増えるとスループットが増えます。転送データの量が増えると、シークの相対コストが減ります。アプリケーションによっては読み取りおよび書き込みバッファーのサイズを調整できるものもありますが、これは有効的でない場合があります。

アクセスパターン
ディスクアクセスには、シーケンシャルとランダムの2種類があります。一般に、シーケンシャルアクセスの方がランダムアクセスよりも高速です。通常、すべてのランダムアクセスでディスクシークが必要だからです。

キューディプ度
キューディプ度は同時性を測定したものです。キューディプ度が1（q=1）の場合、これはシリアルと呼ばれます。シリアルアクセスでは、ディスク操作は1つずつ順番に実行されるため、どの時点をとっても実行されている処理は1つだけです。一般的に、キューディプ度が深くなるとスループットが増大します。通常、キューディプ度を調整できるのは、データベースアプリケーションのみです。

サンプル間隔とタイムゾーンの変更
サンプル間隔は、5秒〜60分の間の任意の値に設定でき、秒または分単位で増分できます。
タイムゾーンは、CMCを実行しているローカルコンピューターのものです。
サンプル間隔は、以下の方法で変更できます。
1. ツールバーを使用する
2. タイムゾーンも変更する場合は、[Edit Monitoring Interval]ウィンドウを使用する
サンプル間隔をツールバーで変更する場合は、以下の手順に従います。
1. ナビゲーションウィンドウで、管理グループにログインします。
2. 目的のクラスターの[Performance Monitor]ノードを選択します。
パフォーマンスモニターウィンドウが表示されます。
3. ツールバーで、[Sample Interval]の値を変更します。
4. ツールバーで、[Sample Interval Units]を選択します。
新しい間隔を使用してパフォーマンスモニターがすぐに起動します。
サンプル間隔とタイムゾーンを変更する場合は、以下の手順に従います。
1. ナビゲーションウィンドウで、管理グループにログインします。
2. 目的のクラスターの[Performance Monitor]ノードを選択します。
パフォーマンスモニターウィンドウが表示されます。
[Edit Monitoring Interval]ウィンドウが表示されます。
4. [Sample Every]のフィールドで、間隔の値を入力して単位を選択します。
5. [Local]または[Greenwich Mean Time]を選択します。
6. [OK]をクリックします。
新しい間隔とタイムゾーンを使用してパフォーマンスモニターがすぐに起動します。

統計の追加
パフォーマンスモニターで監視する統計は、必要に応じて変更できます。クラスター上のパフォーマンスへの影響を制限するため、統計は最大50まで追加できます。
統計に加えた変更は、現在のCMCセッションの間だけ維持されます。この変更内容は、次回CMCにログインしたときには、デフォルトに戻ります。
使用可能な統計の定義については、「パフォーマンス統計の理解」(295ページ)を参照してください。
1. ナビゲーションウィンドウで、管理グループにログインします。
2. 目的のクラスターの[Performance Monitor]ノードを選択します。
パフォーマンスモニターウィンドウが表示されます。
3. [Add Statistics]ウィンドウをクリックします。

[Add Statistics]ウィンドウが表示されます。

図125 [Add Statistics]ウィンドウ

4. [Select Object]リストから、監視するクラスター、ボリューム、およびストレージノードを選択します。
 リストから複数のオブジェクトを選択する場合は、Ctrlキーを使用します。

5. [Select Statistics]オプションで、必要なオプションを選択します。
 • All Statistics — 選択した各オブジェクトについて、使用可能なすべての統計を追加します。
 • Selected Statistics from List — 必要な統計を下のリストから選択します。このリストには、選択したオブジェクトに関連する統計が表示されます。
 リストから複数の統計を選択する場合は、Ctrlキーを使用します。

6. [Selected Statistics from List]オプションを選択した場合は、監視する統計を選択します。

7. [Add Statistics]をクリックします。
 [Added Statistics]リストに、選択した統計が表示されます。
 すでに監視されている統計を選択した場合、統計を再度追加できないことを示すメッセージが表示されます。

8. [OK]をクリックします。
統計の詳細の表示

テーブル行に表示されている内容のほかに、テーブル内の特定の統計に関するすべての詳細情報（統計の定義を含む）を表示できます。

1. ナビゲーションウィンドウで、管理グループにログインします。
2. 目的のクラスターの[Performance Monitor]ノードを選択します。
パフォーマンスモニターウィンドウが表示されます。
3. テーブル内の行を右クリックして、[View Statistic Details]を選択します。
[Statistic Details]ウィンドウが開き、テーブル内の選択した統計に関するすべての情報と、統計の定義が表示されます。
4. [Close]をクリックします。

統計の削除とクリア

統計は、以下の方法で削除またはクリアできます。

• テーブルおよびグラフから1つ以上の統計を削除する
• サンプルデータをクリアするが、テーブル内の統計は残したままにする
• グラフ表示をクリアするが、テーブル内の統計は残したままにする
• デフォルトの統計にリセットする

統計の削除

テーブルおよびグラフから1つ以上の統計を削除できます。

1. ナビゲーションウィンドウで、管理グループにログインします。
2. 目的のクラスターの[Performance Monitor]ノードを選択します。
パフォーマンスモニターウィンドウが表示されます。
3. テーブル内の行を右クリックして、[Remove Statistics]を選択します。
テーブルから複数の統計を選択する場合は、Ctrlキーを使用します。
選択した統計の削除を確認するメッセージが表示されます。
4. [OK]をクリックします。

サンプルデータのクリア

すべてのテーブルの値として設定されているすべてのサンプルデータをゼロにクリアし、グラフからすべての線を削除できます。これによって、テーブル内の表示用に選択されたすべての統計が消去されます。次のサンプル間隔時間が経過したら、グラフとテーブルのデータには最新の値が再度埋め込まれます。

1. ナビゲーションウィンドウで、管理グループにログインします。
2. 目的のクラスターの[Performance Monitor]ノードを選択します。
パフォーマンスモニターウィンドウが表示されます。
3. パフォーマンスモニターウィンドウの任意の場所を右クリックして、[Clear Samples]を選択します。
表示のクリア
表示をクリアすると、グラフからすべての線が削除され、テーブル内の各統計の[Display]オプションが選択解除されます。テーブル内の統計とデータはすべて残ったままで、引き続き更新されます。

1. ナビゲーションウィンドウで、管理グループにログインします。
2. 目的のクラスターの[Performance Monitor]ノードを選択します。
 パフォーマンスモニターウィンドウが表示されます。
3. パフォーマンスモニターウィンドウの任意の場所を右クリックして、[Clear Display]を選択します。

デフォルトのリセット
統計をデフォルトにリセットできます。これにより、グラフからすべての線が削除され、テーブル内の3つのデフォルト統計（クラスター合計IOPS、クラスター合計スループット、クラスター合計キュー深度）がゼロに設定されます。デフォルト統計は表示に設定され、次のサンプル間隔時間が経過したらデータが更新されます。

1. ナビゲーションウィンドウで、管理グループにログインします。
2. 目的のクラスターの[Performance Monitor]ノードを選択します。
 パフォーマンスモニターウィンドウが表示されます。
3. パフォーマンスモニターウィンドウの任意の場所を右クリックして、[Reset to Defaults]を選択します。

監視の一時停止と再開
現在1つ以上の統計を監視中の場合、監視を一時停止し、再開できます。たとえば、計画されたメンテナンスウィンドウや本番のダウンタイムの間は、監視を一時停止したほうがよいかかもしれません。

1. 監視を一時停止するには、パフォーマンスモニターウィンドウで をクリックします。
 一時停止している間は、すべてのデータがそのままの状態で維持されます。
2. 監視を再開するには、 をクリックします。
 次のサンプル間隔時間が経過したら、データは更新されます。グラフにはその間の時間的なギャップが生じます。

グラフの変更
グラフとその線は、以下の方法で変更できます。

・ 「グラフの表示/非表示」(303ページ)
・ 「線の表示/非表示」(303ページ)
・ 「線の色またはスタイルの変更」(303ページ)
・ 「線のハイライト」(303ページ)
・ 「スケール係数の変更」(304ページ)
グラフの表示/非表示
デフォルトでは、パフォーマンスモニターウィンドウには、パフォーマンスモニターのグラフが表示されます。パフォーマンスモニターのテーブルの表示領域をもっと大きくしたい場合は、グラフを非表示にできます。
1. グラフを非表示にするには、パフォーマンスモニターウィンドウでグラフのアイコンをクリックします。
2. グラフを再表示するには、アイコンをクリックします。

線の表示/非表示
モニターに統計を追加すると、デフォルトでは、それらがグラフに表示されるように設定されます。必要に応じて、グラフにどの統計を表示するのかを制御できます。
1. パフォーマンスモニターウィンドウで、テーブル内の統計の[Display]チェックボックスをオフにします。
2. 線を再表示するには、その統計の[Display]チェックボックスをオンにします。
テーブルにあるすべての統計を表示するには、パフォーマンスモニターウィンドウの任意の場所を右クリックして、[Display All]を選択します。

線の色またはスタイルの変更
グラフ上の任意の線の色やスタイルを変更できます。
1. パフォーマンスモニターウィンドウで、テーブル内で変更対象の1つ以上の統計を選択します。
2. 右クリックして、[Edit Line]を選択します。
[Edit Line]ウィンドウが表示されます。
3. 目的の色と線スタイルのオプションを選択します。
4. 変更結果を確認するには、ウィンドウを開いたまま[Apply]をクリックします。
5. 変更が完了したら、[OK]をクリックします。

線のハイライト
グラフ上の1本以上の線をハイライトして、区別しやすくなります。
1. パフォーマンスモニターワインドウで、ハイライトする1つ以上の統計をテーブル内で選択し、[Highlight]を選択します。線が白に変わります。
2. ハイライトを除去するには、統計を右クリックして[Remove Highlight]を選択します。

スケール係数の変更

縦軸には0〜100のスケールを使用します。グラフのデータは、このスケールに合うように自動的に調整されます。測定値が100より大きい場合、たとえば4,000.0であれば、スケール係数0.01によって自動的にスケール調整され、40.0になります。統計値が10.0よりも小さい場合、たとえば7.5であれば、スケール係数10によって自動的にスケール調整され、0.75になります。統計テーブルの[Scale]列に現在のスケール係数が表示されています。スケール係数は、必要に応じて変更できます。たとえば、類似した複数の項目を表示している場合、スケール係数を変更して1つの項目の重要度を変更できます。

データのエクスポート

パフォーマンス統計をCSVファイルにエクスポートしたり、現在のグラフをイメージファイルに保存したりできます。

統計のCSVファイルへのエクスポート

パフォーマンス統計をCSVファイルにエクスポートできます。エクスポートする統計を選択します。これは、現在監視中の統計と異なるものでも構いません。

サンプル間隔と、エクスポート用のサンプルデータの期間も選択します。一般的な期間は10分〜24時間です。期間の最大値は999時間（41日間）です。

1. エクスポートを開始するには、パフォーマンスモニターワインドウでボタンをクリックします。
2. [Log File]フィールドにファイル名を入力します。
 デフォルトでは、ファイルは[マイドキュメント]フォルダー（Windowsの場合）またはホームディレクトリ（Linuxの場合）に、先頭に「Performance」が付いてクラスター名と日時を含む名前で保存されます。
 別の場所を選択する場合は、[Browse]をクリックします。
3. [Sample Every]フィールドに、サンプル間隔の値と単位を設定します。
4. [For Duration Of]フィールドに、監視期間の値と単位を設定します。
5. [Add Statistics]をクリックします。
 [Add Statistics]ウィンドウが表示されます。
6. [Select Object]リストから、監視するクラスター、ボリューム、およびストレージノードを選択します。
 リストからオブジェクトを選択する場合は、Ctrlキーを使用します。
7. [Select Statistics]オプションで、必要なオプションを選択します。
 • All Statistics — 選択した各オブジェクトについて、使用可能なすべての統計を追加します。
 • Selected Statistics from List — 必要な統計を下のリストから選択します。このリストには、選択したオブジェクトに関連する統計が表示されます。
 リストから複数の統計を選択する場合は、Ctrlキーを使用します。
8. [Selected Statistics from List]オプションを選択した場合は、監視する統計を選択します。
9. [Add Statistics]をクリックします。
 [Added Statistics]リストに、選択した統計が表示されます。
10. [OK]をクリックします。
 [File Size]フィールドには、サンプル間隔、期間、選択した統計に基づいて見積もりされたファイルサイズが表示されます。
11. 目的どおりにエクスポート情報を設定したら、[OK]をクリックして、エクスポートを開始します。
 期間と経過時間に基づいて、パフォーマンスモニターウィンドウにエクスポートの進行状況が表示されます。
 エクスポートを一度停止するには、をクリックします。次に再開するには、をクリックします。
 エクスポートを停止するには、をクリックします。すでにエクスポート済みのデータはCSVファイルに保存されます。

グラフのイメージファイルへの保存
グラフと、統計テーブルの現在表示されている部分を、イメージファイルに保存できます。これは、問題のトラブルシューティングのためにテクニカルサポートや社内の担当者とやり取りを行う場合などに役立ちます。
1. パフォーマンスモニターウィンドウで、グラフとテーブルに目的のデータが表示された状態であることを確認します。
2. パフォーマンスモニターウィンドウの任意の場所を右クリックして、[Save Image]を選択します。
 [Save]ウィンドウが表示されます。
3. ファイルを保存する場所を指定します。
4. 必要に応じてファイル名を変更します。
 デフォルトのファイル名には、監視対象のオブジェクト名と日時が含まれています。
5. 必要に応じてファイルの種類を変更します。
 .pngまたは.jpgの形式で保存できます。
6. [Save]をクリックします。
19 高度な機能の登録

高度な機能はSAN/iQソフトウェアの機能を拡張するものです。SAN/iQソフトウェアの使用を開始した時点で、すべての高度な機能が使用可能になります。最初の登録を行わずに機能の使用を開始すると、評価期間がスタートします。評価期間中は、高度な機能を継続して使用するには登録を行ってライセンスを購入する必要があることを示すメッセージが随時表示されます。

高度な機能として、以下の機能があります。
- 多数ノードの仮想化とクラスター化: 単一のストレージプールを構築する、クラスター化されたストレージノード
- 管理されたスナップショット: スケジュール設定によって繰り返し作成されるボリュームのスナップショット
- リモートコピー: スケジュール設定または手動によって同期された、リモートサイトへのデータの複製
- Multi-Site SAN: 自動で同期されたサイト間のデータミラーリング

高度な機能の評価

高度な機能は、システムをインストールして構成するとアクティブになって使用可能になります。

60日の評価期間

登録の必要な機能を使用するときには、メッセージが表示され、60日の評価期間をスタートしてもよいかどうかの確認を求められます。

図127 60日の評価期間スタートの確認

ユーザーは評価期間中に、機能の構成、テスト、修正を行うことができます。60日の評価期間の終了時点で、ライセンスキーを購入しなかった場合は、その機能に関連付けられたすべてのボリュームとスナップショットが、すべてのクライアントに対して使用不能になります。データは安全に保存されており、ボリュームやスナップショットはOMCで引き続き管理できます。また、ライセンスキーを購入し、構成済みの高度な機能を含む管理グループ内のストレージノードに適用した時点で、構成全体をリストアして使用可能にすることもできます。

注記:
対象となる機能を購入する予定のない場合は、60日の評価期間が終了する前に、その機能を使用して作成したボリュームやスナップショットを削除するようにしてください。
評価期間の残り時間の追跡

60日の評価期間の残り時間を追跡するには、管理グループの[Registration]タブを使用するか、定期的に表示されるメッセージで確認します。

ライセンスアイコンの表示

個々の高度な機能のライセンス状況は、表示されるアイコンで確認できます。60日間の評価期間中は、ライセンス違反を示すアイコンが表示されたままでです。

<table>
<thead>
<tr>
<th>Details</th>
<th>Remote Snapshots</th>
<th>Time</th>
<th>Registration</th>
</tr>
</thead>
</table>

図128 高度な機能のライセンス状況を示すアイコン

評価期間のスタート

高度な機能をCMCで構成した時点で、その機能の評価期間がスタートします。

表63 高度な機能の説明

<table>
<thead>
<tr>
<th>高度な機能</th>
<th>機能の説明</th>
<th>ライセンス評価期間のスタート</th>
</tr>
</thead>
<tbody>
<tr>
<td>複数ノードの仮想化とクラスター化</td>
<td>複数のストレージノードをクラスター化して単一のストレージプールを作成</td>
<td>管理グループ内のクラスターに複数のストレージノードを追加した時点</td>
</tr>
<tr>
<td>リモートコピー</td>
<td>リモートスナップショットの作成の準備段階でリモートボリュームを作成した時点</td>
<td>リモートの場所に2つ目のボリュームとスナップショットを作成</td>
</tr>
<tr>
<td>管理されたスナップショット</td>
<td>ボリュームのスナップショットのスケジュールを作成</td>
<td>ボリュームのスナップショットのスケジュールを作成した時点</td>
</tr>
<tr>
<td>Multi-Site SAN</td>
<td>サイト間でデータを同時的、自動的にミラーリングする複数サイトのクラスター</td>
<td>複数のサイトを使用して1つのクラスターを作成した時点</td>
</tr>
</tbody>
</table>

リモートコピーの評価の取り消し

リモートコピーを購入しないと決めた場合は、構成済みのリモートボリュームとスナップショットをすべて削除する必要があります。ただし、リモートスナップショットを削除する前に、その中のデータを保存できます。

1. 最初に、残す予定のすべてのボリュームをバックアップします。
2. 次に、希望するデータ処理方法に沿って、表64（309ページ）に示された方法で、リモートコピーの評価を安全に取り消します。

<table>
<thead>
<tr>
<th>リモートスナップショット内のデータをどうするか</th>
<th>取り消し手順</th>
</tr>
</thead>
<tbody>
<tr>
<td>リモートターゲットからデータを削除する</td>
<td>・リモートスナップショットを削除します。 ・リモートボリュームを削除します。</td>
</tr>
<tr>
<td>リモートターゲット上にデータを残す</td>
<td>・リモートボリュームをプライマリボリュームにします。 ・管理グループ間のリモートコピーである場合は、プライマリとリモートの管理グループの関連付けを解除します。</td>
</tr>
</tbody>
</table>

スクリプトの評価

ボリュームおよびスナップショットの機能には、アプリケーションベースのスクリプトを使用できます。以下の目的でスクリプトを作成できます。

・スナップショットの作成
・リモートボリュームおよびスナップショットの作成

スクリプトを高度な機能と一緒に使用すると、CMCの使用を必要とせずに60日間の評価期間がスタートするため、スクリプトの使用時には60日間の評価期間がスタートしていることを最初に注意しておく必要があります。スクリプトの評価期間を有効にしていない場合、すべてのスクリプトの実行が（ライセンスの有無に関係なく）失敗します。

スクリプトの評価の有効化

高度な機能の評価中にスクリプトを使用するには、スクリプトの評価期間を有効化します。

1. ナビゲーションウィンドウで、管理グループを選択します。
2. [Registration]タブを選択します。
3. [Registration Tasks]をクリックして、メニューから[Feature Registration]を選択します。
4. [Scripting Evaluation]タブを選択します。
5. テキストをよく読んで、ライセンス評価期間中のスクリプトの使用を有効化するためのチェックボックスをオンにします。
6. [OK]をクリックします。

スクリプトの評価の無効化

以下のいずれかの処置を行う場合には、スクリプトの評価を無効化します。

・評価していた機能を購入するとき
・評価が完了し、高度な機能を購入しないことに決めたとき

スクリプトの評価を無効化するには、以下の手順に従います。

1. 管理グループを選択します。
2. [Registration]タブを選択します。
3. [Registration Tasks]をクリックして、メニューから[Feature Registration]を選択します。
4. [Scripting Evaluation]タブを選択します。
5. チェックボックスをオフにします。
6. [OK]をクリックします。

表65(310ページ)では、スクリプトの評価を安全に取り消すための追加手順を説明しています。

表65 スクリプトの評価の安全な取り消し

<table>
<thead>
<tr>
<th>評価対象の機能</th>
<th>取り消し手順</th>
</tr>
</thead>
<tbody>
<tr>
<td>ボリュームおよびスナップショットのリモートコピー</td>
<td>• すべてのリモートコピー操作を取り消します。</td>
</tr>
<tr>
<td></td>
<td>• スクリプトをすべて削除します。</td>
</tr>
<tr>
<td></td>
<td>• スクリプトによって作成されたプライマリスナップショットおよびリモートスナップショットをすべて削除します。これは、スナップショットの[Details]タブの[Created By:]に表示される内容で確認できます。</td>
</tr>
</tbody>
</table>

注記:
スクリプトの評価を無効化することで、60日の評価期間を続行中のスクリプトは存在しなくなります。

高度な機能の登録

高度な機能のストレージノードを登録する場合は、ライセンス使用許諾書が必要で、該当するストレージノードのフィーチャーキーを提示してライセンスキーを購入する必要があります。ライセンスキーを受け取ったら、ストレージノードに適用します。

ライセンスキーの使用

ライセンスキーは、個々のストレージノードに割り当てられます。ライセンスキーは、ストレージノードが[Available Nodes]プールに存在しているときか、管理グループに移動した後に、ストレージノードに追加できます。ストレージノード1つに対して1つのライセンスキーが発行され、そのキーによって、該当のストレージノードに要求されるすべての高度な機能のライセンスが許可されます。したがって、高度な機能の使用対象となるストレージノードを1つずつ登録する必要があります。

たとえば、2つの場所にある3つのストレージノードでリモートコピーを使用するように構成する場合、プライマリとリモートの両方の場所にあるストレージノードのライセンス登録を行います。

注記:
管理グループからストレージノードを削除しても、ライセンスキーはそのストレージノードに付属したままだ。ストレージノードの管理グループからの削除については、参照してください。

使用可能なストレージノードのライセンスキーへの登録

[Available Nodes]プールにあるストレージノードは個別にライセンス許可されます。個々のストレージノードの[Feature Registration]タブで、それぞれのライセンス登録を行います。

[Feature Registration]タブには、以下の情報が表示されます。

• ストレージノードのフィーチャーキー (ライセンスキーの取得に使用)
そのストレージノードのライセンスキー（購入済みの場合）
すべての高度な機能のライセンス状況

ストレージノードのフィーチャーキーの提示
1. ナビゲーションウィンドウで、高度な機能を登録するストレージノードを[Available Nodes]プールから選択します。
2. [Feature Registration]タブを選択します。
3. フィーチャーキーを選択します。
4. 右クリックして[Copy]を選択します。
5. Ctrl+Vを使用して、ノートパッドなどのテキスト編集プログラムにフィーチャーキーを貼り付けます。
6. https://webware.hp.com（英語）にアクセスして、ライセンスキーを登録および生成します。

ストレージノードへのライセンスキーの入力
ライセンスキーを受け取ったら、ストレージノードに追加します。
1. ナビゲーションウィンドウで、[Available Nodes]プールからストレージノードを選択します。
2. [Feature Registration]タブを選択します。
3. [Feature Registration Tasks]をクリックして、メニューから[Edit License Key]を選択します。
4. 受け取ったライセンスキーをコピーして、[Edit License Key]ウィンドウに貼り付けます。

注記:
ウィンドウにライセンスキーを貼り付けるときには、ボックス内のライセンスキーの前後にスペースが挿入されていないことを確認します。スペースが存在すると、ライセンスキーが認識されなくなるからです。
5. [OK]をクリックします。

[Feature Registration]ウィンドウにライセンスキーが表示されます。

図129 ストレージノードのライセンスキーが表示された状態

管理グループ内の2つのストレージノード
管理グループ内のストレージノードは、管理グループを通してライセンス許可されます。ストレージノードのライセンス登録は、管理グループの[Registration]で行います。
[Registration]タブには、以下の情報が表示されます。

- すべての高度な機能のライセンス状況（60日の評価期間の進行状況や、使用中の高度な機能やライセンス許可されていない高度な機能の特定情報を含む）
- オペレーティングシステムのソフトウェアコンポーネントに関するバージョン情報
- お客様情報

ストレージノードのフィーチャーキーの提示

管理グループ内のすべてのストレージノードのフィーチャーキーを提示します。
1. ナビゲーションウィンドウで、高度な機能を登録する管理グループを選択します。
2. [Registration]タブを選択します。

[Registration]タブには、購入済みのライセンスが表示されます。高度な機能を評価中の場合、残りの評価期間もタブ上に表示されます。

3. [Registration Tasks]をクリックして、メニューから[Feature Registration]を選択します。

[Feature Registration]ウィンドウには、管理グループ内のすべてのストレージノードが表示されます。

4. ウィンドウに表示された各々のストレージキーについて、フィーチャーキーを選択します。
5. Ctrl+Cを使用して、フィーチャーキーをコピーします。
6. Ctrl+Vを使用して、ノートパッドなどのテキスト編集プログラムにフィーチャーキーを貼り付けます。
7. https://webware.hp.com（英語）にアクセスして、ライセンスキーを登録および生成します。
ライセンスキーの入力
ライセンスキーを受け取ったら、[Feature Registration]ウィンドウでストレージノードに追加します。

1. ナビゲーションウィンドウで、管理グループを選択します。
2. [Registration]タブを選択します。
3. [Registration Tasks]をクリックし、メニューから[Feature Registration]を選択します。
4. 次のいずれかの手順に従ってください。

<table>
<thead>
<tr>
<th>管理グループ内の1つのストレージノードに対して1つのライセンスキーを入力する手順</th>
<th>管理グループ内の複数のストレージノードに対してライセンスキーを入力する手順</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ストレージノードを選択して、[Edit License Key]をクリックします。</td>
<td>1. [Import License Keys]をクリックします。</td>
</tr>
<tr>
<td>2. そのストレージノードに該当するライセンスキーをコピーして、ウィンドウ内に貼り付けます。</td>
<td>2. [Browse]をクリックして、https://webware.hp.comからダウンロードしたライセンスキーファイルの場所に移動します。</td>
</tr>
</tbody>
</table>
| 注記：ウィンドウにライセンスキーを貼り付けるときには、ボックス内のライセンスキーの前後にスペースが挿入されていないことを確認します。スペースが存在するとき、ライセンスキーが認識されなくなるからです。 | 管理グループ内のストレージノードに対応する各.datファイルを選択して、[Open]をクリックします。
各ライセンスキーは個別の.datファイルに格納されています。以下のよう、ストレージノードのフィーチャーキーがファイル名に含まれています。
```
xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_xxxxxx_x xxxx |
| 3. [OK]をクリックします。 | 4. [Apply License Keys]をクリックします。 |
| [Feature Registration]ウィンドウにライセンスキーが表示されます。 | [Import Summary]ウィンドウでエラーが表示されているかどうか確認します。エラーメッセージには、問題点が説明されています。緑色のチェックマークが表示され、ライセンスキーが適用されたことを示しています。 |
インポート手順でエラーが発生した場合は、[Import License Key]ウィンドウに戻ります。[Browse]をクリックして、別のライセンスキーファイルを選択します。[Cancel]をクリックしてウィンドウを終了すると、緑色のチェックマークが付いているすべてのライセンスキーが適用されています。インポート手順を完了したら、[Close]をクリックしてウィンドウを終了します。 |

ライセンスキー情報の保存
すべてのライセンスキーの入力が完了したら、記録保持のために、ライセンス情報をファイルに保存します。
お客様情報の保存と編集

ここでは、お客様のプロファイル情報、登録情報、ライセンス情報の保存方法について説明します。この情報をテキストファイルとして保存しておくと、ストレージノードを消失してしまった場合の新しいストレージノードの再構築に役立ちます。

お客様情報の保存

お客様情報ファイルを作成します。

1. 管理グループの[Registration]タブで、[Registration Tasks]をクリックします。
2. メニューから、[Save Information to File]を選択します。
3. ライセンスキー情報を保存する場所を指定します。
4. 登録情報ファイルの名前を入力して、[Save]をクリックします。

ライセンス情報は.txtファイルに保存されます。

お客様情報ファイルの編集

お客様情報ファイルの一部を変更しなければならない場合もあります。会社の移転や、連絡先情報が変更になった場合などです。

1. ナビゲーションウィンドウで、管理グループを選択します。
2. [Registration]タブをクリックして、ウィンドウを開きます。
3. [Registration Tasks]をクリックして、メニューから[Edit Customer Information]を選択します。
4. このウィンドウで、情報を入力または変更します。
5. 完了したら[OK]をクリックします。

お客様情報の保存

お客様プロファイルのウィンドウの入力が正しく行われていることを確認したら、このファイルを保存します。保存ファイルには、お客様情報のほかに、登録情報とライセンスキー情報も格納されます。

1. ナビゲーションウィンドウで、管理グループを選択します。
2. [Registration]タブをクリックします。
3. [Registration Tasks]をクリックして、メニューから[Save Information to File]を選択します。
4. [Save]ウィンドウで、ライセンスキーとお客様情報のファイルを保存するディレクトリを指定します。
5. [File Name]フィールドに、ファイル名を入力します。デフォルトでは.txtファイルになります。
6. [Save]をクリックします。

保存した.txtファイルを表示して、情報を確認します。
SAN/iQソフトウェアは、iSCSIプロトコルを使用してボリュームへのサーバーアクセスを実行します。フォールトトレランスとパフォーマンス向上のために、ボリュームへのサーバーアクセスを構成するときには、VIPとiSCSIの負荷分散を使用します。

以下の概念はSAN/iQソフトウェアでクラスターやサーバーを設定するときに重要です。
- 「仮想IPアドレス」（315ページ）
- 「iSNSサーバー」（316ページ）
- 「iSCSIの負荷分散」（316ページ）
- 「認証（CHAP）」（317ページ）
- 「iSCSIとCHAPの用語」（319ページ）
- 「HP LeftHand DSM for MPIOについて」（321ページ）

iSCSIセッションの数
管理グループ内で作成可能なiSCSIセッションの推奨最大数については、「構成サマリーの要約」（150ページ）を参照してください。

仮想IPアドレス
仮想IP（VIP）アドレスは可用性の高いIPアドレスで、クラスター内の1つのストレージノードが使用不可になった場合でも、サーバーはそのクラスター内の別のストレージノードを経由してボリュームにアクセスできます。

サーバーはVIPを使用してSAN上のボリュームを検出します。SANはiSCSIイニシエーターのIQNを使用して、ボリュームとサーバーを関連付けます。

VIPは、VIP負荷分散やSAN/iQ HP LeftHand DSM for MPIOで使用され、フォールトトレランスのiSCSIクラスターの構成に必要です。

VIPの使用中は、クラスター内の1つのストレージノードがVIPをホスト管理します。すべてのI/OがVIPホストを通過します。VIPをホスト管理するストレージノードを判別するには、クラスターを選択して[iSCSI]タブをクリックします。

仮想IPアドレスを使用するための要件
- 標準のクラスター（マルチサイトクラスター以外）の場合、VIPと同じクラスターを占有するストレージノードは、VIPと同じサブネットアドレス範囲に存在する必要があります。
- どのストレージノードに関連付けられている場合でも、VIPはルーティング可能でなくてはなりません。
- iSCSIサーバーは、VIPがクラスター内で有効な場合、そこにping可能でなくてはなりません。
- VIPアドレスは、ネットワーク上のストレージノードのどのIPとも異なるものでなくてはなりません。
- VIPアドレスは、この目的のための静的IPアドレスでなくてはなりません。
- iSCSIフェールオーバーが正しく動作するように、すべてのiSCSIイニシエーターがVIPアドレスに接続するように構成する必要があります。
iSNSサーバー

iSNSサーバーによって、ネットワーク上の複数のクラスターにあるiSCSIターゲットの検出が容易になります。iSNSサーバーを使用する場合は、iSCSIターゲットをiSNSサーバーに登録するようにクラスターを構成します。最大3つのiSNSサーバーを使用できますが、どれも必須ではありません。

iSCSIの負荷分散

iSCSIの負荷分散を使用して、さまざまなボリュームのiSCSIセッションをクラスター内のストレージノードに均等に分散させることで、iSCSIのパフォーマンスとスケーラビリティを向上させます。iSCSIの負荷分散では、iSCSIログインリダイレクトを使用します。ログインリダイレクトをサポートするイニシエーターのみを使用してください。

VIPと負荷分散を使用している場合、1つのiSCSIセッションはゲートウェイセッションとして機能します。すべてのI/OがこのiSCSIセッションを通過します。ゲートウェイとなるiSCSIセッションを判別するには、クラスターを選択して[iSCSI Sessions]タブをクリックします。[Gateway Connection]列に、負荷分散のiSCSIセッションをホスト管理するストレージノードのIPアドレスが表示されます。

iSCSIの負荷分散は、サーバーの設定時に構成します。「第20章(315ページ)」を参照してください。

要件

・仮想IPアドレスを使用して構成されたクラスター。「仮想IPアドレス」(315ページ)を参照してください。
・準拠するiSCSIイニシエーター。

準拠するiSCSIイニシエーター

準拠するイニシエーターは、iSCSIログインリダイレクトをサポートすると同時に、負荷分散の構成におけるiSCSIフェールオーバーのための、HP LeftHand Networksのテスト基準に合格しています。


図132 準拠するイニシエーターに関する情報の入手

このリンクをクリックすると、[iSCSI Initiator Information]ウィンドウ（図133(317ページ)を参照）が表示されます。下向きにスクロールして、準拠するイニシエーターのリストを表示します。

使用するイニシエーターがリスト上に存在しない場合は、負荷分散を有効にしないでください。
図133 準拠するiSCSIイニシエーターの表示

認証（CHAP）

iSCSIによるサーバーアクセスでは、以下の認証方法を使用できます。

- イニシエーターのノード名（単一ホストの場合）
- CHAP（チャレンジハンドシェイク認証プロトコル）。これは単一ホストと複数ホストをサポート可能です。

注記:
ここでの説明に使用するiSCSI用語は、Microsoft iSCSI Initiatorの用語に基づいています。その他の一般的なオペレーティングシステムで使用されている用語については、「「iSCSIとCHAPの用語」（319ページ）」を参照してください。

CHAPは、標準の認証プロトコルです。SAN/iQソフトウェアは、以下の構成をサポートしています。

- CHAPなし - 認証されたイニシエーターは、自分のIDを証明しなくてもボリュームにログインできます。ターゲットはサーバーにチャレンジを送信しません。
- 1ウェイCHAP - イニシエーターは、ボリュームにアクセスするために、ターゲットのシークレットを使用してログインする必要があります。このシークレットは、ターゲットに対してイニシエーターのIDを証明します。
- 2ウェイ 2ウェイCHAP - 1ウェイCHAPと同じように、イニシエーターは、ボリュームにアクセスするために、ターゲットのシークレットを使用してログインする必要があります。さらに、ターゲットは、イニシエーターのシークレットを使用して、イニシエーターに対して自分のIDを証明する必要があります。この2番目のステップによって、ターゲットのスプーフィングを防止できます。
図134 さまざまなタイプのCHAP

CHAPはオプションです。ただし、1ウェイまたは2ウェイのCHAPを構成する場合、サーバーおよびiSCSIイニシエーターの両方に適切な特性を構成することを忘れないでください。表66(318ページ)に、CHAPを構成する場合の要件を示します。

CHAPを構成するための要件

表66 iSCSI CHAPの構成

<table>
<thead>
<tr>
<th>CHAPレベル</th>
<th>SAN/iQソフトウェアでのサーバーの構成内容</th>
<th>iSCSIイニシエーターの構成内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPの必要なし</td>
<td>イニシエーターのノード名のみ構成要件なし</td>
<td></td>
</tr>
</tbody>
</table>
| 1ウェイCHAP | CHAP名*ターゲットシークレット | 使用可能なターゲットにログオンするときに、ターゲットシークレットを入力(12文字以上)。
| 2ウェイCHAP | CHAP名*ターゲットシークレット | CHAPシークレットを入力します(12文字以上)。
| | イニシエーターシークレット | ターゲットシークレットを入力(12文字以上)。

*単一ノードのみでCHAPを使用する場合は、イニシエーターのノードの名前をCHAP名として使用します。
iSCSIとCHAPの用語

iSCSIとCHAPに対して使用される用語は、使用するオペレーティングシステムやiSCSIイニシエーターによって異なります。以下の表に、2つの一般的なiSCSIイニシエーターの用語を示します。

表67 SCSI用語

<table>
<thead>
<tr>
<th>SAN/iQ CMC</th>
<th>Microsoft</th>
<th>VMWare</th>
<th>Linux</th>
</tr>
</thead>
<tbody>
<tr>
<td>インシエーターノード名</td>
<td>インシエーターノード名</td>
<td>iSCSI名</td>
<td></td>
</tr>
<tr>
<td>CHAP名</td>
<td>使用しない</td>
<td>CHAP名</td>
<td></td>
</tr>
<tr>
<td>ターゲットシークレット</td>
<td>ターゲットシークレット</td>
<td>CHAPシークレット</td>
<td></td>
</tr>
<tr>
<td>インシエーターシークレット</td>
<td>シークレット</td>
<td>なし</td>
<td></td>
</tr>
</tbody>
</table>

注記:
SAN/iQ CMCで設定するインシエーターノード名とシークレットは、サーバーのiSCSIインシエーターに入力した内容と正確に一致する必要があります。

iSCSI構成のサンプル

図135（319ページ）は、MicrosoftのiSCSIのCHAPを必要としない[CHAP not required]の場合の単一ホストの認証の構成例を示しています。

図135 インシエーターノード名をコピーするためにMS iSCSIを表示

図136（320ページ）は、1ウェイCHAPを必要とする単一ホスト認証の構成を示しています。
図136 CHAPによる単一ホストのiSCSIの構成（MS iSCSIイニシエーターに表示された内容から）
図137（320ページ）は、2ウェイCHAPを必要とする単一ホスト認証の構成を示しています。

図137 2ウェイCHAPのためのイニシエーターシークレットの追加（MS iSCSIイニシエーターに表示された内容から）

△ 注意：
共有ストレージアクセス（ホストクラスタリングまたはクラスター化されたファイルシステム）テクノロジーを使用せずに、複数のiSCSIアプリケーションサーバーにボリュームへの同時アクセスを許可し、クラスター対応のアプリケーションまたは読み取り/書き込みモードのファイルシステムがない場合は、データが破損する可能性があります。

△ 注記：
サーバー上でCHAPを有効にすると、そのサーバーのすべてのボリュームに適用されます。
ベストプラクティス

Microsoft iSCSIイニシエーターでは、ターゲットとイニシエーターシークレットは表示されません。iSCSIイニシエーターのCHAP情報と、対応するサーバー情報のレコードを分離しておいてください。

HP LeftHand DSM for MPIOについて

SAN/iQ HP LeftHand DSM for MPIOを使用する場合は、HP LeftHand DSM for MPIOを使用してボリュームにアクセスできます。HP LeftHand DSM for MPIOの詳細については、「HP StorageWorks P4000 Windows Solution Packユーザーガイド」を参照してください。

CMCでHP LeftHand DSM for MPIOを使用しているかどうかは、管理グループ内のサーバーを選択し、[Volumes and Snapshots]タブをクリックすることで確認できます。[Gateway Connection]列に、DSMというラベルの付いた複数の接続が表示されます。

HP LeftHand DSM for MPIOを使用してサーバーからボリュームにアクセスする場合は、以下の点に注意します。

- SAN/iQ HP LeftHand DSM for MPIOとMicrosoft MPIOがサーバーにインストールされていないければなりません。
- 上の2つがインストールされている場合、iSCSIイニシエーターからボリュームにログオンした時点で、サーバーは自動的にHP LeftHand DSM for MPIOを使用します。
- サーバーにデュアルストレージのNICが存在する場合は、ボリュームにログオンするときに[Enable multi-path]オプションを選択すると各NICからログオンできます。
ディスク交換に関する付録

注記:

RAIDとは、個々のストレージノード上に設定されたディスクレベルのRAIDを指します。ネットワークRAIDは、ボリュームに対して、作成時に設定されるデータ保護レベルを指します。データ保護レベルは常に「ネットワークRAID」と呼ばれ、ディスクRAIDは常に「RAID」と呼ばれます。

ここでは、交換すべきディスクがわからない場合や、ストレージノード全体でRAIDを再構築する必要がある場合のディスク交換とデータ再構築について説明します。たとえば、RAIDが不意に無効になった場合は、HPのサポート窓口に連絡して原因を突き止める必要があります。また、ディスク障害が発生した場合は、交換すべきディスクを特定する必要があります。

ディスク交換とデータ再構築

ストレージノード上で、RAIDが動作中であるが機能低下が疑われる単一のディスクを交換する場合は、後で説明する「ディスクの交換」（324ページ）に示される手順によって交換できます。

以下に示す状況では、HPのサポート窓口に連絡して障害のあるディスクを特定し、さらに以下の手順に従ってストレージノード上のデータを再構築します（データ保護が構成されている場合）。

- RAID 0（ストライプ）——ディスク障害によってRAIDがオフになります。
- RAID 5、5+sparse（パリティ付きストライプ）、および50——複数のディスクを交換する必要がある場合は、そのディスクを特定して交換し、さらにストレージノード全体のデータを再構築する必要があります。
- RAID 10/1+0（ミラーおよびストライプ）——複数ディスクの交換が可能です。ただし、HPのサポート窓口は、同一のミラーセットによる2つのディスクが存在していないかどうか特定し、ストレージノード全体のデータを再構築する必要があります。
- RAID 6（デュアルパリティ付きストライプ）——複数のディスクを交換する必要がある場合は、そのディスクを特定して交換し、さらにストレージノード全体のデータを再構築する必要があります。

はじめる前に

1. ディスク交換の必要があるストレージノードの名前と物理的な場所を確認します。
2. ストレージノード内のノードの物理的な位置を確認します。
3. 交換ディスクを準備して、サイズや装着位置が適正であることを確認します。

交換する必要のあるディスクの特定については、HPのサポート窓口にお問い合わせください。

前提条件

- ネットワークRAID-10、ネットワークRAID-10+1、ネットワークRAID-10+2、ネットワークRAID-5、およびネットワークRAID-6のボリュームとスナップショットのステータスがすべて[Normal]である。ネットワークRAID-0のボリュームのステータスは[Offline]であっても構いません。
ディスクの交換
以下のいずれかの場合、ここに示す手順を実行してください。
• RAID 0で構成されているストレージノード上のRAIDが、ディスク障害のためにステータスが[Off]になった場合。
• RAID 5、RAID 50、またはRAID 6構成のストレージノードで、複数のディスクを交換する必要がある場合。
• RAID 10構成のストレージノードで同じミラーセット上の複数のディスクを交換する必要がある場合。

ストレージノードでマネージャーが実行されていないことの確認
ディスク交換の必要なストレージノードでマネージャーが実行されていないことを確認します。
1. 管理グループにログインします。

マネージャーの停止
1. マネージャーを停止するには、ナビゲーションウィンドウでストレージノードを右クリックして、[Stop Manager]を選択します。
2. マネージャーを停止すると、クラスターには偶数のマネージャーが残された状態になります。クラスターが奇数のマネージャーを持つようになるには、以下のいずれかのタスクを実行します。
   • 別のストレージノード上でマネージャーを起動する。
   • ナビゲーションウィンドウで管理グループ名を右クリックし、[Add Virtual Manager]を選択し、管理グループに仮想マネージャーを追加する。

ストレージノードの修復
前提条件
ステータスが[Offline]のネットワークRAID-0ボリュームが存在する場合、以下の手順を実行する前に、それらのボリュームを複製または削除する必要があります。この場合、図138（325ページ）に示すメッセージが表示されます。
図138 ボリュームがネットワークRAID-0構成の場合の警告メッセージ

ナビゲーションウィンドウでストレージノードを右クリックして、[Repair Storage Node]を選択します。プレースホルダーとして機能するIPアドレスのクラスターで、ストレージノードが「ゴースト」イメージに置き換えます。ストレージノードそのものは、管理グループから[Available Nodes]プールに移動します。

注記:
[Available Nodes]プールにストレージノードが表示されていない場合は、[Find]メニューオプションを使用して再検索します。

ディスクの交換

HP LeftHand P4500、HP LeftHand P4300の場合

HP LeftHand P4500の場合は、「ホットスワップ対応プラットフォームでのディスクの交換」(69ページ)に示されているディスク交換手順を使用します。

データの再構築

以下の手順では、まずストレージノード上にRAIDを再構築して、そのストレージノードを管理グループとクラスターに追加した後、そこにデータを再構築します。

RAIDアレイの再作成

1. [Storage]カテゴリを選択し、次に[RAID Setup]タブを選択します。
RAIDの再構築でエラーが報告された場合、ストレージノードを再起動し、もう一度RAIDを再構築します。2回目も失敗した場合は、HPのサポート窓口に連絡してください。

RAIDアレイの再構築の進行状況の確認

HP StorageWorks P4500およびP4500 G2、HP StorageWorks P4300およびP4300 G2の場合。
[Hardware Information]レポートを使用して、RAIDの再構築の進行状況を確認します。

1. [Hardware]カテゴリを選択し、次に[Hardware Information]タブを選択します。
2. タブ上の[Click to Refresh]というリンクをクリックし、下向きにスクリーニングしてハードウェアレポートのRAIDセクションを表示します ([図139]を参照)。
   RAIDの再構築の割合と完了率 (%) を表示できます。
3. [Hardware Information Tasks]をクリックし、[Refresh]を選択して、進行状況を監視します。

![図139 RAIDの再構築の進行状況の確認](image)

ストレージノードをクラスターに戻す

修復後のストレージノードをクラスターに戻します。

1. ナビゲーションウィンドウで、ストレージノードを右クリックして、[Add to Existing Management Group]を選択します。
2. ストレージノードが所属していたグループを[Group Name]リストから選択して、[Add]をクリックします。そのストレージノードが管理グループに現れ、初期化中の間、ナビゲーションウィンドウ内のアイコンが数分間点滅します。
マネージャーの再起動

処理を進める前に、ストレージノードの初期化が完了し、管理グループへの追加が完了したことを確認します。

必要に応じて、修復後にマネージャーが適切に構成されていることを確認します。修復プロセスを開始する前にストレージノード上に実行中のマネージャーが存在していた場合、必要に応じて修復後のストレージノードでもマネージャーを起動させ、管理グループ内のマネージャーの数を修正した方がよい場合もあります。

管理グループに仮想マネージャーを追加した場合は、先にその仮想マネージャーを削除し、その後で通常のマネージャーを起動します。

・まず、仮想マネージャーを右クリックして、[Stop Virtual Manager]を選択します。
・次に、仮想マネージャーをもう一度右クリックして、[Delete Virtual Manager]を選択します。
・最後に、ストレージノードを右クリックして、[Start Manager]を選択します。

修復後のストレージノードをクラスターに追加

1. 初期化が完了したら、クラスターを右クリックして、[Edit Cluster]を選択します。クラスター内のストレージノードのリストには、ゴーストIPアドレスも含まれています。
   ここでは、修復後のストレージノードを、ゴーストIPアドレスによって保持されたスポット内のクラスターに追加する必要があります。
2. ゴーストストレージノード（リスト内のIPアドレス）を選択し、[Exchange Node]をクリックします。
3. ゴーストストレージノードを置き換える修復済みストレージノードを選択し、[OK]をクリックします。
   ストレージノードがクラスター内の元の位置に戻され、クラスター内のボリュームが再同期化されます。

表68 ゴーストストレージノードの修復後のストレージノードへの置き換え

<table>
<thead>
<tr>
<th>クラスター内のストレージノード</th>
<th>再配列前</th>
<th>再配列後</th>
</tr>
</thead>
<tbody>
<tr>
<td>ストレージノードA</td>
<td>&lt;IPアドレス&gt;</td>
<td></td>
</tr>
<tr>
<td>ストレージノードC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ストレージノードA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ストレージノードB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ストレージノードC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注記:

ストレージノードを元の順序と一致するように整列しなかった場合、修復後のストレージノードだけでなく、クラスター内のストレージノード全体でデータが再構築されます。このため再構築が完了するまで時間が長くなり、この間に2度目の障害が発生する危険性も増大します。

修復後のストレージノードのみで再構築が実行されるようにするには、[Edit Cluster]ウィンドウで[OK]ボタンをクリックする前に、クラスター内のストレージノードの順序が元の順序と一致しているかどうか再確認してください。
ボリュームデータの再構築

ストレージノードが正常にクラスターに戻され、隣接するストレージノードが、修復後のストレージノード上のデータを再構築を開始します。

1. クラスターを選択して、[Disk Usage]タブを選択します。
2. 修復後のストレージノード上のディスク使用率が増加し始めるのを確認します。
3. ボリュームとスナップショットのステータスが[Restriping]であることを確認します。

修復後のストレージノード上のデータ再構築は、使用率によっては数時間から丸一日かかることもあります。

サーバーアクセスの制御

[Local Bandwidth Priority]設定を使用して、再構築処理中のデータへのサーバーアクセスを制御します。

- データの再構築中は、ボリューム上のデータにアクセスしているサーバーの速度が低下する可能性があります。この現象に対しては、[Local Bandwidth Priority]の値を通常の値の半分まで落とすと、すぐに成果が出ます。
- また、サーバーアクセスのパフォーマンスが問題にならない場合は、[Local Bandwidth Priority]の値を大きくすると、データ再構築速度が上がります。

[Local Bandwidth Priority]の変更

1. 管理グループを右クリックして、[Edit Management Group]を選択します。現在の[Bandwidth Priority]の値は、管理グループ内の各マネージャーが、修復後のストレージノードにデータを転送するために使用する帯域幅を示しています。現在の値を書き留めておけば、データの再構築が完了した後に元の値に戻すことができます。
2. 帯域幅を必要な値に変更して、[OK]をクリックします。

ゴーストストレージノードの削除

データの再構築後にゴーストストレージノードを削除します。

ストレージノード上のデータは以下の場所に再構築されます。

- 修復後のストレージノードのディスク使用率が、クラスター内の他のストレージノードの使用率と一致していること。
- ボリュームとスナップショットのステータスが[Normal]に戻っていること。

この時点で、クラスター以外の場所のゴーストIPアドレスを、管理グループから削除できます。

1. ゴーストIPアドレスを右クリックして、[Remove from Management Group]を選択します。
2. データの再構築中に[Management Group]の[Local Bandwidth Priority]を調整または減少させた場合、これを元の値に戻します。

この時点で、ストレージノード内部のディスクが正常に置き換えられ、そのストレージノード上のデータが完全に再構築されています。また、管理グループの構成（マネージャーの数、クォーラム、帯域幅など）も元の設定に戻されます。

完了

1. HPのサポート窓口にRA番号（返品確認番号）を問い合わせてください。
2. 障害分析のため、交換用パッケージに含まれる前払いのパッキングスリップを使用して、元のディスクを弊社へ返送してください。HPのサポート窓口の指示に従って、パッケージにRA番号を記載してください。
22 構成インターフェイスの使用

構成インターフェイスは、ストレージノードとの直接接続を使用するコマンドラインインターフェイスです。ストレージノードへのすべてのネットワーク接続が無効になった場合は、構成インターフェイスにアクセスする必要があります。構成インターフェイスでは、以下のようなタスクを実行します。

- ストレージノードの管理者の追加と、パスワードの変更
- ネットワークインターフェイスへのアクセスと構成
- NICボンディングの削除
- TCP速度と二重化の設定、またはフレームサイズの編集
- 管理グループからのストレージノードの削除
- ストレージノードの構成を出荷時のデフォルト設定にリセット

構成インターフェイスへの接続

構成インターフェイスへのアクセスは、以下のいずれかの方法で行います。

- キーボードとモニター（KVM）をストレージノードのシリアルポートに接続（推奨）
- ヌルモデムケーブルを使用してPCまたはラップトップを接続し、端末エミュレーションプログラムを使用して構成インターフェイスに接続

Windowsシステム上での端末エミュレーションセッションの確立

ヌルモデムケーブルでストレージノードに直接接続されたPCまたはラップトップで、端末エミュレーションプログラムによるセッション（HyperTerminalやProComm Plusなど）を開きます。

以下の設定を使用します。

19200, 8-N-1

セッションが確立されたら、[Configuration Interface]ウィンドウが開きます。

Linux/UNIXシステム上での端末エミュレーションセッションの確立

Linuxを使用している場合は、以下の構成ファイルを作成します。rootとしてファイルを作成するか、/etc/に構成ファイルを作成するために、rootで/dev/cua0へのアクセス許可を変更する必要があります。
1. 以下のパラメーターを使用して、/etc/minirc.NSMを作成します。

   # Begin HP LeftHand Networks NSM configuration  
   # Machine-generated file – use “minicom -s” to  
   # change parameters
   pr port = /dev/cua0  
   pu baudrate = 19200  
   pu bits = 8  
   pu parity = N  
   pu stopbits = 1  
   pu mautobaud = Yes  
   pu backspace = DEL  
   pu hasdcd = No  
   pu rtscts = No  
   pu xonxoff = Yes  
   pu askdndir = Yes  
   # End HP LeftHand Networks NSM configuration

2. 以下のコマンドで、xtermを起動します。
   $  
   xterm

3. xtermのウィンドウで、以下のパラメーターでminicomを起動します。
   $ minicom -c on -l

NSM

端末エミュレーションセッションから構成インターフェイスを開く

1. 端末エミュレーションセッションが確立されたら、[Enter]を押します。

2. ログインプロンプトで、startと入力して、[Enter]を押します。

3. セッションがストレージノードに接続されると、[Configuration Interface]ウィンドウが開きます。

構成インターフェイスへのログイン

ストレージノードへの接続が確立されると、構成インターフェイスにログインします。

表69 ストレージノードの場所によるログイン方法の違い

<table>
<thead>
<tr>
<th>ストレージノードの場所</th>
<th>構成インターフェイスの入力ウィンドウでの操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Available Nodes]プール</td>
<td>[Enter]を押してログインします。構成インターフェイスのメインメニューが開きます。</td>
</tr>
</tbody>
</table>

管理グループ

1. [Enter]を押してログインします。[Configuration Interface Login]ウィンドウが開きます。

2. 管理グループ用に作成された管理ユーザーのユーザー名とパスワードを入力します。

3. [Tab]キーを押して[Login]を選択し、[Enter]を押します。構成インターフェイスのメインメニューが開きます。
管理ユーザーの構成

構成インターフェイスを使用して、新しい管理ユーザーを追加したり、管理パスワードを変更したりします。ここで変更できるのは、構成インターフェイスへのログインに使用した管理ユーザーのパスワードのみです。

1. 構成インターフェイスのメインメニューで、[Tab]キーを押して[General Settings]を選択し、[Enter]を押します。

ネットワーク接続の構成

ストレージノードには2つのEthernetインターフェイスが付属しています。表70（333ページ）に、インターフェイスのラベルの表示場所とラベル名を示します。

表70 ストレージノード上のEthernetインターフェイスの識別

<table>
<thead>
<tr>
<th>Ethernetインターフェイス</th>
<th>ラベルの場所</th>
<th>ラベルの表記</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMC内の[TCP/IP Network]構成カテゴリ</td>
<td>名前: eth0, eth1</td>
<td>Motherboard:Port0, Motherboard:Port1</td>
</tr>
<tr>
<td>・ [TCP/IP]タブ</td>
<td>G4-Motherboard:Port1, G4-Motherboard:Port2</td>
<td>Motherboard:Port1, Motherboard:Port2</td>
</tr>
<tr>
<td>・ [TCP Status]タブ</td>
<td>IntelギガビットイーサネットまたはBroadcomギガビットイーサネット</td>
<td></td>
</tr>
<tr>
<td>構成インターフェイス</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ストレージノードの背面のラベル</td>
<td>Eth0, Eth1、または以下のようなグラフィカルシンボルで表現</td>
<td></td>
</tr>
</tbody>
</table>

端末エミュレーションプログラムを使用してストレージノードへの接続を確立したら、構成インターフェイスを使用してインターネット接続を構成できます。

1. 構成インターフェイスのメインメニューで、[Tab]キーを押して[Network TCP/IP Settings]を選択し、[Enter]を押します。
2. [Tab]キーを押して構成するネットワークインターフェイスを選択し、[Enter]を押します。
3. ホスト名を入力したら、[Tab]キー押して次のセクションに移動し、ネットワーク設定を構成します。

注記:
IPアドレスを指定する場合、[Gateway]は必須フィールドです。ゲートウェイが存在しない場合は、ゲートウェイのアドレスに0.0.0.0と入力します。

4. [Tab]キー押して[OK]を選択し、[Enter]押してネットワーク構成を完了します。
5. 確認ウィンドウで[Enter]押します。
割り当て後のIPアドレスを示すウィンドウが表示されます。
6. CMCを開き、検索機能を使用してストレージノードを検索します。

### NICボンディングの削除
構成インターフェースを使用して、以下のNICボンディングを削除できます。

- アクティブ/パッシブボンディング
- リンクアグリゲーション動的モードボンディング
- アダプティブ負荷分散ボンディング

NICボンディングの作成と構成方法については、「ネットワークインターフェイスのボンディングの構成」(80ページ)を参照してください。

アクティブ/パッシブボンディングを削除した場合、プライマリインターフェースが、削除した論理インターフェースのIPアドレスおよび構成を想定します。その他のNICは無効になり、IPアドレスは0.0.0.0に設定されます。

リンクアグリゲーション動的モードまたはアダプティブ負荷分散ボンディングのボンディングを削除した場合、削除した論理インターフェースのIPアドレスがeth0またはMotherboard:Port1に残ります。その他のNICは無効になり、IPアドレスは0.0.0.0に設定されます。

1. 構成インターフェースのメインメニューで、[Tab]キー押して[Network TCP/IP Settings]を選択し、[Enter]押します。

   [Available Network Devices]ウィンドウが表示されます。ウィンドウ内に表示されるインターフェースは、論理ボンディングのみです。

2. [Tab]キー押してボンディングを選択し、[Enter]押します。
3. [Tab]キー押して[Delete Bond]を選択し、[Enter]押します。
4. 確認ウィンドウで[Enter]押します。

### TCP速度、二重化、フレームサイズの設定
構成インターフェースを使用して、ネットワークインターフェースのTCP速度、二重化、およびフレームサイズを設定できます。

TCP速度と二重化。インターネットの速度と二重化を変更できます。これらの設定を変更する場合は、NICケーブルの両側が同じ方法で構成されていることを確認する必要があります。たとえば、ストレージノードが[Auto/Auto]に設定されている場合、スイッチも同じ設定でなくてはなりません。TCP速度と二重化の設定の詳細については、「ネットワークインターフェイス上の設定の管理」(72ページ)を参照してください。
フレームサイズ。フレームサイズは、ネットワーク上を転送されるデータパケットのサイズを指定するものです。デフォルトのEthernetの標準フレームサイズは1500バイトです。可能な最大のフレームサイズは9000バイトです。

フレームサイズを増やすと、ネットワーク上で転送可能なパケットサイズが大きくなり、データの転送に必要なCPUの処理時間が短くなるため、データ転送速度が向上します。ただし、フレームサイズを増やすためには、ネットワーク上のルーター、スイッチ、その他のデバイスがそのフレームサイズをサポートしている必要があります。

ネットワーク上のルーター、スイッチ、その他のデバイスによって使用されているフレームサイズに対応するフレームサイズの設定方法については、「「NICのフレームサイズの変更」 (75ページ)」を参照してください。

1. 構成インターフェイスのメインメニューで、[Tab]キーを押して[Network TCP Status]を選択し、[Enter]を押します。
2. [Tab]キーを押してTCP速度と二重化を設定するネットワークインターフェイスを選択し、[Enter]を押します。
3. インターフェイスの速度と二重化を変更するには、[Tab]キーを押して[Speed/Duplex]リスト内の設定を選択します。
4. フレームサイズを変更するには、[Frame Size]リストで[Set To]を選択します。次に、[Tab]キーを押して[Set To]の右側のフィールドを選択し、フレームサイズを入力します。

フレームサイズの値は、1500バイト〜9000バイトの範囲でなくてはなりません。

管理グループからのストレージノードの削除

管理グループからストレージノードを削除すると、ストレージノードからすべてのデータが削除され、管理グループに関するすべての情報がクリアされ、ストレージノードが再起動します。

△ 注意：
管理グループからストレージノードを削除すると、ストレージノード上のすべてのデータが削除されます。

1. 構成インターフェイスのメインメニューで、[Tab]キーを押して[Config Management]を選択し、[Enter]を押します。
2. [Tab]キーを押して[Remove from management group]を選択し、[Enter]を押します。

ウィンドウが開き、管理グループからストレージノードを削除すると、ストレージノード上のすべてのデータが削除され、ストレージノードが再起動することを示す警告が表示されます。
3. [Tab]キーを押して[OK]を選択し、[Enter]を押します。
4. [Configuration Management]ウィンドウで、[Tab]キーを押して[Done]を選択し、[Enter]を押します。

ストレージノードを出荷時のデフォルト設定にリセット

ストレージノードを出荷時のデフォルト設定にリセットすると、すべてのデータが削除され、管理ユーザーやネットワーク設定などを含むストレージノードの構成が消去されます。
注意:
ストレージノードを出荷時のデフォルト設定にリセットすると、ストレージノード上のすべてのデータが削除されます。

1. 構成インターフェイスのメインメニューで、[Tab]キーを押して[Config Management]を選択し、[Enter]を押します。
2. [Tab]キーを押して[Reset to factory defaults]を選択し、[Enter]を押します。
   ウィンドウが開き、ストレージノードの構成をリセットすると、ストレージノード上のすべてのデータが削除され、ストレージノードが再起動することを示す警告が表示されます。
3. [Tab]キーを押して[OK]を選択し、[Enter]を押します。
4. [Configuration Management]ウィンドウで、[Tab]キーを押して[Done]を選択し、[Enter]を押します。
23 サードパーティのライセンス

HPから配布されるソフトウェアには、以下のオープンソースソフトウェアライセンスのいずれかに従うこと
が示されいくつかのソフトウェアパッケージが含まれています。GNU General Public License (GPL)、
GNU Lesser General Public License (LGPL)、またはBSD License（それぞれがOSSパッケージです）。こ
れらのライセンスのOSSパッケージへの適用と、これらのライセンスの下でのユーザーの権利と責任に関
する追加情報については、ソフトウェアに含まれているlicense_readmeファイルを参照してください。

また、本書で説明されているソフトウェアには、Apache Software Foundation、The Legion of the Bouncy
Castle、Free Software Foundation, Inc.、およびOpenPegasusによって開発されたオープンソースソフトウェ
アが含まれています。

それ以外のソフトウェアは、Hewlett-Packard Development Company, L.P.、IBM Corp.、EMC Corporation、
Symantec Corporation、およびThe Open Groupとのライセンス使用許諾契約に従います。

また、本書で説明されているソフトウェアには、下記によって開発されたオープンソースソフトウェアが含ま
れています。

Copyright (c) 2005-2008, Kirill Grouchnikov and contributors All rights reserved.

ソース形式およびバイナリ形式での再配布および使用は、変更を伴う場合および伴わない場合を含め、
以下の条件を満たす場合に許可されています。

- ソースコードを再配布する場合には、上記の著作権表示、この条件の一覧、および以下の免責条項
  を保持する必要があります。
- バイナリ形式で再配布する場合には、ソフトウェアとともに提供されるドキュメントおよび/またはその
  他の資料に、上記の著作権表示、この条件の一覧、および以下の免責条項を複製する必要がありま
  す。
- 書面による事前の承諾なく、このソフトウェアに由来する製品の宣伝や販売促進に、Kirill Grouchnikov
  およびcontributors（コントリビューター）の名前を使用することは禁止されています。
24 サポートとその他の資料

HPのサポート窓口

この製品のテクニカルサポートについては、次のHPサポートのWebサイトに記載されています。

http://www.hp.com/support（日本語）

このエディションでの新しい情報と変更された情報

この版では、以下の追加および変更が行われました。

・ 構成情報が更新されました。
  • ボリュームの複製と可用性の指定が、「ネットワークRAID」と呼ばれる新しいデータ保護レベルで置き換えられました。
  • アプリケーション管理のスナップショットに機能が追加されました。
  • CMCで、新しい「ベストプラクティスのまとめ」が利用できるようになりました。
・ 「サポートとその他の資料」という章が新たに追加されました。
・ 「はじめに」という章が削除されました。

関連情報

次のドキュメント（およびWebサイト）に、関連情報が記載されています。

・ 『HP StorageWorks P4000 Remote Copyユーザーガイド』
・ 『HP StorageWorks P4000 Multi–Site HA/DR Solution Packユーザーガイド』
・ 『CLIQ — The SAN/iQ Command–Line Interface User Manual』

これらの資料は、HP Business Support CenterのWebサイトの[Manuals]ページから入手できます。

http://www.hp.com/support/manuals（英語）

[Storage]セクションの[Disk Storage Systems]をクリックし、「P4000 SAN Solution」を選択してください。

HPのWebサイト

その他の製品情報については、以下のHPのWebサイトを参照してください。

・ http://www.hp.com/jp（日本語）
・ http://www.hp.com/go/storage（英語）
・ http://www.hp.com/support/manuals（英語）
・ http://www.hp.com/support/downloads（英語）
・ http://www.hp.com/storage/whitepapers（英語）
表記上の規則

表71 表記上の規則

<table>
<thead>
<tr>
<th>規則</th>
<th>要素</th>
</tr>
</thead>
<tbody>
<tr>
<td>ミディアムブルーの語句: 図1</td>
<td>クロスリファレンス・リンクおよび電子メール・アドレス</td>
</tr>
<tr>
<td>ミディアムブルーの下線付き語句（<a href="http://www.hp.com/jp%EF%BC%89">http://www.hp.com/jp）</a></td>
<td>Webサイト・アドレス</td>
</tr>
<tr>
<td>太字</td>
<td>アプリケーション名および強調するべき語句</td>
</tr>
<tr>
<td>括弧[ ]で表示</td>
<td>· キー名</td>
</tr>
<tr>
<td></td>
<td>· ボックスなどのGUIで入力される文字列</td>
</tr>
<tr>
<td></td>
<td>· クリックおよび選択されるGUI（メニューおよびリスト項目、ボタン、チェックボックス）</td>
</tr>
<tr>
<td>Monospaceフォント</td>
<td>· ファイル名およびディレクトリ名</td>
</tr>
<tr>
<td></td>
<td>· システム出力</td>
</tr>
<tr>
<td></td>
<td>· コード</td>
</tr>
<tr>
<td></td>
<td>· コマンドラインで入力した文字列</td>
</tr>
<tr>
<td>イタリック体のMonospaceフォント</td>
<td>· コード変数</td>
</tr>
<tr>
<td></td>
<td>· コマンドライン変数</td>
</tr>
<tr>
<td>太字体のMonospaceフォント</td>
<td>ファイル名、ディレクトリ名、システム出力、コード、コマンドラインで入力される文字列の強調</td>
</tr>
</tbody>
</table>

⚠️ 警告!
その指示に従わないと、人体への傷害や生命の危険を引き起こす恐れがある警告事項を表します。

⚠️ 注意:
その指示に従わないと、装置の損傷やデータの消失を引き起こす恐れがある注意事項を表します。

重要内容:
詳細情報または特定の手順を示します。

注記:
補足情報を示します。
ヒント:
役に立つ情報やショートカットを示します。
以下の用語集は、SAN/iQソフトウェアとHP LeftHand SAN Solutionで使用される用語の定義を示したものです。

**Bond0**
ネットワークインタフェイスのフェールオーバー用に作成されたインタフェイスで、フェールオーバーの構成後のみ表示されます。

**CHAP**
チャレンジハンドシェイク認証プロトコル(CHAP)は、標準の認証プロトコルです。

**CLI**
Command-line interface for the SAN/iQ software

**CMC**
集中管理コンソール。HP LeftHand集中管理コンソールを参照してください。

**DSM**
Device Specific Module。

**DSM for MPIO**
HP LeftHand Networksが提供するベンダー固有のDSMで、Microsoft MPIOフレームワークとの間のインタフェイスとして機能します。

**Graphical Legend**
CMCで使用されるすべてのアイコンについて説明しています。
- [Items]タブ - CMCで表示される仮想項目を表すために使用されるアイコンが表示されます。
- [Hardware]タブ - 物理的なストレージ単位を表すアイコンが表示されます。

**HP LeftHand集中管理コンソール**
SAN/iQソフトウェア用の管理インターフェイス。

**iSCSI**
Internet SCSI。iSCSIプロトコルは、TCP/IPネットワーク経由でSCSI（ブロックレベル）データを伝達するルールとプロセスを定義しています。

**iSCSIの負荷分散**
クラスター内のストレージノード全体で、さまざまなボリュームにiSCSIセッションを均等に分散することで、iSCSIのパフォーマンスとスケーラビリティを向上させます。

**MIB**
管理情報ベース（MIB）は、ストレージノードに対するSNMPの読み取り専用アクセスを提供します。

**Multi-Siteクラスター**
複数のサイト（最大3つのサイト）にまたがるストレージのクラスター。Multi-Siteクラスターは、次の条件の少なくとも1つを満たす必要があります。
- 2つ以上のサイトに存在するストレージノードで構成されます。
- 複数のサブネットにまたがるストレージノードで構成されます。
- 複数のVIPを持つ。単一のサイトであっても、複数のVIPを持つクラスターであれば、Multi-Siteクラスターになります。

**NTP**
Network Time Protocol。

**RAIDクォーラム**
RAIDセット内でデータの整合性を維持するために必要な、正常なディスクの数。

**RAID再構築速度**
ディスクが交換された場合にRAID構成が再構築される速度。
RAIDステータス ストレージノード上のRAIDの状態。
- [Normal] - RAIDは同期が取れた状態で実行中です。処置は不要です。
- [Rebuild] - 新しいディスクがドライバペイに挿入され、RAIDは現在再構築中です。処置は不要です。
- [Degraded] - RAIDが正しく機能していません。ディスクを交換する必要があるか、交換ディスクがドライバペイに挿入されたかどうかの状態です。
- [Off] - ストレージノード上にデータを保存できません。ストレージノードがオフラインで、ネットワークウィンドウ内で赤く光っています。

RAIDデバイス RAID（元はRedundant Array of Inexpensive Disks、現在はRedundant Array of Independent Disks）は、複数のハードドライブを使用して、ドライブ間でデータの共有あるいはデータの複製をするときのデータの格納方法のこと。

RAIDレベル RAID構成の種類。
- RAID 0 - ディスクセット全体でデータがストライプ化されます。
- RAID 1 - 1つのディスクから2つ目のディスクにデータがミラーリングされます。
- RAID 10 - RAID 1ディスクのミラーセット。
- RAID 5 - RAIDセット内のすべてのディスクにデータブロックが分散されます。冗長情報は、ディスク間で分散されたバーティとして保存されます。
- RAID 50 - RAID 5ディスクのミラーセット。

Remote Copyペア プライマリポリュームとそれに関連付けられたリモートポリューム。
resync 使用中のストレージノードが無効になり2番目のストレージノードに書き込みを行った後で、元のストレージノードが復旧した場合、2番目のストレージノードに保存されたデータを、元のストレージノードに正確に戻す必要があります。

SAN/iQインターフェイス 最初に構成したインターフェイスを通じてストレージノードをセットアップした場合は、最初に構成したインターフェイスがSAN/iQソフトウェア通信用のインターフェイスとなります。

SmartCloneポリューム SmartCloneポリュームは、クローンポイントと呼ばれる共通スナップショットから派生した（複数の）ポリュームです。これらのポリュームは、クローンポイントと呼ばれる（共通）スナップショットを共有する、複数のポリュームとして表示されます。このスナップショットデータはSAN上で共有されます。

SNMPトラップ 監視のしきい値に到達したときにSNMPツールがアラートを送信するように、トラブルを使用します。

VIP 仮想IPアドレス。

VSS ポリュームシャドウコピーサービス。

VSS Provider HP LeftHand P4000 VSS Providerは、HP LeftHand Storage Solution上でポリュームシャドウコピーサービスをサポートするハードウェアプロバイダーです。

アクティブ監視 アクティブ監視は、電子メール、CMCのアラート、およびSNMPトラップなどの通知を使用して、ストレージノードの動作状態を追跡します。

アクティブ/パッシブ ネットワークボンディングの1タイプ。NICに障害が発生した場合は、優先されるNICが動作を再開するまで、論理インターフェイスがボンディング内の別のNICを使用することになります。優先されるNICが動作を再開した時点で、そのNIC上のデータ転送も再開されます。
アダプティブ負荷分散はネットワークボンディングの1タイプ。論理インターフェイスがデータ転送の負荷分散を実行します。

アドオンアプリケーション SAN/iQソフトウェアとは別に購入する追加機能。

アプリケーション管理スナップショット（Application-Managed Snapshot）ポリュームを使用しているアプリケーションが休止状態の時に取得した、ポリュームのスナップショット。アプリケーションは休止状態のため、スナップショット内のデータとアプリケーションから見たデータとの一貫性が保たれています。つまり、転送中のデータや書き込み待機用にキャッシュされているデータがない状態で取得されるスナップショットです。

一時スペース 一時的な領域は、スナップショットがマウントされたときに作成され、そのスナップショットにアクセスしたときに、そこに書き込みを行わなければならないアプリケーションやオペレーティングシステムによって使用されます。SmartClone処理を使用すると、一時的な領域をポリュームに変換できます。

オーバープロビジョニングクラスター すべてのポリュームとスナップショットの合計プロビジョニング容量がクラスター上の使用可能な物理容量を超えていると、クラスターのオーバープロビジョニングが発生します。オーバープロビジョニングは、クラスターにスナップショットスケジュールやシンプレビジョニングされたポリュームが関連付けられている場合に発生することがあります。

書き込み可能な領域 「一時スペース」を参照。

仮想IPアドレス 可用性の高いアドレスのことで、クラスター内のあるストレージノードが使用不可になった場合でも、サーバーは同じクラスター内の別のストレージノードを経由してポリュームにアクセスできます。

仮想マシン 仮想ストレージアプライアンス。物理マシン上での実行であっても、SAN/iQソフトウェア1つ以上の同時ストレージ環境を提供します。

仮想マネージャー 管理グループに追加されるマネージャー。クォーラムの再獲得が必要となるまで、ストレージノード上では実行されません。

仮プライマリポリューム フェールオーバーシナリオでプライマリポリュームの役割を引き受けるリモートポリューム。

監視する変数 ストレージノードの動作状態をレポートする変数。この変数は、アラート、電子メール、SNMPトラップを使用して監視できます。

管理グループ 1つ以上のストレージノードの集まりで、コンテナーとして機能します。ユーザーはこの中でストレージノードをクラスター化したり、ストレージ用のポリュームを作成したりします。

共有スナップショットツリー内で古いスナップショットの上層にある新しいスナップショットからクローンポイントを作成すると、共有スナップショットが作成されます。クローンポイントから作成されたすべてのポリュームは、クローンポイントとともに古いスナップショットを共有します。

クォーラム SAN/iQソフトウェアの中で、ストレージノードの実行、通信に必要な、優先権を持つマネージャー。

クラスタークラスターは、ポリュームの作成元となるストレージプールを作成するストレージノードをグループ化したものです。
クローンポイント
複数のボリュームが関連付けられているスナップショット。クローンポイントは、スナップショットまたはスナップショットの一時的な領域からSmartCloneボリュームを作成したときに作成されます。

構成サマリ
構成サマリには、HP LeftHand Storage Solutionにおけるボリューム、スナップショット、ストレージノード、およびiSCSIセッションの概要が表示されます。管理グループによって分類されるストレージネットワークの概要が示されます。

ゴーストストレージノード
[Repair Storage Node]を使用した場合、ストレージノードの修復や交換を行う間、「ゴースト」ストレージノードがクラスター内でブレスホルダーとして機能し、クラスターはそのままの状態を維持できます。

コミュニティ文字列
コミュニティストリングは、認証パスワードとして機能します。SNMPデータへの読み取り専用アクセス可能なホストを識別します。

サーバー
管理グループ中に設定し、ボリュームを割り当てるアプリケーションサーバーのこと。

再ストライプ化
ストライプ化されたデータは、クラスター内のすべてのディスク間で保存されます。場合によっては、データ保護レベルの変更、ストレージノードの追加、またはストレージノードの削除などを行い、ボリュームの構成を変更することもあります。この変更のため、新しい構成においてボリューム内のページを再編成する必要があります。このシステムでは、複数の構成変更を一度に追跡できます。つまり、ボリュームが別の再構成の途中であっても、構成を変更できます。特に、再構成が誤って実行された場合でも、元の構成に戻されるのを待つ必要がありません。「ストライプ化」を参照してください。

サイト
ストレージノードをインストールしているユーザー指定の設定場所。Multi-Site SAN構成では、サイト内にストレージノードを持つ複数のサイトがあり、各サイトには個別のサブネットが割り当てられます。サイトは、論理構成であってもかまいません。たとえば、同一のデータセンター内、部門内、またはアプリケーション内のサブネットなどです。

自動検出
CMCの機能。CMCの接続先のサブネット上でストレージノードを自動的に検索します。CMCによって検出されたストレージノードは、CMCの左側にあるナビゲーションウィンドウに表示されます。

シンプロビジョニング
シンプロビジョニングでは、アプリケーションサーバーに提供するより小さいスペースをSANで予約します。

ストライプ化
ストライプ化されたデータは、アレイ内のすべてのディスクにわたって保存されます。これによりパフォーマンスは向上しますが、フォールトトレランスは提供されません。

ストレージサーバー
ストレージサーバーソフトウェアがカスタマーデータを管理します。SANiQボリュームに対するカスタマーの読み書きに対応して、ストレージサーバーソフトウェアがディスクからの読み書きを行います。

ストレージノードの修復機能
クラスター内に、「ゴースト」ストレージノードの形態でブレスホルダーを作成します。これにより、ディスク交換またはストレージノード自体の交換のためストレージノードを削除し、それをクラスターに戻すまでの間、クラスターを元の状態に維持できます。

スナップショット
バックアップや他のアプリケーションで使用される、ある時点でのボリューム（のコピー）。

スナップショットセット
ボリュームセットに対して作成されるアプリケーション管理のスナップショット。
スプリットミラー スプリットミラーは、プライマリボリュームとの関係が切り離されているリモートスナップショットです。通常、スプリットミラーは、1回限りで使用するために作成され、その後は廃棄されます。

セカンドリサイト プライマリサイトより重要性の低いサイト。この構成では、少数のマネージャーがセカンドリサイトで稼働します。そのため、2サイト構成ではプライマリサイトとセカンドリサイトの間のネットワークリンクに障害が発生すると、セカンドリサイトはオフラインになります。ごく少―(またはゼロ)のアプリケーションサーバーがセカンドリサイトにあります。プライマリサイトに障害が発生した場合は、セカンドリサイトのクォーラムを手動で復旧できます。

ソリューションパック HP LeftHand P4000 Windows Solution Packを指します。

ターゲットシークレット ターゲットシークレットは、ターゲット(ボリューム)がiSCSIイニシエーターにチャレンジを送信したときに、1ウェイおよび2ウェイの両方のCHAPで使用されます。

通信モード ストレージノードとアプリケーションサーバー間のユニキャスト通信。

データセンター 「サイト」とも呼ばれています。データセンタは、アプリケーションサーバー、SANストレージ、ネットワーク機器が存在する環境内の物理的な場です。SAN/iQ Multi-Siteソフトウェアでは、一般にデータセンタをサイトと呼びます。

ディザスタリカバリサイト セカンドリサイトと同様に、ディザスタリカバリサイトは、災害の発生時にSANを稼働するために使用します。

ディスクステータス ディスクのステータスとして以下のいずれかを示します。

- [Active] 電源オンでRAIDに組み込まれています。
- [Uninitialized or Inactive] 電源オンですが、RAIDには組み込まれていません。
- [Off or Missing] 電源がオンになっていません。
- [DMA Off] ハードウェア障害かシャーシへの設置が正しくないことが原因で、ディスクが使用できない状態です。

同期 プライマリボリュームの最新のスナップショットを、新しいリモートスナップショットにコピーするプロセス。フェールバックでの同期は、最新のリモートスナップショットを、プライマリボリュームに戻すプロセスになります。CMCには、この同期化の進捗が表示されます。必要に応じて、プライマリボリュームではないリモートボリューム上にあるデータを含めて、手動で同期することもできます。

登録 アドオンアプリケーションを使用するには、ストレージノードを個別に登録します。登録を行うには、ストレージノードのシリアル番号を送信してライセンスキーを購入し、それをストレージノードに適用する必要があります。

トラップコミュニティストリング トラブルコミュニティストリングは、SNMPを使用するときのクライアントサイドの認証に使用されます。

認証グループ リリース7.0以降では、ボリュームにアクセスするクライアントやエンティティの識別を行います。リリース8.0以降では使用されません。

ネットワークRAID ボリューム単位の同期複製(ミラー化)。クラスター内のすべてのストレージノードでボリュームのデータをミラー化します。HP LeftHand SAN Solution内でデータを保護するためネットワークRAID-10、10+1、または10+2が必要です。

ネットワークウィンドウ 各ストレージノードのステータスをグラフィカルに表示します。ネットワーク上のストレージノードが使用可能であるか、管理グループの一部であるかが表示されます。
ハードウェアレポート

ハードウェアレポートには、ストレージノード、ドライブ、構成のパフォーマンスや動作状態について、指定した時点での統計が表示されます。

バリティ

RAID 5では、リダンドット情報は、ディスク間に分散されるバリティとして保存されます。バリティによって、ストレージノードはデータストレージ用により多くのディスク容量を使用できるようになります。

ピアサイト

プライマリサイトを指定しない場合、すべてのサイトはピアサイトになります。

標準クラスター

「クラスター」とも呼ばれます。標準クラスターは、SAN/iQソフトウェアのMulti-Site機能を使用しないクラスターです。標準クラスターは、
- サイトが指定されたストレージノードを含むことはできません。
- 複数のサブネットにまたがるストレージノードを含むことはできません。
- VIP（仮想IPアドレス）を1つだけ持つことができます。

ブートデバイス

ストレージノードの起動元となるコンパクトフラッシュカード。DOM（Disk On Module）とも呼ばれています。

フェールオーバー

アプリケーションサーバーの操作をリモートボリュームに移すプロセス。これには、手動、スクリプト、またはVMware対応があります。

フェールオーバーマネージャー

VMwareアプリアンスとして動作する特殊なマネージャー。クォーラムタイププレーカーノードをネットワークの第3の場所に配置して、Multi-Site SANクラスターの自動フェールオーバー/フェールバックに対応します。Failover Managerは、VMware ESX Server、VMware Server、VMware Player上で動作するように設計されています。SANハードウェアとは異なるハードウェアにインストールします。

フェールオーバーリカバリ

フェールオーバー後、プライマリボリュームにフェールバックするか、仮プライマリボリュームを永続的なプライマリボリュームにするかを選択するプロセス。

フェールバック

フェールオーバー後、プライマリボリュームを復元し、仮プライマリボリュームをリモートボリュームに戻すプロセス。

複製の優先度

リリース8.5で削除されました。リリース8.5より前のリリースでは、実際の構成内でデータ可用性とデータ冗長性のどちらを優先するかを、複製の優先度で指定できました。リリース8.5以降では、可用性優先がデフォルトです。このデフォルト値は、Cliqコマンドラインインターフェイスを使って変更できます。

複製レベル

リリース8.5では、これはデータ保護レベル（という呼称）に変更されています。リリース8.5より前のリリースでは、複製レベルは、データのコピーがクラスター内でいくつ保持されるかを示していました。

プライマリサイト

HP LeftHand中央管理コンソール（CMC）で管理者が割り当てるサイトの指定の1つです。プライマリサイトは、セカンダリサイトよりも重要です。この構成の場合、プライマリサイトで過半数のマネージャーを実行します。そのため、2サイト構成でプライマリサイトとセカンダリサイトの間のネットワークリンクに障害が発生しても、プライマリサイトはオンラインの状態を続けることができます。一般に、過半数またはすべてのアプリケーションサーバーがプライマリサイトにあります。プライマリサイトを指定しない構成では、サイトを「ピア」サイトと呼びます。

プライマリスナップショット

リモートスナップショットを作成する過程で作成されるプライマリボリュームのスナップショット。プライマリスナップショットは、プライマリボリュームと同じクラスターに格納されます。

プライマリボリューム

アプリケーションサーバーがアクセス（読み取り/書き込み）しているボリューム。プライマリボリュームは、Remote Copyでバックアップするボリュームです。
フルプロビジョニングでは、アプリケーションサーバーに提供されますと同じ量のスペースをSAN上で予約します。

フレームサイズ
フレームサイズは、ネットワーク上を転送されるデータパケットのサイズを指定するものです。

ポイントインタイム復旧
特定の時点で取得されたスナップショットですが、そのポリュームへのアプリケーションからの書き込みは休止状態ではありません。したがって、データは転送中またはキャッシュされている可能性があり、ポリューム上の実際のデータは、アプリケーションから見たデータと一貫性がないことがあります。

ホスト名
ストレージノードのホスト名は、ユーザー定義可能な名前で、ネットワークウィンドウのストレージノードアイコンの下に表示されます。この名前は、ユーザーがネットワークをブラウズするときにも表示されます。

ポリューム
1つ以上のストレージノード上のストレージによって構成される論理エンティティ。rawデータストレージとして使用したり、ファイルシステムによってフォーマットしても、ホストまたはファイルサーバーとして使用することができます。

ボリュームサイズ
ペーパーコーディングシステムやアプリケーションと通信する仮想デバイスのサイズ。

ボリュームセット
1つのアプリケーションで使用される、2つ以上のポリューム。たとえば、Exchangeで、2つのポリュームを使用して1つのStorageGroupをサポートするように構成することができます（一方をメールボックス用に、他方をログ用に）。これらの2つのポリュームはポリュームセットを形成します。

ボリュームリスト
リリース7.0以前では、指定したポリュームと、そのポリュームにアクセス可能な認証グループとの間のリンクを提供しています。リリース8.0以降では使用されません。

ボンディング
物理ネットワークインタフェイスを単一の論理インターフェイスに結合します。

マネージャー
マネージャーソフトウェアは、管理グループ内のストレージノード上で実行されます。指定されたストレージノード上でマネージャーを起動して、グループ内のすべてのストレージノードの動作を制御します。

元のプライマリポリューム
障害の発生後、サービスの提供に復帰したプライマリポリューム。

優先インターネットフェイス
優先インターネットフェイスは、アクティブなバックアップボンディング内のインターネットフェイスで、通常の操作時データ転送に使用されます。

ユニキャスト
ネットワークを介した単一の送信者と単一の受信者間の通信。

ライセンスキー
ライセンスキーによって、アドオンアプリケーション（ライセンス）をストレージノードに登録します。各ストレージノードには、それぞれ独自のライセンスキーが必要です。

ライセンススナップショット
プライマリスナップショットの完全なコピー。リモートスナップショットは、リモートポリュームと同じクラスターに格納されます。

リモートポリューム
リモートスナップショットが作成されるRemote Copy場所にあるポリューム。リモートポリュームにはデータを保持しません。プライマリスナップショットのコピー先をシステムに示すポインタとして働き、リモートポリュームは、以下の環境で保存できます。

- 同じ管理グループの同じクラスター内
- 異なる管理グループの異なるクラスター内
- 同じ管理グループの異なるクラスター内
リンクアグリゲーション動的モード ネットワークボンディングの1タイプ。論理インターフェイスが両方のNICを同時に使用してデータ転送を行います。

ロールバック オリジナルのボリュームを、選択したスナップショットの読み取り/書き込みコピーに置き換えます。リリース8.0での変更点: 新しいボリュームにも同じ名前が付けられます。

ログファイル ストレージノードのログファイルは、ストレージノード上にローカルに保存されると同時に、リモートログサーバーにも書き込まれます。

論理サイト このサイトは、他のサイトから独立したネットワーク上にあり、電力系統が分離されています。なお、実在するサイトと物理的に同じ場所に存在してもかまいません。Failover Manager用のサイトでもあります。
索引

数字および記号
1000BASE Tインターフェイス. 77

A
[Access Volume]ウィザード
サーバー. 35
[Access Volume]ウィザードによるボリュームへのクライアントアクセス. 35
[Availability]タブ. 46

B
BOOTP. 79

C
Challenge Handshake Authentication Protocol「CHAP」を参照。
CHAP
1ウェイ. 317
2ウェイ. 317
iSCSI. 317
構成の要件. 279, 318
異なるイニシエーターの用語. 319
使用. 317
編集. 279
ボリューム. 317
CMC
集中管理コンソール. 25
CSVファイル、パフォーマンス統計のエクスポート. 304

D
[Details]タブ
ストレージノード. 45
DHCP
使用. 79
使用時の警告. 79
DNS
DHCP. 96
静的IPアドレス. 96
ドメイン名の追加. 97
DNSサーバー
IPまたはドメイン名の編集. 97
削除. 98
使用. 96
静的IPアドレス. 96
追加. 97
DSM
2つのNICを使用する場合. 283
DSM for MPIO. 315
サーバーからボリュームへのアクセスに使用するヒント. 321
使用の確認方法. 321
Dynamic Host Configuration Protocol「DHCP」を参照。

E
Eth0とEth1. 77
Ethemetインターフェイス. 77

F
[Feature Registration]タブ. 310, 312
[Full]権限. 110

G
[Getting Started Launch Pad]. 33
[Graphical Legend]
[Hardware]タブ. 29
[Graphical Legend]内の[Hardware]タブ. 29

H
HP
テクニカルサポート. 339
HP LeftHand P4300
容量
RAID 5. 52
RAID 6. 53
HP LeftHand P4500
容量
RAID 5. 52
RAID 6. 53
HP StorageWorks P4300
RAID 6のパリティ. 53

P4000 SAN Solutionユーザーガイド 351
HP StorageWorks P4500 G2およびP4300 G2
RAIDレベルとデフォルト構成, 49
カスタマーサポート
リモートコピーの登録, 310

I
ID LEDの設定, 41
I/Oのパフォーマンス, 192
I/Oパフォーマンス低下, 192
IPアドレス
DHCP/BOOTPの使用, 79
NTPサーバー, 104
SNMPへのアクセス, 114
削除, iSNSサーバー, 191
ストレージノードに対する構成, 78
変更, iSNSサーバー, 191
iSCSI
CHAP, 317
CHAPの構成, 279, 318
iSNSサーバー, 316
仮想IPアドレス, 315
仮想IPの変更または削除, 191
クラスターとVIP, 315
異なるイニシエーターの用語, 319
単一ホスト構成, 319
認証, 317
パフォーマンス, 316
フォールトトレランス, 315
負荷分散, 278, 316
負荷分散と準拠するイニシエーター, 278, 316
ブロックデバイス, 214
ボリューム, 317
ボリュームにログオン, 283
ボリュームを永続的ターゲットとして設定, 283
iSCSIイニシエーター
仮想IPアドレスの構成, 188
iSCSIでの単一ホスト構成, 319
iSCSIでボリュームにログオン, 283
iSNSサーバー
IPアドレスの変更または削除, 191
iSCSIターゲット, 316
追加, 188

M
[Manager IP Addresses]
更新, 101
MIB
SNMP, 115
インストール, 115
バージョン, 115
場所, 115

N
NIC
ネットワークインターフェイスを参照, 77
NICフロー制御, 76
VSA, 71
有効化, 77
要件, 77
NICボンドングの確認, 91
NSM 160
RAIDの再構成, 60
NTP
サーバー, 104
サーバー、削除, 105
サーバー、リスト順の変更, 105
選択, 104
NTPアクセスリストの順序の変更, 105

P
P4300およびP4500
RAIDレベルとデフォルト構成, 49
Multi-Site SAN
とフェールオーバーマネージャー, 149
フェールオーバーマネージャーの使用, 167
Multi-Site SANサイト, 28
SmartCloneボリューム
アプリケーション管理スナップショットからの作成, 247
概要, 251
クローンポイント, 261
サーバーアクセスの割り当て, 255
削除, 272
削除, 複数, 273
作成後のアプリケーション管理スナップショットの使用準備, 235, 236
使用, 253
使用状況, 270
使用例, 252
スペース要件のプランニング, 254
定義, 251
特性, 255
特性, 共有と個別, 257
プランニング, 253
変更に関する要件, 271
編集, 272
マップビューで表示, 268
命名規則のプランニング, 254
用語集, 252
SmartCloneボリュームの使用シナリオの例, 252
SmartCloneボリュームの特性, 255
SmartCloneボリュームの表示, 267
SmartCloneボリュームの命名, 254, 256
SmartCloneボリュームをデータマイニングに使用, 253
SMTP
警告通知のためのSMTP設定, 128
警告通知のための設定, 129
警告通知のための設定, 単一の変数, 127
警告通知のための設定, 複数の変数, 127
SNMP
MIBの使用, 115
アクセス制御, 114
エージェント
無効化, 117
エージェントの有効化, 113
概要, 113
クライアント, 追加, 114
トラブル
無効化, 119
受信者の編集, 118
有効化, 117
使用, 117
トラブル受信者の削除, 118
SNMP MIBのインストール, 115
SNMP MIBの検索, 115

TCP
[Status]タブ, 73
ステータス, 73
速度と二重化, 74
フレームサイズ, 75
[TCP/IP]タブ, 77

V
VIクライアント
VSAのディスクの再作成, 63
VMware ESX Server, 54
VMware Server, 149
VSA
NICのボンディング, 71
NICフロー制御, 71
RAID再構築速度, 59
RAIDの再構成, 59
RAIDレベルとデフォルト構成, 49
仮想RAIDとデータ安全性/可用性, 58
クローン作成, 156
ストレージサーバーが過負荷, 193
速度/二重化, 71
ディスクの再作成, 63
ディスクステータス, 63
ネットワークインターフェイス, 71
ハードウェア診断, 134
ハードウェアレポート, 136
フレームサイズ, 71

W
Webサイト
HP, 339
製品マニュアル, 339

あ
アイコン
集中管理コンソールで使用, 29
ライセンス, 308
アクセス
サーバーからボリューム, 277
アクセス許可
レベルの影響, 281
アクセス権
full, 110
管理者グループ, 111
読み取り専用, 110
読み取りと変更, 110
アクセス権アクセス許可レベルを参照, 281
アクセス制御
SNMP, 114
アクティブインターフェイス
アクティブ/パッシブボンディング, 82
アダプティブ負荷分散ボンディング, 87
リンクアグリゲーション動的モードのボンディング, 86
アクティブ監視, 121
アクティブ/パッシブボンディング, 81
アクティブインターフェイス, 82
構成例, 83
フェールオーバー中, 83
要件, 82
アダプティブ負荷分散ボンディング
アクティブインターフェイス, 87
構成例, 88
フェールオーバー中, 88
優先インターフェイス, 87
要件, 87
アップグレード
ストレージノードのソフトウェア, 45
アップデート
ハードウェア情報レポート, 134
マネージャーのIPアドレス, 101
アドオンアプリケーション
概要, 307
登録, 310
評価, 307
アドオンアプリケーションの登録, 310
アドオンアプリケーションの評価, 307
アプリケーション管理スナップショット
SmartCloneボリュームの作成, 247
一時スペースの変換, 238
削除, 248
作成, 232, 240
使用準備, 235, 236
定義, 229
ボリュームセット用に作成, 233
ボリュームセット用のスケジュールの作成, 241
要件, 232
ロールバック, 247, 248
アラート
アクティブ監視, 121
監視する警告の選択, 122
警告での変数の編集, 123
タブウィンドウ, 122
表示と保存, 129
表示用のウィンドウ, 26

一時スペースの変換
アプリケーション管理スナップショットからの, 238
一時停止
監視, 302
スケジュール設定されたスナップショット, 242
インターフェイス
NICボンディングの削除, 334
管理ユーザー, 333
構成, 331
接続, 331
ネットワーク接続の構成, 333

ウィザード
【Getting Started Launch Pad】，28
ウィンドウ
警告ウィンドウ, 26
タブウィンドウ, 26
ナビゲーションウィンドウ, 26

エージェント
SNMPの有効化, 113
エージェント、SNMPの無効化, 117
エクスポート
サポートログ, 146
パフォーマンスデータ, 304
パフォーマンス統計をCSVファイルに, 304

お客様情報, 314

開始
仮想マネージャーでクォーラムを回復, 184
書き込み失敗警告
書き込み失敗, 200
仮想IPアドレス, 315
iSCSI, 315
構成, iSCSI, 188
削除, iSCSIボリューム, 191
負荷分散使用時のゲートウェイセッション, 316
変更, iSCSI, 191
ホストストレージノード, 315
仮想IPアドレスのホストストレージノード, 315
仮想RAID
データの安全性と可用性, 58
仮想ストレージノード
RAID/デバイス, 54
データ保護, 56

一時スペース
削除, 238
変換後のアプリケーション管理スナップショットの使用準備, 235, 236
読み取り/書き込みスナップショット, 237
読み取り/書き込みスナップショット用の, 216

P4000 SAN Solutionユーザーガイド 355
仮想マシン, 149
仮想マネージャー
概要, 178
起動、クォーラムを回復, 184
機能, 178
構成, 183
削除, 186
使用するための構成, 179
追加, 183
停止, 186
利点, 180
仮想マネージャーの利点, 180
監視
パフォーマンス, 285
監視する警告の選択, 122
監視対象変数
削除, 123
サマリーの表示, 128
追加, 122
編集, 123
リスト, 121
監視対象変数のリスト, 121
監視の再開, 302
管理グループ
仮想マネージャーの使用
構成, 179
障害復旧, 178
概要, 147
起動, 164
機能, 147
構成サマリーの読み方, 152
構成サマリーのロールアップ, 150
構成のガイド, 151
構成のバックアップ, 162
サーバーの追加, 278
削除, 166
作成, 156
シャットダウン, 163
シャットダウン手順, 163
ストレージノードの削除, 165
前提条件, 165
ストレージノードの追加, 157, 158
追加, 155
要件, 156
通常モード, 165
定義, 28
登録, 158
復元, 163
編集, 161
ベストプラクティスの推奨事項, 151
マネージャーの起動, 159
マネージャーの機能, 148
メンテナンスモード, 164
ローカル帯域幅の設定, 161
ログアウト, 159
ログイン, 158
管理グループの関連付け解除
「『Remote Copy Users Guide』」を参照。
管理グループのシャットダウン, 163
管理グループ
シャットダウン, 163
管理グループの日付/時刻の設定
更新, 103
管理者グループ, 109
権限の説明, 110, 111
権限レベル, 110
削除, 111
追加, 109
変更, 110
ユーザーの削除, 111
ユーザーの追加, 111
管理者ユーザー, 107
削除, 108
追加, 107
管理上のセキュリティ, 147
管理情報ベース
「MIB」を参照。
クラスター
2つの負荷の比較. 289, 297
概要. 187
削除. 197
ストレージノードの削除. 190
ストレージノードの修復. 194
ストレージノードの追加. 189
前提条件. 187
追加. 187
定義. 28
データ保護レベル. 201
トラブルシューティング. 192
編集. 189
ポリュームの変更. 225
容量. 190
クラスターのトラブルシューティング
I/Oパフォーマンス低下. 192
ストレージノードの修復機能. 192
クラスターマネージャー. 147
クラスターレベルのデータ保護
ベストプラクティスマニュアル. 155
エリア
統計サンプルデータ. 301
ナビゲーションウィンドウ内の項目. 36
クローン
「SmartCloneポリューム」を参照。
クローンポイント. 261
および共有スナップショット. 262
削除. 273
使用状況. 270
クローンポイント、ポリューム、およびスナップショットの表示. 270
グループ
管理者の削除. 111
デフォルト管理者グループ. 109
グループ、管理者. 109
グループ名
編集. 110

警告
DHCP
静的IPアドレス. 79
ユーニバーサル通信. 79
RAIDを変更するとデータが消去される. 60
[Safe to Remove]ステータスの確認. 66
VSAのクローン作成. 156
管理グループを削除するとデータが失われる. 166
クラスター内のすべてのストレージノードが最小容量のストレージノードの容量で動作. 187
修復したノードを同じ場所に戻す. 195
マネージャーの停止によりデータが消失する可能性. 160
スクリプトの評価, 309
取り消し, 310
無効化, 309
有効化, 309
スケジュール係数
変更, 304
スケジュール設定されたスナップショット, 238
一時停止または再開, 242
要件, 239
スケジュール設定されたスナップショットの再開, 242
スケジュール設定されたスナップショットの日付と時刻, 240
ステータス
NICボンディング, 92
RAID, 60
ストレージサーバーが過負荷, 192
ストレージサーバーが動作不能, 192
ストレージノード, 193
ディスクを安全に取り外せる, 66
ストレージ
概要, 49
クラスターへの追加, 190
構成, 49
ストレージノード上の構成, 49
ストレージサーバーが過負荷, 192
ストレージサーバーが動作不能, 192
ストレージサーバーのステータスとVSA, 193
ストレージスペース
rawスペース, 214
ストレージノード
[Details]タブ, 45
管理グループからの削除, 165
前提条件, 165
管理グループへの追加, 158
既存のクラスターへの追加, 189
クラスターからの削除, 190
交換ディスク, 65
構成カテゴリ, 39
構成の概要, 39
構成ファイル
バックアップ, 42
復元, 42
構成、複数, 36
ゴーストストレージノード, 194
再起動, 43
最初の追加, 33, 157
削除, 165
修復, クラスター内, 194
ステータス, 193
ストレージ構成, 49
設定, 33
ソフトウェアのアップグレード, 45
タスク, 39
追加のノードへのログイン, 40
展開した統計情報の詳細, 134
デフォルトのRAID構成, 49
電源の切断, 44
統計情報, 134
登録, 46
ネットワーク上での検出, 25, 33, 35
ファイルへの統計情報の保存, 135
ラック内における位置の確認, 41
ストレージノード構成のコピー, 36
ストレージノード修復機能
ディスクの交換, 66
ストレージノード上のマネージャー
ベストプラクティスサマリー, 155
ストレージノードの検索, 25, 35
ストレージノードの検出, 33
自動検出, 25
ネットワーク, 35
ストレージノードの修復機能, 194
前提条件, 194
ストレージノードの時刻の同期, 239
ストレージの作成, 199
ストレージのプール, 147
ストレージのプロビジョニング, 199
スペースの割り当て, 200
ストレージプール, 147
ストレージ、プロビジョニング, 199
スナップショット
アプリケーション管理, 229
アプリケーション管理スナップショットの作成, 232, 240
一時停止または再開, 242
管理, 容量
しきい値, 207
概要, 206, 229
共有, 262
サーバーアクセスの制御, 277
サーバーへの割り当て, 280, 281
サーバー割り当ての編集, 282
サイズ, 207
サイズのプランニング, 231
削除, 248
削除に関する制限事項, 248
しきい値の変更, 234
使用, 229
スケジュール, 238
スケジュールの削除, 242, 243
スケジュールの追加, 239
スケジュールの編集, 242
スケジュールの要件, 239
前提条件, 229
ソフトウェアのアップグレード, 231
追加, 232
定義, 28
ネットワークRAID-5およびネットワークRAID-6 の削除、スペース要件, 249
バックアップとの違い, 206, 229
プランニング, 207, 231
編集, 234
編集の要件, 239
ボリュームセット用のアプリケーション管理ス ナップショットの作成, 233
ボリュームセット用のスケジュールについて, 241
ボリュームのコピー, 234
ボリュームのロールバック, 244
ポイントインタイム, 229
マウント, 234
容量管理
スケジュール設定されたスナップショット, 239
読み取り/書き込み
一時スペースの削除, 238
読み取り/書き込みスナップショット用の一時ス ペース, 216, 237
スナップショットのマウント, 234
スプーフィング, 317
スペースの割り当て, 200
スペース要件
SmartCloneボリュームのプランニング, 254

せ
正常, 42
正常なRAID
ステータス, 60
静的IPアドレスとDNS, 96
セキュリティ
管理, 147
ストレージリソース, 147
設定
IPアドレス, 78
NIC、速度と二重化, 74
RAID再構築速度, 59
ストレージノード, 33
複数のストレージノード, 36
ローカル帯域幅, 161
説明
変更、クラスター, 189
変更、ボリューム, 225
線
ハイライト, 303
パフォーマンスモニターでの色の変更, 303
パフォーマンスモニターでのスタイルの変更, 303
パフォーマンスモニターでの表示または非表示, 303
線のハイライト, 303
前提条件, 251
管理グループからストレージノードを削除, 165
クラスター, 187
サーバー, 278
サーバーのボリュームへの割り当て, 281
スナップショット, 229
パフォーマンスモニター, 285
ボリューム
変更, 219
削除, 226, 227, 244, 245, 249

そ
速度/二重化
VSA, 71
設定, 74
ソフトウェア
ストレージノードのアップグレード, 45
ソフトウェアのアップグレード
アップグレードファイルのコピー, 45
ストレージノードへのコピー, 45

た
帯域幅、ネットワーク速度
ベストプラクティスサマリー, 155
帯域幅、ローカル設定の変更, 161
タイプ
「ボリューム」を参照。
タイムゾーン
設定, 106
パフォーマンスモニター用の変更, 298
タブウィンドウ, 29
単一ノード、SATAを使用する大容量クラスター
ベストプラクティスサマリー, 155

つ
追加
DNSサーバー, 97
DNSドメイン名, 97
iSNSサーバー, 188
SNMPクライアント, 114
仮想マネージャー, 183
監視対象変数, 122
管理グループ, 155
要件, 156
管理グループへのサーバー, 278
管理者グループ, 109
管理者ユーザー, 107
クラスター, 187
ストレージの追加, 190
グループにユーザーを, 111
ストレージノードを管理グループへ, 158
ストレージノードを既存のクラスターへ, 189
ストレージを最初に, 33
スナップショット, 232
要件, 230
スナップショットのスケジュール, 239
統計, 299
ドメイン名をDNSサフィックスに, 97
ボリューム, 222
要件, 220
マネージャーを管理グループへ追加, 159
リモートログ, 144
ルート, 99
ツールバー
SmartCloneのマップビュー, 268
パフォーマンスモニターウィンドウ, 292

て
定義
RAID構成, 51
SmartCloneボリューム, 251
管理グループ, 28
クラスター, 28
サーバー, 28
サイト, 28
スナップショット, 28
ボリューム, 28
リモートコピー, 28
定義されるRAIDレベル, 323

停止
仮想マネージャー, 186
マネージャー, 160
影響, 160
テクニカルサポート, 339
HP, 339
ログファイルの保存用, 144
ディスクドライブ
ディスクを参照, 62
ディスク
CMCによる電源切断, 68
CMCによる電源投入, 68
RAID 1, RAID 10, RAID 5, RAID 50構成での
交換, 68
VSA, 再作成, 63
管理, 62
交換, 68, 69
交換時のストレージノード修復機能の使用, 66
交換, ストレージノード, 65
交換チェックリスト, 66
交換, 複製されたクラスター内, 194
ストレージノード内での管理, 62
ディスクセットアップレポート, 62
プラットフォーム内での配置, 63
ディスク交換のチェックリスト, 66
ディスクスペース, 64
ディスクスペース使用状況, 214
ディスクセットアップ, 64
タブ, 62
レポート, 62
ディスクの管理, 62
ディスクレベルのデータ保護
ディスクステータス, 64
VSA, 63
ディスクスペース使用状況, 214
ディスクセットアップ, 64
データ, 62
ディスクレベルのデータ保護
ディスクレベルのデータ保護, 155
ディスクレポート, 62
ディスクを安全に取り外せる状態, 66
データ
およびボリュームの削除, 226
スナップショットによる保存, 231
統計サンプルのクリア, 301
データ冗長性
RAIDステータス, 60
データ伝送, 76
データの再構築
マネージャーを実行していない場合, 324
データの読み書きとRAIDステータス, 60
データ保護, 201
プランニング, 201
レベルの設定に関する要件, 221
レベルの変更, ボリューム, 225
データ保護レベル
クラスター内で設定可能な, 201
クラスター内のデータ保護レベルが構成された
ストレージノードの修復, 194
設定に関する要件, 221
ネットワークRAID-10, 202
ネットワークRAID-10+2, 203
ネットワークRAID-5, 204
ネットワークRAID-6, 205
ネットワークRAID-10+1, 203
ボリュームの, 201

デフォルト
パフォーマンスモニターのリストア, 302
電源投入
ディスク、CMCを使用, 68
電源の切断
ストレージノード, 44
ディスク、CMCを使用, 68

と
統計
削除, 301
詳細の表示, 301
追加, 299
定義されたパフォーマンスモニター, 295
パフォーマンスをCSVファイルにエクスポート, 304
統計サンプルデータ
クリア, 301
登録情報, 314
トラブル
SNMP, 117
SNMP受信者の編集, 118
SNMPの無効化, 119
SNMPの有効化, 117
送信テスト, 118
トラブル受信者
削除, 118
トラブルシューティング
起動とシャットダウンのオプション, 172
ネットワーク設定、フェールオーバーマネージャーの検出, 173
取り消し
スクリプトの評価, 310
リモートコピーの評価, 308
ドキュメント
関連情報, 339
ドメインネームサーバー
「DNSサーバー」を参照。
ドメイン名
DNSサフィックスへの追加, 97
DNSサフィックスリストからの削除, 98
DNSサフィックスリスト内の編集, 98
ドライブ障害, 53

に対応する
ナビゲーションウィンドウ, 26
項目のクリア, 36

に
二重化、構成, 74
認証グループ
ボリュームリスト, 277

ね
ネットワーク
概要, 71
ストレージノードの検出, 25, 35
設定の管理, 71
フェールオーバーマネージャーの設定、トラブルシューティング, 173
ネットワークRAID-10
説明, 202
ネットワークRAID-10+2
説明, 203
ネットワークRAID-5
説明, 204
ネットワークRAID-6
説明, 205
ネットワークRAID-10+1
説明, 203
ネットワークインターフェース, 85
Ethernetケーブルの接続, 77
SAN/iQ通信用, 100
VSA, 71
確立, 77
構成, 78, 96
識別, 77
速度と二重化の設定, 74
ボンディング, 80
無効化または切断, 95
ネットワークインターフェースの確立, 77
ネットワークインターフェースの識別, 77

な
ネットワークインターフェイスのボンディング. 80
VSA, 71
アクティブ/パッシブ, 81
アダプティブ負荷分散, 87
確認, 91
構成, 89
削除, 94, 334
削除後の通信, 94
作成, 90
使用によるパフォーマンス向上の判断, 289
ステータス, 92
設定, 81
フロー制御の設定, 77
物理インターフェイスと論理インターフェイス, 81
ベストプラクティス, 89
要件, 80
アダプティブ負荷分散, 87
リンクアグリゲーション動的モード, 85
ネットワークウィンドウ
ナビゲーションウィンドウ, 27
ネットワーク上でフェールオーバーマネージャを検出, 173
ネットワーク速度と帯域幅
ベストプラクティスサマリー, 155
ネットワークタイムプロトコル
「NTP」を参照。

の
ノード
ネットワーク上での検出, 25, 35

は
ハードウェア診断, 130
診断テストのリスト, 131
タブウィンドウ, 130
ハードウェア情報
ログファイル, 143
ハードウェア情報レポート, 130, 134
更新, 134
詳細, 136
生成, 134
展開した詳細, 134
ファイルへの保存, 135
バックアップ
管理グループの構成の記述, 162
管理グループの構成, バイナリ, 162
ストレージノード構成ファイル, 42
リモートコピー・リレーションシップのある管理グループ, 162
バックアップと復元
ストレージノード構成ファイル, 41
パワード
構成インターフェイスでの変更, 333

パフォーマンス
「I/Oのパフォーマンス」を参照。
パフォーマンスとiSCSI, 316
パフォーマンスの自動保護, 192
ストレージサーバーが過負荷, 192
ストレージサーバーが動作不能, 192
ボリュームの可用性, 192
パフォーマンスマネージャー
2つのクラスターの負荷の比較の例, 289
2つのボリュームの負荷の比較の例, 290
NICボンディングの例, 289
SAN上のアプリケーションに関する理解, 287
SANの向上計画, 288
SANのパフォーマンスに関する理解, 286
一時停止, 302
概要, 285
現在のSANの動作状況の例, 286
再開, 302
障害の分離の例, 287
前提条件, 285
データのエクスポート, 304
統計, 定義, 295
理解と使用, 285
ワークロードの特性付けの例, 286
パフォーマンスマネージャーウィンドウ
アクセス, 291
イメージファイルへの保存, 305
各部の定義, 291
グラフ, 294
ツールバー, 292
テーブル, 294
パフォーマンスマネージャーでの監視間隔, 298
パフォーマンスマネージャーのグラフ
スケール係数の変更, 304
線の色の変更, 303
線のスタイルの変更, 303
線の非表示, 303
線の表示, 303
変更, 302
パフォーマンスマネージャーのデフォルトのリストア, 302

ひ
日付
NTPで設定, 104
NTPなしで設定, 105
日付と時刻の設定, 103
NTP, 104
NTPなし, 105
管理グループ, 103
概要, 103
更新, 管理グループ, 103
タイムゾーン, タイムゾーン上, 103, 105, 106
タイムゾーンの設定, 106
手順, 103, 105
非優先のNTPサーバー, 104
評価
アドオンアプリケーション, 307
スクリプト, 309
取り消し, 310
リモートコピー, 308
取り消し, 308
評価期間の残り時間, 308
表記上の
規則, 340
表記上の規則, 340
表示
監視対象変数のサマリー, 128
ディスクセットアップレポート, 62
ディスクレポート, 62
統計の詳細, 301
表示、[RAID Setup]レポート, 54

ふ
ファイルシステム, 214
ボリューム上へのマウント, 219
フェールオーバーマネージャー, 149
Multi–Site SAN, 149
Multi–Site SANでの使用, 167
概要, 167
構成, 168
使用するための要件, 169
トラブルシューティング, 172
要件, 167
フェールオーバーマネージャーのインストール, 169
フォールトトレランス, 315
クォーラムとマネージャー, 148
ネットワークインタフェイスのボンディング, 80
ボリュームのデータ保護レベル, 201
マネージャーの停止, 160
負荷分散
iSCSI, 278, 316
使用時のゲートウェイセッション, 316
準拠するiSCSIイニシエーター, 278, 316
編集, 279
負荷分散使用時のVIPのゲートウェイセッション, 316

へ
変更
NTPサーバーのアクセス順序, 105
RAIDを変更するとデータが消去される, 60
管理グループ, 161
管理者グループの権限, 110
管理者グループの説明, 110
クラスター構成, 189
クラスター、ボリューム, 225
ストレージノードのIPアドレス, 78
スナップショット, 234
スナップショットのしきい値, 234
データ保護レベル, 225
ホスト名, 40
ボリュームサイズ, 225
ボリュームの説明, 225
メンテナンスモードから通常モードへ, 165
ユーザーパスワード, 108
ローカル帯域幅, 161
編集

DNSサーバーのIPアドレス, 97
DNSサーバーのドメイン名, 97
DNSサフィックスリスト内のドメイン名, 98
NTPサーバー, 104
SmartCloneポリューム, 272
SNMPトラップ受信者, 118
監視対象変数, 123
管理グループ, 161
クラスター, 189
グループ名, 110
サーバー, 279
スナップショット, 234
スナップショットのスケジュール, 242
ネットワークインターフェイス
 フレームサイズ, 75
 速度と二重化, 74
 フレームサイズ, 76
 ポリューム, 223
 ルート, 99
変数、監視対象
 恒久的, 123
 削除, 123
 サマリーの表示, 128
 追加, 122
 編集, 123
 リスト, 124
 ログファイルのダウンロード, 129
 変数ログファイルのダウンロード, 129
 ベストプラクティス
 NICのボンディング, 89
 管理グループストレージ項目の推奨数, 151
 障害復旧に備えたクラスターの構成, 181
 スナップショットの使用
 データマイニングのソースポリュームとして, 231
 データ保存, 231
 データ削除に対する保護, 231
 速度と二重化の設定, 74
 フレームサイズ, 75
 ポリュームサイズの設定, 200
 リンクアグリゲーション動的モード, 80
 ベストプラクティスサマリー
 RAIDを使用したディスク保護, 155
 概要, 154
 クラスターレベルのデータ保護, 155
 大容量の単一ノードSATAクラスター, 155
 ディスクレベルのデータ保護, 155
 ネットワーク速度と帯域幅, 155
 ポリュームレベルのデータ保護, 155
 マネージャーを実行するノード, 155

ほ
保護
 RAIDとポリューム複製, 56
 ホスト名
 SNMPへのアクセス, 114
 解決, 40
 変更, 40
 ホスト名の解決, 40
 保存
 監視対象変数のログファイル, 129
 診断レポート, 131
 ストレージノード構成のログファイル, 42
 単一の変数の履歴, 129
 テクニカルサポート用のログファイル, 144
 ログファイル
 管理グループの構成, 162
 ホットスペア
 RAID 5, 52
 ホットスワップ, 53
 ディスクを安全に取り外せる状態, 66
 本文中の記号, 340
ボリューム
2つの負荷の比較, 290
[Access Volume]ウィザード, 35
iSCSI, 317
CHAP, 317
ウィザードによる作成, 34
永続的ターゲットとして設定, 283
概要, 219
サーバーアクセスの制御, 277
サーバーへの割り当て, 280, 281
サーバーワークその当時, 282
サーバー割り当ての編集, 282
再ストライプ化, 69
サイズの変更, 225
削除, 226
削除に関する制限事項, 226
作成、SmartClone, 264
使用のためのフォーマット, 283
前提条件
追加, 219
削除, 226, 227, 244, 245, 249
タイプ
プライマリ, 220
リモート, 220
追加, 222
定義, 28
データ保護レベル, 201
ファイルシステムのマウント, 219
プランニング, 200, 219
サイズ, 199
タイプ, 220
変更
クラスター, 225
データ保護レベル, 225
説明, 225
編集, 223
要件
追加, 220
変更, 224
ロールバック, 244
アプリケーションサーバーの要件, 244
ロールバックに関する制限事項, 244
ログオン, 283
ボリュームサイズ
設定に関するベストプラクティス, 200
ボリュームサイズを増やす, 225
ボリュームサイズを減らす, 225
ロールバック
アプリケーション管理スナップショットの作成, 233
スナップショット作成スケジュールの作成, 241
用のアプリケーション管理スナップショットの削除, 226, 248
ボリュームデータの再構築, 328

ボリュームとスナップショット
可用性, 46
ボリュームとスナップショットの可用性, 46, 192
ボリュームとスナップショットへのサーバーの割り当て, 280, 281, 282
ボリュームの可用性, 192
ボリュームのクローン, 253
ボリュームのロールバック, 244
アプリケーション管理スナップショットからの, 247, 248
制限事項, 244
ボリュームレベルのデータ保護
ベストプラクティスサマリー, 155
ポイントインタイムスナップショット
定義, 229

ま
マザーボードのPort1とマザーボードのPort2, 77
マップビュー, 267
SmartCloneボリューム, 268
ツールバー, 268
ビューの変更, 268
マニュアル
HP Webサイト, 339

マネージャー
仮想, 178
概要, 147
機能, 148
クォーラムとフォールトトレランス, 148
停止, 160
停止が及ぼす影響, 160
フェールオーバー, 149
フェールオーバーマネージャーの構成, 168

む
無効化
SNMPエージェント, 117
SNMPトラップ, 119
ネットワークインターフェイス, 95
無効化されたネットワークインターフェイス, 構成, 96

め
メニューーバー, 26
メンテナンスモード
管理グループ, 164
通常モードへの変更, 165
ゆ
有効化
NICフロー制御, 77
SNMPトラップ, 117
ユーザーや
管理者, 107
管理者の削除, 108
デフォルト管理者ユーザー, 107
パスワード, 108
編集, 108
ユーザーへのグループの追加, 108
ユーザー名の変更, 108
優先NTPサーバー, 104
優先インタフェイス
アクティブ/パスティブボンディング, 82
アダプティブ負荷分散, 87
リンクアグリゲーション動的モードのボンディング, 86
よ
要件
iSCSIのためのCHAPの構成, 279, 318
アプリケーション管理スナップショット, 232
仮想マネージャー, 180
システム、ESX Server上のフェールオーバーマネージャー, 168
システム、VMware ServerまたはVMware Player上のフェールオーバーマネージャー, 167
スナップショットのスケジュール, 239
スナップショットの追加, 229
スナップショットの編集, 239
ネットワークインタフェイスのボンディング, 80
フェールオーバーマネージャー, 167
複数のフェールオーバーマネージャーの使用, 169
変更、SmartCloneボリューム, 271
ボリュームの追加, 220
ボリュームの変更, 224
ボリュームのロールバック, 244
用語集
SAN/iQソフトウェアとLeftHand SAN, 343
SmartCloneボリューム, 252
容量
RAID 0, 51
RAID 10, 51
RAID 5, 52
RAID 6, 53
SAN, 199
クラスター, 187
ストレージノード, 187
ディスク容量とボリュームサイズ, 214
プランニング、シンプルプロビジョニング, 200
プランニング、フルプロビジョニング, 200
ボリュームサイズのプランニング, 199
容量、RAID6, 53
容量管理
スケジュール設定されたスナップショット, 239
スナップショットのしきい値, 207
容量のプランニング
シンプルプロビジョニングの方法, 200
フルプロビジョニングの方法, 200
読み取り専用のボリューム, 234
ら
ライセンスアイコン, 308
ライセンスキーキー, 310
ライセンス情報, 314
ラック内におけるストレージノードの位置の確認, 41
り
リセット
構成インタフェイスでDSMを, 335
リモートコピー
登録, 310
評価, 308
評価の取り消し, 308
リモートコピーの定義, 28
リモートボリューム, 220
リモートログファイル, 144
「『HP StorageWorks P4000 Remote Copyユーザーガイド』」を参照。
リモートログファイル, 144
ターゲットコンピューターの構成, 145
追加, 144
古いログの削除, 145
リモートログファイルターゲットコンピューターの変更, 145
利用可能なノード, 28
リンクアグリゲーション動的モードのボンディングアクティブインタフェイス, 86
リンクアグリゲーション動的モードのボンディング、85
構成例、86
フェールオーバー中、86
優先インターフェイス、86
要件、85

ルーティング
削除、100
ネットワークの追加、99
編集、ネットワーク、99
ルーティングテーブル
管理、99

劣化RAID、60
レポート、121
RAID用のディスクセットアップ、62
アクティブ、121
診断、131
ストレージノードの統計情報、134
生成、134
ハードウェア、130
ハードウェア情報、134
ハードウェア情報をレポートの詳細、136
ファイルへのハードウェアレポートの保存、135
レポートの概要、130
レポート
[RAID Setup], 54
ディスク、62

ローカル帯域幅、設定、161
ログ
サポートログのエクスポート、146
ログアウト
管理グループ、159
ログイン
[Available Nodes]プールに含まれているストレージノード、27
管理グループ、158
管理グループ内のストレージノードへ、40
ログファイル
管理グループの構成ファイルのバックアップ、162
ストレージノード構成ファイルのバックアップ、42
ダウンロード、変数、129
テクニカルサポート用に保存、144
ハードウェア情報、143