Abstract
This guide provides installation and operation guidance for the HP ProLiant SL Advanced Power Manager. This guide is for the person who installs, administers, and troubleshoots servers and storage systems.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>8</td>
</tr>
<tr>
<td>SL-APM overview</td>
<td>8</td>
</tr>
<tr>
<td>SL-APM front view</td>
<td>8</td>
</tr>
<tr>
<td>SL-APM rear view</td>
<td>8</td>
</tr>
<tr>
<td>HP ProLiant SL Advanced Power Manager Distribution Module</td>
<td>10</td>
</tr>
<tr>
<td>HP Intelligent Modular PDU Managed Extension Bar</td>
<td>10</td>
</tr>
<tr>
<td>Using RJ-45 connections</td>
<td>11</td>
</tr>
<tr>
<td>Naming and numbering conventions</td>
<td>11</td>
</tr>
<tr>
<td>Rack chassis numbering</td>
<td>21</td>
</tr>
<tr>
<td>Automatic discovery</td>
<td>22</td>
</tr>
<tr>
<td>Installation and configuration</td>
<td>23</td>
</tr>
<tr>
<td>Prerequisites for installation</td>
<td>23</td>
</tr>
<tr>
<td>Preparing for installation</td>
<td>23</td>
</tr>
<tr>
<td>Installing the SL-APM hardware</td>
<td>23</td>
</tr>
<tr>
<td>Configuring the SL-APM for the first time</td>
<td>23</td>
</tr>
<tr>
<td>Configuring the SL-APM</td>
<td>23</td>
</tr>
<tr>
<td>Serial port configuration</td>
<td>25</td>
</tr>
<tr>
<td>Network configuration</td>
<td>25</td>
</tr>
<tr>
<td>Duplicating the configuration</td>
<td>26</td>
</tr>
<tr>
<td>Command Line Interface</td>
<td>27</td>
</tr>
<tr>
<td>Command line conventions</td>
<td>27</td>
</tr>
<tr>
<td>Accessing the SL-APM command line interface</td>
<td>27</td>
</tr>
<tr>
<td>Accessing the SL-APM through SSH</td>
<td>27</td>
</tr>
<tr>
<td>Accessing the SL-APM through Telnet</td>
<td>27</td>
</tr>
<tr>
<td>Accessing the SL-APM through the serial port</td>
<td>28</td>
</tr>
<tr>
<td>Saving configurations</td>
<td>28</td>
</tr>
<tr>
<td>Topology and inventory</td>
<td>28</td>
</tr>
<tr>
<td>Showing the rack</td>
<td>28</td>
</tr>
<tr>
<td>Showing the servers</td>
<td>30</td>
</tr>
<tr>
<td>Showing topology</td>
<td>30</td>
</tr>
<tr>
<td>Showing assetinfo</td>
<td>30</td>
</tr>
<tr>
<td>Showing the MAC address</td>
<td>32</td>
</tr>
<tr>
<td>SL-APM logging</td>
<td>33</td>
</tr>
<tr>
<td>Overview of logging</td>
<td>33</td>
</tr>
<tr>
<td>Internal logging</td>
<td>33</td>
</tr>
<tr>
<td>Showing and clearing the event log</td>
<td>33</td>
</tr>
<tr>
<td>Showing and clearing the fault log</td>
<td>34</td>
</tr>
<tr>
<td>External logging</td>
<td>34</td>
</tr>
<tr>
<td>SL-APM fault messages</td>
<td>35</td>
</tr>
<tr>
<td>Working with RADIUS servers</td>
<td>36</td>
</tr>
<tr>
<td>Adding and removing a RADIUS server</td>
<td>36</td>
</tr>
<tr>
<td>Enabling and disabling a RADIUS server</td>
<td>36</td>
</tr>
<tr>
<td>Showing a RADIUS server</td>
<td>37</td>
</tr>
<tr>
<td>Power capping</td>
<td>38</td>
</tr>
</tbody>
</table>
Introduction

SL-APM overview

SL-APM is a point of contact for HP ProLiant Scalable System administration. SL-APM enables:

- Discovery of server rack components by topology
- Node-level power monitoring and control
- Easy node and identification through UID indicators
- Support of logging through standard syslog servers
- The power capping feature for chassis and rack levels:
 - SL-APM must have version 1.30 or higher.
 - For HP ProLiant SL s6500 Chassis only, SL Chassis Firmware must have version 4.30 or higher.
 - SL-APM is not supported for HP ProLiant DL1000, DL2000, and SL6000 Chassis.

NOTE: The use of the term server represents nodes, server trays, server nodes, and cartridges.

SL-APM front view

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SL-APM controller slot 1</td>
</tr>
<tr>
<td>2</td>
<td>SL-APM controller slot 2</td>
</tr>
<tr>
<td>3</td>
<td>10/100 network interface</td>
</tr>
<tr>
<td>4</td>
<td>Serial console</td>
</tr>
</tbody>
</table>

![SL-APM front view diagram]
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Power (green) LED</td>
</tr>
<tr>
<td>6</td>
<td>Fault (red) LED</td>
</tr>
<tr>
<td>7</td>
<td>PDM1 for HP Intelligent Modular PDU Extension Bar</td>
</tr>
<tr>
<td>8</td>
<td>PDM2 for HP Intelligent Modular PDU Extension Bar</td>
</tr>
<tr>
<td>9</td>
<td>SL-APM Distribution Module ports (see Caution below)</td>
</tr>
<tr>
<td>10</td>
<td>Network interface 100mb activity (amber) LED, indicates that the link is in 100Base-T mode and blinks when transmitting or receiving data. When the link is 10mb, the LED does not illuminate.</td>
</tr>
<tr>
<td>11</td>
<td>Network interface connection (green) LED, indicates that the Ethernet link is established</td>
</tr>
<tr>
<td>12</td>
<td>Distribution Module port connection (green) LED, indicates that SL-APM Distribution Module is connected to the port</td>
</tr>
<tr>
<td>13</td>
<td>Distribution Module port activity (green) LED, indicates that there is activity between the SL-APM and the SL-APM Distribution Module</td>
</tr>
</tbody>
</table>

⚠️ **CAUTION:** Do not connect the SL-APM Distribution Module port (item 9) to an Ethernet hub or switch.

NOTE: HP recommends configuring the SL-APM so that it controls only one rack.

SL-APM has eight distribution module ports on the front of the unit. Each distribution module port, in turn, connects to a port on a SL-APM Distribution Module, which has up to 10 connections to SL Scalable System enclosures.

You can insert a SL-APM controller into either available slot.

SL-APM rear view

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AC power input 1</td>
</tr>
<tr>
<td>2</td>
<td>AC power input 2</td>
</tr>
</tbody>
</table>
HP ProLiant SL Advanced Power Manager Distribution Module

The distribution module includes a connector bay for the SL-APM and cables for SL Scalable Series servers.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SL-APM connector port</td>
</tr>
<tr>
<td>2</td>
<td>SL Scalable Series server connectors</td>
</tr>
<tr>
<td>3</td>
<td>Power (green) LED, which indicates connection to port</td>
</tr>
<tr>
<td>4</td>
<td>Activity (amber) LED, which indicates activity to SL-APM Distribution Module</td>
</tr>
</tbody>
</table>

HP Intelligent Modular PDU Managed Extension Bar

The extension bar provides power management for non-SL enclosures (switches, routers, and so on). The extension bar, when used with the HP cable part number SF672A and SL-APM, is not intended for power management of SL enclosures.
The total rating of the Intelligent Extension Bar is 16 A.

<table>
<thead>
<tr>
<th>Callout</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Row of green power indicators (one for each outlet)</td>
</tr>
<tr>
<td>2</td>
<td>Row of blue UID indicators (one for each outlet)</td>
</tr>
<tr>
<td>3</td>
<td>2.4-m (8-ft) input power cord</td>
</tr>
<tr>
<td>4</td>
<td>Five managed 10 A, IEC-320 C13 outlets</td>
</tr>
<tr>
<td>5</td>
<td>Blue UID indicator for the Intelligent Extension Bar</td>
</tr>
<tr>
<td>6</td>
<td>Green power indicator for the Intelligent Extension Bar</td>
</tr>
<tr>
<td>7</td>
<td>Reset button*</td>
</tr>
</tbody>
</table>

*When you press the Reset button, power to the managed outlets is maintained. Management functionality is momentarily lost while the Intelligent Extension Bar resets.

Using RJ-45 connections

You can have one SL-APM per power network (one CLI interface over an Ethernet). One SL-APM can connect up to eight SL-APM Distribution Modules. Each SL-APM Distribution Module, in turn, can connect up to 10 SL chassis with an RJ-45 connection or an 8-pin standard connector that comes with the RDM.

Naming and numbering conventions

The following figures show basic SL-APM configuration and node numbering conventions on various scalable system enclosures.
2U-chassis, DL2000 Scalable System Enclosure with four half-width 1U nodes

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SL-APM</td>
</tr>
<tr>
<td>2</td>
<td>DL series enclosure</td>
</tr>
<tr>
<td>3</td>
<td>Bay 4 of a 2U-chassis, DL2000 Scalable System Enclosure with four half-width 1U nodes</td>
</tr>
</tbody>
</table>

SL2500 Chassis with two 2U half-width nodes

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SL-APM</td>
</tr>
<tr>
<td>2</td>
<td>SL-APM Distribution Module</td>
</tr>
<tr>
<td>3</td>
<td>SL series enclosure</td>
</tr>
<tr>
<td>4</td>
<td>SL2500 Chassis with two 2U half-width nodes</td>
</tr>
</tbody>
</table>
SL2500 Chassis with four 1U half-width nodes

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SL-APM</td>
</tr>
<tr>
<td>2</td>
<td>SL-APM Distribution Module</td>
</tr>
<tr>
<td>3</td>
<td>SL series enclosure</td>
</tr>
<tr>
<td>4</td>
<td>SL2500 Chassis with four 1U half-width nodes</td>
</tr>
</tbody>
</table>

2U-chassis, SL6000 Scalable System Enclosure with four 1U half-width nodes

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SL-APM</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>2</td>
<td>SL-APM Distribution Module</td>
</tr>
<tr>
<td>3</td>
<td>SL series enclosure</td>
</tr>
<tr>
<td>4</td>
<td>Bay 3 of a 2U-chassis, SL6000 Scalable System Enclosure with four 1U half-width nodes</td>
</tr>
</tbody>
</table>

4U-chassis, s6500 Scalable System Enclosure with eight 1U half-width nodes

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SL-APM</td>
</tr>
<tr>
<td>2</td>
<td>SL-APM Distribution Module</td>
</tr>
<tr>
<td>3</td>
<td>SL series enclosure</td>
</tr>
<tr>
<td>4</td>
<td>Bay 4 of a 4U-chassis, s6500 Scalable System Enclosure with eight 1U half-width nodes</td>
</tr>
</tbody>
</table>

s6500 Scalable System Enclosure rear panel components
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SL-APM interface</td>
</tr>
<tr>
<td>2</td>
<td>Power supply 4</td>
</tr>
<tr>
<td>3</td>
<td>Power supply 3</td>
</tr>
<tr>
<td>4</td>
<td>Power supply 2</td>
</tr>
<tr>
<td>5</td>
<td>Power supply 1</td>
</tr>
</tbody>
</table>

4U-chassis, s6500 Scalable System Enclosure with two 4U half-width nodes

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SL-APM</td>
</tr>
<tr>
<td>2</td>
<td>SL-APM Distribution Module</td>
</tr>
<tr>
<td>3</td>
<td>SL series enclosure</td>
</tr>
<tr>
<td>4</td>
<td>Bay 1 of a 4U-chassis, s6500 Scalable System Enclosure with two 4U half-width nodes</td>
</tr>
</tbody>
</table>
4U-chassis, s6500 Scalable System Enclosure with four 2U half-width nodes

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SL-APM</td>
</tr>
<tr>
<td>2</td>
<td>SL-APM Distribution Module</td>
</tr>
<tr>
<td>3</td>
<td>SL series enclosure</td>
</tr>
<tr>
<td>4</td>
<td>Bay 3 of a 4U-chassis, s6500 Scalable System Enclosure with four 2U half-width nodes</td>
</tr>
</tbody>
</table>

1U-chassis, with four 1U full-width nodes
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SL-APM</td>
</tr>
<tr>
<td>2</td>
<td>SL-APM Distribution Module</td>
</tr>
<tr>
<td>3</td>
<td>SL series enclosure</td>
</tr>
<tr>
<td>4</td>
<td>Bay 4 of a 1U-chassis, with four 1U full-width nodes</td>
</tr>
</tbody>
</table>

HP ProLiant SL4540 Gen8 Server, one node model (similar to HP ProLiant SL4545 G7 Server, one node model)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SL-APM</td>
</tr>
<tr>
<td>2</td>
<td>SL-APM Distribution Module</td>
</tr>
<tr>
<td>3</td>
<td>Enclosure for HP ProLiant SL4540 Gen8 Server nodes</td>
</tr>
<tr>
<td>4</td>
<td>HP ProLiant SL4540 Gen8 Server node, one node model (similar to HP ProLiant SL4545 G7 Server, one node model)</td>
</tr>
</tbody>
</table>
HP ProLiant SL4540 Gen8 Server, two node model (similar to the HP ProLiant SL4545 G7 Server, two node model)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SL-APM</td>
</tr>
<tr>
<td>2</td>
<td>SL-APM Distribution Module</td>
</tr>
<tr>
<td>3</td>
<td>Enclosure for HP ProLiant SL4540 Gen8 Server nodes</td>
</tr>
<tr>
<td>4</td>
<td>Storage area of node 1 of an HP ProLiant SL4540 Gen8 Server, two node model (similar to the HP ProLiant SL4545 G7 Server, two node model)</td>
</tr>
<tr>
<td>5</td>
<td>Storage area of node 2 of an HP ProLiant SL4540 Gen8 Server, two node model (similar to the HP ProLiant SL4545 G7 Server, two node model)</td>
</tr>
</tbody>
</table>
HP ProLiant SL4540 Gen8 Server, three node model (similar to the HP ProLiant SL4545 G7 Server, three node model)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SL-APM</td>
</tr>
<tr>
<td>2</td>
<td>SL-APM Distribution Module</td>
</tr>
<tr>
<td>3</td>
<td>Storage area of node 1 of an HP ProLiant SL4540 Gen8 Server, three node model (similar to the HP ProLiant SL4545 G7 Server, three node model)</td>
</tr>
<tr>
<td>4</td>
<td>Storage area of node 2 of an HP ProLiant SL4540 Gen8 Server, three node model (similar to the HP ProLiant SL4545 G7 Server, three node model)</td>
</tr>
<tr>
<td>5</td>
<td>Storage area of node 3 of an HP ProLiant SL4540 Gen8 Server, three node model (similar to the HP ProLiant SL4545 G7 Server, three node model)</td>
</tr>
<tr>
<td>6</td>
<td>Enclosure for HP ProLiant SL4540 Gen8 Server nodes</td>
</tr>
</tbody>
</table>
When entering commands that require specific port and node numbers, use the SL-APM port number, SL-APM Distribution Module port number, and the SL server node number.

For example, to turn on the power for SL server node 3 that is connected to SL-APM Distribution Module port 4, which, in turn, is connected to SL-APM port 2, enter the following:

```
SET POWER ON 2 4 3
```

where:

2 is the SL-APM port.
4 is the SL-APM Distribution Module port.
3 is the SL server node.

Parameters must have spaces between them.
Rack chassis numbering

If you must number the chassis in your rack or data center, then SL-APM can display the chassis numbering, based on the SL-APM Distribution Module port connection.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SL-APM Distribution Module</td>
</tr>
<tr>
<td>2</td>
<td>SL-APM connection</td>
</tr>
<tr>
<td>3</td>
<td>Connections to SL series enclosures</td>
</tr>
</tbody>
</table>

The SL-APM commands `SHOW TOPOLOGY` and `SHOW RACK` will display the SL chassis connected with number, based on the SL-APM port connection.

For example:

```
SHOW TOPOLOGY
1: SL enclosure
   Product Name : HP ProLiant SL6500
   Product SKU :
   Serial Number:
   UID : off
   Status :
     1 : Compute node (active)
     2 : Compute node (active)
     3 : Compute node (active)
     4 : Compute node (active)
     5 : Compute node (active)
     6 : Compute node (active)
     7 : Compute node (active)
     8 : Compute node (active)
2: SL enclosure
   Product Name : HP ProLiant SL6500
   Product SKU :
```
Automatic discovery

SL-APM employs an automatic discovery process that identifies all SL series servers in the attached enclosures.

The discovery process also has a simple fault detection mechanism. If any node has faults detected (for example, power supply failure), the discovery response data reports the fault. For a list of alert messages, see "Alert messages (on page 72)".
Installation and configuration

Prerequisites for installation

The SL-APM can be administered through the serial console. Initial configuration requires a serial terminal set to 115200.

Preparing for installation

1. If you are not using a DHCP server, have your necessary IP address information available that will be used to access the SL-APM.
2. Secure a serial terminal, which is required for the initial setup of the SL-APM.
3. To use a remote logging server, verify that a remote syslog server and the IP address for connecting to the remote syslog server are available.

Installing the SL-APM hardware

To install the SL-APM, see the SL-APM installation instructions that accompany the option kit.

To install the SL-APM Distribution Module, see the installation instructions that accompany the option kit.

To install the HP RJ45 SL Advanced Power Manager Option Module, see the instructions in the HP RJ45 SL Advanced Power Manager Option Module Kit.

To install the HP Intelligent Modular PDU Extension Bar for use with the SL-APM, see the SL-APM installation instructions that accompany the SL-APM option kit.

Configuring the SL-APM for the first time

Both the serial and Ethernet devices on the SL-APM provide access to the CLI. The CLI is the only mechanism provided for SL-APM administration.

SL-APM must be configured before SSH and Telnet administration is made available. Initial configuration of the SL-APM requires a terminal set to 115200 bits/s, no parity, 8 data bits, and one stop bit (“115200 N 8 1”).

Configuring the SL-APM

When you boot up, a LOGIN prompt appears. Enter Administrator as the user account:

Login: Administrator

You can initially configure the SL-APM in the following ways:

• Enter CONFIG to use the simplified configuration wizard. The wizard provides you with a step-by-step process for configuring SL-APM. This procedure is for new users.
• Enter the commands manually. This procedure is for advanced users who want more control over the configuration process.

• Duplicate the configuration. For more information, see “Duplicating the configuration (on page 26).”

Using the configuration wizard

When you enter CONFIG, you are prompted to complete the following tasks.

1. Set the onboard clock—If you select Y, you will be prompted to enter:
 o Month—Enter a value between 1 to 12. Press Enter.
 o Day—Enter a value between 1 to 31. Press Enter.
 o Year—Enter the year (value must be four digits). Press Enter.
 o Hour—Enter a value between 0-23. Press Enter.
 o Minutes—Enter a value between 0-59. Press Enter.

2. Name the power manager—If you select Y, enter a name for the power manager. System names can be up to 80 characters. It can include uppercase letters, lowercase letters, underscores (_), dashes (-), the dollar sign ($), and numerical values between 0-9. To save the power manager name, press Enter. Naming the SL-APM is optional. This is the name that will appear in log entries on the syslog server as well as the CLI prompt.

3. Enable password protection—SL-APM has no default password. If you select Y, enter a password. The password must be between 8 and 40 characters, and can include:
 o uppercase letters
 o lowercase letters
 o underscores (_)
 o dashes (-)
 o at signs (@)
 o pound signs (#)
 o carets (^)
 o ampersands (&)
 o exclamation points (!)
 o plus symbols (+)
 o equal symbols (=)
 o tilde (~)
 o numerical values between 0–9

 To save and enable the password, press Enter. For more information about working with passwords, see “Working with passwords (on page 53).”

4. Configure the Ethernet port.

5. Use DHCP.

6. Enter an IP address.

7. Enter an IP address mask.

8. Enable Telnet.

9. Enable SSH.

10. To review the enabled configuration before saving it, select Y.
11. Save the new configuration. To save the new configuration, select Y. All settings relating to the SL-APM Ethernet and serial interfaces are persistent and stored in the SL-APM.

Serial port configuration

Verify that the client matches the following settings:
- Baud rate—115200
- Data bits—8
- Stop bits—1
- Parity—None
- Flow control—None

To set a different serial baud rate, enter \texttt{SET SERIAL <BAUD_RATE>}, where \texttt{<BAUD_RATE>} is the baud rate setting to be used.

A change in the baud rate immediately takes effect. You must change the settings on your client to match the settings on the SL-APM.

Network configuration

The SL-APM enclosure has two MAC address labels, one for each slot. The MAC address is slot-specific. You might need the MAC address when you configure the DHCP server to access SL-APM. To view the MAC address, enter \texttt{SHOW INFO}. For more information, see "Showing configurations (on page 58)."

Setting a static IP address

To set a static IP address and subnet mask, enter \texttt{SET IP <ip_address> <subnet_mask>}, where \texttt{<ip_address>} is the IP address and \texttt{<subnet_mask>} is the subnet mask.

To return to DHCP, enter \texttt{SET IP DHCP}.

Setting the network default gateway

To set the network default gateway enter \texttt{SET GATEWAY <ip_address>}, where \texttt{<ip_address>} is the IP address. SL-APM always uses the IP address, subnet mask, and default gateway.

To clear the gateway, enter \texttt{SET GATEWAY NONE}.

Showing the IP address

To show the IP address, enter \texttt{SHOW IP}. The following information appears:
- IP Address appears in x.x.x.x format
- IP Mask appears in x.x.x.x format
- Gateway appears in x.x.x.x format

Verifying network communication

To verify the network communication is working, enter \texttt{PING <IP address>}, where \texttt{<IP address>} is the IP address you want to test.
Security configuration

The network interface is disabled when password protection is removed. For more information about passwords, see "Working with passwords (on page 53)".

Protocol configuration

SL-APM supports SSH and Telnet.

Working with SSH configuration

To enable SSH access, enter ENABLE SSH.
To disable SSH access, enter DISABLE SSH.

Working with the Telnet configuration

To enable Telnet access, enter ENABLE TELNET.
To disable Telnet, enter DISABLE TELNET.

Duplicating the configuration

Duplicating a configuration enables you to ensure consistency in configuring SL-APM while saving time in the configuration process.

You can use the output from SHOW CONFIG to capture the current configuration of a SL-APM and used as input to configure another SL-APM. The password information is not duplicated because it is not part of the SHOW CONFIG output.

To duplicate the SL-APM configuration:

1. Enter SHOW CONFIG.
2. To copy the configuration, copy the output of the SHOW CONFIG command to a file on your system using whatever methods are available in your terminal program.
3. To replicate the configuration, using the methods that are available in your terminal program, apply the previously saved SHOW CONFIG output as input to the new SL-APM.
Command Line Interface

Command line conventions

CLI input is case insensitive except when otherwise noted. The CLI uses a simple, case insensitive verb noun "<target>" syntax.

Each command follows the conventions listed in the following table.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><lower case></td>
<td>Denotes the variable within the symbols that must be substituted with a value, such as a user name. Symbols must be removed.</td>
</tr>
<tr>
<td>UPPER CASE</td>
<td>Denotes input to be entered as shown. Unless noted, symbol is not case-sensitive.</td>
</tr>
<tr>
<td></td>
<td>Used to separate input options.</td>
</tr>
</tbody>
</table>
| { } | Denotes a list of mandatory choices that you must make. For example, SET GATEWAY {NONE | <ip_address>} must be in the form of either of the following:
 • SET GATEWAY NONE
 • SET GATEWAY <ip_address> |
| [] | Denotes an optional argument or set of characters. |
| " " | Encloses command arguments that contain spaces. |

Accessing the SL-APM command line interface

You can access the SL-APM through SSH, Telnet, or the serial port.

Accessing the SL-APM through SSH

1. Using any SSH client application, start a SSH session to SL-APM.
2. When prompted, enter the assigned IP address or FQDN of SL-APM.
3. Enter Administrator.
4. Enter a valid password. The CLI command prompt appears.
5. Enter commands for SL-APM.
6. To terminate the remote access SSH session, close the communication software or enter EXIT, LOGOUT, or QUIT at the CLI command prompt.

Accessing the SL-APM through Telnet

1. Start a Telnet session to SL-APM using any Telnet client application.
2. When prompted, enter the assigned IP address or FQDN name of SL-APM.
3. Enter Administrator.
4. Enter a valid password. The CLI command prompt appears.
5. Enter commands for SL-APM.
6. To terminate the remote access Telnet session, close the communication software or enter EXIT, LOGOUT, or QUIT at the CLI command prompt.

Accessing the SL-APM through the serial port

You can also access the SL-APM through the serial port. For more information, see "Serial Port Configuration (on page 25)."

Saving configurations

You must save your configurations. Otherwise, the configuration will be lost when you reset or reboot the SL-APM.

To save a configuration, enter SAVE.

Topology and inventory

SL-APM collects information from connected servers, including:
- SL enclosure product names
- SL enclosure product identifiers (SKU)
- SL enclosure serial numbers
- Node MAC addresses

To show this information using the previous configuration image as an example, use any of the following commands.

Showing the rack

To show the contents of the rack, enter SHOW RACK. The rack information appears.

For example, the following text might appear:

```
SL-APM> show rack
1: Dist. Module
  1: SL enclosure
      Product Name : HP ProLiant s6500
      Product SKU : 
      Serial Number:
      UID : off
      Status :
          1 : Compute node (active)
          2 : Compute node (active)
          3 : Compute node (active)
          4 : Compute node (active)
          5 : Compute node (active)
          6 : Compute node (active)
```
7: Compute node (active)
8: Compute node (active)
Power supply slot 1 is occupied, status good
Power supply slot 2 is occupied, status good
Power supply slot 3 is occupied, status good
Power supply slot 4 is empty
Fan slot 1 status good
Fan slot 2 status good
Fan slot 3 status good
Fan slot 4 status good
Fan slot 5 status good
Fan slot 6 status good
Fan slot 7 status good
Fan slot 8 status good

To show a particular rack, enter SHOW RACK, followed by either the SL-APM port or both the SL-APM and SL-APM Distribution Module ports.

For example, enter:
SHOW RACK 2 4

The following example uses the power distribution module:

> show rack pdm
9: [PDM1] PDM Extension
 UID : off
 Model : Monitored PDU Ext. Bar
 Serial Number: 2CJ9410002
 Part Number : AF529A
 Firmware Rev : 0.35
 Hardware Rev : HW_PV2
 Switched Outlets:
 1:
 UID : off
 Enabled: yes
 Wattage: 092
 2:
 UID : off
 Enabled: yes
 Wattage: 139
 3:
 UID : off
 Enabled: yes
 Wattage: 011
 4:
 UID : off
 Enabled: yes
 Wattage: 219
 5:
 UID : off
 Enabled: yes
 Wattage: 050
10: [PDM2] HP 60A PDU
 Model : STI Serial TrueRMS PDU
 Serial Number: ADPV0000083
 Asset Tag : SCI Lab PDU
 Part Number : QL192A
 Firmware Rev : 1.0a
 Switched Outlets:
 1: enabled
This command produces the same results as the SHOW SERVERS and SHOW TOPOLOGY commands.

If you must number the chassis in your rack or data center, then SL-APM can display the chassis numbering, based on the SL-APM Distribution Module port connection. For more information, see "Rack Chassis Numbering (on page 21)".

To show all the chassis and other devices connected to the SL-APM, enter SHOW RACK ALL.

Showing the servers

To show the servers, enter SHOW SERVERS. The server information appears.

This command produces the same results as the SHOW RACK and SHOW TOPOLOGY commands.

Showing topology

To show the topology of everything that connects to the SL-APM, enter SHOW TOPOLOGY. The topology appears.

This command produces the same results as the SHOW RACK and SHOW SERVERS commands.

If you must number the chassis in your rack or data center, then SL-APM can display the chassis numbering, based on the SL-APM Distribution Module port connection. For more information, see "Rack Chassis Numbering (on page 21)".

To show all the chassis and other devices connected to the SL-APM, enter SHOW TOPOLOGY ALL.

Showing assetinfo

To list all the chassis in the rack in a report format, enter SHOW ASSETINFO.

For example, the following text might appear:

slapm> show assetinfo 1 7
1: Dist. Module
7: SL enclosure
 Product Name : HP ProLiant s6500
 Product SKU : 629235-B21
 Serial Number: USE119A2MM
 UID : off
 Status :
 1 : Compute node (active) Asset tag: myserver1
 Serial #: USE119A2YW
 2 : Compute node (active) Asset tag: myserver2
 Serial #: USE119A2YT
 3 : Compute node (active) Asset tag: myserver3
 Serial #: USE119A319
 4 : Compute node (active) Asset tag: myserver4
 Serial #: USE119A31C
 5 : Compute node (active) Asset tag: myserver5
 Serial #: USE119A2N8
 6 : Compute node (active) Asset tag: myserver6
 Serial #: USE119A2N3
 7 : Compute node (active) Asset tag: myserver7
 Serial #: USE119A2N4
 8 : Compute node (active) Asset tag: myserver8
 Serial #: USE121AJYH

 Power supply slot 1 is occupied, status good
 Power supply slot 2 is occupied, status good
 Power supply slot 3 is occupied, status good
 Power supply slot 4 is occupied, status good
 Fan slot 1 status good
 Fan slot 2 status good
 Fan slot 3 status good
 Fan slot 4 status good
 Fan slot 5 status good
 Fan slot 6 status good
 Fan slot 7 status good
 Fan slot 8 status good

This command also requests and shows any asset tags from the chassis and any 30- or 60-amp PDUs that are in the rack.

The asset tag information for 30- or 60-amp PDUs can be set through the `SET ASSETINFO` command.

For example, the following text might appear:

> show assetinfo pdm2

10: [PDM2] HP 60A PDU
 Model : STI Serial TrueRMS PDU
 Serial Number: ADFV0000083
 Asset Tag : SCI Lab PDU
 Part Number : QL192A
 Firmware Rev : 1.0a
 Switched Outlets:
 1: enabled
 2: enabled
 3: enabled
 4: enabled
 5: enabled
 6: enabled
 Input Feeds:
 1:
 Amps Drawn : 0.860000

Infeed Status : On
Infeed Load Status : Normal
2: Amps Drawn : 0.870000
 Infeed Status : On
 Infeed Load Status : Normal
3: Amps Drawn : 0.830000
 Infeed Status : On
 Infeed Load Status : Normal
4: Amps Drawn : 2.590000
 Infeed Status : On
 Infeed Load Status : Normal

Showing the MAC address

To show the MAC address, enter `SHOW MACADDR`. The MAC address appears. The MAC address information appears following each module listing.

For example, the following text might appear on screen.

```
SL-APM> show macaddr

1: Dist. Module
   1: SL enclosure
      Product Name : HP ProLiant s6500
      Product SKU :
      Serial Number:
      UID          : off
      Status       :
      1: Compute node (active) Host MAC: D8:D3:85:AE:E7:03
      2: Compute node (active) Host MAC: 78:E7:D1:E4:6E:1F
      3: Compute node (active) Host MAC: 78:E7:D1:E4:6E:B9
      4: Compute node (active) Host MAC: 78:E7:D1:E4:6E:BD
      5: Compute node (active) Host MAC: D4:85:64:6A:52:2D
      6: Compute node (active) Host MAC: 1C:C1:DE:18:AC:F7
      7: Compute node (active) Host MAC: D4:85:64:6A:51:C3
      8: Compute node (active) Host MAC: D4:85:64:6A:52:6D
      Power supply slot 1 is occupied, status good
      Power supply slot 2 is occupied, status good
      Power supply slot 3 is occupied, status good
      Power supply slot 4 is occupied, status good
      Fan slot 1 status good
      Fan slot 2 status good
      Fan slot 3 status good
      Fan slot 4 status good
      Fan slot 5 status good
      Fan slot 6 status good
      Fan slot 7 status good
      Fan slot 8 status good
```

To show a particular MAC address, enter `SHOW MACADDR` and then the SL-APM port or both the SL-APM port and SL-APM Distribution Module port.

For example, enter:

```
SHOW MACADDR 2 4
```
Overview of logging

Logging enables you to see the following information in SL-APM:
- Actions taken
- Events
- Time when the action was taken or event occurred

SL-APM has the following types of logs:
- Event logs, where SL-APM records events
- Fault logs, where SL-APM records internal errors. These internal errors create alerts in which the red LED illuminates. For a list of alert messages, see "Alert messages (on page 72)."

You can issue commands for both internal and external logging.

Use an external syslog server for:
- Redundant copy of events and logs
- Not limiting the events list to only the last 500 events

To ensure the correct time stamping in your logs, use the SET TIME command. For more information, see "Setting the time (on page 59)."

Internal logging

Internal logging tracks up to 500 entries on the event log, up to 100 entries on the fault log, and overrides the oldest log entries if those sizes are exceeded.

Showing and clearing the event log

To show the event log, enter SHOW LOG.

As an example, the following text might appear on screen:

SL-APM> show log
NOTE: Log truncated, only latest 100 entries included in list
000:WED JAN 13 10:59:35 2010: Dist. Module 2, port 10, issued command to power off all servers
001:WED JAN 13 10:59:53 2010: Fan found in chassis at Dist. Module #2, port 9, slot 1
002:WED JAN 13 10:59:54 2010: Fan found in chassis at Dist. Module #2, port 10, slot 1
003:WED JAN 13 11:03:20 2010: Dist. Module 1, port 5, server 1 was powered off
004:WED JAN 13 11:03:29 2010: Dist. Module 1, port 5, server 2 was powered off
005:WED JAN 13 11:03:33 2010: Dist. Module 1, port 5, server 3 was powered off
006:WED JAN 13 11:04:19 2010: Dist. Module 1, port 5 - all units in enclosure were powered on
A server was powered on in chassis Dist. Module #1, port 5, slot 4
Dist. Module 1, port 5 - all units in enclosure were powered off
Dist. Module 1, port 1 - all units in enclosure were powered off
Dist. Module 1, port 1 - all units in enclosure were powered on

To clear the event log, enter CLEAR LOG.

Showing and clearing the fault log

To show the fault log, enter SHOW FAULTS.

As an example, the following text might appear on screen:

SL-APM> show faults
000:TUE DEC 15 07:45:22 2009: No response from SL enclosure on Power Manager port 2, Dist. Module port 6
001:WED JAN 13 10:58:15 2010: No response from Dist. Module #2 for power on command
002:WED JAN 13 10:59:29 2010: No response from Dist. Module #2 for power off command
003:WED JAN 13 11:08:42 2010: No response from SL enclosure on Power Manager port 3, Dist. Module port 6
004:WED JAN 13 11:09:37 2010: No response from Dist. Module to set SL enclosure 3 on port 7
005:WED JAN 13 11:09:42 2010: No response from Dist. Module to set SL enclosure 3 on port 8
006:WED JAN 13 11:09:47 2010: No response from Dist. Module to set SL enclosure 3 on port 9
007:WED JAN 13 11:09:52 2010: No response from Dist. Module to set SL enclosure 3 on port 10
008:WED JAN 13 11:10:14 2010: No response from SL enclosure on Power Manager port 2, Dist. Module port 6
009:WED JAN 13 11:11:41 2010: No response from Dist. Module 2 to close all ports
010:WED JAN 13 11:11:46 2010: No response from Dist. Module to set SL enclosure 2 on port 3
011:WED JAN 13 11:11:51 2010: No response from Dist. Module to set SL enclosure 2 on port 4
012:WED JAN 13 11:11:56 2010: No response from Dist. Module to set SL enclosure 2 on port 7
013:WED JAN 13 11:12:01 2010: No response from Dist. Module to set SL enclosure 2 on port 8
014:WED JAN 13 11:12:06 2010: No response from Dist. Module to set SL enclosure 2 on port 9
015:WED JAN 13 11:12:11 2010: No response from Dist. Module to set SL enclosure 2 on port 10

To clear the fault log, enter CLEAR FAULTS.

External logging

To show the syslog server address configuration information, enter SHOW SYSLOG.
To set the syslog server address configuration, enter `SET SYSLOG x.x.x.x.`

Using an existing syslog server provides:
- Redundant copy of events and logs
- No limits to number of events that can be logged

SL-APM fault messages

<table>
<thead>
<tr>
<th>Fault logged message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>There was an error transferring the file, image upgrade not performed</td>
<td>Error occurred during firmware upgrade.</td>
</tr>
<tr>
<td>Error upgrading firmware image</td>
<td>Firmware image not upgraded due to an error.</td>
</tr>
<tr>
<td>Dist. Module on Power Manager port X has excessive errors and has been marked as failed</td>
<td>RS-485 port is having excessive errors and has failed.</td>
</tr>
<tr>
<td>Dist. Module port X on Power Manager port Y has excessive errors and has been marked as failed</td>
<td>RS-485 port is having excessive errors and has failed.</td>
</tr>
<tr>
<td>Transmit failed to write</td>
<td>Hardware error transmitting a packet.</td>
</tr>
<tr>
<td>Read error on UART</td>
<td>Hardware error receiving a packet.</td>
</tr>
<tr>
<td>Power Manager rendered non functional, redundant Power Manager is not supported by this firmware version</td>
<td>A redundant SL-APM board was plugged into the chassis. Both boards will be rendered inoperable until one is removed.</td>
</tr>
<tr>
<td>Please remove one of the Power Manager boards from the chassis and reset</td>
<td>A redundant SL-APM board was plugged into the chassis. Both boards will be rendered inoperable until one is removed.</td>
</tr>
<tr>
<td>Power Manager Power supply 1 is non operational</td>
<td>Power supply in slot 1 is not supplying power to the SL-APM chassis.</td>
</tr>
<tr>
<td>Power Manager Power supply 2 is non operational</td>
<td>Power supply in slot 2 is not supplying power to the SL-APM chassis.</td>
</tr>
<tr>
<td>Checksum failure - administrator account credentials</td>
<td>Checksum failure while reading account credentials.</td>
</tr>
<tr>
<td>Checksum failure - password credentials</td>
<td>Checksum failure while reading account credentials.</td>
</tr>
<tr>
<td>Could not enable credentials at startup,</td>
<td>Credentials could not be verified and are disabled. If configured, the network connection is also disabled.</td>
</tr>
</tbody>
</table>
Working with RADIUS servers

The SL-APM firmware supports the RADIUS authentication protocol. When RADIUS is enabled, it is used to verify login requests to SL-APM through SSH, telnet, or the serial console.

Adding and removing a RADIUS server

To add a RADIUS server, enter `ADD RADIUS SERVER <ip_address> <shared_secret>`.

This command specifies an initial or additional RADIUS server to the SL-APM list of authentication servers. The authentication proceeds in the same order that these servers were added to the configuration. Up to a total of five RADIUS servers can be added for authentication purposes. Port 1812 is assumed. The IP address must match the location of the RADIUS server. The shared secret must be specified in quotes and must match the string that has been programmed into the RADIUS server when receiving authentication requests from SL-APM.

To set the number of times SL-APM polls each of the RADIUS server indicated in the `ADD RADIUS SERVER` command, enter `SET RADIUS POLLNUM`. To set the number of seconds SL-APM waits for a reply from the RADIUS server, enter `SET RADIUS POLLSEC`. These settings can only be set globally and cannot be applied to each individual RADIUS server.

To remove a RADIUS server, enter `REMOVE RADIUS SERVER <index>`.

This command removes a previously added RADIUS server that matches the index indicated with the `SHOW RADIUS` command. RADIUS authentication is no longer attempted against this server.

Enabling and disabling a RADIUS server

To enable SL-APM as a RADIUS client, enter `ENABLE RADIUS`.

All login attempts through SSH, Telnet, and the serial console are authenticated through the list of RADIUS servers that were indicated with the `ADD RADIUS SERVER` command. Authentication is also verified against the local password if the RADIUS servers indicate no access.

To disable RADIUS authentication on SL-APM, enter `DISABLE RADIUS`.

<table>
<thead>
<tr>
<th>Fault logged message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>code = X</td>
<td>Security bypass is enabled. No passwords are required to access the SL-APM.</td>
</tr>
<tr>
<td>WARNING: Password bypass DIP #1 is set, password security is bypassed</td>
<td>Security bypass is enabled. No passwords are required to access the SL-APM.</td>
</tr>
<tr>
<td>Firmware update to Dist. Module, port X failed, retry Y being attempted</td>
<td>While upgrading the firmware on a Power Manager Distribution Module, an error occurred. Retry being attempted.</td>
</tr>
<tr>
<td>Firmware update to Dist. Module, port X - all retries, failed, giving up</td>
<td>While upgrading the firmware on a Power Manager Distribution Module, too many errors occurred and the operation has been terminated.</td>
</tr>
</tbody>
</table>
Authentication through RADIUS no longer takes place, but password checking is still done against the local password if that is still enabled. This command does not clear out the configured RADIUS servers.

Showing a RADIUS server

To show the currently configured RADIUS server, enter `SHOW RADIUS`.

To show the currently configured RADIUS parameter, use the `SHOW CONFIG` command.
Power capping

Power capping overview

The HP ProLiant SL family of products provides a power capping feature that operates at the server enclosure level. The capping feature can be activated using a stand-alone utility called PPIC.EXE that runs in the environment of one of the resident servers in the chassis to be power capped. After a power cap is set for the enclosure, all the resident servers in the enclosure will have the same uniform power cap applied to them until the cap is either modified or canceled.

With SL-APM, the enclosure-level power capping feature can be expanded without the need to use the PPIC.EXE utility. A global power cap can be applied to all enclosures with one SL-APM command, or different caps can be applied to user-defined groups by using flexible zones within the same rack.

NOTE: HP recommends configuring the SL-APM so that it controls only one rack.

Power capping supported servers and chassis

The following server products support power capping:

- HP ProLiant SL160s G6 Server (with BIOS of O33-05192011 or later)
- HP ProLiant SL165s G7 Server (with BIOS of O37-08102011 or later)
- HP ProLiant SL170s G6 Server (with BIOS of O40-05112011 or later)
- HP ProLiant SL230s Gen8 Server
- HP ProLiant SL250s Gen8 Server
- HP ProLiant SL270s Gen8 Server
- HP ProLiant SL335s G7 Server (with BIOS of A24-later than 02042011)
- HP ProLiant SL390s G7 Server (with BIOS of P69-050511 or later)
- HP ProLiant SL210t Server
- HP ProLiant SL4540 Gen8 Server
- HP ProLiant SL4545 G7 Server

Power capping requirements

Minimum firmware requirements are:

- SL-APM must have version 1.30 or higher
- For HP ProLiant SL s6500 Chassis only, SL Chassis Firmware must have version 4.30 or higher
- All nodes in the chassis must have LO100 Advanced Pack, or iLO Scale Out, or iLO Advanced License
To support the SL-APM power capping functionality, all tray nodes in the chassis must be rebooted after the SL Chassis Firmware has been updated, (for s6500 chassis, the required version is v4.3 or higher) and the appropriate BIOS version has been flashed. A reboot is also required anytime you add a LO100 Advanced Pack, or iLO Scale Out, or iLO Advanced License to the node. Upgrading to future versions of SL Chassis Firmware or SL-APM firmware does not require a reboot of the node to support the power capping feature.

Power capping and measurement tolerance

The average chassis power level displayed by SL-APM will not exceed 5% above the chassis power cap.

NOTE: The power baseline process is required for power capping functionality to work properly. All servers must be powered on and running an expected typical workload before starting the power baseline process. Because the baseline process will cap the servers briefly, performance will be impacted while power is measured and the baseline established.

As with any measurement system, variations in temperature, input power, and system loads will impact the accuracy of the power calculations. All power reading displayed by this utility will have a +/- 5% tolerance. However, meter errors can be both positive and negative, so guardband for meter tolerance, as a percentage of the cap, can approach zero as the number of servers increases.

Invalidating a power baseline

Since power baselines are global, the SL-APM monitors the domains for changes in server and power supply presence when a power baseline has been established. If a change occurs (for example, if a new server is installed), then the SL-APM detects this change and invalidates the current power baseline. This invalidation prevents any new caps from being set, but does not disable any existing caps that are set.

If a baseline has been invalidated due to changing hardware in the SL-APM domain, then several options are available:

- If the change was caused by replacement of equipment (for example, a failed power supply was removed and a new one inserted) then you could restore the old baseline by resetting the SL-APM and forcing it to re-read and re-compare the existing power baseline from the resident EEPROM.
- Always use the SET POWER BASELINE command to establish a new power baseline when the domain configuration changes because of one or more of the following changes:
 - SL Power Management Controller (SL Chassis) Firmware has been updated.
 - Add or remove the power supply.
 - Install or uninstall a new server or enclosure.
 - Add or remove memory from the tray.
 - Add or remove CPU from the tray.
 - Add or remove GPU from the tray.

Power capping licensing

All servers that are being power capped must have the iLO\LO100 advanced license installed. Before a power baseline can be established, the SL-APM verifies that all the servers housed in an SL enclosure have the advanced license pack installed. If any resident servers in the enclosure do not have the iLO\LO100
advanced license, the power baseline process ("Power baseline" on page 40), a prerequisite for power
capping for the enclosure, is skipped.

The SL-APM has no licensing considerations.

SL-APM and SL-APM Distribution Module cabling

All supported SL enclosures and servers that are wired to the SL-APM through one or more SL-APM
Distribution Modules can participate in power capping and monitoring. Separate power cap settings can be
made for as many or as few of the enclosures as desired, but the power baseline process must operate as a
global process that interacts with every supported enclosure that the SL-APM is connected to through the
SL-APM distribution modules.

Rack level power capping

The rack level power cap is a power cap set at the SL-APM level and, despite the name, can encompass a
partial rack, a rack, or multiple racks. These domains are established by the reach of the SL-APM and
distribution module connections to the support SL enclosures combined with any optional zone definitions
that may have been created. The term rack level power cap is used generically in this document to refer to
any power cap that has been set at the SL-APM level.

The power capping feature has two main processes to it. The first process establishes a power baseline. The
second process sets a power cap against the previously established power baseline.

Power baseline

The power baseline is a calibration that indicates the range of how little power the chassis can consume at
their maximum allowable power cap and how much power they can consume when completely uncapped.
The minimum value is derived by capping the servers at their maximum internally allowable cap setting,
running the enclosure fans up to 90% of capacity, and then measuring the power consumption of the chassis
at the power supply level.

SL enclosures cannot be power calibrated by the SL-APM if:

- All the servers that populate the chassis do not carry the iLO/LO100 advanced license (empty slots are
 permitted).
- The chassis is using incompatible SL Power Management (SL Chassis) enclosure firmware prior to
 version 4.3.
- The server or enclosure hardware does not support the power capping feature.

If these checks are met (SL-APM verifies these conditions for each chassis), then the power baseline process
will proceed for that chassis. The baseline calibration process is run against every enclosure connected to the
SL-APM with the exceptions listed previously. Some enclosures might be baselined while others are not due
to the previously listed reasons. After a power baseline is established for all enclosures, then the baseline is
committed to the SL-APM onboard EEPROM so that it becomes persistent when SL-APM is reset during
operation.

NOTE: The power baseline process is required for power capping functionality to work
properly. All servers must be powered on and running an expected typical workload before
starting the power baseline process. Because the baseline process will cap the servers briefly,
performance will be impacted while power is measured and the baseline established.
After established and saved in the EEPROM, the baseline data can be examined at any time using the `SHOW POWER BASELINE` command. For example:

```
> show power baseline
APMPort DMPort Serial Number Min Cap Max Cap Set Cap Slots    Populated
------- ------ ------------- ------- ------- ------- ----- ----------------
1      2 CNK71600K4        585    2372    1500  (8)  2 3 5 7
------- ------- -------
```

If a SL-APM has baseline data in its EEPROM and it is reset, SL-APM will re-read that baseline data back into memory as it boots back up and after the subsequent device discovery compares the baseline data in the EEPROM to the actual rack contents to ensure that they did not change while it was offline or that it was not relocated to another rack. The SL-APM validates the following things from saved baseline data in these instances:

- The chassis listed in the baseline is present.
- The chassis has the same populated server slots.
- If a power cap had been set, that this is the power cap currently set on the chassis.

If any of these do not match up after a reset, then the SL-APM logs an error to the log, indicating the mismatch in the baseline data and the baseline data will be invalidated. It will not, however, be erased from the EEPROM to provide you the chance to re-install any chassis or servers that invalidated the baseline data.

To remove baseline data from the EEPROM, use the `SET POWER BASELINE NONE` command. After this command is used, the only way to re-establish a power baseline is to use the `SET POWER BASELINE` command.

If a power cap is currently in place, the `SET POWER BASELINE NONE` command cannot be used. The power cap must first be removed (`SET POWER CAP NONE`) then the baseline can be removed.

If a power cap is currently in place and a `SET POWER BASELINE` command is issued, then any current power caps will be removed in the calibration. New power caps can be established following the calibration process, assuming the new baseline data is saved to the EEPROM.

The following text is an example output when an advanced license is installed on all chassis:

```
> set power baseline
Before running a baseline calibration - ensure that
your configuration has all machines turned on and are
running processes that are typical of the type of workload
you expect them to run in a production environment.
This process will briefly impact the performance of the
servers that are being baseline calibrated as well as
temporarily speed up the fans.
Are you sure you wish to set a new power baseline for this system? (Y/N/Q) -> Yes
Retrieving license information for chassis Power Manager port 1, Dist. Module port 1
Verifying...done
Baselining power for servers located in chassis Power Manager port 1, Dist. Module port 1
Calibrating.................done.
Minimum cap value for this chassis is 777
Maximum cap value for this chassis is 3558
```
The following text is an example output when an advanced license was not installed on four chassis (1 1, 1 6, 1 7, and 1 10).

```
> set power baseline
Before running a baseline calibration – ensure that
your configuration has all machines turned on and are
running processes that are typical of the type of workload
you expect them to run in a production environment.
This process will briefly impact the performance of the
servers that are being baseline calibrated as well as
temporarily speed up the fans.
Are you sure you wish to set a new power baseline for this system? (Y/N/Q)
-> Yes
Retrieving license information for chassis Power Manager port 1, Dist. Module
port 1
Verifying..done
One or more servers located in chassis at Power Manager port 1, Dist. Module
port 1 is not licensed for the power capping feature.
This chassis will be skipped for baselining purposes.
Note: All licensed servers should be booted up at least once
so the BIOS/ROM can write the relevant license information
to the chassis controller.
Retrieving license information for chassis Power Manager port 1, Dist. Module
port 2
Verifying..done
```

Setting power capping

Use the `SET POWER CAP` command to specify a power cap. The command takes an AC wattage range that must be between the minimum and maximum values that were set with the `SET POWER BASELINE` command and are shown with the `SHOW POWER BASELINE` command.

In this example, APM Port (item 1) and DM Port (item 2) are illustrated.

```
> show power baseline
APMPort DMPort Serial Number Min Cap Max Cap Set Cap Slots    Populated
------- ------- ------------- ------- ------- ------- ----- ----------------
1   2 CNK71600K4        585    2372    1500  (8)  2 3 5 7
------- ------- -------
585    2372    1500
```
A power cap can be set between the minimum cap value of 585 and the maximum cap value of 2372. In this example, the cap applies only to the chassis located at APM Port 1, DM Port 2 because that is the only chassis that met the necessary prerequisites for power capping. Under circumstances with many chassis, the allowable cap range would fall between the total minimum and total maximum values.

Under normal circumstances, the average chassis power level might be up to 5% above the chassis power cap. However, the cap value might vary under extreme power usage situations.

When running the baseline calibration, the target system (all nodes in chassis) has to be running at the production level load.

The following is an example with mixed Power Management Controller (SL Chassis) Firmware version 4.3 and lower:

```bash
> show power

<table>
<thead>
<tr>
<th>MDM</th>
<th>Port</th>
<th>Node</th>
<th>Avg</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>78</td>
<td>n/a</td>
<td>203</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>206</td>
<td>n/a</td>
<td>80</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>77</td>
<td>n/a</td>
<td>208</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>77</td>
<td>n/a</td>
<td>206</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>81</td>
<td>n/a</td>
<td>207</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>76</td>
<td>n/a</td>
<td>210</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>82</td>
<td>n/a</td>
<td>225</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
<td>81</td>
<td>n/a</td>
<td>225</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>255</td>
<td>n/a</td>
<td>337</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>257</td>
<td>n/a</td>
<td>340</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>242</td>
<td>n/a</td>
<td>324</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>232</td>
<td>n/a</td>
<td>315</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>265</td>
<td>n/a</td>
<td>351</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>6</td>
<td>259</td>
<td>n/a</td>
<td>344</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>7</td>
<td>240</td>
<td>n/a</td>
<td>325</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
<td>258</td>
<td>n/a</td>
<td>346</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>Fans</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>91</td>
<td>n/a</td>
<td>188</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>115</td>
<td>n/a</td>
<td>186</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>Fans</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2036 (Chassis total - DC watts)
2151 (Chassis total - AC watts)
2247 (Chassis cap - AC watts)
221 (Chassis total - DC watts)
266 (Chassis total - AC watts)
852 (Chassis cap - AC watts)
The following example uses the power distribution module.

> show power pdm

PDM port 1

<table>
<thead>
<tr>
<th>PDM</th>
<th>Port</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>93 (AC watts)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>140 (AC watts)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>11 (AC watts)</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>228 (AC watts)</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>50 (AC watts)</td>
</tr>
</tbody>
</table>

PDM port 2

<table>
<thead>
<tr>
<th>PDU:</th>
<th>STI Serial TrueRMS PDU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number:</td>
<td>QL192A</td>
</tr>
<tr>
<td>Serial Number:</td>
<td>ADFV0000083</td>
</tr>
<tr>
<td>Asset tag:</td>
<td>SCI Lab PDU</td>
</tr>
<tr>
<td>Firmware rev:</td>
<td>1.0a</td>
</tr>
<tr>
<td>Infeed Amps:</td>
<td>60</td>
</tr>
<tr>
<td>Number of Infeeds:</td>
<td>4</td>
</tr>
<tr>
<td>Switched Outlets:</td>
<td>6</td>
</tr>
</tbody>
</table>

Infeeds:

| 01: Amps drawn: 0.850000 Status: On Load: Normal |
| 02: Amps drawn: 0.880000 Status: On Load: Normal |
| 03: Amps drawn: 0.820000 Status: On Load: Normal |
| 04: Amps drawn: 2.560000 Status: N/A Load: Normal |

Switched ports:

| 01: Enabled |
This example is with the Power Management Controller (SL Chassis) Firmware version 4.3 only.

```
> show power 1 3

<table>
<thead>
<tr>
<th>MDM</th>
<th>Port</th>
<th>Node</th>
<th>Avg</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>254</td>
<td>n/a</td>
<td>337 (DC watts)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>255</td>
<td>n/a</td>
<td>340 (DC watts)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>244</td>
<td>n/a</td>
<td>324 (DC watts)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>233</td>
<td>n/a</td>
<td>315 (DC watts)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>265</td>
<td>n/a</td>
<td>351 (DC watts)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>6</td>
<td>258</td>
<td>n/a</td>
<td>344 (DC watts)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>7</td>
<td>238</td>
<td>n/a</td>
<td>325 (DC watts)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
<td>259</td>
<td>n/a</td>
<td>346 (DC watts)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>Fans</td>
<td>20</td>
<td></td>
<td>(DC watts)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>2033 (Chassis total - DC watts)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>2148 (Chassis total - AC watts)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>2247 (Chassis cap - AC watts)</td>
<td></td>
</tr>
</tbody>
</table>

Total servers = 8
Total chassis = 1
Total fan wattage = 20 (DC watts)
Total system wattage = 2033 (DC watts)
Total system wattage = 2148 (AC watts)

> show power baseline

All values listed are in AC watts

<table>
<thead>
<tr>
<th>APMPort</th>
<th>DMPort</th>
<th>Serial Number</th>
<th>Min Cap</th>
<th>Max Cap</th>
<th>Set Cap</th>
<th>Slots</th>
<th>Populated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>000000000000</td>
<td>2242</td>
<td>4744</td>
<td>0</td>
<td>(8)</td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td></td>
<td>845</td>
<td>4744</td>
<td>0</td>
<td>(8)</td>
<td>1 3</td>
</tr>
</tbody>
</table>

 | 3087 | 9488 | 0 |

> show power

<table>
<thead>
<tr>
<th>MDM</th>
<th>Port</th>
<th>Node</th>
<th>Avg</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>255</td>
<td>n/a</td>
<td>337 (DC watts)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>256</td>
<td>n/a</td>
<td>340 (DC watts)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>245</td>
<td>n/a</td>
<td>324 (DC watts)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>235</td>
<td>n/a</td>
<td>315 (DC watts)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>267</td>
<td>n/a</td>
<td>351 (DC watts)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>6</td>
<td>263</td>
<td>n/a</td>
<td>344 (DC watts)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>7</td>
<td>237</td>
<td>n/a</td>
<td>325 (DC watts)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
<td>256</td>
<td>n/a</td>
<td>346 (DC watts)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>Fans</td>
<td>21</td>
<td></td>
<td>(DC watts)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>2042 (Chassis total - DC watts)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>2157 (Chassis total - AC watts)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>2247 (Chassis cap - AC watts)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>92</td>
<td>n/a</td>
<td>188 (DC watts)</td>
</tr>
</tbody>
</table>
```
In the following example, the cap is set to 1500 AC watts. This information is saved as part of the baseline data to the onboard SL-APM EEPROM.

When multiple chassis are present and a valid rack level cap is given, SL-APM will:

1. Compute the total cap as a percentage against the sum of the eligible chassis' max power values.
2. For each chassis, multiply the percentage computed in step 1 against each chassis individual max power value.
3. Program the result into the chassis.
4. Repeat steps 2-3 for each eligible chassis.

To remove a power cap, use `SET POWER CAP NONE`. This action removes all power cap settings from all the servers.

**Creating SL-APM power mappings**

Zones are collections of SL-APM enclosures that can be given a unique name that can be referred to for power capping purposes.

Zones provide the SL-APM user with the capability of distinguishing groups of enclosures as targets for power or management operations. When zones are defined they are strictly a boundary definition that is kept within the SL-APM for its purposes. Zones can be added or removed with the `ADD ZONE` and `REMOVE ZONE` commands.

When the first `ADD` references a zone name that does not exist, the zone is automatically created and the indicated ports are populated into the newly created zone. Subsequent `ADD ZONE` commands that reference the same zone name causes the specified ports to be added to the existing zone. No limit exists for the number of ports other than the maximum SL-APM supports in hardware that can be added to a zone. Multiple port listings can be used with a single `ADD ZONE` command, or multiple `ADD ZONE` commands can be used with each command adding new ports to the zone previously defined by the first `ADD ZONE` command.

To remove zone references to ports, use the `REMOVE ZONE` command. When the last port is removed from a zone, the zone is automatically deleted. A zone cannot exist where no ports are assigned to it and zone port definitions cannot overlap (that is, the same SL chassis cannot exist in more than one zone).

Defining zones is an optional function, and is useful for applying power caps to some chassis while excluding others or applying different power caps to different groups or single SL chassis.

Since SL-APM zones are merely definitions of user defined SL-APM group boundaries (and by extension any chassis that are plugged into those ports), they ignore the actual physical presence of enclosures as they are being defined in the SL-APM CLI. Empty SL-APM ports can be included in a zone. If an enclosure is plugged into that port sometime later, it automatically is part of that zone. A reminder message will be printed if a zone is mapped to a SL-APM port that currently has no SL enclosure plugged into it.

After zone mappings have been completed with the `ADD ZONE` and `REMOVE ZONE` commands, the `SHOW ZONES` command can be used, for example:

```
> show zones
Zone RED:
 Power Manager port 1:
 Dist. Module port 1
Zone BLUE:
 Power Manager port 1:
 Dist. Module port 2
 Dist. Module port 3
Zone GREEN:
 Power Manager port 2:
 all Dist. Module ports included
Zone YELLOW:
 Power Manager port 3:
 Dist. Module port 1
>
```
After a zone mapping has been completed, they can be saved to the SL-APM onboard EEPROM with the 
``SAVE ZONES`` command. This action makes the zone definitions persistent across SL-APM resets. It will be 
automatically reloaded on reboot. If ``SAVE ZONES`` is not used, the zone data will be lost if the SL-APM is reset.

If a zone needs to be deleted, the ``REMOVE ZONE <zone name> ALL`` command can be used. This causes 
all ports to be removed from the zone definition and then delete the zone itself. As with all zone mapping 
modifications, to make it persistent across SL-APM resets, enter ``SAVE ZONES``.

**Power capping with zones**

If zones are defined as described above (and assuming a power baseline has been established for the rack), 
then the `SET POWER CAP` command can accept a zone name as a parameter after the wattage value (or 
``NONE`` if a power cap is being removed).

For example:

```
> show zones
Zone BLUE:
 Power Manager port 1:
 Dist. Module port 2
 Dist. Module port 3
Zone GREEN:
 Power Manager port 2:
 all Dist. Module ports included
Zone YELLOW:
 Power Manager port 3:
 Dist. Module port 1
```

```
> show power baseline
APMPort DMPort Serial Number Min Cap Max Cap Set Cap Slots Populated
------- ------ ------------- ------- ------- ------- ----- ----------------
1 1 0 0 0 (8)
1 2 CNK71600K4 585 2372 1500 (8) 2 3 5 7
--- --- ------- ------- ------- ------- ------- ------
1 1 0 0 0 (8)
```

```
> set power cap 2000 blue
New cap represents 84 percent of the max cap of eligible entities.
Apply cap (Y/N) ->
```

The above output sets a power cap only to those chassis that are in the zone defined as BLUE. If all the caps 
must be removed from a zone, then `SET POWER CAP NONE` can be used.

```
> set power cap none blue
Remove power cap(s)? (Y/N) ->
```

The above command removes all power cap settings from the SL-APM chassis that is resident in on the 
SL-APM port 1 and distribution module ports 2 and 3, or zone blue. Since there is only a single chassis that 
matches that description, the operation only affects that one chassis.

If a cap is set using a zone, then the zone is removed, the cap is unaffected. A new zone may be created that 
includes some or all of the ports of the former zone and caps set against the new zone as well. Zones are 
strictly a defined set of SL enclosures that can be used to specify which machines are being considered for a 
cap. They are a vehicle for enabling multiple caps and/or “exclusion” areas to be created within a single 
SL-APM domain of enclosures with respect to power capping.
Power baselines and zones

The power baseline cannot be created with respect to a zone. The baseline is a singular separate entity that is saved into the SL-APM EEPROM. Zones can use portions of the established baseline when considering power caps, but the baseline is established globally.

Power commands

**NOTE:** For the power capping feature, you must have SL-APM 1.30 or later. You must also have an HP ProLiant s6500 Chassis or later with BIOS support required. SL-APM 1.30 does not support the HP ProLiant DL1000, DL2000, or SL6000 Chassis.

The power commands use the SL-APM port number, the distribution module port number, and server node port number as input parameters.

In the following figure, the SL-APM port 2 is connected to the SL-APM Distribution Module port 4. The distribution module port, in turn, is connected to the SL enclosure and server node 8.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SL-APM</td>
</tr>
<tr>
<td>2</td>
<td>SL-APM Distribution Module</td>
</tr>
<tr>
<td>3</td>
<td>SL series enclosure</td>
</tr>
<tr>
<td>4</td>
<td>Bay 4 of a 4U chassis SL6500 Scalable System enclosure with eight 1U half-width nodes</td>
</tr>
</tbody>
</table>

Displaying the rack power status

Enter `SHOW POWER`, and then optionally the specific SL-APM port, or both the SL-APM and the SL-APM Distribution Module ports.

For example:
SHOW POWER (to show all power)

SHOW POWER 2 (to show the power for the SL-APM port number)

SHOW POWER 2 4 (to show the power for the SL-APM port number and the SL-APM Distribution Module port number)

This command also displays:

- Fan power per chassis in DC watts
- Chassis total in DC watts
- Chassis total in AC watts
- Chassis cap in AC watts (if one is set)
- The total of the averages is shown as well as the "average of averages" that was already there
- The average max power is shown as well as the total of the max column
- A total count of all the servers and chassis listed
- Total fan wattage for the listing
- Total system wattage in DC watts
- Total system wattage in AC watts

For example, the following text might appear on screen:

<table>
<thead>
<tr>
<th>MDM</th>
<th>Port</th>
<th>Node</th>
<th>Avg</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>67</td>
<td>n/a</td>
<td>165</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(empty)</td>
<td>n/a</td>
<td>242</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>(empty)</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>(empty)</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>(empty)</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>n/a</td>
<td>72</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
<td>37</td>
<td>n/a</td>
<td>86</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Fans</td>
<td>35</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>203</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>236</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>(empty)</td>
<td>n/a</td>
<td>94</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>94</td>
<td>n/a</td>
<td>179</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>(empty)</td>
<td>64</td>
<td>n/a</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>(empty)</td>
<td>74</td>
<td>n/a</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>(empty)</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>(empty)</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td>(empty)</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>8</td>
<td>(empty)</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Fans</td>
<td>235</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>467</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>507</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>
Total servers = 8
Total chassis = 2
Total fan wattage = 270 (DC watts)
Total system wattage = 670 (DC watts)
Total system wattage = 743 (AC watts)

Setting power

Power management enables you to turn on and off single or multiple nodes within the rack.

To turn an SL server node on or off, use the **SET POWER** command:

```
SET POWER {ON|OFF|ENABLE|DISABLE} {ALL | <PORT#> <DMPORT#> {<NODE#>|ALL}}
```

where:

- **ALL** is used when the command applies to all nodes. You can also use **ALL** when the command applies to all the server nodes in a particular SL server enclosure.
- **<PORT#>** refers to the SL-APM, PDM1, or PDM2 port numbers.
- **<DMPORT#>** refers to the SL-APM Distribution Module port number or the HP Intelligent Modular PDU Extension Bar outlet number.
- **<NODE#>** refers to the SL server node.

For example, to power on SL server node 3, enter:

```
SET POWER ON 2 4 3
```

To power off SL server node 3, enter:

```
SET POWER DISABLE 2 4 3
```

When you power on a particular SL server enclosure, you must include either the node number or **ALL** in the command.

To power on the SL server nodes in the enclosure, enter:

```
SET POWER ON 2 4 ALL
```

To power on all nodes connecting to the chassis on all SL-APM Distribution Module ports, enter:

```
SET POWER ON ALL
```
SNMP traps denoted by an asterisk (*) are not supported on the HP ProLiant s6500 Chassis. The \texttt{SET POWER ON ALL} and \texttt{SET POWER OFF ALL} commands are not supported on SL-APM 1.54 on the HP Moonshot 1500 Chassis.

To power on the PDU ports, enter:

\texttt{SET POWER ON PDM}

To power off PDU ports, enter:

\texttt{SET POWER OFF PDM}

### Polling servers for power values

To enable a background process that polls each server for its average, minimum, and maximum power values, enter \texttt{ENABLE POLLPOWER}.

Polling these values increases the performance of SNMP queries of these power values.

The poll cycle time varies depending on how many server chassis are plugged into the SL-APM system. The more chassis that are present, the less frequently each server will be polled.

If \texttt{POLLPOWER} is enabled, then an SNMP request for any of these values on any resident server returns the last polled value instead of requesting the real time values from the server at the time the request is made.

### Disabling the polling of servers for power values

To disable the background process that is polling each server for power usage, enter \texttt{DISABLE POLLPOWER}. The \texttt{DISABLE POLLPOWER} setting is the default.
General commands

Working with passwords

SL-APM has no factory-assigned password. You can set a password and enable or disable a password (if you have set a password). SL-APM has an override switch if you forget your password. For more information, see "Using the security override (on page 57)".

SL-APM has only one login account. This account is the "Administrator" account. If a password is assigned to the administrator account, the password is stored on the SL-APM controller. If you move the controller to another SL-APM enclosure, the password moves with the controller.

Configuring Ethernet requires a password.

Setting SL-APM passwords

To set the password, enter SET PASSWORD.

You are prompted for a password when you access SSH, Telnet, or serial port access to the SL-APM. You can have only one password for SL-APM.

The password must be between 8 and 31 characters, and can include:

- Uppercase letters
- Lowercase letters
- Underscores (_)
- Dashes (-)
- At signs (@)
- Pound signs (#)
- Carets (^)
- Ampersands (&)
- Exclamation points (!)
- Plus symbols (+)
- Equal symbols (=)
- Tilde (~)
- Numerical values between 0–9

To save and enable the password, press Enter.

Alternatively, you can set the password by entering SET PASSWORD "password". For example, enter the following:

SET PASSWORD "alphabravo"
When entering a password in this manner, you must include quotation marks around the password being set. This form of command is useful for scripted setup.

Disabling SL-APM passwords

To disable the password, enter **DISABLE PASSWORD**. This command disables the password protection feature. If the password is disabled, SSH and Telnet access are also disabled.

Resetting factory settings for SL-APM

To restore the SL-APM to its factory default settings, enter **RESET FACTORY**. This command restores SL-APM to factory settings, including no password and Ethernet access, and then performs a reboot.

⚠️ **WARNING:** When you enter **RESET FACTORY**, SL-APM erases your entire configuration. Before resetting factory defaults, consider saving your configuration. For more information on duplicating your configuration, see “Duplicating the configuration (on page 26)”.

Working with accounts

SL-APM supports two login accounts (including the built-in Administrator account) on a single SL-APM board.

Adding an account

To add an account, enter **ADD ACCOUNT**. For example, enter

```
myslapm> add account "root"
Password must be at least 8 characters
Note: password will not show.
Enter account "root" password:
Enter account "root" password (again):
Saving password..done.
Account root enabled
```

After you enter this command with a valid new username, a prompt asking for a password appears. Enter the password. The new account is available for system login.

If you do not specify a password, and the username does not already exist, then you are prompted for a password.

All user accounts have the same permissions.

**NOTE:** Login accounts and passwords are stored separate from the board configuration. A **SHOW CONFIG** command will not reveal any **ADD ACCOUNT** commands.

Removing an account

To remove an account, enter **REMOVE ACCOUNT “<username>”**
where:

"<username>" is the account username.

This command removes the specified account from the system. If the user does not exist, then an error message appears.

The Administrator account cannot be deleted.

Showing accounts

To show the existing defined accounts, including the reserved Administrator account, enter SHOW ACCOUNTS.

For example:

myslapm> show accounts
Administrator
root
myslapm>

Working with zones

SLAPM enables the addition, removal, and showing of chassis to a zone, and the saving of zones.

Adding zones

To add one or more chassis to a zone, enter

ADD ZONE <zone_name> [[<PORT#> <DMPORT#>]] | [<PORT#> ALL] | [ALL]

where:

- <zone_name> is the zone name.
- <PORT#> is the port number.
- <DMPORT#> is the distribution module port number.
- <PORT# ALL> is the port number.

For example:

myslapm> add zone red 1 2
Zone RED does not exist, would you like to create it? (Y/N) -> Yes
Note: there currently is no physical chassis plugged into Power Manager port 1, Dist. Module port 2
RED zone added
Zone definition changed, do you want to save this data to the EEPROM? (Y/N) -> No
Note: You can also save zone data to the EEPROM at any time with the SAVE ZONES command
myslapm>

If the zone does not already exist, then it will be automatically created and the specified chassis will be added.

You can create up to four zones.
The parameters enable the addition of all chassis on all SL-APM ports, all the chassis plugged into an SL-APM port through a SL-APM Distribution Module) or a specific chassis on a specified SL-APM port and SL-APM Distribution Module port. The syntax is similar to other SL-APM commands such as SHOW POWER or SHOW RACK in how SL-APM and SL-APM Distribution Module ports are specified.

When adding a chassis to a zone, the chassis does not have to be present and plugged into the SL-APM. The SL-APM issues a message in such cases, and therefore, the chassis does not exist. Zone definitions do not require the hardware to be actually present. For SL-APM operations that might use zones (for example, SET POWER BASELINE), only those chassis that exist and are defined in the zone are considered for the operation.

For example:
ADD ZONE my_zone 1 5
Adding the chassis plugged into SL-APM Distribution Module port 5 on SL-APM port 1 to zone MY_ZONE. If MY_ZONE did not already exist, it will be created.
ADD ZONE my_zone 1 all
Adding all the chassis plugged into an SL-APM Distribution Module on SL-APM port 1.
ADD ZONE my_zone all
Adding all chassis on the SL-APM to zone MY_ZONE.
ADD ZONE BLUE 1 ALL 2 ALL 3 1
You can also use ALL by itself instead of a PORT DMPORT pair.
For example:
ADD ZONE BLUE ALL
Zones cannot overlap.

Removing zones
To remove one or more chassis from a zone definition, enter
REMOVE ZONE <zone_name> [[<PORT#> <DMPORT#>]] | [<PORT#> ALL] | [ALL]
where:
- <zone_name> is the zone name.
- <PORT#> is the port number.
- <DMPORT#> is the distribution module port number.
- <PORT# ALL> is the port number.
If no more chassis exist in the zone after the target chassis is removed, then the zone is automatically deleted.
The syntax for indication which chassis is to be removed is identical to the ADD ZONE command.
For example:
REMOVE ZONE my_zone ALL
Removes all chassis from the zone MY_ZONE. This command also deletes the zone definition of MY_ZONE because no chassis is associated with it.
REMOVE ZONE my_zone 1 ALL
Removes all chassis plugged into the SL-APM Distribution Module on APM port 1.
Showing zones

To display all the currently defined zones and their respective member chassis, enter `SHOW ZONES`.

For example:

```
myslapm> show zones
Zone BLUE:
 Power Manager port 1:
 all Dist. Module ports included
Zone RED:
 Power Manager port 1:
 Dist. Module port 2
myslapm>
```

Saving zones

To commit the defined zones and their member chassis to the on-board EEPROM, enter `SAVE ZONES`.

You can define and save up to four zones. These zones are automatically loaded from the EEPROM when the board is reset.

Using the security override

If you forget your password, the SL-APM has an override switch to use. To activate this switch:

1. Remove the SL-APM controller from the SL-APM enclosure.
2. Locate the switches.
3. Set switch 1 to **ON**.
4. Reinsert the SL-APM controller into the SL-APM enclosure.
5. Log into the SL-APM using the serial port because SSH and Telnet are disabled due to the password override.
6. You can either reset or disable the password.
To reset the password, enter `SET PASSWORD`. For more information, see "Setting SL-APM passwords (on page 53)".

To disable the password, enter `DISABLE PASSWORD`, and then `SAVE`. For more information, see "Disabling SL-APM passwords (on page 54)".

7. Remove the SL-APM controller from the SL-APM enclosure.

8. Locate the switches.

9. Set switch 1 to **OFF**.

10. Reinsert the SL-APM controller into the SL-APM enclosure.

## Showing configurations

To show the configuration, enter `SHOW CONFIG`. A list of commands representing the configuration of SL-APM appears.

## Using the help

To access the help, enter `HELP`. The following listing appears:

```
SL-APM> help
CLEAR Empty log entries
CONFIG Configure SL-APM
DISABLE Turn off board features
ENABLE Turn on board features
EXIT Exit CLI
HELP Show help messages
LOGOUT Exit CLI
PING Ping a remote host
REBOOT Reboot firmware
RESET Reset SL-APM
SAVE Save SL-APM firmware
SET Set board configuration
SHOW Display information
UPGRADE Pull in new firmware
```

Each listing, in turn, has its own listings. For example, entering `HELP CLEAR`, the following listing appears:

```
SL-APM> help clear
CLEAR Empty log entries
FAULTS Empty the fault log
LOG Empty system log
SCREEN Clear the screen
```

This listing shows the items that you can clear:

- To empty the fault log, enter `CLEAR FAULTS`.
- To empty the system log, enter `CLEAR LOG`.
- To clear the screen, enter `CLEAR SCREEN`.

## Setting the name

To set the name that will appear in the log and syslog entries, enter `SET NAME "<name>"`. For example:
SET NAME "alphabravo"

**Setting the time**

To set the time, enter `SET TIME <month> <day> <year> <hour> <minute>`

where:

- `<month>` is the month.
- `<day>` is the day.
- `<year>` is the year.
- `<hour>` is the hour, in 24-hour format. For example, enter 3:00 p.m. as 15.
- `<minute>` is the minute.

SL-APM does not automatically adjust for Daylight Savings Time.

The time remains on this setting until you issue the `RESET FACTORY` command.

**Setting the session timeout**

To set the SSH and Telnet inactivity timeout, enter `SET TIMEOUT {<timeout_value> | NONE}`

where `<timeout_value>` is the timeout value measured in seconds.

For example, to set a 30-second timeout, enter:

```
SET TIMEOUT 30
```

If you specify `NONE`, then no timeouts are set. For example, enter:

```
SET TIMEOUT NONE
```

**Setting the UID LED**

To activate the UID LED, enter `SET UID ON <PORT#> <DMPORT#>`.

To deactivate the UID LED, enter `SET UID OFF <PORT#> <DMPORT#>`.

where:

- `<PORT#>` is the SL-APM, PDM1, or PDM2 port numbers.
- `<DMPORT#>` is the SL-APM Distribution Module port number or the HP Intelligent Modular PDU Extension Bar outlet number.

**Showing information**

To show information, enter `SHOW INFO`. The following information appears:

- Manufacturer
- Product Name
- Part Number
- Spare Part Number
- Serial Number
- FRU File ID

**Showing the name**

To show the name, enter `SHOW NAME`. The name appears.

As an example, the following text appears on the screen:

```
SL-APM> show name
SL-APM
```

**Showing the time**

To show the time, enter `SHOW TIME`. The time appears.

For example, the following text appears:

```
SL-APM> show time
MON OCT 1 12:56:21 2012
```

** Showing the version**

To show the version, enter `SHOW VERSION`. The version information appears.

For example, the following text appears:

```
SL-APM> show version
HP ProLiant SL Advanced Power Manager
(c) Copyright 2012 Hewlett-Packard Development Company, L.P.
All rights reserved
Version 1.50
Power Manager located in slot 1
Build time was Sep 20 2012, 00:00:00
Power Manager Hardware revision 1h
Dist. Module at port 1 FW:1h, BL:1h, HW:2h
```

To show the HP Power Management Controller Utility hardware and firmware versions as well as the license status of all servers in the enclosures, enter `SHOW VERSION ALL`.

**Rebooting and resetting factory settings**

To reboot, enter `REBOOT`. Unsaved configuration settings are lost.

**Rebooting the HP Moonshot 1500 Chassis CM module**

To reboot the HP Moonshot 1500 Chassis CM module, enter `REBOOT CM <PORT#> <DMPORT #>`.

where:

- `<PORT#>` refers to the SL-APM port.
Performing a reset

To reset, enter **RESET**. Unsaved configuration settings are lost.

Clearing the screen

To clear the session screen, **CLEAR SCREEN**.

Resetting factory settings

To reset the factory settings, enter **RESET FACTORY**.

All configuration and password settings will be lost. Password access will be disabled. Network access will be prevented due to disabled password.

Exiting, logging out, or quitting SL-APM

To exit enter one of the following: **EXIT, LOGOUT, enter QUIT**.
Using SNMP

SNMP overview

The architectural model for SNMP contains these components:

- At least one network management station with manager software. A network management station is a host running an application that manages the network. The network management applications request information from the agents, put the information into a database, and then translate messages into a readable format.

- Network Agents. Network agents are managed devices containing agent software. Agents might be hosts, gateway systems, or media devices such as bridges, hubs, or multiplexors. These agents perform the network management functions requested by the network management stations.

- Network management protocol. SNMP enables network management stations to monitor and control network devices. Stations and agents use SNMP to exchange management information. SNMP describes how agents and managers communicate and defines the types of information that can be exchanged.

Enabling SNMP

To enable the SNMP protocol stack and agent in SL-APM, enter `ENABLE SNMP`.

To disable the SNMP protocol stack and agent, enter `DISABLE SNMP`.

When you enter `DISABLE SNMP`, SL-APM no longer responds to SNMP. This state is the default.

Displaying SNMP parameters

Enter `SHOW SNMP`.

As an example, the following text might appear on screen:

```
> show snmp
SNMP agent is enabled
SNMP Read-only community string is "public"
SNMP Read-write community string is "private"
SNMP traps are sent to 16.83.185.73
SNMP system group values:
 SysDescription: HP SL Advanced Power Manager
 sysUptime: 33658723
 sysContact:
 sysName: alphabravo
 sysLocation: Chicago
```

If you do not have a particular variable entered, the space for that variable is left blank. In this example, no contact information has been entered.
Setting the SNMP read-only community string

To set the SNMP read-only community string, enter `SET SNMP RO "<community_string>"`. For example, enter:

```
SET SNMP RO "alphabravo"
```

Setting the SNMP read-write community string

To set the SNMP read-write community string, enter `SET SNMP RW "<community_string>"`. For example, enter:

```
SET SNMP RW "alphabravo"
```

Setting the SNMP contact

To set the `sysContact` field, enter `SET SNMP CONTACT "<sysContact>"`. For example, enter:

```
SET SNMP CONTACT "alphabravo"
```

Setting the SNMP location

To set the `sysLocation` field, enter `SET SNMP LOCATION "<sysLocation>"`. For example, enter:

```
SET SNMP LOCATION "alphabravo"
```

Setting SNMP trap destinations

To set the IP address for SNMP traps, enter `SET SNMP TRAPDEST <<ip_addresses>|NONE>`. For example, enter:

```
SET SNMP TRAPDEST x.x.x.x
```

You can set up to four SNMP traps at once. For example, enter:

```
SET SNMP TRAPDEST x.x.x.x y.y.y.y z.z.z.z a.a.a.a
```

If you specify `NONE`, then no traps are set. For example, enter:

```
SET SNMP TRAPDEST NONE
```

SL-APM supports the following SNMP traps:

- `cpqRackNameChanged`
- `cpqRackEnclosureRemoved`
- `cpqRackEnclosureInserted`
- `cpqRackEnclosureFanRemoved` *
- `cpqRackEnclosureFanInserted` *
- `cpqRackEnclosureFanFailed`
- `cpqRackEnclosureFanOK`
- `cpqRackPowerSupplyFailed`
• cpqRackPowerSupplyOK
• cpqRackPowerSupplyRemoved
• cpqRackPowerSupplyInserted
• cpqRackServerBladeRemoved
• cpqRackServerBladeInserted
  * Not supported on HP ProLiant s6500 Chassis

**SNMP support of cpqHoSwRunningTable**

The first element of this SNMP table lists the SL-APM base firmware itself under cpqHoSwRunningName and cpqHoSwRunningDesc with cpqHoSwRunningVersion listing the correct version of the SL-APM firmware.

Components that are listed in the cpqHoSwRunningTable are:

- SNMP
- SSH
- syslogd
- Telnet

The table entry cpqHoSWRunningState is set to either Running (2) or Stopped (3) to reflect whether that service is enabled or not. The SNMP service is listed as "Running" when accessed through this MIB item.

All other items in this table are unsupported and will return their respective static return value for “unknown.”

The rows appear in this order:

- SL-APM base firmware
- Telnet
- SSH
- SNMP
- syslogd

The following figure shows a sample table view of cpqHoSwRunningTable.

<table>
<thead>
<tr>
<th>cpqHoSwRunningIndex</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpqHoSwRunningName</td>
<td>SL-APM</td>
<td>telnet</td>
<td>ssh</td>
<td>snmp</td>
<td>syslogd</td>
</tr>
<tr>
<td>cpqHoSwRunningDesc</td>
<td>HP ProLiant SL Advanced Power Manager</td>
<td>Telnet server</td>
<td>ssh daemon</td>
<td>snmp agent</td>
<td>syslog daemon</td>
</tr>
<tr>
<td>cpqHoSwRunningVersion</td>
<td>Version 1.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cpqHoSwRunningState</td>
<td>other</td>
<td>started</td>
<td>started</td>
<td>started</td>
<td>stopped</td>
</tr>
<tr>
<td>cpqHoSwRunningCount</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>cpqHoSwRunningCountMin</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>cpqHoSwRunningCountMax</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>cpqHoSwRunningEventTime</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td>cpqHoSwRunningConfigStatus</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td>cpqHoSwRunningIdentifier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cpqHoSwRunningRedundancyMode</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
</tr>
</tbody>
</table>
Using XML

XML overview

XML scripting provides a standard programmatic means for data center tools to interact with the SL-APM. You can configure many of the same components available with the SL-APM CLI only in a format that is more favorable to the many tools that use XML as a scripting medium.

In addition to configuration capabilities, you can also draw information from the SL-APM, based on an XML query/response paradigm, such as querying a rack for all available power loads on that rack.

A username/password combination, located at the top of the XML query into SL-APM, enforces security.

XML headers

The first line of the XML script is always the following:

```xml
<?xml version="1.0" encoding="UTF-8"?>
```

XML output

XML output normalizes the attribute values and writes them to the output. This output follows the W3C canonicalization specification (http://www.w3.org/TR/xml-c14n).

Data types

The following table lists the data types allowed in the parameter.

<table>
<thead>
<tr>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>String</td>
<td>Any text enclosed in quotes. It can include spaces, numbers, or any printable character. A string might start with either a double of single quote, and it must end with the same type of quote. The string might contain a quote if it is different from the string delimiter quotes. For example, if a string is started with a double quote, a single quote can be used within the string and the string must be closed with a double quote.</td>
</tr>
<tr>
<td>Specific string</td>
<td>A specific string must contain certain characters. You have a choice of words that are accepted as correct syntax. All other words produce an error.</td>
</tr>
<tr>
<td>Boolean string</td>
<td>A boolean string is a specific string that specifies a &quot;yes&quot; or &quot;no&quot; condition. These strings are not case-sensitive. Acceptable boolean strings are:</td>
</tr>
<tr>
<td></td>
<td>• &quot;yes&quot;</td>
</tr>
<tr>
<td></td>
<td>• &quot;y&quot;</td>
</tr>
<tr>
<td></td>
<td>• &quot;no&quot;</td>
</tr>
<tr>
<td></td>
<td>• &quot;n&quot;</td>
</tr>
<tr>
<td></td>
<td>• &quot;true&quot;</td>
</tr>
<tr>
<td></td>
<td>• &quot;t&quot;</td>
</tr>
<tr>
<td></td>
<td>• &quot;false&quot;</td>
</tr>
<tr>
<td></td>
<td>• &quot;f&quot;</td>
</tr>
</tbody>
</table>
Response definitions

Every command sent to SL-APM generates a response. The response tells whether the command succeeded or failed. Some commands generate additional information. The additional information appears in execution sequence, provided that no errors occurred.

For example, a successful response might appear as follows:

```
<RESPONSE
 STATUS="0x0000"
 MSG="No Error."
> </RESPONSE>
```

A fail response might appear as follows:

```
<RESPONSE
 STATUS="0x0001"
 MSG="There has been an error."
> </RESPONSE>
```

Response

The tag name indicates that the SL-APM is sending a response to the previous commands back to the client application. This response indicates the success or failure of the commands that have been sent to the SL-APM. If an error occurs, the execution stops and the commands that follow it will not be executed. Prior commands will have been executed up to the point where the error occurred.

Status

The status parameter contains an error number. The number 0x0000 indicates that no error occurred.

<table>
<thead>
<tr>
<th>Status code</th>
<th>Possible reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000</td>
<td>No error.</td>
</tr>
<tr>
<td>0x0001</td>
<td>General error.</td>
</tr>
<tr>
<td>0x0002</td>
<td>Invalid or missing XML header. Every XML must start with SLAMPCL.</td>
</tr>
<tr>
<td>0x0003</td>
<td>Login failed. Wrong username/password.</td>
</tr>
<tr>
<td>0x0004</td>
<td>Unknown/unsupported Name Tag that is supported by the SL-APM. Mismatch Tag. The hierarchy or syntax that SL-APM might be incorrect.</td>
</tr>
<tr>
<td>0x0005</td>
<td>Parsing error to invalid XML (syntax error). For example, every begin tag must have an end tag. End tags must not have duplicate attribute values.</td>
</tr>
<tr>
<td>0x0006</td>
<td>Unknown attribute for an element tag specified.</td>
</tr>
<tr>
<td>0x0007</td>
<td>Required attribute for an element tag specified is missing.</td>
</tr>
<tr>
<td>0x0008</td>
<td>The attribute values are missing or have errors.</td>
</tr>
<tr>
<td>0x0009</td>
<td>Device specified message error. For example, the device is not present. Device is already on.</td>
</tr>
<tr>
<td>0x000A</td>
<td>The value cannot be blank.</td>
</tr>
<tr>
<td>0x000B</td>
<td>The required children tag is missing.</td>
</tr>
</tbody>
</table>
This element contains a message describing the error that occurred. If no error occurred, the message No error appears. Depending on the XML information sent, the element might return more than one error. For example, giving an invalid XML and an incorrect username/password generates two error messages.

**Enabling XML**

To enable the XML interface and make XML queries available on the network using port 80 (HTTP), enter ENABLE XML.

To enable the XML interface and make XML queries available on the network using port 443 (HTTPS), enter ENABLE XML SECURE.

The ENABLE XML SECURE command uses the OpenSSL Library for encryption. You can enable XML, or enable XML secure, but you cannot enable both concurrently.

To disable the XML interface, enter DISABLE XML.

**Showing and resetting keys**

To show the current SSL certificate, enter SHOW KEYS.

To regenerate a new DSA key, a new RSA key, and generate a new SSL certificate, enter RESET KEYS.

**Logging in through XML**

The LOGIN command provides information used to authenticate the user whose permission level will be used when performing SL-APM XML actions. The user must have a valid account on the respective SL-APM to execute commands.

For example:

```
<LOGIN USER_LOGIN="username" PASSWORD="password">
</LOGIN>
```

where

USER_LOGIN is the login name of the user account. This parameter is case-sensitive and must never be blank.

PASSWORD is the password associated with the user. This parameter is case-sensitive and can be a combination of any printable characters.

**Modifying the user account**

The MOD_USER command enables you to modify an existing local user account.

The USER_LOGIN parameter must exist in the current user database. For this command to parse correctly, the command must appear within a USER_INFO command block.

Currently, this command only supports changing the administrator password.

For example:

```
<SLAPMCL VERSION="1.00">
```
Requesting information with XML commands

You can request the firmware version, rack topology, and rack information with XML commands.

Requesting firmware version

To request the firmware information, enter `<GET_FW_VERSION>`.

For example:

```xml
<SLAPMCL VERSION="1.00">
<LOGIN USER_LOGIN="Administrator" PASSWORD="password">
<GET_FW_VERSION/>
</LOGIN>
</SLAPMCL>
```

Requesting rack topology

To request a return of the current topology of a rack infrastructure, enter `<GET_RACK_TOPOLOGY>`.

For example:

```xml
<SLAPMCL VERSION="1.00">
<LOGIN USER_LOGIN="Administrator" PASSWORD="password">
<GET_RACK_TOPOLOGY/>
</LOGIN>
</SLAPMCL>
```

Requesting rack information

To request information about a rack infrastructure, enter `<GET_RACK_INFO>`.

For example:

```xml
<SLAPMCL VERSION="1.00">
<LOGIN USER_LOGIN="Administrator" PASSWORD="password">
<GET_RACK_INFO/>
</LOGIN>
</SLAPMCL>
```

Modifying compute node power

To request SL Power Management Controller turn a node on or off, enter `<MOD_COMPUTE_NODE_POWER>`.

For example:

```xml
<SLAPMCL VERSION="1.00">
<LOGIN USER_LOGIN="Administrator" PASSWORD="password">
<MOD_COMPUTE_NODEPOWER>
</LOGIN>
</SLAPMCL>
```
<SLAPM PORT="1"/>
<DIST_MODULE PORT="1"/>
<NODE PORT="1"/>
<STATUS VALUE="ON"/>
</MOD_COMPUTE_NODE_POWER>
</LOGIN>
</SLAPMCL>

To request SL Power Management Controller to turn on all nodes attached to SL-APM, enter
<MOD_ALL_COMPUTE_NODES_POWER_VALUE="ON"/>.

For example, to turn on all nodes:
<SLAPMCL VERSION="1.00">
<LOGIN USER_LOGIN="Administrator" PASSWORD="password">
<MOD_ALL_COMPUTE_NODES_POWER_VALUE="ON"/>
</LOGIN>
</SLAPMCL>

To request SL Power Management Controller to turn off all nodes attached to SL-APM, enter
<MOD_ALL_COMPUTE_NODES_POWER_VALUE="OFF"/>.

For example, to turn off all nodes:
<SLAPMCL VERSION="1.00">
<LOGIN USER_LOGIN="Administrator" PASSWORD="password">
<MOD_ALL_COMPUTE_NODES_POWER_VALUE="OFF"/>
</LOGIN>
</SLAPMCL>

Requesting compute power node status

To request the power status of a node, enter <GET_COMPUTE_NODE_POWER>.

For example:
<SLAPMCL VERSION="1.00">
<LOGIN USER_LOGIN="Administrator" PASSWORD="password">
<GET_COMPUTE_NODE_POWER>
<SLAPM PORT="1"/>
<DIST_MODULE PORT="1"/>
<NODE PORT="1"/>
</GET_COMPUTE_NODE_POWER>
</LOGIN>
</SLAPMCL>

To request the power status of all nodes attached to SL-APM, enter
<GET_ALL_COMPUTE_NODES_POWER/>.

For example:
<SLAPMCL VERSION="1.00">
<LOGIN USER_LOGIN="Administrator" PASSWORD="password">
<GET_ALL_COMPUTE_NODES_POWER/>
</LOGIN>
</SLAPMCL>

Resetting SL-APM

To reset SL-APM, enter <RESET_APM>.

For example:
Firmware

Upgrading the firmware

You can perform firmware upgrades using either FTP or TFTP.

To perform an upgrade:

1. Place the firmware image file onto a system that provides an FTP or TFTP server and is accessible from the SL-APM network.
2. Log in to the SL-APM CLI interface using a serial port, Telnet, or SSH connection.
3. Depending on which protocol you choose, enter either of the following commands:
   - `UPGRADE IMAGE FTP <ip_address> <"login_name"> <"password"> <"filename">`
   - `UPGRADE IMAGE TFTP <ip_address> <"filename">`

   where:
   - `<ip_address>` refers to the IP address of a server that contains the file to be transferred.
   - `<"login_name">` refers to the FTP user name on the server hosting the file.
   - `<"password">` refers to the password of the FTP user name.
   - `<"filename">` refers to the file to be transferred. To preserve case, enclose `<filename>` in quotes.

The login name, password, and filename must be in quotations. For example,

`UPGRADE IMAGE FTP x.x.x.x "username" "alphabravo" "filename.bin"`

Following the transfer, the SL-APM is automatically upgraded and reset to run the new image.

**IMPORTANT:** If an upgrade is performed using either a Telnet or a SSH, the connection to the SL-APM will be lost after the upgrade.

**IMPORTANT:** If the firmware upgrade process is interrupted, then SL-APM reverts to the factory default image.

**NOTE:** If you downgrade the firmware or a firmware recovery is performed, syntax error messages might appear as the module initializes with its previously-saved configuration. You can ignore these messages.
Troubleshooting

Alert messages

The following messages appear in SL-APM.

<table>
<thead>
<tr>
<th>Message</th>
<th>Where this issue occurs</th>
<th>Required action</th>
</tr>
</thead>
<tbody>
<tr>
<td>There was an error transferring the file, image upgrade not performed.</td>
<td>Firmware upgrade</td>
<td>Verify network connectivity, and then retry the firmware upgrade.</td>
</tr>
<tr>
<td>Error upgrading firmware image.</td>
<td>Firmware upgrade</td>
<td>Message appears with other logs describing the actual issue. Review logs to identify, and then resolve issue.</td>
</tr>
<tr>
<td>Dist. Module on Power Manager Chassis port &lt;#&gt; has excessive errors and has been marked as failed.</td>
<td>All modes of operation</td>
<td>Verify SL-APM and SL-APM Distribution Module cabling.</td>
</tr>
<tr>
<td>Power Manager Chassis port &lt;#&gt; on Dist. Module &lt;#&gt; has excessive errors and has been marked as failed.</td>
<td>All modes of operation</td>
<td>Verify SL-APM and SL-APM Distribution Module cabling.</td>
</tr>
<tr>
<td>Power Manager Chassis rendered non functional, redundant Power Manager Chassis is not supported by this firmware version.</td>
<td>Redundant SL-APM inserted into SL-APM enclosure</td>
<td>Remove both SL-APM controllers, and then reinstall only one controller.</td>
</tr>
<tr>
<td>The SL enclosure on Power Manager port &lt;#&gt;, Dist. Module port &lt;#&gt; does not support the Power Manager.</td>
<td>SL Power Management Controller at the named location does not support SL-APM.</td>
<td>Update the SL Power Management Controller in that chassis. If no update is available, the SL Power Management Controller does not offer support for SL-APM.</td>
</tr>
</tbody>
</table>

For messages not listed, contact HP Support (http://www.hp.com/support). For more information, see "Support and other resources (on page 106)."

Devices not discovered

If devices are not discovered, perform the following steps:

1. Check the link and power LEDs.
2. Check the cables.
3. Reboot SL-APM.
CLI commands

Clear faults

- **Command:**
  CLEAR FAULTS
- **Description:**
  Clears the fault log to have 0 entries.

Clear log

- **Command:**
  CLEAR LOG
- **Description:**
  Clears the event log to have 0 entries.

Clear screen

- **Command:**
  CLEAR SCREEN
- **Description:**
  Clears a VT100/ANSI compatible terminal of all characters. Places cursor at position 1,1.

Disable Ethernet

- **Command:**
  DISABLE ETHERNET
- **Description:**
  Disables network access, including SSH and Telnet access and remote syslog support.

Enable Ethernet

- **Command:**
  ENABLE ETHERNET
- **Description:**
  Enables network access. Requires a password to be set and enabled. SSH and Telnet access must be enabled or disabled separately. Also enables remote syslog support.
Disable telnet

- **Command:**
  
  DISABLE TELNET

- **Description:**
  
  Turns off telnet access to the SL-APM board. Existing sessions will not be logged out.

Enable telnet

- **Command:**
  
  ENABLE TELNET

- **Description:**
  
  Turns on Telnet access to the SL-APM.

Disable SSH

- **Command:**
  
  DISABLE SSH

- **Description:**
  
  Turns off SSH access to the SL-APM.

Enable SSH

- **Command:**
  
  ENABLE SSH

- **Description:**
  
  Turns on SSH access to the SL-APM.

Remove account

- **Command:**
  
  REMOVE ACCOUNT "<username>"

- **Description:**
  
  - Removes the specified account from the system.
  - If the user does not exist, then an error message appears. The Administrator account cannot be deleted.

Add account

- **Command:**
  
  ADD ACCOUNT "<username>"
• Description:
  o Adds a new user to the system. A single SL-APM can maintain two login accounts, including the built-in Administrator account. Valid characters for usernames are A-Z, a-z, 0-9, _, and ‘-’. 
  o All user accounts have the same permissions.
  o A password for the new account will be prompted for after the command is entered with a valid new username. After the completion of the password entry, the new account is available for logging into the system.
  o If the password field is not specified, then the password appears after this command is entered and the username does not already exist.
  o Login accounts and passwords are stored separate from the board configuration. A SHOW CONFIG command will not reveal any ADD ACCOUNT commands.

Disable password

• Command:
  DISABLE PASSWORD

• Description:
Disables the password protection feature. Disabling password protection also disables SSH and Telnet network access.

Enable password

• Command:
  ENABLE PASSWORD

• Description:
Enables the password protection feature. SSH and Telnet access requires the password feature to be enabled.

Ping

• Command:
  PING

• Description:
Verifies network connectivity. Requires administrator access and has no restrictions.
As an example, the following text might appear on screen:
> ping x.x.x.x
Pinging x.x.x.x (x.x.x.x) with 64 bytes of data:
Reply from x.x.x.x bytes=64 time=0ms ttl=128
--- x.x.x.x ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 4000 ms
rtt min/avg/max = 0/0/0 ms
Exit

- Command: EXIT
- Description: Same as LOGOUT.

Help

- Command: HELP
- Description: Displays a list of available commands.

Logout

- Command: LOGOUT
- Description: Exits the CLI. Exiting terminates SSH or Telnet network connections. Exiting a connection through the serial port will return the user to the Login prompt.

Quit

- Command: QUIT
- Description: Same as LOGOUT.

Reset

- Command: RESET
- Description: Reboots SL-APM. Unsaved configuration settings are lost.

Reboot

- Command: REBOOT
- Description:
Same as **RESET**.

### Reboot CM

- **Command:**
  
  REBOOT CM <PORT#> <DMPORT#>

  where:

  - **<PORT#>** refers to the SL-APM port.
  - **<DMPORT#>** refers to the SL-APM Distribution Module port.

- **Description:**
  
  Reboots the HP Moonshot 1500 Chassis CM module.

### Reset factory

⚠️ **WARNING:** When you enter **RESET FACTORY**, SL-APM erases your entire configuration. Before resetting factory defaults, consider saving your configuration. For more information on duplicating your configuration, see "Duplicating the configuration (on page 26)".

- **Command:**
  
  RESET FACTORY

- **Description:**
  
  Restores SL-APM to factory settings (including no password and Ethernet disabled) and then reboots SL-APM.

### Save

- **Command:**
  
  SAVE

- **Description:**
  
  Saves the current configuration to non-volatile memory.

### Save config

- **Command:**
  
  SAVE CONFIG

- **Description:**
  
  Functionality identical to the **SAVE** command.

### Set IP

- **Command:**
  
  SET IP {DHCP | <IP_ADDRESS> <IP_MASK>}

---

CU commands 77
• **Description:**
Assigns static IP address and subnet mask or can be used to configure DHCP. If setting IP address and subnet mask, both must be specified.

### Set gateway

• **Command:**
```plaintext
SET GATEWAY {NONE | <IP_ADDRESS>}
```
• **Description:**
Assigns or removes gateway IP address.

### Set name

• **Command:**
```plaintext
SET NAME "<name>"
```
• **Description:**
Assigns a name to SL-APM that will appear in the log and syslog entries. Name can be up to 40 characters in length.

### Set password

• **Command:**
```plaintext
SET PASSWORD
```
  ```plaintext
 SET PASSWORD "<password>"
 SET PASSWORD "<password>" | account_name
  ```
• **Description:**
  o Configures the Administrator account password. Until a password is set, both Telnet and SSH are disabled. The password must be between 8 and 31 characters, and can include:
    — Uppercase letters
    — Lowercase letters
    — Underscores (_)
    — Dashes (-)
    — At signs (@)
    — Pound signs (#)
    — Carets (^)
    — Ampersands (&)
    — Exclamation points (!)
    — Plus symbols (+)
    — Equal symbols (=)
    — Tilde (~)
— Numerical values between 0–9

- SL-APM differentiates a password from an account_name (you have a choice between the two parameters, but not both) by the fact that the “password” parameter is in quotes while the account_name parameter is not in quotes. If the account_name parameter is used, then you are prompted for the new password.

Set power

- **Command:**

```plaintext
SET POWER {ON|OFF|ENABLE|DISABLE} {ALL | <PORT#> <DMPORT#> {<NODE#>|ALL}}
```

where:

- **ALL** is used when the command applies to all nodes. You can also use it when the command applies to all the server nodes in a particular SL server enclosure.
- **<PORT#>** refers to the SL-APM, PDM1, or PDM2 port numbers.
- **<DMPORT#>** refers to the SL-APM Distribution Module port number or HP Intelligent Modular PDU Extension Bar outlet number.
- **<NODE#>** refers to the SL server node.

- **Description:**
  - Turns power on and off to SL enclosures.
  - **SET POWER ALL** shows the HP Power Management Controller Utility hardware and firmware versions as well as the license status of all servers in the enclosures.

Set serial

- **Command:**

```plaintext
SET SERIAL <baud rate>
```

- **Description:**
  - Configure the serial console baud rate.
  - Serial access to the CLI will be by default 115200 bits/s, no parity, 8 data bits, and one stop bit (“115200 N 8 1”). You can configure these parameters through the CLI.
  - Valid baud rates are 300, 1200, 2400, 4800, 9600, 14400, 19200, and 115200.

Set syslog

- **Command:**

```plaintext
SET SYSLOG {<ip_address>|NONE}
```

- **Description:**
  - Sets or clears the sending of SL-APM log messages to a remote syslog server. Local logging is unaffected.
Set time

- **Command:**
  
  \[ \text{SET TIME } <\text{month}> <\text{day}> <\text{year}> <\text{hour}> <\text{minute}> \]

  where:

  - `<month>` is the month.
  - `<day>` is the day.
  - `<year>` is the year.
  - `<hour>` is the hour, in 24-hour format. For example, enter 3:00 p.m. as 15.
  - `<minute>` is the minute.

  SL-APM does not automatically adjust for Daylight Savings Time.

  The time remains on this setting until you issue the **RESET FACTORY** command.

- **Description:**
  
  - Sets the system time on the battery-backed clock.
  - All five parameters must be present. The hour parameter must be in 24-hour format.

Set timeout

- **Command:**
  
  \[ \text{SET TIMEOUT } \{<\text{timeout_value}> | \text{NONE}\} \]

  where:

  - `<timeout_value>` is the session timeout value measured in seconds. For example, to set a 30-second session timeout, enter:

    \[ \text{SET TIMEOUT 30} \]

  If you specify **NONE**, then no session timeouts are set. For example, enter:

    \[ \text{SET TIMEOUT NONE} \]

- **Description:**
  
  Sets the SSH and Telnet inactivity timeout.

Set power baseline

- **Command:**
  
  \[ \text{SET POWER BASELINE} \]

- **Description:**
  
  Baseline or calibrate all servers that are connected to the SL-APM. After you have established a baseline for the configuration, it is saved into the EEPROM on the SL-APM and the configuration monitored for changes from the baseline configuration. Examples of changes to the configuration would include the removal or installation of servers or chassis. If SL-APM is reset, the baseline is re-read from the EEPROM and compared to the discovered configuration after reset.

  The baseline is computed for the entire configuration and is not applicable to zones. When a power cap is set, the baseline data establishes the minimum and maximum power values that can be used for the cap. If you set a cap with a defined zone specified, then only that baseline data that was established
for the enclosures and are within that zone are used to establish the minimum and maximum for the cap to that zone.

Set power cap

- **Command:**
  `SET POWER CAP <wattage>|NONE [zone_name]`
- **Description:**
  - Establishes a power cap for all the eligible chassis that are connected to the SL-APM.
  - The wattage value, if provided, represents the total wattage to be allocated among all the chassis that are part of the baseline or partial baseline if a zone, if specified. This value is divided by the total maximum wattage established by the baseline to come up with a percentage cap value. This percentage is then multiplied against each chassis maximum wattage value to arrive at an appropriate cap value for that individual chassis.
  - If you specify NONE instead of a cap wattage value, then SL-APM removes all (or those in the specified zone, if desired) of the power caps.

Set asset info

- **Command:**
  `SET ASSETINFO [PDM1|PDM2] "<asset_tag_string>"`
- **Description:**
  - Enables SL-APM to set an asset tag. Supported only on the HP 60A PDU.
  - The `<asset_tag_string>` can be up to 32 characters in length. The string will be programmed into the PDU and can be retrieved with the `SHOW ASSETINFO` command.

Show accounts

- **Command:**
  `SHOW ACCOUNTS`
- **Description:**
  Shows the existing defined accounts, including the reserved Administrator account.

Show config

- **Command:**
  `SHOW CONFIG`
- **Description:**
  Displays the current configuration commands for SL-APM.
**SHOW FAULTS**

- **Description:**
  Shows the fault log entries.

**Show info**

- **Command:**
  SHOW INFO
- **Description:**
  Shows information pertaining to the SL-APM and SL-APM Distribution Module, including MAC address, model number, and serial number.

**Show log**

- **Command:**
  SHOW LOG
- **Description:**
  Shows the event log.

**Show syslog**

- **Command:**
  SHOW SYSLOG
- **Description:**
  Shows the current syslog IP address configuration. This command does not show the actual contents of the syslog.

**Show name**

- **Command:**
  SHOW NAME
- **Description:**
  Displays the rack name.

**Show power**

- **Command:**
  SHOW POWER
  SHOW POWER <PORT#>
  SHOW POWER <PORT#> <DMPORT#>
  SHOW POWER PDM
  SHOW POWER ALL
where:

<PORT#> refers to the SL-APM, PDM1, or PDM2 port numbers.
<DMPORT#> refers to the SL-APM Distribution Module port number or the HP Intelligent Modular PDU Extension Bar outlet number.

• Description:
  o Shows the rack power status.
  o SHOW POWER ALL shows the HP Power Management Controller Utility hardware and firmware versions as well as the license status of all servers in the enclosures.

Show rack

• Command:
  SHOW RACK
  SHOW RACK <PORT#>
  SHOW RACK <PORT#> <DMPORT#>
  SHOW RACK ALL

where:

<PORT#> refers to the SL-APM port.
<DMPORT#> refers to the SL-APM Distribution Module port.

• Description:
  o Shows the contents of the rack.
  o SHOW RACK ALL shows the HP Power Management Controller Utility hardware and firmware versions as well as the license status of all servers in the enclosures.

Show servers

• Command:
  SHOW SERVERS
  SHOW SERVERS <PORT#>
  SHOW SERVERS <PORT#> <DMPORT#>

where:

<PORT#> refers to the SL-APM port.
<DMPORT#> refers to the SL-APM port.

• Description:
  Shows the same information as the SHOW RACK and SHOW TOPOLOGY commands.

Show topology

• Command:
  SHOW TOPOLOGY
  SHOW TOPOLOGY <PORT#>
  SHOW TOPOLOGY <PORT#> <DMPORT#>
SHOW TOPOLOGY ALL
where:
<PORT#> refers to the SL-APM port.
<DMPORT#> refers to the SL-APM Distribution Module port.

• Description:
  o Shows the same information as the SHOW RACK and SHOW SERVERS commands.
  o SHOW TOPOLOGY ALL shows the HP Power Management Controller Utility hardware and firmware versions as well as the license status of all servers in the enclosures.

Show asset info

• Command:
  SHOW ASSETINFO
  SHOW ASSETINFO <PORT#>
  SHOW ASSETINFO <PORT#> <DMPORT#>
where:
<PORT#> refers to the SL-APM port.
<DMPORT#> refers to the SL-APM Distribution Module port.

• Description:
  o Shows the chassis in a rack in a report format.
  o Also requests and shows any asset tags from the chassis and any HP-sourced 60A PDUs that are in the rack.

Show MAC address

• Command:
  SHOW MACADDR
  SHOW MACADDR <PORT#>
  SHOW MACADDR <PORT#> <DMPORT#>
where:
<PORT#> refers to the SL-APM port.
<DMPORT#> refers to the SL-APM Distribution Module port.

• Description:
  Shows the contents of the rack, including the MAC addresses of the individual SL server nodes, if available.

Show time

• Command:
  SHOW TIME

• Description:
Displays the currently set system time.

**Show power baseline**

- **Command:**
  SHOW POWER BASELINE

- **Description:**
  Reports the currently established baseline data for all chassis that are connected to the SL-APM.

**Show version**

- **Command:**
  SHOW VERSION
  SHOW VERSION ALL

- **Description:**
  - Displays SL-APM firmware copyright, version, build date, and hardware version. Also displays SL-APM Distribution Module hardware and firmware versions.
  - SHOW VERSION ALL shows the HP Power Management Controller Utility hardware and firmware versions as well as the license status of all servers in the enclosures.

**Upgrade image**

- **Command:**
  - If using TFTP protocol for upgrading SL-APM, enter:
    UPGRADE IMAGE TFTP <ip_address> "<filename>"
  - If using FTP protocol for upgrading SL-APM, enter:
    UPGRADE IMAGE FTP <ip_address> "<username>" "<password>" "<filename>"

- **Description:**
  - Updates SL-APM firmware using the specified protocol. Protocol can be either FTP or TFTP.
    <ip_address> refers to the IP address of a server that contains the file to be transferred, and filename is the file to be transferred. Following the transfer, SL-APM will be upgraded and reset to run the new image.
  - The filename must be enclosed in quotes to preserve case.

**Add zone**

- **Command:**
  ADD ZONE <zone_name> [[<PORT#> <DMPORT#>]] | [<PORT#> ALL] | [ALL]

- **Description:**
  Adds one or more chassis to a zone named by <zone_name>. If the zone does not already exist, then it will be automatically created and the specified chassis will be added.
  You can create up to four zones.
The parameters enable the addition of all chassis on all SL-APM ports, all the chassis plugged into an SL-APM port through a SL-APM Distribution Module) or a specific chassis on a specified SL-APM port and SL-APM Distribution Module port. The syntax is similar to other SL-APM commands such as SHOW POWER or SHOW RACK in how SL-APM and SL-APM Distribution Module ports are specified.

When adding a chassis to a zone, the chassis does not have to be present and plugged into the SL-APM. The SL-APM issues a message in such cases, and therefore, the chassis does not exist. Zone definitions do not require the hardware to be present. For SL-APM operations that might use zones (for example, SET POWER BASELINE), only those chassis that exist and are defined in the zone are considered for the operation.

Examples:
ADD ZONE my_zone 1 5
Adds the chassis plugged into SL-APM Distribution Module port 5 on SL-APM port 1 to zone MY_ZONE. If MY_ZONE did not already exist, it will be created.
ADD ZONE my_zone 1 all
Adds all the chassis plugged into an SL-APM Distribution Module on SL-APM port 1.
ADD ZONE my_zone all
Adds all chassis on the SL-APM to zone MY_ZONE.
ADD ZONE BLUE 1 ALL 2 ALL 3 1
You can also use ALL by itself instead of a PORT DMPORT pair.
For example:
ADD ZONE BLUE ALL
Zones cannot overlap.

Save zones
- **Command:**
  SAVE ZONES
- **Description:**
  - Commits the defined zones and their member chassis to the on-board EEPROM.
  - You can define and save up to four zones. These zones are automatically loaded from the EEPROM when the board is reset.

Show zones
- **Command:**
  SHOW ZONES
- **Description:**
  Displays all the currently defined zones and their respective member chassis.

Remove zone
- **Command:**
  REMOVE ZONE <zone_name> [[<PORT#> <DMPORT#>]] | [<PORT#> ALL] | [ALL]
where:

<zone_name> is the zone name.
<PORT#> is the port number.
<DMPORT#> is the distribution module port number.
<PORT# ALL> is the port number.

If no more chassis exist in the zone after the target chassis is removed, then the zone is automatically deleted. The syntax for indication which chassis is to be removed is identical to the ADD ZONE command.

- **Description:**

Removes one or more chassis from a zone definition.

### Enable pollpower

- **Command**

`ENABLE POLLPOWER`

- **Description**

Enables background process that polls each server for power usage.

### Disable pollpower

- **Command**

`DISABLE POLLPOWER`

- **Description**

Disables background process that polls each server for power usage.

### Enable SNMP

- **Command:**

`ENABLE SNMP`

- **Description:**

Turns on SNMP protocol and agent in SL-APM.

### Disable SNMP

- **Command:**

`DISABLE SNMP`

- **Description:**

Turns off the SNMP protocol stack and agent. SL-APM no longer responds to SNMP. This state is the default.
Show SNMP

- **Command:**
  SHOW SNMP
- **Description:**
  Displays all parameters related to SNMP including whether SNMP is enabled, read-only and read-write community strings, SNMP trap destinations, and the contact, name, and location settings.

Set SNMP RO

- **Command:**
  SET SNMP RO "<community_string>"
- **Description:**
  Sets the SNMP read-only public string to the string specified as a parameter.

Set SNMP RW

- **Command:**
  SET SNMP RW "<community_string>"
- **Description:**
  Sets the read-write string.

Set SNMP contact

- **Command:**
  SET SNMP CONTACT "<sysContact>"
- **Description:**
  Sets the MIB II sysContact field.

Set SNMP location

- **Command:**
  SET SNMP LOCATION "<sysLocation>"
- **Description:**
  Sets the MIB II sysLocation field.

Set SNMP trapdest

- **Command:**
  SET SNMP TRAPDEST <<ip_addresses>|NONE>
- **Description:**
  Sets the SNMP trap destination or trap destinations.
- Sets the IP addresses where SNMP traps are sent.
  You can set up to four SNMP trap destinations. For example, enter:
  
  ```
 SET SNMP TRAPDEST x.x.x.x y.y.y.y z.z.z.z a.a.a.a
  ```
  
  If you specify **NONE**, then no trap destinations are set. For example, enter:
  
  ```
 SET SNMP TRAPDEST NONE
  ```

- SL-APM supports the following SNMP traps:

  **NOTE:** SNMP traps denoted by an * are not supported on the HP ProLiant s6500 Chassis.

  - cpqRackNameChanged
  - cpqRackEnclosureRemoved
  - cpqRackEnclosureInserted
  - cpqRackEnclosureFanRemoved *
  - cpqRackEnclosureFanInserted *
  - cpqRackEnclosureFanFailed
  - cpqRackEnclosureFanOK
  - cpqRackPowerSupplyFailed
  - cpqRackPowerSupplyOK
  - cpqRackPowerSupplyRemoved
  - cpqRackPowerSupplyInserted
  - cpqRackServerBladeRemoved
  - cpqRackServerBladeInserted

### Enable XML

- **Command:**
  ```
 ENABLE XML
  ```

- **Description:**
  Turns on XML interface and makes XML queries available on the network using port 80 (HTTP).

  You can enable XML, or enable XML secure, but you cannot enable both concurrently.

### Enable XML secure

- **Command:**
  ```
 ENABLE XML SECURE
  ```

- **Description:**
  Turns on XML interface and makes XML queries available on the network using port 443 (HTTPS). This command uses an encrypted secure socket connection.

  You can enable XML, or enable XML secure, but you cannot enable both concurrently.
**Disable XML**

- **Command:**
  DISABLE XML
- **Description:**
  Turns off the XML interface. This command turns off whichever interface (non-secured or secured) is enabled.

**Show keys**

- **Command:**
  SHOW KEYS
- **Description:**
  Shows the SSL certificate.

**Reset keys**

- **Command:**
  RESET KEYS
- **Description:**
  Erases the currently-defined DSA keys and RSA keys, regenerates new keys using a random number, and then generates a new SSL certificate.

**Add RADIUS server**

- **Command:**
  ADD RADIUS SERVER <ip_address> <shared_secret>
- **Description:**
  Specifies an initial, or additional RADIUS server to SL-APM’s list of authentication servers. The authentication proceeds in the same order that these servers were added to the configuration.

**Enable RADIUS**

- **Command:**
  ENABLE RADIUS
- **Description:**
  Enables SL-APM as a RADIUS client.

**Disable RADIUS**

- **Command:**
  DISABLE RADIUS
• **Description:**
  Turns off RADIUS authentication on SL-APM. Authentication through RADIUS no longer takes place, but password checking is still done against the local password if that is still enabled. Does not clear out the configured RADIUS servers.

**Remove RADIUS server**

• **Command:**
  REMOVE RADIUS SERVER <index>

• **Description:**
  Removes a previously added RADIUS server that matches the index indicated with the `SHOW RADIUS` command.

**Show RADIUS**

• **Command:**
  SHOW RADIUS

• **Description:**
  Shows the currently configured RADIUS servers.

**Set RADIUS pollnum**

• **Command:**
  SET RADIUS POLLNUM

• **Description:**
  Number of times SL-APM polls each of the radius server indicated in the `ADD RADIUS SERVER` command. This setting can only be set globally and cannot be applied to each individual RADIUS server.

**Set RADIUS pollsec**

• **Command:**
  SET RADIUS POLLSEC

• **Description:**
  Number of seconds SL-APM waits for a reply from the RADIUS server. This setting can only be set globally and cannot be applied to each individual radius server.
XML commands

Login

- **Command:**
  ```xml
 <LOGIN USER_LOGIN="username" PASSWORD="password">
 </LOGIN>
  ```
  where
  
  USER_LOGIN is the login name of the user account. This parameter is case sensitive and must never be blank.
  
  PASSWORD is the password associated with the user.

- **Description:**
  This XML command provides the information used to authenticate the user.

Modify user

- **Command:**
  ```xml
 <SLAPMCL VERSION="1.00">
 <LOGIN USER_LOGIN="Administrator" PASSWORD="password">
 <USER_INFO>
 <MOD_USER USER_LOGIN="Administrator">
 <PASSWORD VALUE="newpassword"/>
 </MOD_USER>
 </USER_INFO>
 </LOGIN>
 </SLAPMCL>
  ```
  where
  
  USER_LOGIN is the login name of the user account. This parameter is case sensitive and must never be blank.
  
  PASSWORD VALUE is the password associated with the user.

- **Description:**
  This command, executed in XML, enables you to modify an existing local user account. The USER_LOGIN parameter must exist in the current user database. For this command to parse correctly, the command must appear within a USER_INFO command block, and USER_INFO MODE must be set to write.
  
  This command only supports changing the administrator password.

Get firmware version

- **Command:**
Get rack topology

- **Command:**
  ```xml
 <SLAPMCL VERSION="1.00">
 <LOGIN USER_LOGIN="Administrator" PASSWORD="password">
 <GET_RACK_TOPOLOGY/>
 </LOGIN>
 </SLAPMCL>
  ```
  where
  USER_LOGIN is the login name of the user account. This parameter is case sensitive and must never be blank.
  PASSWORD is the password associated with the user.
  
  - **Description:**
    This command, executed in XML, requests a return of the current topology of a rack infrastructure.

Get rack information

- **Command:**
  ```xml
 <SLAPMCL VERSION="1.00">
 <LOGIN USER_LOGIN="Administrator" PASSWORD="password">
 <GET_RACK_INFO/>
 </LOGIN>
 </SLAPMCL>
  ```
  where
  USER_LOGIN is the login name of the user account. This parameter is case sensitive and must never be blank.
  PASSWORD is the password associated with the user.
  
  - **Description:**
    This command, executed in XML, requests information about a rack infrastructure.

Modify compute node power

- **Command:**
where

USER_LOGIN is the login name of the user account. This parameter is case sensitive and must never be blank.

PASSWORD is the password associated with the user.

• Description:
This command, executed in XML, requests SL Power Management Controller to turn a node on or off.

Modify all compute node power

• Command:

<SLAPMCL VERSION="1.00">
<LOGIN USER_LOGIN="Administrator" PASSWORD="password">
<MOD_ALL_COMPUTE_NODES_POWER_VALUE="ON"/>
</LOGIN>
</SLAPMCL>

to turn on all nodes, or

<SLAPMCL VERSION="1.00">
<LOGIN USER_LOGIN="Administrator" PASSWORD="password">
<MOD_ALL_COMPUTE_NODES_POWER_VALUE="OFF"/>
</LOGIN>
</SLAPMCL>

to turn off all nodes, where

USER_LOGIN is the login name of the user account. This parameter is case sensitive and must never be blank.

PASSWORD is the password associated with the user.

• Description:
This command, executed in XML, requests SL Power Management Controller to turn on or off all nodes attached to SL-APM.

Get compute node

• Command:

<SLAPMCL VERSION="1.00">
<LOGIN USER_LOGIN="Administrator" PASSWORD="password">
<GET_COMPUTE_NODE_POWER>
<SLAPM PORT="1"/>
<DIST_MODULE PORT="1"/>
 NODE PORT="1"/>
</GET_COMPUTE_NODE_POWER>
</LOGIN>
</SLAPMCL>

XML commands 94
Get all compute node power

**Command:**

```xml
<SLAPMCL VERSION="1.00">
 <LOGIN USER_LOGIN="Administrator" PASSWORD="password">
 <GET_ALL_COMPUTE_NODES_POWER/>
 </LOGIN>
</SLAPMCL>
```

**Description:**
This command, executed in XML, requests the power status of all nodes attached to SL-APM.

Reset SL-APM

**Command:**

```xml
<SLAPMCL VERSION="1.00">
 <LOGIN USER_LOGIN="Administrator" PASSWORD="password">
 <RESET_APM/>
 </LOGIN>
</SLAPMCL>
```

**Description:**
This command, executed in XML, resets SL-APM.
Supported MIB objects

Supported cpqRack MIB objects

<table>
<thead>
<tr>
<th>Object name</th>
<th>Object identifier</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compaq</td>
<td>1.3.6.1.4.1.232</td>
<td></td>
</tr>
<tr>
<td>cpqRackInfo</td>
<td>1.3.6.1.4.1.232.22</td>
<td></td>
</tr>
<tr>
<td>cpqRackMibRev</td>
<td>1.3.6.1.4.1.232.22.1</td>
<td></td>
</tr>
<tr>
<td>cpqRackMibRevMajor</td>
<td>1.3.6.1.4.1.232.22.1.1</td>
<td></td>
</tr>
<tr>
<td>cpqRackMibRevMinor</td>
<td>1.3.6.1.4.1.232.22.1.2</td>
<td></td>
</tr>
<tr>
<td>cpqRackMibCondition</td>
<td>1.3.6.1.4.1.232.22.1.3</td>
<td></td>
</tr>
<tr>
<td>cpqRackComponent</td>
<td>1.3.6.1.4.1.232.22.2</td>
<td></td>
</tr>
<tr>
<td>cpqRackAsset</td>
<td>1.3.6.1.4.1.232.22.2.2</td>
<td></td>
</tr>
<tr>
<td>cpqRackAssetTable</td>
<td>1.3.6.1.4.1.232.22.2.2.1</td>
<td></td>
</tr>
<tr>
<td>cpqRackAssetEntry</td>
<td>1.3.6.1.4.1.232.22.2.2.1.1</td>
<td></td>
</tr>
<tr>
<td>cpqRackAssetIndex</td>
<td>1.3.6.1.4.1.232.22.2.2.2.1.1</td>
<td></td>
</tr>
<tr>
<td>cpqRackName</td>
<td>1.3.6.1.4.1.232.22.2.2.1.2</td>
<td></td>
</tr>
<tr>
<td>cpqRackUid</td>
<td>1.3.6.1.4.1.232.22.2.2.1.3</td>
<td>Always returns -1.</td>
</tr>
<tr>
<td>cpqRackSerialNum</td>
<td>1.3.6.1.4.1.232.22.2.2.1.4</td>
<td></td>
</tr>
<tr>
<td>cpqRackTrapSequenceNum</td>
<td>1.3.6.1.4.1.232.22.2.2.1.5</td>
<td>Always returns -1.</td>
</tr>
<tr>
<td>cpqRackHeight</td>
<td>1.3.6.1.4.1.232.22.2.2.1.6</td>
<td>Always returns -1.</td>
</tr>
<tr>
<td>cpqRackWidth</td>
<td>1.3.6.1.4.1.232.22.2.2.1.7</td>
<td>Always returns -1.</td>
</tr>
<tr>
<td>cpqRackDepth</td>
<td>1.3.6.1.4.1.232.22.2.2.1.8</td>
<td></td>
</tr>
<tr>
<td>cpqRackEnclosure</td>
<td>1.3.6.1.4.1.232.22.2.3</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosure</td>
<td>1.3.6.1.4.1.232.22.2.3.1</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureTable</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureEntry</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureRack</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureHeight</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.12</td>
<td>Always returns -1.</td>
</tr>
<tr>
<td>cpqRackCommonEnclosureWidth</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.13</td>
<td>Always returns -1.</td>
</tr>
<tr>
<td>cpqRackCommonEnclosureDepth</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.14</td>
<td>Always returns -1.</td>
</tr>
<tr>
<td>cpqRackCommonEnclosureTrapSequenceNum</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.15</td>
<td>Always returns -1.</td>
</tr>
<tr>
<td>cpqRackCommonEnclosureCondition</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.16</td>
<td>Always returns -1.</td>
</tr>
<tr>
<td>cpqRackCommonEnclosureHasServerBlades</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.17</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureHasPowerSupplies</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.18</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureHasNetConnectors</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.19</td>
<td>Always returns -1.</td>
</tr>
<tr>
<td>cpqRackCommonEnclosureIndex</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.2</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureHasTempSensors</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.20</td>
<td>Always returns -1.</td>
</tr>
<tr>
<td>cpqRackCommonEnclosureHasFans</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.21</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureHasFuses</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.22</td>
<td>Always returns -1.</td>
</tr>
<tr>
<td>cpqRackCommonEnclosureMgmtUID</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.23</td>
<td></td>
</tr>
<tr>
<td>Object name</td>
<td>Object identifier</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------------------------------------------</td>
<td>--------------------------------------------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>cpqRackCommonEnclosureSerialNumPrev</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.24</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureSerialNumNext</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.25</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureAddress</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.26</td>
<td>Always returns -1.</td>
</tr>
<tr>
<td>cpqRackCommonEnclosureProductId</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.27</td>
<td>Always returns an empty string &quot;&quot;.</td>
</tr>
<tr>
<td>cpqRackCommonEnclosureProductIdPrev</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.28</td>
<td>Always returns an empty string &quot;&quot;.</td>
</tr>
<tr>
<td>cpqRackCommonEnclosureProductIdNext</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.29</td>
<td>Always returns an empty string &quot;&quot;.</td>
</tr>
<tr>
<td>cpqRackCommonEnclosureModel</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.3</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureUUID</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.30</td>
<td>Always returns an empty string &quot;&quot;.</td>
</tr>
<tr>
<td>cpqRackCommonEnclosureUUIDPrev</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.31</td>
<td>Always returns an empty string &quot;&quot;.</td>
</tr>
<tr>
<td>cpqRackCommonEnclosureUUIDNext</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.32</td>
<td>Always returns an empty string &quot;&quot;.</td>
</tr>
<tr>
<td>cpqRackCommonEnclosureFanWattage</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.34</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureAssetTag</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.34</td>
<td>Always returns an empty string &quot;&quot;.</td>
</tr>
<tr>
<td>cpqRackCommonEnclosurePartNumber</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.5</td>
<td>Always returns an empty string &quot;&quot;.</td>
</tr>
<tr>
<td>cpqRackCommonEnclosureSparePartNumber</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.6</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureSerialNum</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.7</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureFWRev</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.8</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureName</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.9</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureFanTable</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.10</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureFanEntry</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.11</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureFanRack</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.12</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureFanCondition</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.13</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureFanChassis</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.14</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureFanIndex</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.15</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureManagerTable</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.16</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureManagerEntry</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.17</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureManagerPresent</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.18</td>
<td></td>
</tr>
<tr>
<td>cpqRackCommonEnclosureManagerFWRev</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.19</td>
<td></td>
</tr>
<tr>
<td>cpqRackServerEnclosureTable</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.20</td>
<td></td>
</tr>
<tr>
<td>cpqRackServerEnclosureEntry</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.21</td>
<td></td>
</tr>
<tr>
<td>cpqRackServerEnclosureRack</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.22</td>
<td></td>
</tr>
<tr>
<td>cpqRackServerEnclosureIndex</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.23</td>
<td></td>
</tr>
<tr>
<td>cpqRackServerEnclosureName</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.24</td>
<td>Always returns an empty string &quot;&quot;.</td>
</tr>
<tr>
<td>cpqRackServerEnclosureMaxNumBlades</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.25</td>
<td></td>
</tr>
<tr>
<td>cpqRackServer</td>
<td>1.3.6.1.4.1.232.22.2.3.1.1.1.26</td>
<td></td>
</tr>
<tr>
<td>Object name</td>
<td>Object identifier</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------------------------------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>cpqRackServerBlade</td>
<td>1.3.6.1.4.1.232.22.2.4.1</td>
<td></td>
</tr>
<tr>
<td>cpqRackSystemTime</td>
<td>1.3.6.1.4.1.232.22.2.4.1.0</td>
<td></td>
</tr>
<tr>
<td>cpqRackServerBladeTable</td>
<td>1.3.6.1.4.1.232.22.2.4.1.1</td>
<td></td>
</tr>
<tr>
<td>cpqRackServerBladeEntry</td>
<td>1.3.6.1.4.1.232.22.2.4.1.1.1</td>
<td></td>
</tr>
<tr>
<td>cpqRackServerBladeRack</td>
<td>1.3.6.1.4.1.232.22.2.4.1.1.1.1</td>
<td></td>
</tr>
<tr>
<td>cpqRackServerBladeWidth</td>
<td>1.3.6.1.4.1.232.22.2.4.1.1.10</td>
<td></td>
</tr>
<tr>
<td>cpqRackServerBladeDepth</td>
<td>1.3.6.1.4.1.232.22.2.4.1.1.1.11</td>
<td></td>
</tr>
<tr>
<td>cpqRackServerBladePresent</td>
<td>1.3.6.1.4.1.232.22.2.4.1.1.1.1.12</td>
<td></td>
</tr>
<tr>
<td>cpqRackServerBladeHasFuses</td>
<td>1.3.6.1.4.1.232.22.2.4.1.1.1.13</td>
<td></td>
</tr>
<tr>
<td>cpqRackServerBladeEnclosureSerialNum</td>
<td>1.3.6.1.4.1.232.22.2.4.1.1.1.14</td>
<td></td>
</tr>
<tr>
<td>cpqRackServerBladeSlotsUsed</td>
<td>1.3.6.1.4.1.232.22.2.4.1.1.1.15</td>
<td></td>
</tr>
<tr>
<td>cpqRackServerBladeSerialNum</td>
<td>1.3.6.1.4.1.232.22.2.4.1.1.1.1.16</td>
<td>Always returns an empty string “”</td>
</tr>
<tr>
<td>cpqRackServerBladeProductId</td>
<td>1.3.6.1.4.1.232.22.2.4.1.1.1.1.1.17</td>
<td>Always returns an empty string “”</td>
</tr>
<tr>
<td>cpqRackServerBladeChassis</td>
<td>1.3.6.1.4.1.232.22.2.4.1.1.1.2</td>
<td></td>
</tr>
<tr>
<td>cpqRackServerBladeIndex</td>
<td>1.3.6.1.4.1.232.22.2.4.1.1.1.3</td>
<td></td>
</tr>
<tr>
<td>cpqRackServerBladeName</td>
<td>1.3.6.1.4.1.232.22.2.4.1.1.1.4</td>
<td>Always returns an empty string “”</td>
</tr>
<tr>
<td>cpqRackServerBladeEnclosureName</td>
<td>1.3.6.1.4.1.232.22.2.4.1.1.1.5</td>
<td>Always returns an empty string “”</td>
</tr>
<tr>
<td>cpqRackServerBladePartNumber</td>
<td>1.3.6.1.4.1.232.22.2.4.1.1.1.6</td>
<td>Always returns an empty string “”</td>
</tr>
<tr>
<td>cpqRackServerBladeSparePartNumber</td>
<td>1.3.6.1.4.1.232.22.2.4.1.1.1.7</td>
<td>Always returns an empty string “”</td>
</tr>
<tr>
<td>cpqRackServerBladePosition</td>
<td>1.3.6.1.4.1.232.22.2.4.1.1.1.1.8</td>
<td></td>
</tr>
<tr>
<td>cpqRackServerBladeHeight</td>
<td>1.3.6.1.4.1.232.22.2.4.1.1.1.9</td>
<td></td>
</tr>
<tr>
<td>cpqRackPollPower</td>
<td>1.3.6.1.4.1.232.22.2.4.2.0</td>
<td></td>
</tr>
<tr>
<td>cpqRackPower</td>
<td>1.3.6.1.4.1.232.22.2.5</td>
<td></td>
</tr>
<tr>
<td>cpqRackPowerSupply</td>
<td>1.3.6.1.4.1.232.22.2.5.1</td>
<td></td>
</tr>
<tr>
<td>cpqRackPowerSupplyTable</td>
<td>1.3.6.1.4.1.232.22.2.5.1.1</td>
<td></td>
</tr>
<tr>
<td>cpqRackPowerSupplyEntry</td>
<td>1.3.6.1.4.1.232.22.2.5.1.1.1</td>
<td></td>
</tr>
<tr>
<td>cpqRackPowerSupplyRack</td>
<td>1.3.6.1.4.1.232.22.2.5.1.1.1.1</td>
<td></td>
</tr>
<tr>
<td>cpqRackPowerSupplyPresent</td>
<td>1.3.6.1.4.1.232.22.2.5.1.1.1.1.16</td>
<td></td>
</tr>
<tr>
<td>cpqRackPowerSupplyCondition</td>
<td>1.3.6.1.4.1.232.22.2.5.1.1.1.1.17</td>
<td></td>
</tr>
<tr>
<td>cpqRackPowerSupplyEncryptionSerialNum</td>
<td>1.3.6.1.4.1.232.22.2.5.1.1.1.1.18</td>
<td></td>
</tr>
<tr>
<td>cpqRackPowerSupplyChassis</td>
<td>1.3.6.1.4.1.232.22.2.5.1.1.1.2</td>
<td></td>
</tr>
<tr>
<td>cpqRackPowerSupplyIndex</td>
<td>1.3.6.1.4.1.232.22.2.5.1.1.1.3</td>
<td></td>
</tr>
<tr>
<td>cpqRackPowerSupplyEncryptionName</td>
<td>1.3.6.1.4.1.232.22.2.5.1.1.1.4</td>
<td></td>
</tr>
<tr>
<td>cpqRackNameChanged</td>
<td>1.3.6.1.4.1.232.22001</td>
<td></td>
</tr>
<tr>
<td>cpqRackEnclosureRemoved</td>
<td>1.3.6.1.4.1.232.22003</td>
<td></td>
</tr>
<tr>
<td>cpqRackEnclosureInserted</td>
<td>1.3.6.1.4.1.232.22004</td>
<td></td>
</tr>
<tr>
<td>cpqRackEnclosureFanFailed</td>
<td>1.3.6.1.4.1.232.22008</td>
<td></td>
</tr>
<tr>
<td>cpqRackEnclosureFanOk</td>
<td>1.3.6.1.4.1.232.22010</td>
<td></td>
</tr>
<tr>
<td>cpqRackEnclosureFanRemoved</td>
<td>1.3.6.1.4.1.232.22011</td>
<td>Supported with</td>
</tr>
</tbody>
</table>
### Supported MIB objects

<table>
<thead>
<tr>
<th>Object name</th>
<th>Object identifier</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpqRackEnclosureFanInserted</td>
<td>1.3.6.1.4.1.232.22012</td>
<td>Supported with exception of HP ProLiant s6500 Chassis</td>
</tr>
<tr>
<td>cpqRackPowerSupplyFailed</td>
<td>1.3.6.1.4.1.232.22013</td>
<td>—</td>
</tr>
<tr>
<td>cpqRackPowerSupplyOk</td>
<td>1.3.6.1.4.1.232.22015</td>
<td>—</td>
</tr>
<tr>
<td>cpqRackPowerSupplyRemoved</td>
<td>1.3.6.1.4.1.232.22016</td>
<td>—</td>
</tr>
<tr>
<td>cpqRackPowerSupplyInserted</td>
<td>1.3.6.1.4.1.232.22017</td>
<td>—</td>
</tr>
<tr>
<td>cpqRackServerBladeRemoved</td>
<td>1.3.6.1.4.1.232.22028</td>
<td>—</td>
</tr>
<tr>
<td>cpqRackServerBladeInserted</td>
<td>1.3.6.1.4.1.232.22029</td>
<td>—</td>
</tr>
<tr>
<td>cpqRackServerBladePoweredOn</td>
<td>1.3.6.1.4.1.232.22069</td>
<td>—</td>
</tr>
<tr>
<td>cpqRackServerBladePoweredOff</td>
<td>1.3.6.1.4.1.232.22070</td>
<td>—</td>
</tr>
</tbody>
</table>

### Supported cpqHostOs MIB objects

<table>
<thead>
<tr>
<th>Object name</th>
<th>Object identifier</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>compaq</td>
<td>1.3.6.1.4.1.232</td>
<td></td>
</tr>
<tr>
<td>cpqHostOs</td>
<td>1.3.6.1.4.1.232.11</td>
<td></td>
</tr>
<tr>
<td>cpqHoMibRev</td>
<td>1.3.6.1.4.1.232.11.1</td>
<td></td>
</tr>
<tr>
<td>cpqRackMibRevMajor</td>
<td>1.3.6.1.4.1.232.22.1.1</td>
<td></td>
</tr>
<tr>
<td>cpqRackMibRevMinor</td>
<td>1.3.6.1.4.1.232.22.1.2</td>
<td></td>
</tr>
<tr>
<td>cpqRackMibCondition</td>
<td>1.3.6.1.4.1.232.22.1.3</td>
<td></td>
</tr>
<tr>
<td>cpqHoSystemStatus</td>
<td>1.3.6.1.4.1.232.11.2.10</td>
<td></td>
</tr>
<tr>
<td>cpqHoMibStatusArray</td>
<td>1.3.6.1.4.1.232.11.2.10.1</td>
<td></td>
</tr>
<tr>
<td>cpqHoConfigChangedDate</td>
<td>1.3.6.1.4.1.232.11.2.10.2</td>
<td></td>
</tr>
<tr>
<td>cpqHoGUID</td>
<td>1.3.6.1.4.1.232.11.2.10.3</td>
<td>Always returns an empty string &quot;&quot;.</td>
</tr>
<tr>
<td>cpqHoCodeServer</td>
<td>1.3.6.1.4.1.232.11.2.10.4</td>
<td>Always returns -1.</td>
</tr>
<tr>
<td>cpqHoWebMgmtPort</td>
<td>1.3.6.1.4.1.232.11.2.10.5</td>
<td>Always returns -1.</td>
</tr>
<tr>
<td>cpqHoGUIDCanonical</td>
<td>1.3.6.1.4.1.232.11.2.10.6</td>
<td>Always returns an empty string &quot;&quot;.</td>
</tr>
</tbody>
</table>

### Supported rfc1213 MIB objects

<table>
<thead>
<tr>
<th>Object name</th>
<th>Object identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>mib-2</td>
<td>1.3.6.1.2.1</td>
</tr>
<tr>
<td>system</td>
<td>1.3.6.1.2.1.1</td>
</tr>
<tr>
<td>sysDescr</td>
<td>1.3.6.1.2.1.1.1</td>
</tr>
<tr>
<td>sysObjectID</td>
<td>1.3.6.1.2.1.1.2</td>
</tr>
<tr>
<td>sysUpTime</td>
<td>1.3.6.1.2.1.1.3</td>
</tr>
<tr>
<td>Object name</td>
<td>Object identifier</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>sysContact</td>
<td>1.3.6.1.2.1.1.4</td>
</tr>
<tr>
<td>sysName</td>
<td>1.3.6.1.2.1.1.5</td>
</tr>
<tr>
<td>sysLocation</td>
<td>1.3.6.1.2.1.1.6</td>
</tr>
<tr>
<td>sysServices</td>
<td>1.3.6.1.2.1.1.7</td>
</tr>
<tr>
<td>transmission</td>
<td>1.3.6.1.2.1.10</td>
</tr>
<tr>
<td>snmp</td>
<td>1.3.6.1.2.1.11</td>
</tr>
<tr>
<td>snmpInPkts</td>
<td>1.3.6.1.2.1.11.1</td>
</tr>
<tr>
<td>snmpInBadValues</td>
<td>1.3.6.1.2.1.11.10</td>
</tr>
<tr>
<td>snmpInReadOnlys</td>
<td>1.3.6.1.2.1.11.11</td>
</tr>
<tr>
<td>snmpInGenErrs</td>
<td>1.3.6.1.2.1.11.12</td>
</tr>
<tr>
<td>snmpInTotalReqVars</td>
<td>1.3.6.1.2.1.11.13</td>
</tr>
<tr>
<td>snmpInTotalSetVars</td>
<td>1.3.6.1.2.1.11.14</td>
</tr>
<tr>
<td>snmpInGetRequests</td>
<td>1.3.6.1.2.1.11.15</td>
</tr>
<tr>
<td>snmpInGetNexts</td>
<td>1.3.6.1.2.1.11.16</td>
</tr>
<tr>
<td>snmpInSetRequests</td>
<td>1.3.6.1.2.1.11.17</td>
</tr>
<tr>
<td>snmpInGetResponses</td>
<td>1.3.6.1.2.1.11.18</td>
</tr>
<tr>
<td>snmpInTraps</td>
<td>1.3.6.1.2.1.11.19</td>
</tr>
<tr>
<td>snmpOutPkts</td>
<td>1.3.6.1.2.1.11.2</td>
</tr>
<tr>
<td>snmpOutTooBigs</td>
<td>1.3.6.1.2.1.11.20</td>
</tr>
<tr>
<td>snmpOutNoSuchNames</td>
<td>1.3.6.1.2.1.11.21</td>
</tr>
<tr>
<td>snmpOutBadValues</td>
<td>1.3.6.1.2.1.11.22</td>
</tr>
<tr>
<td>snmpOutGenErrs</td>
<td>1.3.6.1.2.1.11.24</td>
</tr>
<tr>
<td>snmpOutGetRequests</td>
<td>1.3.6.1.2.1.11.25</td>
</tr>
<tr>
<td>snmpOutGetNexts</td>
<td>1.3.6.1.2.1.11.26</td>
</tr>
<tr>
<td>snmpOutSetRequests</td>
<td>1.3.6.1.2.1.11.27</td>
</tr>
<tr>
<td>snmpOutGetResponses</td>
<td>1.3.6.1.2.1.11.28</td>
</tr>
<tr>
<td>snmpOutTraps</td>
<td>1.3.6.1.2.1.11.29</td>
</tr>
<tr>
<td>snmpInBadVersions</td>
<td>1.3.6.1.2.1.11.3</td>
</tr>
<tr>
<td>snmpEnableAuthenTraps</td>
<td>1.3.6.1.2.1.11.30</td>
</tr>
<tr>
<td>snmpInBadCommunityNames</td>
<td>1.3.6.1.2.1.11.4</td>
</tr>
<tr>
<td>snmpInBadCommunityUses</td>
<td>1.3.6.1.2.1.11.5</td>
</tr>
<tr>
<td>snmpInASNParseErrs</td>
<td>1.3.6.1.2.1.11.6</td>
</tr>
<tr>
<td>snmpInTooBigs</td>
<td>1.3.6.1.2.1.11.8</td>
</tr>
<tr>
<td>snmpInNoSuchNames</td>
<td>1.3.6.1.2.1.11.9</td>
</tr>
<tr>
<td>interfaces</td>
<td>1.3.6.1.2.1.2</td>
</tr>
<tr>
<td>Object name</td>
<td>Object identifier</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>ifNumber</td>
<td>1.3.6.1.2.1.2.1</td>
</tr>
<tr>
<td>ifNumber</td>
<td>1.3.6.1.2.1.2.1</td>
</tr>
<tr>
<td>ifTable</td>
<td>1.3.6.1.2.1.2.2</td>
</tr>
<tr>
<td>ifEntry</td>
<td>1.3.6.1.2.1.2.2.1</td>
</tr>
<tr>
<td>ifIndex</td>
<td>1.3.6.1.2.1.2.2.1.1</td>
</tr>
<tr>
<td>ifInOctets</td>
<td>1.3.6.1.2.1.2.2.1.10</td>
</tr>
<tr>
<td>ifInUcastPkts</td>
<td>1.3.6.1.2.1.2.2.1.11</td>
</tr>
<tr>
<td>ifInNUcastPkts</td>
<td>1.3.6.1.2.1.2.2.1.12</td>
</tr>
<tr>
<td>ifInDiscards</td>
<td>1.3.6.1.2.1.2.2.1.13</td>
</tr>
<tr>
<td>ifInErrors</td>
<td>1.3.6.1.2.1.2.2.1.14</td>
</tr>
<tr>
<td>ifInUnknownProtos</td>
<td>1.3.6.1.2.1.2.2.1.15</td>
</tr>
<tr>
<td>ifOutOctets</td>
<td>1.3.6.1.2.1.2.2.1.16</td>
</tr>
<tr>
<td>ifOutUcastPkts</td>
<td>1.3.6.1.2.1.2.2.1.17</td>
</tr>
<tr>
<td>ifOutNUcastPkts</td>
<td>1.3.6.1.2.1.2.2.1.18</td>
</tr>
<tr>
<td>ifOutDiscards</td>
<td>1.3.6.1.2.1.2.2.1.19</td>
</tr>
<tr>
<td>ifDescr</td>
<td>1.3.6.1.2.1.2.2.1.2</td>
</tr>
<tr>
<td>ifOutErrors</td>
<td>1.3.6.1.2.1.2.2.1.12</td>
</tr>
<tr>
<td>ifOutQLen</td>
<td>1.3.6.1.2.1.2.2.1.18</td>
</tr>
<tr>
<td>ifSpecific</td>
<td>1.3.6.1.2.1.2.2.1.19</td>
</tr>
<tr>
<td>ifType</td>
<td>1.3.6.1.2.1.2.2.1.3</td>
</tr>
<tr>
<td>ifMtu</td>
<td>1.3.6.1.2.1.2.2.1.4</td>
</tr>
<tr>
<td>ifSpeed</td>
<td>1.3.6.1.2.1.2.2.1.5</td>
</tr>
<tr>
<td>ifPhysAddress</td>
<td>1.3.6.1.2.1.2.2.1.6</td>
</tr>
<tr>
<td>ifAdminStatus</td>
<td>1.3.6.1.2.1.2.2.1.7</td>
</tr>
<tr>
<td>ifOperStatus</td>
<td>1.3.6.1.2.1.2.2.1.8</td>
</tr>
<tr>
<td>ifLastChange</td>
<td>1.3.6.1.2.1.2.2.1.9</td>
</tr>
<tr>
<td>ip</td>
<td>1.3.6.1.2.1.4</td>
</tr>
<tr>
<td>ipForwarding</td>
<td>1.3.6.1.2.1.4.1</td>
</tr>
<tr>
<td>ipOutRequests</td>
<td>1.3.6.1.2.1.4.10</td>
</tr>
<tr>
<td>ipOutDiscards</td>
<td>1.3.6.1.2.1.4.11</td>
</tr>
<tr>
<td>ipOutNoRoutes</td>
<td>1.3.6.1.2.1.4.12</td>
</tr>
<tr>
<td>ipReasmTimeout</td>
<td>1.3.6.1.2.1.4.13</td>
</tr>
<tr>
<td>ipReasmReqds</td>
<td>1.3.6.1.2.1.4.14</td>
</tr>
<tr>
<td>ipReasmOKs</td>
<td>1.3.6.1.2.1.4.15</td>
</tr>
</tbody>
</table>

Supported MIB objects 101
<table>
<thead>
<tr>
<th>Object name</th>
<th>Object identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipReasmFails</td>
<td>1.3.6.1.2.1.4.16</td>
</tr>
<tr>
<td>ipFragOKs</td>
<td>1.3.6.1.2.1.4.17</td>
</tr>
<tr>
<td>ipFragFails</td>
<td>1.3.6.1.2.1.4.18</td>
</tr>
<tr>
<td>ipFragCreates</td>
<td>1.3.6.1.2.1.4.19</td>
</tr>
<tr>
<td>ipDefaultTTL</td>
<td>1.3.6.1.2.1.4.2</td>
</tr>
<tr>
<td>ipAddrTable</td>
<td>1.3.6.1.2.1.4.20</td>
</tr>
<tr>
<td>ipAddrEntry</td>
<td>1.3.6.1.2.1.4.20.1</td>
</tr>
<tr>
<td>ipAdEntAddr</td>
<td>1.3.6.1.2.1.4.20.1.1</td>
</tr>
<tr>
<td>ipAdEntIfIndex</td>
<td>1.3.6.1.2.1.4.20.1.2</td>
</tr>
<tr>
<td>ipAdEntNetMask</td>
<td>1.3.6.1.2.1.4.20.1.3</td>
</tr>
<tr>
<td>ipAdEntBcastAddr</td>
<td>1.3.6.1.2.1.4.20.1.4</td>
</tr>
<tr>
<td>ipAdEntReasmMaxSize</td>
<td>1.3.6.1.2.1.4.20.1.5</td>
</tr>
<tr>
<td>ipRouteTable</td>
<td>1.3.6.1.2.1.4.21</td>
</tr>
<tr>
<td>ipRouteEntry</td>
<td>1.3.6.1.2.1.4.21.1</td>
</tr>
<tr>
<td>ipRouteDest</td>
<td>1.3.6.1.2.1.4.21.1.1</td>
</tr>
<tr>
<td>ipRouteAge</td>
<td>1.3.6.1.2.1.4.21.1.10</td>
</tr>
<tr>
<td>ipRouteMask</td>
<td>1.3.6.1.2.1.4.21.1.11</td>
</tr>
<tr>
<td>ipRouteMetric5</td>
<td>1.3.6.1.2.1.4.21.1.12</td>
</tr>
<tr>
<td>ipRouteInfo</td>
<td>1.3.6.1.2.1.4.21.1.13</td>
</tr>
<tr>
<td>ipRouteIFIndex</td>
<td>1.3.6.1.2.1.4.21.1.12</td>
</tr>
<tr>
<td>ipRouteMetric1</td>
<td>1.3.6.1.2.1.4.21.1.13</td>
</tr>
<tr>
<td>ipRouteMetric2</td>
<td>1.3.6.1.2.1.4.21.1.14</td>
</tr>
<tr>
<td>ipRouteMetric3</td>
<td>1.3.6.1.2.1.4.21.1.15</td>
</tr>
<tr>
<td>ipRouteMetric4</td>
<td>1.3.6.1.2.1.4.21.1.16</td>
</tr>
<tr>
<td>ipRouteNextHop</td>
<td>1.3.6.1.2.1.4.21.1.17</td>
</tr>
<tr>
<td>ipRouteType</td>
<td>1.3.6.1.2.1.4.21.1.18</td>
</tr>
<tr>
<td>ipRouteProto</td>
<td>1.3.6.1.2.1.4.21.1.19</td>
</tr>
<tr>
<td>ipNetToMediaTable</td>
<td>1.3.6.1.2.1.4.22</td>
</tr>
<tr>
<td>ipNetToMediaEntry</td>
<td>1.3.6.1.2.1.4.22.1</td>
</tr>
<tr>
<td>ipNetToMediaIFIndex</td>
<td>1.3.6.1.2.1.4.22.1.1</td>
</tr>
<tr>
<td>ipNetToMediaPhysAddress</td>
<td>1.3.6.1.2.1.4.22.1.2</td>
</tr>
<tr>
<td>ipNetToMediaNetAddress</td>
<td>1.3.6.1.2.1.4.22.1.3</td>
</tr>
<tr>
<td>ipNetToMediaNetAddress</td>
<td>1.3.6.1.2.1.4.22.1.3</td>
</tr>
<tr>
<td>ipNetToMediaType</td>
<td>1.3.6.1.2.1.4.22.1.4</td>
</tr>
<tr>
<td>Object name</td>
<td>Object identifier</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>ipRoutingDiscards</td>
<td>1.3.6.1.2.1.4.23</td>
</tr>
<tr>
<td>ipInReceives</td>
<td>1.3.6.1.2.1.4.3</td>
</tr>
<tr>
<td>ipInHdrErrors</td>
<td>1.3.6.1.2.1.4.4</td>
</tr>
<tr>
<td>ipInAddrErrors</td>
<td>1.3.6.1.2.1.4.5</td>
</tr>
<tr>
<td>ipForwDatagrams</td>
<td>1.3.6.1.2.1.4.6</td>
</tr>
<tr>
<td>ipInUnknownProtos</td>
<td>1.3.6.1.2.1.4.7</td>
</tr>
<tr>
<td>ipInDiscards</td>
<td>1.3.6.1.2.1.4.8</td>
</tr>
<tr>
<td>ipInDelivers</td>
<td>1.3.6.1.2.1.4.9</td>
</tr>
<tr>
<td>icmp</td>
<td>1.3.6.1.2.1.5</td>
</tr>
<tr>
<td>icmpInMsgs</td>
<td>1.3.6.1.2.1.5.1</td>
</tr>
<tr>
<td>icmpInTimestamps</td>
<td>1.3.6.1.2.1.5.10</td>
</tr>
<tr>
<td>icmpInTimestampReps</td>
<td>1.3.6.1.2.1.5.11</td>
</tr>
<tr>
<td>icmpInAddr Masks</td>
<td>1.3.6.1.2.1.5.12</td>
</tr>
<tr>
<td>icmpInAddrMaskReps</td>
<td>1.3.6.1.2.1.5.13</td>
</tr>
<tr>
<td>icmpOutMsgs</td>
<td>1.3.6.1.2.1.5.14</td>
</tr>
<tr>
<td>icmpOutErrors</td>
<td>1.3.6.1.2.1.5.15</td>
</tr>
<tr>
<td>icmpOutDestUnreachs</td>
<td>1.3.6.1.2.1.5.16</td>
</tr>
<tr>
<td>icmpOutTimeExcds</td>
<td>1.3.6.1.2.1.5.17</td>
</tr>
<tr>
<td>icmpOutParmProbs</td>
<td>1.3.6.1.2.1.5.18</td>
</tr>
<tr>
<td>icmpOutSrcQuenchs</td>
<td>1.3.6.1.2.1.5.19</td>
</tr>
<tr>
<td>icmpInErrors</td>
<td>1.3.6.1.2.1.5.2</td>
</tr>
<tr>
<td>icmpOutRedirects</td>
<td>1.3.6.1.2.1.5.20</td>
</tr>
<tr>
<td>icmpOutEchos</td>
<td>1.3.6.1.2.1.5.21</td>
</tr>
<tr>
<td>icmpOutEchoReps</td>
<td>1.3.6.1.2.1.5.22</td>
</tr>
<tr>
<td>icmpOutTimestamps</td>
<td>1.3.6.1.2.1.5.23</td>
</tr>
<tr>
<td>icmpOutTimestampReps</td>
<td>1.3.6.1.2.1.5.24</td>
</tr>
<tr>
<td>icmpOutAddr Masks</td>
<td>1.3.6.1.2.1.5.25</td>
</tr>
<tr>
<td>icmpOutAddrMaskReps</td>
<td>1.3.6.1.2.1.5.26</td>
</tr>
<tr>
<td>icmpInDestUnreachs</td>
<td>1.3.6.1.2.1.5.3</td>
</tr>
<tr>
<td>icmpInTimeExcds</td>
<td>1.3.6.1.2.1.5.4</td>
</tr>
<tr>
<td>icmpInParmProbs</td>
<td>1.3.6.1.2.1.5.5</td>
</tr>
<tr>
<td>icmpInSrcQuenchs</td>
<td>1.3.6.1.2.1.5.6</td>
</tr>
<tr>
<td>icmpInRedirects</td>
<td>1.3.6.1.2.1.5.7</td>
</tr>
<tr>
<td>icmpInEchos</td>
<td>1.3.6.1.2.1.5.8</td>
</tr>
<tr>
<td>Object name</td>
<td>Object identifier</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>icmpInEchoReps</td>
<td>1.3.6.1.2.1.5.9</td>
</tr>
<tr>
<td>tcp</td>
<td>1.3.6.1.2.1.6</td>
</tr>
<tr>
<td>tcpRtoAlgorithm</td>
<td>1.3.6.1.2.1.6.1</td>
</tr>
<tr>
<td>tcpInSegs</td>
<td>1.3.6.1.2.1.6.10</td>
</tr>
<tr>
<td>tcpOutSegs</td>
<td>1.3.6.1.2.1.6.11</td>
</tr>
<tr>
<td>tcpRetransSegs</td>
<td>1.3.6.1.2.1.6.12</td>
</tr>
<tr>
<td>tcpConnTable</td>
<td>1.3.6.1.2.1.6.13</td>
</tr>
<tr>
<td>tcpConnEntry</td>
<td>1.3.6.1.2.1.6.13.1</td>
</tr>
<tr>
<td>tcpConnState</td>
<td>1.3.6.1.2.1.6.13.1.1</td>
</tr>
<tr>
<td>tcpConnLocalAddress</td>
<td>1.3.6.1.2.1.6.13.1.2</td>
</tr>
<tr>
<td>tcpConnLocalPort</td>
<td>1.3.6.1.2.1.6.13.1.3</td>
</tr>
<tr>
<td>tcpConnRemAddress</td>
<td>1.3.6.1.2.1.6.13.1.4</td>
</tr>
<tr>
<td>tcpConnRemPort</td>
<td>1.3.6.1.2.1.6.13.1.5</td>
</tr>
<tr>
<td>tcpInErrs</td>
<td>1.3.6.1.2.1.6.14</td>
</tr>
<tr>
<td>tcpOutRsts</td>
<td>1.3.6.1.2.1.6.15</td>
</tr>
<tr>
<td>tcpRtoMin</td>
<td>1.3.6.1.2.1.6.2</td>
</tr>
<tr>
<td>tcpRtoMax</td>
<td>1.3.6.1.2.1.6.3</td>
</tr>
<tr>
<td>tcpMaxConn</td>
<td>1.3.6.1.2.1.6.4</td>
</tr>
<tr>
<td>tcpActiveOpens</td>
<td>1.3.6.1.2.1.6.5</td>
</tr>
<tr>
<td>tcpPassiveOpens</td>
<td>1.3.6.1.2.1.6.6</td>
</tr>
<tr>
<td>tcpAttemptFails</td>
<td>1.3.6.1.2.1.6.7</td>
</tr>
<tr>
<td>tcpEstabResets</td>
<td>1.3.6.1.2.1.6.8</td>
</tr>
<tr>
<td>tcpCurrEstab</td>
<td>1.3.6.1.2.1.6.9</td>
</tr>
<tr>
<td>udp</td>
<td>1.3.6.1.2.1.7</td>
</tr>
<tr>
<td>udpInDatagrams</td>
<td>1.3.6.1.2.1.7.1</td>
</tr>
<tr>
<td>udpNoPorts</td>
<td>1.3.6.1.2.1.7.2</td>
</tr>
<tr>
<td>udpInErrors</td>
<td>1.3.6.1.2.1.7.3</td>
</tr>
<tr>
<td>udpOutDatagrams</td>
<td>1.3.6.1.2.1.7.4</td>
</tr>
<tr>
<td>udpTable</td>
<td>1.3.6.1.2.1.7.5</td>
</tr>
<tr>
<td>udpEntry</td>
<td>1.3.6.1.2.1.7.5.1</td>
</tr>
<tr>
<td>udpLocalAddress</td>
<td>1.3.6.1.2.1.7.5.1.1</td>
</tr>
<tr>
<td>udpLocalPort</td>
<td>1.3.6.1.2.1.7.5.1.2</td>
</tr>
</tbody>
</table>
PDU identity table

Two new tables are supported in the PDU section of the CPQ POWER MIB. These two tables are supported for both the 30- and 60-amp PDUs, but not for the HP Intelligent Modular PDU Managed Extension Bar.

The PDU identity table has general PDU information. The table contains two rows that match the two PDM ports on the SL-APM. If a port is not populated with the PDU, then that row in the SNMP table contains blanks or zeros, depending on whether it is a string or a numeric value.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pduName</td>
<td>PDU asset tag. You can set this value through the CLI. However, you cannot set this value through SNMP, even though the MIB defines this value as read/writer.</td>
</tr>
<tr>
<td>pduModel</td>
<td>Factory programmed</td>
</tr>
<tr>
<td>pduManufacturer</td>
<td>HP</td>
</tr>
<tr>
<td>pduPartNumber</td>
<td>Factory programmed</td>
</tr>
<tr>
<td>pduSerialNumber</td>
<td>Factory programmed</td>
</tr>
<tr>
<td>pduControllable</td>
<td>1.3.6.1.2.1.1.4</td>
</tr>
</tbody>
</table>

PDU input table

The PDU input table is the second table supported in the PDU section of the CPQPOWER MIB.

This table contains two columns, but eight rows. The two columns are inputVoltage and inputCurrent. The PDU does not support inputVoltage, but it supports inputCurrent.

The PDU input is three-phase power, but each PDU will list four inputs. The first three inputs are the three respective phases and the last “input” is the neutral wire.

The PDU input table has eight rows because the first four (rows 1 to 4) correspond to a PDU plugged into SL-APM port PDM1 and the last four (rows 5 to 8) correspond to a PDU plugged into SL-APM port PDM2. If a power distribution module port does not have a PDU plugged into it (or another device) those rows will return 0 for their input current values.
Support and other resources

Before you contact HP

Be sure to have the following information available before you call HP:

- Active Health System log (HP ProLiant Gen8 or later products)
  Download and have available an Active Health System log for 3 days before the failure was detected. For more information, see the HP iLO 4 User Guide or HP Intelligent Provisioning User Guide on the HP website (http://www.hp.com/go/ilo/docs).

- Onboard Administrator SHOW ALL report (for HP BladeSystem products only)
  For more information on obtaining the Onboard Administrator SHOW ALL report, see the HP website (http://www.hp.com/go/OAlog).

- Technical support registration number (if applicable)
- Product serial number
- Product model name and number
- Product identification number
- Applicable error messages
- Add-on boards or hardware
- Third-party hardware or software
- Operating system type and revision level

HP contact information

For United States and worldwide contact information, see the Contact HP website (http://www.hp.com/go/assistance).

In the United States:

- To contact HP by phone, call 1-800-334-5144. For continuous quality improvement, calls may be recorded or monitored.

- If you have purchased a Care Pack (service upgrade), see the Support & Drivers website (http://www8.hp.com/us/en/support-drivers.html). If the problem cannot be resolved at the website, call 1-800-633-3600. For more information about Care Packs, see the HP website (http://pro-aq-sama.houston.hp.com/services/cache/10950-0-0-225-121.html).
Acronyms and abbreviations

CM
chassis management

DHCP
Dynamic Host Configuration Protocol

FQDN
Fully Qualified Domain Name

MIB
management information base

PDU
power distribution unit

RADIUS
Remote Authentication Dial-In User Service

SL-APM
HP ProLiant SL Advanced Power Manager

SSH
Secure Shell

TFTP
Trivial File Transfer Protocol

UID
unit identification

XML
extensible markup language
Documentation feedback

HP is committed to providing documentation that meets your needs. To help us improve the documentation, send any errors, suggestions, or comments to Documentation Feedback (mailto:docsfeedback@hp.com). Include the document title and part number, version number, or the URL when submitting your feedback.
Index

A

accessing the CLI 27
ADD ACCOUNT 54, 74
ADD ZONE 47, 55, 85
alert messages 72
authorized reseller 106
automatic discovery 22

B

before you contact HP 106

C

cabling 40
CLI commands 73
command line syntax 27
command, 68, 93
command, ADD RADIUS SERVER 36, 90
command, CLEAR FAULTS 34, 73
command, CLEAR LOG 33, 73
command, CLEAR SCREEN 61, 73
command, DISABLE ETHERNET 73
command, DISABLE KEYS 67, 90
command, DISABLE PASSWORD 54, 75
command, DISABLE POLLPOWER 52, 87
command, DISABLE RADIUS 36, 90
command, DISABLE SNMP 62, 87
command, DISABLE SSH 26, 74
command, DISABLE TELNET 26, 74
command, DISABLE XML 67, 90
command, ENABLE ETHERNET 73
command, ENABLE PASSWORD 75
command, ENABLE POLLPOWER 52, 87
command, ENABLE RADIUS 36, 90
command, ENABLE SNMP 62, 87
command, ENABLE SSH 26, 74
command, ENABLE TELNET 26, 74
command, ENABLE XML 67, 89
command, ENABLE XML SECURE 67, 89
command, EXIT 61, 76
command, GET ALL COMPUTER NODE POWER 69, 95
command, GET COMPUTER NODE 69, 94
command, GET FIRMWARE VERSION 68, 92
command, GET RACK TOPOLOGY 68, 93
command, HELP 58, 76
command, LOGIN 67, 92
command, LOGOUT 61, 76
command, MOD USER 67, 92
command, MODIFY ALL COMPUTER NODE POWER 68, 94
command, MODIFY COMPUTER NODE POWER 68, 93
command, PING 25, 75
command, QUIT 61, 76
command, REBOOT 60, 76
command, REBOOT CM 60, 77
command, REMOVE RADIUS SERVER 36, 91
command, RESET 61, 76
command, RESET FACTORY 54, 77
command, RESET SL-APM 69, 95
command, SAVE 77
command, SET ASSETINFO 30, 81
command, SET GATEWAY 25, 78
command, SET IP 25, 77
command, SET NAME 58, 78
command, SET PASSWORD 53, 78
command, SET POWER 51, 79
command, SET RADIUS POLLPNUM 91
command, SET RADIUS POLLPSEC 91
command, SET SERIAL 79
command, SET SNMP CONTACT 63, 88
command, SET SNMP LOCATION 63, 88
command, SET SNMNP RO 63, 88
command, SET SNMNP RW 63, 88
command, SET SNMNP TRAPDEST 63, 88
command, SET SYSLOG 34, 79
command, SET TIME 59, 80
command, SET TIMEOUT 59, 80
command, SET UID 59
command, SHOW ASSETINFO 30, 84
command, SHOW CONFIG 58, 81
command, SHOW FAULTS 33, 34, 81
command, SHOW INFO 59, 82
command, SHOW KEYS 67, 90
command, SHOW LOG 33, 82
command, SHOW MACADD 32, 84
command, SHOW NAME 60, 82
command, SHOW POWER 49, 82
command, SHOW RACK 28, 83
command, SHOW RADIUS 37, 91
command, SHOW SERVERS 30, 83
command, SHOW SNMP 62, 88
command, SHOW SYSLOG 34, 82
command, SHOW TIME 60, 84
command, SHOW TOPOLOGY 30, 83
command, SHOW VERSION 60, 85
command, UPGRADE IMAGE 71, 85
configuration 23, 25, 26
configuration, saving 28
configuration, showing 58
contact information 106
contacting HP 106
creating power mappings 47
customer self repair (CSR) 106

D
device discovery 72
DISABLE KEYS 67, 90
DISABLE POLLPOWER 52, 87
DISABLE XML 67, 90
distribution hardware 10
downloading files 106
duplicating the configuration 26

E
ENABLE POLLPOWER 52, 87
Enable XML 67, 89
ENABLE XML SECURE 67, 89
EXIT 61
external logging 34

F
factory settings, restoring 54
firmware 71
firmware, upgrading 71
first-time configuration 23
front panel components 8

G
general commands 53
GET ALL COMPUTER NODE POWER 69, 95
GET COMPUTER NODE 69, 94
GET FIRMWARE VERSION 68, 92
GET RACK INFORMATION 68, 93
GET RACK TOPOLOGY 68, 93

H
help command 58
help resources 106
HP contact information 106
HP technical support 106
HP website 106
HP, contacting 106

I
installation 23
installation preparation 23
installing hardware 23
internal logging 33
introduction 8, 11
invalidating a power baseline 39
IP address, viewing 25

L
logging 33
LOGIN 67, 92
LOGOUT 61

M
MOD USER 67, 92
MODIFY ALL COMPUTER NODE POWER 68, 94
MODIFY COMPUTER NODE POWER 68, 93

N
naming and numbering conventions 11
network configuration 25

O
overview 8

P
password settings 53
passwords 53
PDU identity table 105
PDU input table 105
phone numbers 106
power baseline 40
POWER BASELINE 39, 42, 80
power baselines and zones 49
power capping 38, 42
power capping licensing 39